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% Check for updates Distinctive patterns of brain neurotransmission frame determinant circuits for

behavior. Understanding the relationship between their damage and the
cognitive impairment provoked by brain lesions could provide insights into
the pathophysiology and therapeutics of disabling disorders, like stroke. Yet,
the challenges of neurotransmitter circuits mapping in vivo have hampered
this investigation. Here, we developed an MRI white matter atlas of neuro-
transmitter circuits and created a method to chart how stroke damages neu-
rotransmitter systems, which distinguishes pre and postsynaptic disruption.
Our model, trained and tested in two large stroke patient samples, identified
eight clusters with different neurochemical patterns. The associations with
patients’ cognitive profiles were scarce, denoting that a particular cognitive
deficit might have finer underlying neurochemical disturbances that are unfit
to the granularity of our analyses. These findings depict stroke neurochemical
diaschisis patterns, provide insights into stroke cognitive deficits and potential
treatments, and open a new window for tailored neurotransmitter modulation.

that we framed crucial determinants of brain function and

pathology®™.

The discovery of neurotransmitters revolutionized our understanding
of the nervous system. It commenced with a famous debate known as

the “spark vs soup” regarding the peripheral nerves'. Otto Loewi con-
ducted a ground-breaking experiment in 1921, that laid the corner-
stone for our understanding of neurochemical transmission. He
demonstrated that extracts of frogs’ hearts subjected to vagal stimu-
lation slowed the rate of denervated hearts®’. Subsequent work on
acetylcholine’s role further solidified the concept of chemical com-
munication at the neuromuscular junction®, an insight that would
eventually unravel the complexities of synaptic transmission within
the brain itself*”. It is within these intricate neurochemical pathways

Stroke, as a predominant cause of brain pathology", orchestrates
a cascade of cognitive and behavioral sequelae™'°. The relationship
between the neurotransmitter systems and deficits arising from stroke
presents a promising avenue for exploration. Leveraging on Positron
Emission Tomography (PET), ground-breaking work has linked ser-
otonin receptor asymmetries to poststroke depression severity", and
recent Diffusion-Weighted Imaging (DWI) research connected choli-
nergic circuit integrity (i.e., the fornix) with long-term episodic and
working memory improvements in stroke’. Yet, a comprehensive
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in vivo mapping of these neurotransmitter circuits remains elusive,
hampering the progress of targeted therapeutics.

The limited success of neurotransmitter-modulating drugs in
clinical trials on stroke recovery underscores the need for more refined
approaches®. For instance, whilst selective serotonin reuptake inhibi-
tors show efficacy in treating poststroke depression, their impact on
cognitive and functional recovery is inconsistent and marked by a high
degree of response variability?*~?2. Similarly, manipulating other neu-
rotransmitter systems such as noradrenaline” %, acetylcholine’®”, and
dopamine”® has seen limited therapeutic success, suggesting that a
more nuanced approach, tailored to individual neurotransmitter pro-
files, might enhance therapeutic outcomes.

The recent publication of a neurotransmitter atlas by Hansen et al.
offers a promising avenue for such personalized interventions”. By
compiling normative maps of receptor and transporter densities, this
atlas is a pivotal reference for discerning the neurochemical profile of
various brain disorders®., Yet, its implementation in focal brain dis-
eases involving white matter, like stroke, remains challenging.

The interaction between receptor and neurotransmitter depends
on the preservation of the neurons and their receptors that receive the
neurotransmitter (i.e., postsynaptic) as well as the integrity of the
neuron responsible for producing the neurotransmitter (i.e., pre-
synaptic). Hence, damage to the pre or postsynaptic neuron’s axons
disrupts the neurotransmitter circuits through neurochemical dia-
schisis, even if the synaptic structures, such as receptors and trans-
porters, remain intact.

Here, we aimed to develop a method to chart stroke lesions onto
neurotransmitter circuits, accounting for neurochemical diaschisis. To
achieve this, we utilized the Functionnectome®, a recent method that
projects values in the gray matter onto the white matter voxels based
on their weighted connection probability. This method created a
neurotransmitter white matter atlas representing the axonal projec-
tions of acetylcholine, dopamine, noradrenaline, and serotonin
receptors and transporters. We then estimated the impact that indi-
vidual stroke lesions would have on the neurotransmitter circuits
indirectly, by differentiating presynaptic and postsynaptic disruption.
Atlases and codes are freely available. We demonstrated that these
measures can differentiate stroke lesions in discrete clusters with
specific neurochemical profiles. Finally, we analyzed the behavioral
and anatomical patterns of the identified neurochemical clusters,
ultimately evidencing that a certain cognitive profile might have dif-
ferent underlying neurochemical bases.

Results

White matter neurotransmitter projection atlas

Normative location density maps of the acetylcholine, dopamine,
noradrenaline and serotonin receptors and transporters were
obtained from Hansen et al.”’. These maps were derived from 1200
healthy individuals’ Positron Emission Tomographies. The following
maps were extracted: acetylcholine receptors alpha4beta2 (42R) and
muscarinic 1 (MIR); acetylcholine vesicular transporter (VAChT);
dopamine receptors 1 (DIR) and 2 (D2R); dopamine transporter (DAT);
noradrenaline transporter (NAT); serotonin receptors 1a (SHT1aR), 1b
(SHT1bR), 2a (5HT2aR), 4 (5HT4R), and 6 (SHT6R); and serotonin
transporter (SHTT).

To map receptors and transporters onto the white matter, we
used the Functionnectome®. This tool projects gray matter voxel
values onto the white matter according to the voxel-wise weighted
probability of structural connection. Whole brain 7 T deterministic
tractographies from 100 Human Connectome Project participants
were used as anatomical priors. Histochemistry and neuronal tracing
provided highly reliable anatomical knowledge about neuro-
transmitter circuits®*>°. Acetylcholine, dopamine, noradrenaline, and
serotonin are produced in specific nuclei located in the brainstem and
basal forebrain (Table 1)”*. The streamlines traversing the

neurotransmitter-producing nuclei were used to create the Function-
nectome anatomical priors.

The obtained representative map of the neurotransmitter systems
white matter projections is presented in Fig. 1. The lobar distribution
was diversified, with a dominance of serotonin tracts in anterior and
medial regions, acetylcholine in posterior regions, and noradrenaline
and dopamine in orbitofrontal regions. Papez circuit’s structures
showed an acetylcholine predominance, namely the fornix, anterior
and mediodorsal thalamic, and some temporal medial regions. The
anterior thalamic radiations and the frontostriatal tracts were mainly
noradrenergic and dopaminergic. In the brainstem, the posterior
fibers were dominated by noradrenergic circuits, whereas the most
anterior by serotoninergic. The cerebellum was predominantly acet-
ylcholinergic. Most of the white matter projection maps were asym-
metric. The SHT2aR, SHT4R, 5HT6, SHTT, DIR, 42R, MIR and VAChT
maps were mainly right-lateralized, while the SHTIbR map was left-
lateralized (p <0.05, corrected for multiple comparisons). A statisti-
cally significant asymmetry was also found for 5HT1aR and D2R, but
the effect sizes were small. The DAT white matter projection map did
not present a significant lateralization. Asymmetries were also found in
the location density maps. The 5SHT1aR, DIR, D2R, DAT, 42R and MIR
maps were predominantly right-lateralized, while the SHT1bR, 5HT2aR,
SHT4R and 5HT6R maps were predominantly left-lateralized. A statis-
tically significant asymmetry was also found for SHTT and VAChT, but
the effect sizes were small. The voxel-wise interhemispheric difference
maps are presented in the supplementary Table 1.

The projection maps for each receptor and transporter are avail-
able at https://identifiers.org/neurovault.collection:15237. The repre-
sentative map of the neurotransmitter receptor and transporter
location densities is presented in Fig. 2.

A supplementary data-driven analysis, without prior streamline
selection, was also performed to explore neurotransmitters whose
production is not associated with specific brainstem or basal forebrain
nuclei. The following additional maps were analyzed®’: y-aminobutyric
acid (GABA) A receptor (GABAAR), metabotropic glutamate receptor 5
(mGIuRS5), p-opioid receptor (MOR), histamine 3 receptor (H3R) and
cannabinoid receptor 1 (CBIR). The projection maps are available at
https://identifiers.org/neurovault.collection:17228.

Pre and postsynaptic ratios

A neurotransmitter circuit may be disrupted presynaptically or post-
synaptically. In presynaptic injury, the neurotransmitter release in the
synaptic cleft decreases, and its interaction with receptors is reduced.
Transporters are located in the presynaptic membrane (Fig. 3a). The
lesion proportion of transporter location density maps and white
matter projection maps were used as neuroimaging surrogates of
presynaptic membrane and presynaptic axonal injury, respectively
(Fig. 3b, left).

In postsynaptic injury, neurotransmitters are released in the
synaptic cleft. However, the postsynaptic neuron does not mediate
their effect, and there is a relative predominance of transporters over
the receptors available. Receptors are located in the postsynaptic
membrane. The lesion proportion of receptor location density maps
and receptor white matter projection maps were used as neuroima-
ging surrogates of the postsynaptic membrane and postsynaptic
axonal injury, respectively (Fig. 3b, right).

Quantifying the pre/post-synaptic unbalance can provide new
premises of pharmacological modulation, namely with the tailored use
of receptor agonists or transporter inhibitors. Therefore, we calculated
a neuroimaging measure of the relative presynaptic injury of each
receptor - the presynaptic ratio — and of the relative postsynaptic
injury of each transporter - the postsynaptic ratio.

Then, we calculated the pre and postsynaptic ratios of two sets of
stroke lesions and analyzed whether the individual neurotransmitter
profiles would be grouped in different clusters. The first set (training
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Table 1| Fiber tracts selection criteria for the Functionnectome anatomical priors’ generation

Neurotransmitter  ROI for streamline selection Circuit Atlas Number of
tractograms
Acetylcholine® Nucleus basalis of Meynert Basal forebrain circuit Zaborszky et al. stereotaxic prob- 186 980
abilistic atlas®’
- Septal nuclei - - -
- Pedunculo-tegmental nuclei Ponto-mesencephalic Brainstem navigator atlas'® -
circuit
- Laterodorsal tegmental nuclei - - -
Dopamine'®® Substantia nigra, pars compacta Nigrostriatal circuit Brainstem navigator atlas'”’ 166 734
- Ventral tegmental area Mesocortico-limbic circuit Harvard Ascending Arousal Net- -
work Atlas'®
Noradrenaline™® Locus coeruleus Dorsal circuit Brainstem navigator atlas'*® 129 176
- Inferior and superior medullary reticular for-  Ventral circuit - -
mation lateral nuclei
Serotonin” Caudal-rostral linear raphe Raphe system Brainstem navigator atlas'*'"' 149 468

- Dorsal raphe -

- Median raphe -

- Paramedian raphe -

- Raphe magnus -

- Raphe obscurus -

- Raphe pallidus -

set) comprised 1333 acute ischemic stroke lesions from the University
College London Hospitals acute stroke service, and the second (vali-
dation set) of 119 acute ischemic and 24 acute hemorrhagic stroke
lesions from the Washington University School of Medicine in St.
Louis. Both datasets are representative of the distribution of stroke
lesions****, The unsupervised k-means clustering algorithm was
computed.

Figure 4 presents the neurotransmitter profiles of two example
cases. Both caused a predominant imbalance of the serotoninergic
circuits: the first postsynaptically (serotonin postsynaptic ratio>1;
Fig. 4, left); the second presynaptically (serotonin presynaptic
ratios > 1; Fig. 4, right).

The distribution of pre and postsynaptic ratios in the training and
validation stroke sets is plotted in Supplementary Fig. 1. The dis-
tribution of pre and postsynaptic damage percentages is plotted in
Supplementary Fig. 2.

The pre and postsynaptic ratios had a high cluster tendency:
Hopkins statistics of 0.08 and 0.13 in the training and validation sets,
respectively. The elbow method analysis showed that the optimal
number of clusters was 8 in both sets.

Figure 5 shows the pre and postsynaptic ratios’ distribution by
cluster in the training and validation sets. Table 2 shows the effect sizes
of the statistically significant associations in the validation set.

Behavioral and motor profiles of neurochemical clusters

Then, we analyzed if behavioral and motor profiles differed between
neurochemical clusters. Behavioral and motor measures were available
in the validation set. It included detailed behavioral and motor
assessments in the acute phase (13+4.9 days after stroke) and
3 months after stroke. The behavioral assessment covered the lan-
guage, visuospatial attention, verbal and visuospatial memory, and
depression domains.

The distributions of the behavioral and motor composite scores
by the cluster at the 3 months post-stroke are presented in Fig. 6a. The
average scores by test are presented in Supplementary Fig. 3. The
acute phase assessments are presented in Supplementary Fig. 4a
and b.

There was a statistically significant difference between clusters in
the visuospatial attention (p-value =0.017) and motor functions (p-

value =0.023) domains. In pairwise comparisons, cluster 5 patients
presented better visuospatial attention performance than the patients
of clusters 1, 4, 6, and 8, and better motor functions than the patients
of cluster 6.

To further evaluate the association between the behavioral and
motor deficits and the neurochemical profiles, we performed a Uni-
form Manifold Approximation and Projection (UMAP) analysis. UMAP
is a nonlinear dimensionality reduction technique that constructs a
low-dimensional representation of high-dimensional data and pre-
serves more of its global and local structure*’. In stroke, it has
demonstrated better performance in disconnection-deficits
predictions*. The two-dimensional UMAP representation of the
scaled behavioral and motor scores 3 months post-stroke and in the
acute phase are presented in Fig. 6b and Supplementary Fig. 4c.

Then, we applied the density-based -clustering algorithm
HDBSCAN to the UMAP representation (https://umap-learn.
readthedocs.io)* and evaluated the similarity between the neuro-
chemical and the UMAP-derived behavioral and motor clusters. No
matching was observed: Adjusted Rand Score of 0.016 and 0.005 for
the 3 months and acute phase assessments, respectively (1 meaning
perfect matching, O random labeling, and - 0.5 discordant clustering).
We repeated the analysis with the patients with no missing behavioral
and motor data (n = 69) at 3 months post-stroke and n = 70 at the acute
phase). No matching was observed: Adjusted Rand Score of 0.028 and
0.022 for the 3 months and acute phase assessments, respectively
(supplementary fig. 5).

)#

Anatomical patterns of neurochemical clusters
We analyzed whether the neurochemical clusters were associated with
different lesion anatomical patterns. Stroke lesion locations are not
random. They follow the anatomical distribution of brain vasculature.
With this analysis, we could understand if the neurochemical clusters
observed could reflect stroke lesions’ spatial clustering®’.
Stroke-associated brain dysfunction is caused not only by the
direct impact of the lesion but also by disconnection and diaschisis*®.
Therefore, we computed the structural disconnectome map asso-
ciated with each lesion using the Disconnectome maps tool from the
BCBtoolkit*’. The lesion topography and the structural disconnectome
maps were compared between neurochemical clusters.
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LLPR

L DLPFR

Fig. 1| Representative map of the neurotransmitter systems white matter
projections. The map was colored according to the neurotransmitter system of the
map with the highest value at a voxel level. ATR anterior thalamic radiations, Cb
cerebellum, CC corpus callosum, DLPFR dorsolateral prefrontal region, FST fron-
tostriatal tracts, L left, LPR lateral parietal region, LTR lateral temporal region, OFR
orbitofrontal region, OP occipital pole, PCu precuneus, R right, SHT1aR serotonin
receptor 1a, SHTIbR serotonin receptor 1b, SHT2aR serotonin receptor 2a, SHT4R

RLPR

R DLPFR

Acetylcholine system tracts
(alphadbeta2R, M1R, VAChT)

Dopamine system tracts
(D1R, D2R, DAT)

Noradrenaline system tracts
(NAT)

Serotonin system tracts
(5HT1aR, 5HT1bR, 5HT2aR, 5HT4R, 5HTR6, 5HTT)

serotonin receptor 4, SHT6R serotonin receptor 6, SHTT serotonin transporter,
alpha4beta2R acetylcholine receptor alpha4beta2, DIR dopamine receptor 1, D2R
dopamine receptor 2, DAT dopamine transporter, MIR muscarinic 1 receptor, NAT
noradrenaline transporter, VAChT acetylcholine vesicular transporter. The pro-
jection maps for each receptor and transporter are available at https://identifiers.
org/neurovault.collection:15237.
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L DLPFC

(alphadbeta2R, M1R, VAChT)

Dopamine system
(D1R, D2R, DAT)

Fig. 2 | Representative map of the neurotransmitter systems location densities.
The cortical (top row), basal ganglia (middle row), and brainstem and cerebellar
(bottom row) surfaces are represented on the left (first column), right (second
column), superior (third column), and inferior (fourth column) views. The map was
colored according to the neurotransmitter system of the map (either receptor or
transporter) with the highest value at a voxel level. Cau caudate nucleus, Cb cere-
bellum, DLPFC dorsolateral prefrontal cortex, L left, LPC lateral parietal cortex, LTC
lateral temporal cortex, OFC orbitofrontal cortex, OP occipital pole, Pu pulvinar, R

Acetylcholine system Noradrenaline system

(NAT)

Serotonin system
(6HT1aR, 5HT1bR, 5HT2aR, 5HT4R, 5HTR6, S5HTT)

right, RN red nucleus, SN substantia nigra, STN subthalamic nucleus, Th thalamus.
SHT1aR serotonin receptor 1a, SHTIbR serotonin receptor 1b, SHT2aR serotonin
receptor 2a, SHT4R serotonin receptor 4, SHT6R serotonin receptor 6, SHTT ser-
otonin transporter, alpha4beta2R acetylcholine receptor alpha4beta2, DIR dopa-
mine receptor 1, D2R dopamine receptor 2, DAT dopamine transporter, MIR
muscarinic 1 receptor, NAT noradrenaline transporter, VAChT acetylcholine vesi-
cular transporter.

Figure 7 presents the statistically significant associations of the
neurochemical clusters with the lesion and structural disconnectome
maps, in the validation set.

The cluster 1 patients presented a significantly higher probability
of lesion in the left occipito-temporo-parietal regions, and a higher
probability of structural disconnection in the splenium of the corpus
callosum and left occipito-parietal regions. They had a lower prob-
ability of lesion of the right lenticular nucleus and a lower probability
of structural disconnection of the brainstem, thalami, lenticular nuclei,
frontal-medial regions bilaterally, and body of corpus callosum.

The cluster 2 patients had a significantly higher probability of
lesion in the left pons and right medial thalamus, and a higher prob-
ability of structural disconnection of the pons, posterior brainstem
and thalami. They had a lower probability of disconnection in small,
antero-superior regions of the corona radiata.

The cluster 4 patients presented a significantly higher probability
of lesion of the right prefrontal cortex, particularly of its ventrolateral
region, and a higher probability of structural disconnection of the right
prefrontal cortex, body, and genu of the corpus callosum, and dorsal
frontoparietal regions bilaterally.

The cluster 5 patients had a significantly higher probability of
lesion of the right cerebellar hemisphere and a higher probability
of structural disconnection of the cerebellum, pons, and medial
midbrain bilaterally. They had a significantly lower probability of
lesion of the left corona radiata and a lower probability of struc-
tural disconnection in the lateral midbrain, in a wide extension of
fronto-parieto-occipital white matter, and the body and splenium
of the corpus callosum.

No statistically significant differences existed in clusters 3, 6,
7,and 8.

Validation of synaptic ratio analysis
To validate the pre and postsynaptic ratio analysis, we systematically
searched for stroke cases that reported the clinical response to
neurotransmitter-modulating drugs and with images of lesion topo-
graphy available. According to our model, patients with predominant
presynaptic damage would clinically improve with receptor agonists
or inhibitors of degradation enzymes located postsynaptically and
have no response to reuptake inhibitors. Patients with predominant
postsynaptic disruption would have the reverse pattern of response.
We included patients with poststroke cognitive deficits treated with
acetylcholinesterase inhibitors, poststroke parkinsonism medicated
with dopamine receptor agonists, poststroke pathological laughing
and crying treated with selective serotonin reuptake inhibitors, and
poststroke apathy medicated with any class of acetylcholinergic,
dopaminergic or serotoninergic drug. These poststroke syndromes
are known to have a heterogenous response to neurotransmitter-
modulating drugs®®>.

We found 22 reports (Table 3). Our method correctly predicted
the observed pharmacological response in 17 cases (accuracy: 77%;
sensitivity: 75%; specificity: 83%). In 12 cases, we predicted clinical
improvement, and it was observed; in 5 cases, we predicted no clinical
improvement, and it was not observed; in 4 cases, we predicted no
clinical improvement, but an improvement was observed; in 1 case, we
predicted clinical improvement, but it was not observed. The asso-
ciation between prediction and observed clinical response was
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Fig. 3 | Neuronal model and synaptic ratios. a Schematic representation of the synapse basic structure. b Illustration of predominantly presynaptic and postsynaptic

injuries.

statistically significant (Fisher’s exact test; p-value = 0.023). The indi-
vidual stroke lesion maps and pre and postsynaptic ratio graphs are
presented in the supplementary Table 3.

We also ranked the drugs used by their likelihood of causing an
improvement according to individual pre and postsynaptic ratio
graphs. Drugs were categorized into six classes, corresponding to their
predominantly pre or postsynaptic action in acetylcholinergic, dopa-
minergic, and serotoninergic circuits. Accordingly, ranks varied from 1
to 6: 1 corresponded to the highest synaptic ratio, i.e., the highest
probability of improvement; 6 corresponded to the lowest synaptic
ratio, i.e., the lowest probability of improvement. This analysis showed
that patients who clinically improved were treated with drugs with
significantly better improvement likelihood ranks than patients who
had no response (Mann-Whitney test; p-value = 0.020; improvement
group, n=16, median [interquartile range] =3 [2-3.5]; no response
group, n =6, median [interquartile range] =5.5 [4-6]). The individual
drug ranks are reported in the supplementary Table 3.

Discussion

We present a novel approach for creating a white matter atlas of the
neurotransmitter systems and a method for analyzing the impact of
focal lesions on neurotransmitter circuits. We demonstrated the exis-
tence of distinct clusters of stroke lesions with unique presynaptic and
postsynaptic neurotransmitter injury profiles alongside associated
behavioral and anatomical characteristics. Our results underscore the
intricate relationship between neurotransmitter disruption and post-
stroke outcome.

Our atlas aligns well with existing histochemical knowledge of
neurotransmitter circuits. For instance, identifying the fornix and
thalamic fibers as predominantly acetylcholinergic aligns with pre-
vious findings in animal studies. In rats, acetyltransferase immunor-
eactivity is found in the fornix, and these neurons have projections to
the hippocampus and the retrosplenial cortex***. Deep brain stimu-
lation of the fornix increases the acetylcholine levels in the rat
hippocampus®® and induces memory flashbacks in humans with Alz-
heimer’s disease”. The thalamus is also an essential cholinergic relay
across species®® ., This congruence extends to the dopaminergic and
noradrenergic systems, particularly in the frontostriatal fibers and the
orbitofrontal region, corroborating reports from rodents and animal
studies. The fibers in the frontostriatal pathway, specifically those in

the orbitofrontal region, are primarily associated with dopamine cir-
cuits. Through retrograde labeling, it was discovered that neurons
expressing D1 and D2 receptors in the prefrontal cortex of mice have
separate projections to the striatum and midbrain®’. These neurons
integrate the dopaminergic mesocorticolimbic circuits, essential to
human behavioral and mental functioning®*¢*. Other fibers in the
orbitofrontal region belonged predominantly to noradrenaline cir-
cuits. Some of them are part of the anterior thalamic radiations. The
thalamus is rich in adrenoreceptors®. In addition, the locus coeruleus
establishes connections with the orbitofrontal cortex directly or
through thalamo-striatal connections®>*°. Together prefrontal cortex’s
dopaminergic and noradrenergic systems are known to interact, reg-
ulating cognition and behavior, and leading to symptoms when
disrupted®® %, The correspondence between our results and the well-
established histochemical and clinical knowledge indirectly supports
the validity of our method. In line with this, the interhemispheric
asymmetry we report in our study was concordant with previous evi-
dence from the literature. In zebrafish, it was shown that the acet-
ylcholine habenula-interpeduncular pathway is asymmetric®. In rats,
the distribution of the muscarinic acetylcholine receptor is right-
lateralized at the cortical level, and the dopamine levels are asym-
metric in the forebrain and midbrain’®”". In humans, Kranz and col-
leagues demonstrated asymmetries of serotonin transporter
distribution in the temporal and frontal cortices, anterior cingulate,
hippocampus, caudate, and thalamus using PET’2. Tomer and collea-
gues reported asymmetries of dopamine D2 receptors in the striatum
and frontal and temporal cortices™.

Importantly, the innovation of our tool lies in its ability to dis-
sociate the pre and postsynaptic impacts of lesions on neuro-
transmitter circuits. This approach has significant implications for
clinical intervention since receptor agonists or transporter inhibitors’
efficacy might depend on the nature of the synaptic dysfunction. For
example, a receptor agonist is likely ineffective if the lesion causes a
predominant postsynaptic dysfunction. Reversely, in a predominantly
presynaptic dysfunction, using transporter inhibitors would not be
plausible, but receptor agonists could partially restore the circuit’s
activity. Receptor stimulation is an important determinant of neurons’
activity and brain functions. In experimental cultures, rodents’ mid-
brain dopamine-producing neurons tend to die spontaneously by
apoptosis’. These neurons are characterized by excitatory
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acetylcholine nicotinic receptors, and their cell death process can be
slowed down by acetylcholine nicotinic agonists”. In the brain, the
pedunculopontine nuclei provide acetylcholinergic stimulation of
midbrain dopaminergic nuclei’®. In monkey models of Parkinsonism
and humans with Parkinson’s disease, a correlation exists between the
loss of pedunculopontine cholinergic neurons and the severity of gait
impairment”’. Another example is the close interaction between ser-
otonin and noradrenaline systems’®. Serotonin agonists increase the
noradrenaline release in the hippocampus of rats”. When mice
experience left medial prefrontal stroke, they suffer from learning
deficits and reduced depression-like behaviors. These mice also have
reduced serotonin levels, associated with scarcer noradrenaline pro-
jections in different brain regions®’. Fluoxetine, a selective serotonin
reuptake inhibitor, partially reverses the animals’ behavior phenotype.
Interestingly, at the histochemical level, it also partially restores the
serotonin and noradrenaline projections®®. Our methods, together
with this insight, could guide more targeted and effective treatments

for stroke and other focal brain lesions by fostering the development
of neurochemically tailored clinical trials.

The sparse associations between the neurotransmitter profiles
and the behavioral outcomes highlight the complexity of brain func-
tion and the multifaceted roles of neurotransmitters, i.e., various
neurotransmitters support the brain circuits underlying a certain
cognitive function®. For instance, in language disorders, the gray
matter volume alterations of patients with primary progressive aphasia
are spatially correlated with the serotonin, dopamine, and glutama-
tergic pathways®’. Regarding memory, despite the core role of
acetylcholine®®, other neurotransmitters have a demonstrated invol-
vement, such as serotonin®, dopamine, and noradrenaline®*¢, Con-
cerning visuospatial attention, we have recently shown that the ventral
and dorsal attention networks are spatially correlated with the dis-
tribution of acetylcholine nicotinic receptors and dopamine and ser-
otonin transporters”. In depression, serotonin, dopamine, and
noradrenaline are associated with different depressive symptoms®’.
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times the interquartile range; and any points beyond the whiskers represent out-
liers. Asterisks indicate the statistically significant associations in the validation set:

one-sided one-sample t-test or Wilcoxon test, depending on the data distribution;
Bonferroni correction for multiple comparisons: p-value < 0.0042. 5SHT1aR ser-
otonin receptor 1a, SHT1bR serotonin receptor 1b, SHT2aR serotonin receptor 2a,
SHT4R serotonin receptor 4, SHT6R serotonin receptor 6, SHTT serotonin trans-
porter, alpha4beta2R acetylcholine receptor alpha4beta2, DIR dopamine receptor
1, D2R dopamine receptor 2, DAT dopamine transporter, MIR, muscarinic 1
receptor, NAT noradrenaline transporter, VAChT acetylcholine vesicular trans-
porter. Source data are provided as a Source Data file.

Remarkably, the sparse association between behavior and neuro-
transmitter profiles is particularly relevant in understanding why
nonspecific pharmacological treatments in post-stroke cognitive def-
icits have shown limited efficacy'***.

We have identified three different patterns of lesion that lead to
varying neurochemical profiles. Cluster 1 is characterized by acet-
ylcholine and serotonin circuits postsynaptic deficits, while brainstem
fibers, where neurotransmitter-producing presynaptic neurons are
located, and medial frontostriatal and frontothalamic fibers, where
dopamine and noradrenaline are predominant, are spared. On the
other hand, cluster 2 is associated with disconnection of the brainstem
fibers and a presynaptic injury of serotonin and acetylcholine circuits.
Cluster 5, on the other hand, spares frontal-parietal-occipital regions
and corpus callosum, and its performance in visuospatial attention and
motor tasks is significantly better than most of the other clusters. The
lesion topography statistical maps do not follow the spatial distribu-
tion of brain vasculature®. They do not overlap single vascular

territories of lesion or lesion sparing. Ischemic strokes involving
more than one vascular territory are a minority, occurring in 2 to
9% of cases® .. The frequency of multiple lesions in hemorrhagic
strokes is even lower’” Therefore, the presented neurochemical
clusters do not primarily emerge from the spatial clustering of
stroke lesions*’.

Despite these advancements, our study also acknowledges certain
limitations. The range of neurotransmitters examined, while neuro-
pharmacologically relevant, is not exhaustive. Moreover, our approach
focuses on macrostructural analyses and does not delve into the
complexity of microcircuits and glial interactions. It is also important
to note that our model is based on structural injury and may not fully
account for unbalanced circuit hyperfunction. In addition, despite the
usefulness of k-means clustering analysis for understanding under-
lying patterns in synaptic ratios, it is a descriptive method and may not
fully capture the most biologically appropriate data grouping. Finally,
the calculated presynaptic and postsynaptic disruption ratios are
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Table 2 | Effect sizes of the statistically significant associa-
tions in the validation set

Statistically significant Effect size*
ratios
Cluster 1 Acetylcholine VAChT 1.16
postsynaptic
Serotonin postsynaptic SHTT 0.87
Cluster 2 Acetylcholine M1R 5.06
presynaptic
Serotonin presynaptic 5HT1aR 1.05
- - 5HT1bR 1.05
- - 5HT2aR 1.05
- - 5HT4R 3.36
- - 5HT6R 3.86
Cluster 3 Acetylcholine 42R 3.82
presynaptic
- - M1R 4.10
- Dopamine postsynaptic DAT 2.95
Serotonin presynaptic S5HT1aR 3.91
- - 5HT1bR 5.44
- - 5HT2aR 4.82
- - 5HT6R 3.32
Cluster 4 - - -
Cluster 5 Acetylcholine M1R 0.98
presynaptic
- Dopamine presynaptic D1R 0.98
- Serotonin presynaptic 5HT1aR 0.98
- - 5HTIbR 11.23
- - 5HT2aR 0.98
- - 5HT4R 6.28
Cluster 6 Acetylcholine 42R 2.81
presynaptic
- - M1R 3.28
- Dopamine postsynaptic DAT 3.34
- Serotonin presynaptic 5HT1aR 2.76
- - 5HTIbR 2.26
- - 5HT2aR 3.70
- - 5HT6R 1.03
Cluster 7 - - -
Cluster 8 Dopamine postsynaptic DAT 1.08
- Serotonin presynaptic 5HT1aR 1.50
- - 5HTIbR 1.20
- - 5HT2aR 1.47
- - 5HT4R 1.05
- - 5HT6R 1.05

‘Effect sizes represent Cohen'’s d statistic or its nonparametric equivalent, according to data
distribution. 5HT1aR serotonin receptor 1a, 5HT1bR serotonin receptor 1b, 5HT2aR serotonin
receptor 2a, 5HT4R serotonin receptor 4, 5HT6R serotonin receptor 6, 5HTT serotonin trans-
porter, 42R acetylcholine receptor alphadbeta2, DIR dopamine receptor 1, D2R dopamine
receptor 2, DAT dopamine transporter, MR muscarinic 1 receptor, NAT noradrenaline trans-
porter, VAChT acetylcholine vesicular transporter.

indirect estimations, not direct measures. While the validation per-
formed in published case reports is promising, future additional direct
validation in larger samples not constrained to publication biases is
needed. Nuclear medicine imaging techniques, namely PET and Single
Photon Emission Computed Tomography (SPECT), can directly map
the neurotransmitter receptor or transporter density. However, the
need for different radioligands to chart the impact of patients’ lesions
on neurotransmitter circuits would be unsafe and unfeasible. The
white matter projections were not made on patients’ tractograms but

on tractographies from the Human Connectome Project (HCP) data.
Although it has been shown that normative structural data predict
stroke patients’ outcomes*”* and is a valid surrogate of individual
white matter*®, it does not capture subject-specific variations.
The missing data can constitute a bias in the behavioral and motor
analysis.

In conclusion, our study provides valuable insight into the neu-
rochemical underpinning of stroke lesions and offers a novel tool for
analyzing neurotransmitter circuit disruption. This work advances our
understanding of stroke pathophysiology and opens new avenues for
targeted neurochemical modulation, potentially improving post-
stroke rehabilitation strategies and patient outcomes.

Methods

Neurotransmitter receptor and transporter location densities
Normative neurotransmitter receptor and transporter location density
maps were obtained from the work of Hansen and colleagues (https://
github.com/netneurolab/hansen_receptors)®. These maps were
derived from the collection of 1200 healthy individuals registered to
the MNI152 space. We extracted the following maps: acetylcholine
receptors 42R** and MIR”; acetylcholine transporter VAChT’*’;
dopamine receptors DIR*® and D2R* 7%’ dopamine transporter
DAT'%*'%% noradrenaline transporter NAT'®; serotonin receptors
5HT1aR™*'%7, SHT1bR'**'%8, 5HT2aR™*!°71% SHT4R' and SHT6R";
serotonin transporter SHTT'?*'%7; y-aminobutyric acid receptor
GABAR'"™; glutamate receptor mGIuR5">""; p-opioid receptor*';
histamine H3 receptor"®; and cannabinoid receptor 178, Because the
PET binding/uptake values varied from tracer to tracer, we scaled the
maps into zero to one interval, representing each tracer’s minimum
and maximum concentrations. When more than one tracer map was
available for a specific receptor or transporter, the median value was
calculated.

To create a single illustrative map of the four neurotransmitter
systems, we calculated the maximum value at each voxel and labeled it
accordingly (i.e., corresponding to the acetylcholine, dopamine, nor-
adrenaline, or serotonin systems). The map was projected onto the
cortical and basal ganglia surfaces using Surflce (https://www.nitrc.
org/projects/surfice/; Fig. 2).

White matter mapping of receptors and transporters

To map receptors and transporters on the white matter, we used the
Functionnectome  (https://github.com/NotaCS/Functionnectome).
This tool projects gray matter voxel values onto the white matter
according to the voxel-wise weighted probability of structural con-
nection with other voxels®*’. Normative structural probability maps
derived from whole brain deterministic tractography of 7 T diffusion-
weighted MRIs from 100 HCP participants® are input as priors.
Accordingly, we calculated the probability of each brain voxel being
structurally connected with the other voxels of the brain®**. If two
voxels had streamlines intersecting them on high-resolution tracto-
graphy, they were considered connected. The classification was binary,
i.e., connected or not connected. The binary structural connectivity
maps obtained from the 100 HCP participants were averaged to obtain
a representative map at the population level of the probability of
connection between a reference voxel and white matter voxels. The
normative maps’ values varied from O to 1: 0 when the voxels were not
connected in any of the 100 HCP tractographies and 1 when they were
connected in all. To project gray matter voxel values onto a specific
white matter voxel, the Functionnectome calculates the average of all
gray matter voxel values weighted by the probabilities of the white
matter voxel being connected with those gray matter voxels. The step
is repeated for every white matter voxel®’. The tractographies were
processed according to the protocol described in Thiebaut de Schot-
ten et al.””* and are freely available at https://osf.io/5zqwg/ and http://
www.bcblab.com/.
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Fig. 6 | Behavioral and motor profiles by neurochemical cluster (3 months post-
stroke assessment). a Distribution of composite scores by neurochemical cluster.
The box plots display the data distribution with the following elements: the central
line represents the median (50th percentile); the box bounds indicate the inter-
quartile range (25th and 75th percentiles); the whiskers extend to the minima and
maxima within 1.5 times the interquartile range; and any points beyond the whis-
kers represent outliers. The Kruskal-Wallis test was calculated to investigate if the
composite scores differed between clusters. The two-sided Dunn’s test was applied
to perform pairwise comparisons when statistically significant differences

occurred. A Bonferroni correction for multiple comparisons was applied (p-

value < 0.0018 for statistical significance). Asterisks indicate the statistically sig-
nificant differences in pairwise comparisons. The associated numbers represent the
cluster with which a significant difference was found. The sample sizes for clusters 1
to 8 are, respectively, 32, 18, 5, 39, 10, 19, 2, and 18. b Uniform Manifold Approx-
imation and Projection (UMAP) analysis of the scaled behavioral and motor scores.
The dot colors represent the neurochemical cluster to which the patients belong.
Source data are provided as a Source Data file.

Based on histochemistry and neuronal tracing, the prior ana-
tomical knowledge about neurotransmitter circuits is highly reli-
able. The main analysis focused on neurotransmitters produced in
the specific brainstem and basal forebrain nuclei, namely acet-
ylcholine, dopamine, noradrenaline, and serotonin. We selected
the streamlines traversing the neurotransmitter-producing nuclei
using the MRtrix3’s tool “tckedit”?. We selected traversing
streamlines instead of exclusively the streamlines terminating in
nuclei because tractrography does not detect synapses, and a true
axonal termination might not correspond to a fiber tract termi-
nation in tractrography'”*'?*. The resulting tractograms were used
to create the Functionnectome anatomical priors. Table 1 presents
the selection criteria applied. A representative map of the four
neurotransmitters white matter projections was calculated by
determining the maximum value at each voxel, as performed in the
previous section. To analyze brain asymmetries, the hemispheres

were flipped, and the interhemispheric differences were calcu-
lated at a voxel level. The one-sample t-test or the Wilcoxon test
(according to data distribution) were computed to investigate
whether the difference map values significantly differed from zero.
A Bonferroni correction for multiple comparisons was applied
(alpha level set at 0.0042 for statistical significance). The Cohen’s
d statistic or its nonparametric equivalent were calculated to
estimate the effect size of the statistically significant associations.
The same procedure was applied to assess asymmetry in the
location density maps.

We also performed a supplementary data-driven analysis in which
no anatomical constraints were made in the tractograms. This analysis
explored neurotransmitters whose production is not associated with
specific brainstem or basal forebrain nuclei. The following additional
maps were examined®: GABAAR, mGIuRS5, p-opioid receptor, hista-
mine 3 receptor, and cannabinoid receptor 1.
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Fig. 7 | Anatomical patterns of neurochemical clusters. Statistical maps of the
comparison between the lesion topography (upper rows) and structural dis-
connectome (lower rows) maps of each neurochemical cluster with the remaining
clusters, in the validation set. The orange-red and the cyan-blue colourmaps
represent the significantly higher or lower probability of lesion/disconnection,
respectively (nonparametric two-sample unpaired permutation test, based on
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5000 permutations). P-values were family-wise error rate (FWE) corrected for
multiple comparisons. Only the clusters with statistically significant associations
are shown. Images are presented according to the radiological convention (in axial
slices, the left hemisphere corresponds to the right side of the picture). The sample
sizes for clusters 1, 2, 4 and 5 are, respectively, 32, 18, 39, and 10.

Pre and postsynaptic ratios

The presynaptic ratio was calculated by dividing the proportion of
the presynaptic by the proportion of the postsynaptic structural
damages. Transporters are located in the presynaptic membrane
(Fig. 3a). First, we calculated the proportion of transporter damage
by dividing the sum of its location density map voxels overlapped
by the stroke lesion by the sum of all its location density map
voxels. Then, we calculated the proportion of transporter white
matter projection damage by dividing the sum of its white matter
projection map voxels overlapped by the stroke lesion by the sum
of all its white matter projection map voxels. The proportion of the
presynaptic damage was defined as the maximum value of these
two proportions (i.e., of the proportion of transporter damage and
the proportion of transporter white matter projection damage).
Inversely, receptors are located in the postsynaptic membrane
(Fig. 3a). Therefore, we defined the proportion of the postsynaptic
damage as the maximum value of the proportion of receptor
damage and the proportion of receptor white matter projection

damage. The formula for the presynaptic ratio was as follows:

Zi Mtrans_lOCi Zi Mtrans_tl’acti
max ZiET“a"SJOCi ’ Zié-l-trans,tl‘acti

max (ZieMrecep_IOCi ZisMreCEp-traCti>

presynaptic ratio=

zisTrece"*IOCi ! ZiETrecep,traCti

where: i, voxel value; max, maximum; M, lesion mask voxels; recep_loc,
receptor location density map; recep_tract, receptor white matter
projection map; T, all map voxels; trans_loc, transporter location
density map; trans_tract, transporter white matter projection map.
The postsynaptic ratio was calculated by dividing the proportion
of the postsynaptic by the proportion of the presynaptic structural
damages (Fig. 3¢, right). The postsynaptic ratio is not redundant with
the presynaptic ratio because each transporter might be associated
with more than one receptor. In this case, the proportion of post-
synaptic structural damage was the mean of all corresponding
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Table 3 | Predicted and observed response of stroke patients to neurotransmitter-modulating drugs

Case Clinical presentation Drug used Predominant lesion-associated circuit Predicted response  Observed response
disruption
1= Poststroke cognitive and behavioral Donepezil (AChEI) Presynaptic Improvement Improvement
deficits
2143 Poststroke parkinsonism Cabergoline (DA) Presynaptic Improvement Improvement
3" - Piribedil (DA) Postsynaptic No response Improvement
4% = Pramipexole (DA) Presynaptic Improvement Improvement
56 - Pramipexole (DA) Presynaptic Improvement Improvement
6" - Bromocriptin (DA) Postsynaptic No response No response
7' Poststroke pathological laughing and Paroxetine (SSRI) Postsynaptic Improvement Improvement
crying

8! - Fluoxetine (SSRI) Presynaptic No response Improvement
9’0 = Fluoxetine (SSRI) Presynaptic No response Improvement
0" - Sertraline (SSRI) Postsynaptic Improvement Improvement
e - Paroxetine (SSRI) Postsynaptic Improvement Improvement
1212 - Paroxetine (SSRI) Postsynaptic Improvement Improvement
13 - Escitalopram (SSRI)  Presynaptic No response No response
14 - Escitalopram (SSRI)  Presynaptic No response No response
15" - Sertraline (SSRI) Presynaptic No response No response
%™ - Sertraline (SSRI) Postsynaptic Improvement Improvement
T Poststroke apathy Ropinirole (DA) Presynaptic Improvement Improvement
18" - Bupropion (DNRI) Postsynaptic Improvement Improvement
19" - Donepezil (AChEI) Presynaptic Improvement Improvement
207 - Ropinirole (DA) Postsynaptic No response Improvement
2118 Donepezil (AChEI) Postsynaptic No response No response
2218% MPH (DNRI) Postsynaptic Improvement No response

" and # Represent cases that reported the response to two different drugs. AChEI acetylcholinesterase inhibitors, DA dopamine receptor agonists, DNRI dopamine and noradrenaline reuptake

inhibitor, MPH methylphenidate, SSRI selective serotonin reuptake inhibitor.

receptors postsynaptic structural damage. The formula for the post-
synaptic ratio was as follows:

. Zisl\/lmp,loci Soi M- tract,
S e 10C; 3 e TrACE
Je nR)

Zi Mtrans,IOCi Zi Mtrans,tl'acti
max ZiET"a"S*loci 4 Zithrans,traCti

postsynaptic ratio =

where: i, voxel value; max, maximum; M, lesion mask voxels; n(R),
number or receptors belonging to a certain neurotransmitter system;
R, group of receptors belonging to a certain neurotransmitter system;
recep_loc, receptor location density map; recep_tract, receptor white
matter projection map; T, all map voxels; trans_loc, transporter loca-
tion density map; trans_tract, transporter white matter projection map.

The NeuroT-Map tool, coded in Python and Bash, was created to
calculate brain lesions’ pre and postsynaptic ratios. The code is freely
available at https://github.com/Pedro-N-Alves/NeuroT-Map (DOL:
10.5281/zen0do.14712890)

Clustering neurotransmitter profiles of stroke lesions

Two sets of stroke lesions were used in this analysis. The first set (the
training set) was composed of 1333 ischemic stroke lesions of patients
admitted to the University College London Hospitals (UCLH) acute
stroke service*>'”, The patients’ ages ranged from 18 to 97 years, with a
mean of 64. The proportion of participants of male sex was 0.56. All
performed 1.5 or 3 Tesla MRI within two weeks of stroke onset. Their
lesions were delimited in the diffusion-weighted imaging (DWI)
sequence and normalized into the MNI space. The median lesion
volume was 6.5cm’ (interquartile range 1.6-19.9 cm®. The West

London and GTAC Research Ethics Committee approved this sample
recruitment and the consentless use of fully anonymized data.

The second set (the validation set) was constituted of 143 stroke
lesions (119 ischemic, 24 hemorrhagic) of patients admitted to the
Washington University School of Medicine in St. Louis*’. The patients’
ages ranged from 19 to 83 years, with a mean of 54. The proportion of
participants of male sex was 0.45. All performed 3 Tesla MRI within 1 to
3 weeks after stroke onset. Their lesions were delimited based on
FLAIR, T1, and T2 sequences and normalized into the MNI space. The
median lesion volume was 21.8 cm? (interquartile range 4.3-56.9 cm?®).
The Washington University in Saint Louis Institutional Review Board
approved the study. All participants provided informed consent.

Both samples are broadly representative of the distribution of
stroke lesions***, In the source stroke population of the training set,
DWI was routinely performed on most patients, constrained mainly by
MRI contraindications and tolerability**. In the validation set, the study
sample was contrasted with 1209 stroke patients from the source
population. It did not differ in terms of stroke severity, lesion side, and
frequency of aphasia, neglect, or motor impairment*. As expected, the
analysis of the spatial correlation between the two datasets’ lesion
density maps, using the neuromaps tool “compare_images”*®, showed
that they were strongly correlated (Spearman’s correlation = 0.72).

First, we analyzed the clustering tendency of these sets’ pre and
postsynaptic ratios using the Hopkins test, implemented in the
pyclustertend toolkit (https://pyclustertend.readthedocs.io/). Values
tending to O indicate a high clustering tendency, as opposed to higher
values, namely of more than 0.3. Then, we used the elbow method,
implemented in the Yellowbrick toolkit (https://www.scikit-yb.org/), to
determine the optimal number of clusters. Finally, we computed the
unsupervised k-means clustering algorithm of the scikit-learn toolkit
(https://scikit-learn.org/)**'?. The algorithm was fitted on the training
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set and applied to assign cluster indexes to the validation set. The
validation of the analysis in a sample from a different setting and
population allows the external validity and generalizability assessment
of our results'.

The neurotransmitter ratio profile of each cluster was plotted on a
natural logarithmic scale. The one-sample ¢ test or the Wilcoxon test
(according to data distribution) were used to test which neuro-
transmitter ratios were significantly greater than zero. A Bonferroni
correction for multiple comparisons was applied (alpha level set at
0.0042 for statistical significance). Cohen’s d statistic or its nonpara-
metric equivalent were calculated to estimate the effect size of the
statistically significant associations.

Behavioral and motor profiles of neurotransmitter clusters

The validation set included detailed behavioral and motor assessments
in the acute phase (13+4.9 days after stroke) and 3 months after
stroke*’. We analyzed if the neurotransmitter clusters differed in these
measures.

The evaluation tests, organized by domains, were: (a) visuospatial
attention - star cancellation task (from the behavioral inattention test),
Mesulam symbol cancellation test, and Posner task; (b) language -
picture naming test, auditory word discrimination, auditory command
performance, read sentence comprehension, nonword reading (from
the Boston diagnostic aphasia examination), and semantic fluency
(animals); (c) visuospatial memory - brief visuospatial memory test
revised; (d) verbal memory - Hopkins verbal learning test revised; (e)
motor functions - action research arm test, active range of motion test,
and walking test; (f) depressive symptoms - geriatric depression scale.
The test scores were scaled into zero to one interval - zero corre-
sponding to the worst performance observed and one to the best. The
mean or median scores, according to data distribution, were plotted.

Composite scores of each domain (visuospatial attention, lan-
guage, visuospatial memory, verbal memory, motor functions, and
depression) were calculated by averaging the scaled scores of the
corresponding tests. To investigate if the composite scores differed
between clusters, the Kruskal-Wallis test was calculated. The two-sided
Dunn’s test was applied to perform pairwise comparisons when sta-
tistically significant differences occurred. A Bonferroni correction for
multiple comparisons was applied (alpha level set at 0.0018 for sta-
tistical significance).

We also performed a UMAP analysis. UMAP is a technique for
reducing the dimensionality of high-dimensional datasets, preserving
their essential structure when mapped to a lower-dimensional space**.
It has demonstrated a better predictive capacity of stroke clinical
deficits from structural disconnectome data*’. We applied the algo-
rithm available at https://umap-learn.readthedocs.io. The default
values of 15 for the size of the local neighborhood and 0.1 for the
effective minimum distance between embedded points were used. The
scaled behavioral and motor data was used as input. The HDBSCAN
algorithm (available at https://hdbscan.readthedocs.io/) was applied
to cluster the UMAP representation, as recommended (https://umap-
learn.readthedocs.io)*®. The Adjusted Rand Score assessed the
matching between the neurochemical and UMAP-derived behavioral
and motor clusters (https://scikit-learn.org/)'”. A sensitivity analysis
was also performed, including only the patients with no missing data.

Anatomical patterns of neurochemical clusters

The Disconnectome maps tool, from the BCBtoolkit, was used to
compute structural disconnection (http://www.bcblab.com)*’. Each
brain lesion mask was overlapped on a group of 178 normative 7 T
tractograms from the Human Connectome Project dataset'. Deter-
ministic tractography was processed as specified in ref. 120. A map
representing the voxel-wise probability of disconnection for each
lesion was obtained.

Each cluster’s lesions and structural disconnectome maps were
contrasted with the remaining using ‘randomise”*"*°. Nonparametric
two-sample unpaired comparisons were performed based on permu-
tations (n=5000). A threshold-free cluster enhancement was applied,
and the obtained p-values were family-wise error-corrected for multi-
ple comparisons.

Validation of synaptic ratio analysis

We used PubMed (https://pubmed.ncbi.nlm.nih.gov/) to system-
atically search for stroke cases reporting the clinical response to
neurotransmitter-modulating drugs and with images of lesion topo-
graphy available. The following searching formulas were applied using
both “All fields” and “MeSH Terms” filters: (a) “stroke” AND “cognition”
AND (“cholinesterase inhibitor” OR “donepezil” OR “galantamine” OR
“rivastigmine”); (b) “stroke” AND “parkinsonian disorder” AND
(“dopamine agonists” OR “bromocriptine” OR “pramipexole” OR
“ropinirole” OR “rotigotine”); (c) “stroke” AND (“pathological laughing
and crying” OR “pseudobulbar affect”) AND (“selective serotonin
reuptake inhibitor” OR “citalopram” OR “escitalopram” OR “fluoxetine”
OR “paroxetine” OR “sertraline”); (d) “stroke” AND “apathy” AND
(“cholinesterase inhibitor” OR “donepezil” OR “galantamine” OR “riv-
astigmine” OR “dopamine agonists” OR “bromocriptine” OR “prami-
pexole” OR “ropinirole” OR “rotigotine” OR “selective serotonin
reuptake inhibitor” OR “citalopram” OR “escitalopram” OR “fluoxetine”
OR “paroxetine” OR “sertraline”). The systemic search retrieved 148
results. An additional free search was performed based on the refer-
ences found and recent reviews. Fourteen case reports and 3 case
series were selected, comprising a total of 20 stroke cases. Lesion
masks were manually delineated in the MNI152 2 mm brain template in
the same slices and orientations reported in the manuscripts. This
method of lesion mapping has been widely used in lesion network
mapping, and also in structural connectivity studies™ ">,

The Fisher exact test was applied to investigate the association
between the NeuroT-map tool-based predicted pharmacological
response and the response observed clinically.

Drugs were ranked according to their corresponding synaptic
ratio in each graph to establish improvement likelihood ranks. The
ranks varied from 1 to 6, denoting the six possible drug classes: pre-
dominantly pre or postsynaptic action in acetylcholinergic, dopami-
nergic, and serotoninergic circuits. The highest synaptic ratio received
a rank of 1, and the lowest synaptic ratio received a rank of 6. There-
fore, ranks closer to 1 represented a higher probability of improvement
with the administered drug. The Mann-Whitney test was computed to
compare the drug improvement likelihood ranks between patients
who clinically improved and those who did not.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Normative neurotransmitter receptor and transporter location density
maps are available at https://github.com/netneurolab/hansen_
receptors. The projection maps for each receptor and transporter
are available at https://identifiers.org/neurovault.collection:15237 and
https://identifiers.org/neurovault.collection:17228. The raw MRI diffu-
sion dataset is available at https://www.humanconnectome.org. The
processed tractographies are available at https://osf.io/5zqwg/ and
https://storage.googleapis.com/bcblabweb/open_data.html.  Source
data are provided in this paper.

Code availability
The code of the Functionnectome tool is available at https://github.
com/NotaCS/Functionnectome. The code of the NeuroT-Map tool is
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available at https://github.com/Pedro-N-Alves/NeuroT-Map (https://
doi.org/10.5281/zenodo.14712890).
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