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Missense variants in FRS3 affect body mass
index in populations of diverse ancestries

A list of authors and their affiliations appears at the end of the paper

Obesity is associated with adverse effects on health and quality of life.
Improved understanding of its underlying pathophysiology is essential for
developing counteractive measures. To search for sequence variants with
large effects on BMI, we perform amulti-ancestry meta-analysis of 13 genome-
wide association studies on BMI, including data derived from 1,534,555 indi-
viduals of European ancestry, 339,657 ofAsian ancestry, and 130,968ofAfrican
ancestry. We identify an intergenic 262,760 base pair deletion at the MC4R
locus that associates with 4.11 kg/m2 higher BMI per allele, likely through
downregulation ofMC4R. Moreover, a rare FRS3missense variant, p.Glu115Lys,
only found in individuals from Finland, associates with 1.09 kg/m2 lower BMI
per allele. We also detect three other low-frequency FRS3 missense variants
that associate with BMI with smaller effects and are enriched in different
ancestries. We characterize FRS3 as a BMI-associated gene, encoding an
adaptor protein known to act downstream of BDNF and TrkB, which regulate
appetite, food intake, and energy expenditure through unknown signaling
pathways. Theworkpresentedhere contributes to thebiological foundationof
obesity by providing a convincing downstream component of the BDNF-TrkB
pathway, which could potentially be targeted for obesity treatment.

Obesity and its related diseaseburden is amajor global health problem
with rapidly rising worldwide prevalence1,2. Even though this devel-
opment is driven by a complex interaction between environmental,
cultural, and socioeconomic factors3,4, there is a strong genetic com-
ponent to the vulnerability to these obesogenic conditions3,4. Genome-
wide association studies (GWASs) of body mass index (BMI) have
yielded sequence variants at over 1100 loci, most of which are com-
mon, non-coding variants with small effects4–6. A limitation of many
GWASs is their inadequate representation of diverse populations, with
most studies mainly including individuals of European ancestry6,7 and
relatively small sample sizes of other ancestries5,7–11. This limits the
ability to identify causative variants as their frequency can vary sub-
stantially between populations, e.g., because of environmental factors
that interact with sequence variants and affect selection and genetic
drift12,13. Recent whole-exome sequencing (WES) studies have provided
important insights into the biology of obesity by yielding rare and low-
frequency coding variants with large effects on BMI, implicating

neuronal regulation of energy balance as a major contributor to
obesity14–17.

In this study we conducted a multi-ancestry meta-analysis of
GWASs with the aim of searching for sequence variants with large
effects on BMI. We leveraged data derived from 2,005,180 individuals
in 13 studies, thereof 1,534,555 of European ancestry, 339,657 of South
and East Asian ancestry, and 130,968 of African ancestry (Table 1,
Supplementary Data 1). Data from four of the 13 studies are not pub-
licly available (Table 1). We focused on sequence variants with an
absolute effect greater than 0.20 standard deviations (SD) of BMI,
corresponding to 1 kg/m2. Here we report large-effect associations
between four sequence variants at three loci and BMI. One of those
variants is highly correlated with a large intergenic deletion at the
MC4R locus that was identified among whole genome sequenced
(WGS) individuals in the UK Biobank (UKB), thereby emphasizing the
value of utilizingWGS data in such studies. Furthermore, we identified
a Finnishmissense variant in FRS3 that has a large BMI-lowering effect.
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FRS3 can therefore be characterized as a BMI-associated gene, further
supported by three other FRS3 missense variants that associated with
BMI in different ancestries in the study.

Results
We tested 189,440,750 sequence variants for association with BMI and
used weighted Bonferroni significance thresholds to adjust for multi-
ple testing (Supplementary Data 2)18. Out of 2635 variants previously
reported to associate with BMI in two recent studies5,15 (of which some
variants are not independent), we replicated 75% using data that has
not been included in previous studies (P <0.05 and a consistent effect
direction; Supplementary Data 3–5).

Four variants at three loci associated with BMI with an effect
greater than 1 kg/m2 (Table 2, Supplementary Data 6). All four variants
associated with weight, but not with height (Supplementary Data 6),
indicating that their effect on BMI is mediated through variation in
weight rather than height.

Associations at the MC4R locus
A previously reported15 rare stop gained variant in MC4R, p.Tyr35Ter
(rs13447324-T), associated with increased BMI (P= 2.5 × 10−13, effect =
0.60 SD or 3.12 kg/m2, 95% confidence interval [CI; 0.44, 0.76 SD]) in
individuals of European ancestry in the Genetic Investigation of
Anthropometric Traits (GIANT) consortium (allele frequency [AF] =
0.009%) and theUKB (AF =0.005%; Supplementary Fig. 1). At theMC4R
locus, we also found a 3’ untranslated region (3’UTR) variant in PMAIP1,
rs948848696-A, in the UKB (AF=0.008%) that is close to but not cor-
related with p.Tyr35Ter (r2 = 0.00) and associated with a large increase
in BMI (P = 2.1 × 10-10, effect =0.85 SD or 4.42 kg/m2, 95% CI [0.59,
1.11 SD]; Supplementary Fig. 2). This variant is in high linkage dis-
equilibrium (LD; r2 = 0.95) with a large 262,760 base pair (bp) deletion
(chr18:59985753-60248513), found among 72 individuals of European
ancestry in the UKB (AF=0.008%; P =4.5 × 10−9, effect = 0.79 SD or
4.11 kg/m2, 95% CI [0.53, 1.05 SD]). The association of rs948848696-A

and the deletion with BMI were independent of more significant var-
iants at the locus in the UKB dataset (Supplementary Data 7). The
deletion is located 122,549 bp downstream of MC4R and overlaps
common variants at the locus (Supplementary Fig. 3) that were among
the first associations discovered in GWASs on BMI19. However, it does
not overlapMC4R or other protein coding genes according to RefSeq20,
and would thus not be detected with WES. MC4R encodes a G protein-
coupled receptor involved in the leptin-melanocortin pathway, a potent
appetite-regulating system in the hypothalamus4, and disruptive
mutations in this gene are reported as the most common cause for
severe monogenic obesity21–23. The deletion potentially leads to down-
regulation ofMC4R through loss of regulatory elements, given its large
size, its proximity to MC4R, and a BMI-increasing effect comparable to
reported MC4R loss-of-function (LoF) variants14–17. However, functional
studies are required to clarify the precise mechanism. Both sequence
variants identified at this locus associated with self-reported larger
comparative body size at age 10 in the UKB (Ncases = 67,722,
Ncontrols = 140,977; P <8.3 × 10−3; Supplementary Data 8).

Associations at the TMEM18 locus
An intergenic variant on chromosome 2p25, rs539478649-C, asso-
ciated with lower BMI (P = 3.3 × 10−12, effect = −0.21 SD or −1.09 kg/m2,
95% CI [−0.27, −0.15 SD]; Supplementary Fig. 4). It was mainly found
among individuals of European ancestry and was enriched in Iceland
with an AF of 0.27%. This locus harbors common and low-frequency
variants close to TMEM18 that are reported to associate with BMI24,25

(Supplementary Fig. 5), although the causal gene for these associations
is still unknown26,27. Rs539478649-C was not significant
(Padjusted = 0.057; Supplementary Data 7) after adjusting for two more
significant variants that are in high LD (r2 > 0.8) with previously
reported variants at the locus, rs939581-C24 (AFEur = 17.5%, r2 = 0.01with
rs539478649-C) and rs62106252-C25 (AFEur = 3.9%, r2 = 0.05 with
rs539478649-C). The large effect of rs539478649-C is explained by
99% of its carriers also carrying both other variants.

Table 1 | List of studies included in the GWAS meta-analysis, their sample sizes, and the type of genetic data utilized from
each study

Ancestry Sample size per ancestry Study population Sample size per study
population

Type of genetic data

Finnish European 290,820 FinnGen 290,820 Summary statistics

Non-Finnish European 1,243,735 deCODE (Iceland)a 127,837 WGS and chip/imp

UK Biobank 429,700 WGS and chip/imp

CHB/DBDS (Denmark)a 224,494 WGS and chip/imp

Intermountain (Utah, USA)a 11,815 WGS and chip/imp

GIANT 449,889 Summary statistics

South Asian 72,771 UK Biobank 8965 WGS and chip/imp

Genes & Health (UK) 34,408 Summary statistics

GIANT 29,398 Summary statistics

East Asian 266,886 Taiwan Biobank 21,930 Summary statistics

BioBank Japan 163,835 Summary statistics

KoGES Biobank (Korea) 72,282 Summary statistics

GIANT 8839 Summary statistics

African 130,968 UK Biobank 9480 WGS and chip/imp

Nashville Biosciencesa 23,211 WGS

Million Veteran Program 55,525 Summary statistics

AAAGC 42,752 Summary statistics

Total 2,005,180

The table provides a list of studies included inour BMIGWASmeta-analysis, their sample sizes, and the typeof genetic data utilized fromeach study. Sample sizes arepresentedper ancestry andper
study population. For those studies where both whole-genome sequencing and chip genotyping were used to generate genotype data, samples were chip genotyped for all subjects and sequence
variants imputed according to a reference panel derived from a subset of whole genome sequenced individuals.
WGS whole-genome sequencing, chip SNP chip genotyping, imp imputation, UK United Kingdom, CHB/DBDS Copenhagen Hospital Biobank/Danish Blood Donor Study, USA United States of
America, GIANT Genetic Investigation of Anthropometric Traits, KoGES Korean Genome and Epidemiology Study, AAAGC African Ancestry Anthropometry Genetics Consortium.
aData from these studies are not publicly available.
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Missense-variant associations in FRS3
A rare missense variant in FRS3 on chromosome 6p21, p.Glu115Lys
(rs773053137-T), associated with lower BMI (P = 6.6 × 10−12, effect =
−0.21 SD or −1.09 kg/m2, 95% CI [−0.27, −0.15 SD]; Fig. 1a). The variant
wasonly found in the FinnGendataset28 (AF = 0.17%, Fig. 2a)whereonly
two homozygotes have been identified among carriers. We further
explored the BMI distribution among carriers and non-carriers of
p.Glu115Lys by dividing BMI into five classes defined by the World
Health Organization (WHO)29; underweight (BMI < 18.5 kg/m2), healthy
weight (BMI 18.5–25 kg/m2), overweight (BMI 25–30 kg/m2), obesity
(BMI 30–40kg/m2), and severe obesity (BMI > 40 kg/m2). We observed
a larger proportion of carriers with healthy weight (BMI 18.5–25 kg/m2;
40.8%) compared to the corresponding proportion of non-carriers
(34.8%; P = 1.2×10-5; Fig. 3). In contrast, a smaller proportion of carriers
was obese (BMI 30–40 kg/m2, 18.0%) compared to the corresponding
proportion of non-carriers (23.0%; P = 4.2 × 10−5; Fig. 3). To determine if
other coding variants in FRS3 associate with BMI without restricting to
an effect larger than 1 kg/m2, we explored associations of the other 194
moderate- and high-impact FRS3 variants present in our datasets
(Supplementary Data 9). Three missense variants associated with BMI
in addition to p.Glu115Lys after accounting for multiple testing
(P < 0.05/194 = 2.6 × 10−4; Supplementary Fig. 6, Supplementary
Data 10). P.Pro137Arg (rs146730626-C) associated with lower BMI
(P = 2.0 × 10-9, effect = −0.05 SD or −0.26 kg/m2, 95% CI [−0.07,
−0.03 SD]; Fig. 1b) among individuals of South and East Asian ancestry,
with higher frequency in East Asia (AF 1.80 to 3.97%; Fig. 2b). Its
association was most significant among individuals of East Asian
ancestry in the Taiwan Biobank (P = 6.0 × 10−7, effect = −0.14 SD or
−0.73 kg/m2, 95% CI [−0.19, −0.08 SD]; Fig. 1b). P.Pro172Leu
(rs74687105-A) also confers a BMI-lowering effect (P = 9.9 × 10−6,
effect = −0.03 SD or −0.16 kg/m2, 95% CI [−0.04, −0.02 SD]; Fig. 1c,
Supplementary Fig. 7) and is a common variant in African ancestry
populations with an AF of 8.92 to 9.92%, andwithin Africa, the variant’s
frequency increases from north to south (Fig. 2c). One FRS3 missense
variant associated with higher BMI in our data, p.Arg316Gln
(rs35744673-T; P = 1.3 × 10−11, effect = 0.03 SD or 0.16 kg/m2, 95% CI
[0.02, 0.04 SD]; Fig. 1d, Supplementary Fig. 8), with the highest AF in
European ancestry populations, ranging from 0.84 to 2.70% (Fig. 2d).
As p.Arg316Gln is found in the Icelandic and Norwegian populations,
we were able to test the variant for association with BMI at birth and in
childhood, utilizing BMI data collected from Icelandic children over
the years 1896 to 2017 and publicly available summary statistics from
the Norwegian Mother, Father, and Child Cohort Study30 (MoBA;
Supplementary Data 11). This variant associated with BMI collected at
ages 3months to 9 years (N = 65,767;P = 1.4 × 10−6, effect = 0.14 SD, 95%
CI [0.08, 0.20 SD]) and 10 to 15 years (N = 68,172; P = 2.7 × 10−4,
effect = 0.11 SD, 95% CI [0.05, 0.16 SD]), but not with BMI at birth
(N = 84,818; P =0.62, effect = −0.01 SD, 95% CI [−0.07, 0.04 SD]).
P.Arg316Gln also associated with larger comparative body size at age
10 in the UKB (Ncases = 67,722, Ncontrols = 140,977; P = 6.8 × 10−4, OR =
1.10, 95% CI [1.04, 1.16]); Supplementary Data 8), thereby further
validating its effect on childhood adiposity.

As it is unclear whether the missense variants in FRS3 act through
loss or gain of function, we searched for insights into direction of
effects by performing a FRS3 LoF burden analysis. We leveraged WGS
data from the UKB (N = 426,912) and deCODE (N = 44,652), study
populations with large available sets of WGS individuals. We found 44
carriers of 23 predicted LoF (pLoF) variants in the UKB and one carrier
of a frameshift variant in deCODE (Supplementary Data 12). Carrying a
LoF variant associatedwith higher BMI (PUK =0.015, effectUK = 0.39 SD;
PIceland = 0.08, effectIceland = 1.25 SD; PCombined = 0.0062,
effectCombined = 0.43 SD or 2.24 kg/m2, 95% CI [0.12–0.74 SD]). This
suggests that the three FRS3 missense variants that lower BMI are not
acting through LoF, but rather gain-of-function. FRS3 is neither LoF
intolerant (pLI = 0.06) nor constrained for missense variants (Z = 0.65;Ta
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gnomAD, Broad Institute31), indicating that both LoF and missense
variants in FRS3 are tolerable.

As high BMI is a risk factor for numerous conditions, including
type 2 diabetes (T2D) and other cardiometabolic diseases1,2,32,33, we
tested the FRS3 missense variants for association with 19 relevant
cardiometabolic and adiposity-related traits (P value threshold =
0.05/61 = 8.2 × 10−4; Supplementary Data 13–17). Both p.Glu115Lys
and p.Arg316Gln associated with obesity (BMI over 30 kg/m2) com-
pared to normal or underweight (BMI under 25 kg/m2), with an effect
consistent with the size and direction of their BMI effects (p.Glu115-
Lys: P = 1.2 × 10−7, OR = 0.66, 95% CI [0.57, 0.77]; p.Arg316Gln:
P = 9.7 × 10−5, OR = 1.08, 95% CI [1.04, 1.13]; Supplementary

Data 13 and 16, respectively). The effect sizes of all four missense
variants on T2D were as expected when compared to an effect esti-
mate of the causal relationship between BMI and T2D risk reported in
a meta-analysis of Mendelian randomization studies34 (Supplemen-
tary Data 13-16). However, their associations with T2D and the rest of
the phenotypes were not significant after adjusting for multiple
testing (P> 8.2 × 10−4). We also explored if p.Arg316Gln, or correlated
variants with r2 > 0.8, associated with mRNA expression (cis-expres-
sion quantitative trait loci [cis-eQTL]), mRNA splicing variations
(splicing QTL [sQTL]), and plasma protein levels (protein QTL
[pQTL]), but did not detect anyQTL associations.Wewere not able to
test the other missense variants for association with expression or

Fig. 1 | Forest plots showing the pattern of BMI effects of the four FRS3 mis-
sense variants identified in the study. The plots illustrate the associations
between the four FRS3 missense variants identified in the study and BMI:
a p.Glu115Lys (rs773053137-T), b p.Pro137Arg (rs146730626-C), c p.Pro172Leu
(rs74687105-A), and d p.Arg316Gln (rs35744673-T). Data are presented as effect
sizes in standard deviation (SD) units with 95% confidence intervals, combined
(from the meta-analysis) and for individual studies. Effect sizes were determined
using a linear mixed model implemented in BOLT-LMM, assuming an additive
genetic model, and two-sided P values were calculated. The P values presented in

the figure have not been adjusted for multiple comparisons. The vertical dashed
line indicates effect size equal to zero and horizontal dashed lines separate effect
estimates by ancestry. Effects are not shown for allele frequencies below 0.1%.
Source data are provided as a Source Data file. AF allele frequency, EUR European,
SAS South Asian, EAS East Asian, AFR African, UKB UK Biobank, CHB/DBDS
Copenhagen Hospital Biobank/Danish Blood Donor Study, GIANT Genetic Inves-
tigation of Anthropometric Traits, NashBio Nashville Biosciences, MVP Million
Veteran Program, AAAGC African Ancestry Anthropometry Genetics Consortium.
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protein levels because the required data were unavailable for Finn-
Gen and ancestries other than European.

Discussion
FRS3 encodes the intracellular adaptorproteinfibroblast growth factor
receptor substrate 3 (FRS3), also known as FRS2β and SUC1-associated
neurotrophic factor target 2 (SNT-2)35. It is most abundantly expressed
in neuronal tissue36,37, and a study on mouse embryos suggests it is
highly expressed in brain regions involved in energy balance
regulation38 (i.e., the hypothalamus39, thalamus40, and lateral septal
nucleus41). FRS3 has been shown to take part in the fibroblast growth
factor (FGF) and neurotrophin signaling pathways35,38, which have key
roles in both the developing and adult nervous system, including in
neural cell proliferation, differentiation, and synaptic plasticity35,42–44.
In addition to a role as an adaptor protein, FRS3 has been demon-
strated to associate with microtubules and lysosomes within neurons,
indicating a potential role in maintaining microtubule structure and
stability, axonal transport, and intracellular lysosomal degradation45,46.
The protein consists of 492 amino acids (AA) and has several motifs
conserved across species, including a phosphotyrosine binding (PTB)
domain (AA 13-115) that mediates the binding of FRS3 to its activating
receptors35,47. According to UniProt47, the large-effectmissense variant
p.Glu115Lys is located within this functionally important PTB domain.
The othermissense variants, conferring smaller effects on BMI, are not
locatedwithin establisheddomains, but they are closer to binding sites
of downstream proteins (located at AA 192, 287, 322, 417, and 455)35,47.

Several ligand-receptor pairs are known to activate FRS3, one of
which has been associated with BMI and obesity; brain-derived neu-
rotrophic factor (BDNF) and its tropomyosin kinase receptor B (TrkB,
encodedbyNTRK2)48,49. BDNF andTrkBhavebeen recognized asmajor
contributors to a complex regulation of appetite, food intake, and
energy expenditure, and are believed to work downstream of MC4R
and other proteins of the leptin-melanocortin pathway in the
hypothalamus4,48,50–53. However, it is unknown which downstream
pathways of BDNF and TrkB are activated to mediate their anorexi-
genic effect48,50. Studies on BDNF knockout mice have shown that
impaired BDNF-TrkB signaling results in hyperphagia, obesity, and
increased locomotor activity49,54. Furthermore, disruptive mutations
and deletion syndromes ofBDNF andNTRK2 in humans are reported to
cause hyperphagia and obesity48,55–58, and in the case of NTRK2, also
stereotyped behaviors, intellectual disability, and impaired
nociception57. Consistent with this evidence, we found a frameshift
variant in NTRK2, p.Gln247ArgfsTer4, that was carried by two indivi-
duals in the UKB, both with BMI > 55 kg/m2 (P <0.05/36 pLoF variants
in NTRK2 and BDNF= 1.4 × 10−3 for BMI in the UKB dataset). To explore
whether neurologic traits caused by impaired BDNF-TrkB signaling
associate with FRS3 function, we tested the FRS3missense variants for
association with attention deficit hyperactivity disorder (ADHD), aut-
ism, intellectual disability, and pain, but no association was detected
(P > 0.05/8 = 6.3 × 10−3; Supplementary Data 13 and 16).

Disrupted BDNF-TrkB signaling has been proposed as a patho-
genic mechanism in several neurological disorders other than obesity,
including depression, amyotrophic lateral sclerosis (ALS), Alzheimer’s

Fig. 2 | World maps showing the allele frequency distribution of the four FRS3
missense variants identified in the study. Low allele frequencies are shown in
light color, while higher frequencies are depicted in dark color. Gray indicates that
zero participants reported being born in that country or region. Frequencies shown
are for UK Biobank participants with origins in that region, except for Finland, for
which the frequency in FinnGen was used. a p.Glu115Lys (rs773053137-T) is only

found in Finland. b p.Pro137Arg (rs146730626-C) is predominantly found in East
Asia but is present at lower frequencies in South Asia and the Indian Ocean.
c p.Pro172Leu (rs74687105-A) is predominantly found in populations of African
ancestry and is most common in Southern Africa. d p.Arg316Gln (rs35744673-T) is
broadly distributed, but most common in populations of European ancestry. This
figure was created with Natural Earth.
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disease (AD), and Parkinson’s disease. Therefore a great interest has
been taken in BDNF and other neurotrophic factors as therapeutic
targets59–61. Trk inhibitors are already marketed as a treatment of Trk
fusion-positive cancers, where side effects include substantial weight
gain, dizziness, and withdrawal pain62, mimicking symptoms of BDNF
knockout in mice49 and NTRK2 LoF in humans56,57. To treat obesity, the
BDNF-TrkB signaling pathway would need to be activated, which is a
challenge that has been difficult to overcome for other diseases of
interest, mainly due to unfavorable pharmacokinetics of BDNF and
other TrkB agonists59–61,63. A recently synthesized molecule induces
Trk-signaling through positive allosteric modulation of the intracel-
lular domain of Trk-receptors and is currently being explored as a
treatment of AD and other cognitive disorders64. The results of a phase
I trial suggest that this molecule overcomes many of the pharmaco-
kinetic obstacles of TrkB agonists while maintaining favorable safety
profiles in healthy subjects65. It effectively crosses the blood-brain-
barrier and alters quantitative electroencephalography (qEEG)
parameters65, indicating an effect on central Trk-signaling. This mole-
cule therefore raises the prospect of targeting the BDNF-TrkB pathway
in treatment of obesity.

By identifying a large-effect BMI-lowering missense variant in
FRS3, a gene that encodes an adaptor protein known to act down-
stream of BDNF and TrkB, we postulate that FRS3 is a link in the
undiscovered downstream pathways mediating the anorexigenic
effects of BDNF-TrkB signaling. This speculation is supported by our
burden analysis, which suggests that loss of FRS3 function has an
increasing effect on BMI, consistent with BDNF knockout in mice49

and NTRK2 LoF in humans56,57. Additionally, the finding of three other
FRS3 missense variants in populations of diverse ancestries, one of
which also associated with BMI in childhood, supports that FRS3 has
an effect on BMI. Since BDNF and TrkB are thought to be activated
downstream of the leptin-melanocortin pathway52,53, FRS3 could be a
downstream target of several highly potent proteins involved in the
regulation of appetite, food intake, and energy expenditure4,39,66–70

(Fig. 4), and would therefore be an attractive therapeutic target for
obesity treatment. The recent synthesis of an intracellular positive
modulator of central Trk-signaling65,71 presents an opportunity for
targeting TrkB or its downstream proteins, including FRS3. Further
research on the specific role of FRS3 in the pathophysiology of
obesity is needed to explore whether it could be a potent and safe
therapeutic target.

Methods
Study design
Weperformed ameta-analysis of GWASs on BMI, utilizing data from 13
study populations of diverse ancestries. Individual level data on gen-
otype and anthropometric measurements were utilized to conduct a
GWAS on BMI for deCODE, UKB, Copenhagen Hospital Biobank/Dan-
ish Blood Donor Study (CHB/DBDS), Intermountain, and Nashville
Biosciences (NashBio; Supplementary Data 18). Publicly available
summary statistics were collected from other studies. Characteristics
of study populations included in the meta-analysis, data sources, and
references are summarized in Supplementary Data 1. We focused on
associations with an effect larger than 1 kg/m2. To convert the effect
sizes from SD to kg/m2, we multiplied the effect in SD with 5.2 kg/m2,
which is the median of the standard deviations of BMI for the cohorts
with available individual level data (Supplementary Data 18) and
FinnGen. We noticed that a missense variant in LRRC45 on chromo-
some 17q25 associated with BMI with an effect close to this criterion
(Supplementary Note 1; Supplementary Fig. 9). That variant has been
reported5 but not specifically discussed in association with BMI. We
also performed a replication analysis restricting to data that has not
been included in previous BMI studies, i.e., data from deCODE, CHB/
DBDS, Intermountain, and NashBio (Supplementary Data 3–5).

Ethics
We confirm that our research complies with all relevant regulations
regarding the use of data fromhumanparticipants andwas conducted
in accordance with the criteria set by the Declaration of Helsinki.
Participants received no compensations. Study-specific ethics
declarations are provided below (See Study populations and datasets).

Study populations and datasets
The Icelandic studypopulation. The IcelandicdeCODEgenetics study
has collected phenotypic and biological data frommore than 170,000
volunteer participants through multiple research studies in Iceland.
The study was approved by the National Bioethics Committe (NBC) of
Iceland (VSN-17-076). The Icelandic childhood- and birth-BMI data
were used under the NBC Licenses VSN-17-076 and VSN-15-169,
respectively. The Icelandic ADHD and autism data were utilized under
NBC Licenses VSN-15-047 and VSN-14-043, respectively, and data on
intellectual disability were used as a part of those licenses. The Ice-
landic pain data were analyzed under NBC Licenses VSN-17-035 and
VSN-12-162 (with amendments), issued following review by the Ice-
landic Data Protection Authority.

All participants who donated biological samples provided
informed consent. The personal identities of the participants and
biological samples were encrypted by a third-party system approved
and monitored by the Icelandic Data Protection Authority. By using
the well documented genealogy of the Icelandic population, geno-
types of first and second degree relatives of those 170,000 partici-
pants can be predicted with familial imputation, which can further
increase the power of GWASs involving the Icelandic population72,73.
Information on height, weight, BMI, and other physical and biological
measures used for association analyses was primarily obtained from
Landspítali – The National University Hospital of Iceland, the Primary
Health Care Clinics of the Capital Area, and from a range of research
undertakings at deCODE genetics. Information on binary traits, for
the most part based on ICD-coded diagnoses, was mainly obtained
from Landspítali and registries kept by the Directorate of Health; the
Causes of Death Register, the Register of Primary Health Care Con-
tacts, and the Register of Contacts with Medical Specialists in Private
Practice. The Icelandic childhood BMI phenotype data used in this
study consists of 2,086,109 records of measured weight and height
(or recumbent length) for 248,219 children and adolescents at ages
from birth to 15 years, born in the years 1893–2017. The data

(n=1,208) (n=289,599) 

Fig. 3 | Distribution of BMI categories for carriers and non-carriers of the FRS3
missense variant p.Glu115Lys among participants in the FinnGen study. The
BMI groups presented in the figure were defined according to the World Health
Organization’s recommendations. Source data are provided as a Source Data file.
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originate from the Directorate of Health’s Birth Register and from
routine data collection (health records) at school health services and
well-child care in the greater Reykjavík area, for which data access
was provided by the Primary Health Care of the Capital Area and the
Reykjavik Municipal Archives.

BMI data used for genetic association testing in the GWAS was
generated fromweight and height measurements available for 127,837
individuals. In case of multiple height measurements, the mode of the
measurements was selected to represent the individual’s height. BMI
was calculated from the individual’s mode of height and each weight
measurement. BMI values were then regressed in a generalized addi-
tive model with sex, year of birth (YOB), and age at measurement. In
case of multiple residuals per individual, one final BMI value was
obtained for each individual by averaging residuals. Averaged resi-
duals were standardized before genetic association analysis, and only
individuals 18 years of age or older were included. For the handling of
the childhood BMI data, see Supplementary Methods.

The genotype data was based on 173,025 chip typed individuals,
of whom 63,460 were also WGS72. WGS was performed using Illumina
technology, including GAIIx, HiSeq, HiSeqX, and NovaSeq machines.
Only samples with genome-wide average coverage of over 20x were
included. The average genome-wide sequencing coverage was 39.8x

(sd 14.2, min:20.0x, max:397.8x). Duplicated samples were discarded
based on sequencing yield, and contaminated samples were detected
using read_haps74 and removed. Chip-sequencingwasperformedusing
Illumina OmniExpress (N = 136,215) and HumanHap (N = 38,772) chips.
Individual arrays were discarded if the total genotype yield was below
98%. Variants identified through WGS were imputed into the 173,025
chip genotyped participants using long-range phasing. Expected gen-
otypes of first and second degree relatives of chip typed participants
were incorporated in the analysis by integrating over possible
genoypes75. This family imputation was performed without the geno-
types being kept in storage. Single nucleotide polymorphisms (SNPs)
and insertions/deletions (indels) were called using joint calling with
GraphTyper (v.2.7.1)76.

The UK Biobank study population. The UKB is a large prospective
cohort study that has collected phenotypic and biological information
from approximately 500,000 individuals across the UK, aged between
40 and 69 years when recruited in 2006–201077. The North West
Research Ethics Committee reviewed and approved the UKB protocol78

(ref.no.06/MRE08/65). All genotype andphenotypedatawere collected
following an informed consent for all participants. This research was
conducted using the UKB resource under application no. 56270.

Fig. 4 | A schematic overview of the proposed BDNF-TrkB-FRS3 signaling
pathway, its role in energybalance regulation, and its connection to the leptin-
melanocortin pathway. Key anorexigenic components are illustrated in dark blue
for the leptin-melanocortin pathway and lighter blue for the BDNF-TrkB-FRS3
pathway. Pointed arrows between the components represent activation of down-
streamproteins, where whole pointed arrows indicate that the linkingmechanisms
arewell-established anddotted pointedarrows indicate thatmechanisms remain to
be clarified. The leptin-melanocortin pathway is activated in response to increased
leptin levels and other hormones in the feeding state, resulting in decreased
appetite and food intake, increased energy expenditure, and lower BMI. It also has
an inhibiting mechanism, illustrated in light blue to the left, where AGRP acts as an
antagonist ofMC4R in response to low leptin levelswith food deprivation, resulting
in MC4R inhibition, increased appetite, decreased energy expenditure, and higher

BMI. The BDNF-TrkB pathway is thought to be activated downstream of the leptin-
melanocortin pathway to mediate its effect on energy balance. We postulate that
FRS3 is a link in the undiscovered downstreamsignaling cascade of BDNF andTrkB.
Components of these pathways are associatedwith bothmonogenic and polygenic
forms of obesity, with the supporting evidence summarized to the right in the
figure. Created in BioRender. Aegisdottir, H. (2025) https://BioRender.com/
a25a422. LEPR leptin receptor, AGRP agouti-related protein, POMC pro-opiomela-
nocortin,α-MSHα-melanocyte stimulating hormone, PCSK1 proprotein convertase
subtilisin/kexin type 1, pLoF predicted loss-of-function, MC4R melanocortin 4
receptor, BDNF, brain derived neurotrophic factor, TrkB tropomyosin receptor
kinase B, FRS3 fibroblast growth factor receptor substrate 3, EAF effect allele
frequency.
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BMI and other physical and biological measures were collected
from participants with a baseline assessment, and data on ICD-coded
diagnoses were collected from electronic health records (EHRs) and
other registries77,78. BMI information was retrieved from data field
21001. In addition, we tested the large-effect variants reported in this
study for association with the phenotype “Comparative body size at
age 10”, retrieved from field 1687. We defined a case-control pheno-
type based on the question “When youwere 10 years old, compared to
average would you describe yourself as – Thinner/Plumper/About
average/Do not know/Prefer not to answer”, asked on three separate
occasions. Cases were defined as above average (plumper) and con-
trols as below average (thinner), divided by genetic ancestries (British-
Irish, South Asian, and African). Individuals who provided inconsistent
answers to this question were excluded from the analysis.

Three cohorts of diverse ancestries were defined within the UKB
dataset, based on genetic clustering of microarray genotypes
informed by self-described ethnicity and supervised ancestry infer-
ence; British-Irish (XBI, N = 431,805), South Asian (XSA, N = 9252), and
African (XAF, N = 9633)79. BMI values were regressed separately for
each ancestry and sex using linear regression, with YOB, age, and
principal components (PCs; 20 for XBI, 45 for XSA, and 20 for XAF) as
covariates. In case of multiple residuals per individual, one final value
was obtained by averaging residuals. Residuals for men and women
were then combined and inverse-normally transformed, generating
three separate standardized BMI lists for each ancestry.

The UKB genotype data used in the GWAS was based on 150,119
WGS participants79. Variants identified with WGS were imputed into
other chip typed participants. All FRS3 pLoF variants included in the
burden LoF analysis and the pLoF variants in NTRK2 and BDNF that
were tested for association with BMI, including the NTRK2 frameshift
variant p.Gln247ArgfsTer4, were identified in a dataset of 449,903
WGS participants with BMI measures80. The additional samples ana-
lyzed for this dataset were prepared and sequenced in the sameway as
for the preliminary one used in the GWASmeta-analysis79. The average
genome-wide sequencing coverage for this dataset was 32.4x (sd 4.1,
min:22.1x, max:162.1x). We ran GraphTyper v2.7.576 for genotyping
SNPs and indels in all 490,549 individuals in the UKB genotyping set.
We genotyped structural variants (SVs) by first running DRAGEN for
discovering SVs in each individual. Then, we merged the SVs using
svimmer81 andfinally called themerged set of SVs usingGraphTyper. In
the original callset, the 263 kb deletion at chr18:59,985,753 was called
by GraphTyper in 64 of the samples. Due to its high correlation with
both the large-effect 3’ UTR variant rs948848696-A in PMAIP1 and a
nearby 6.5 kb deletion at chr18:59,891,870, we manually inspected the
sequence reads of all individuals called with at least one of those var-
iants. Our inspection confirmed all genotyping calls of the SNP and the
6.5 kb. However, we found 8 individuals that had beenmisidentified as
non-carriers for the 263 kb deletion. The 263 kb deletion has break-
points on different GraphTyper graphs, causing variant calling to be
less accurate. Therefore, the corrected genotyping of the 263 kb
deletion has 72 carriers. Supplementary Fig. 3b, showing the chro-
mosomal position of the deletion and whole-genome sequencing
coverage for a single carrier, was created using Samplot82.

The Danish study population. The Danish data were obtained from
the Copenhagen Hospital Biobank Oral Cardio-Metabolic health Study
(CHB-OCMS)83 and the Danish Blood Donor Study (DBDS)84. The CHB-
OCMS and DBDS have been approved by the Zealand Regional and
National Committees on Health Research Ethics (SJ-989 and NVK-
1900988) and the Danish Data Protection Agency (P-2022-913 and P-
2019-99). CHB is a biobank based on residual blood samples from
hospitalized and outpatient subjects in the capital region of Denmark.
Insteadof awritten consent, the patients were informed about the opt-
out possibility of having their biological specimens excluded from use
in research in general. Since 2004, a national Register on Tissue

Application (Vævsanvendelsesregistret) lists all individuals who have
chosen to opt-out and whose samples cannot be used for research
purposes. Before initiating this study, individuals who contacted the
biobank to opt-out or were listed in the Register on Tissue Application
were excluded. The CHB-OCMS was initiated in 2023 and involves a
targeted selection of patients over 18 years of age with cardiometa-
bolic diseases. BMI, blood lipid measurements, and ICD-coded diag-
noses were collected from the BigTempHealth database at Novo
Nordisk Foundation Center for Protein Research, Copenhagen Uni-
versity, and health registries. BMI data from the CHB were extracted
from EHRs with natural language processing. The DBDS is an open
prospective cohort study on Danish blood donors. All participants
provide written informed consent and can withdraw from the study at
any time. The eligibility criteria for blood donation are good physical
health andbodyweight over 50 kg. Participants are aged 18 to 75 years.
Information on BMIwas obtained fromquestionnaires, and blood lipid
measurements and ICD-coded diagnoses were collected from health
registries.

The Danish genotype data used in this study consists of 375,216
chip typed individuals whose genotype was imputed based on a hap-
lotype reference panel of WGS individuals from several cohorts85.
Thereof, 224,540 had available BMI information. BMI values were
regressed in a generalized additive model using sex, YOB, age at
measurement, and 12 PCs as covariates. In case of multiple residuals
per individual, one final BMI value was obtained by averaging residuals
for each individual. Averaged residuals were standardized before
genetic association analysis. DNA extraction from whole blood was
performed at Copenhagen University Hospital or at deCODE genetics
in Iceland. Genotypingwas performedatdeCODEgenetics onbehalf of
CHB and DBDS while analysis was performed on a specialized, secure
section of the Danish National Supercomputer for Life Sciences
(Computerome). Analyses were quality tested by deCODE. The WGS
protocol used for the CHB and DBDS samples was the same as for the
deCODE samples72. A joint variant calling with GraphTyper (v.2.7.5)76

forms the basis of the imputation, which was done using the in-house
work flow developed at deCODE genetics72. Phasing was carried out
using SHAPEIT (version 4)86.

The Intermountain study population (USA). Intermountain Health-
care is a healthcare system that consists of 33 hospitals and 385 clinics
in Utah and surrounding states. The dataset was obtained from Her-
ediGene, a general population study, and the INSPIRE Registry Study,
which contains data on volunteer subjects, both healthy and diag-
nosed with a variety of medical conditions. The studies have been
approved by the Intermountain Healthcare Institutional Review Board
(IRB) and all participants have provided written informed consent.
Eligibility criteria for both studies include being 18 years of age
or older.

Measurements for height, weight, BMI, HbA1c, andblood lipids, as
well as ICD-coded diagnoses, were retrieved from study records. Sus-
pected data entry errors for weight, height, and BMI were removed by
filtering out extreme values, and BMI was also calculated from indivi-
dual’s mode of height and eachweight measurement. BMI values were
regressed separately by sex using linear regression, with YOB, age, and
top four PCs as covariates. In case of multiple residuals per individual,
one final valuewas obtained for each individual by averaging residuals,
and residuals for men and women were finally combined and inverse-
normally transformed.

The Intermountain genotype data consists of 138,006 chip typed
individualswhose genotypewas imputedbasedon the samehaplotype
reference panel as for the Danish dataset85. Thereof, 11,815 had avail-
able information on BMI and were eligible for inclusion in the GWAS.
DNA extraction from whole blood and genotyping was performed at
deCODE genetics in Iceland, and the WGS protocol was the same as
described for the Icelanders72. Joint variant calling was performed
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using GraphTyper (v.2.7.5)76, and phasing was carried out using SHA-
PEIT (v4)86.

The Nashville Biosciences study population. Nashville Biosciences
(NashBio) is a data and analytics provider wholly owned by Vanderbilt
University Medical Center (VUMC, Tennessee, USA). NashBio har-
nesses VUMC’s extensive genomic and bioinformatics resources,
including its biobank collection BioVU®87,88. BioVU® includes a collec-
tion of de-identified DNA samples that are linked to de-identified ver-
sion of the VUMC’s EHRs, referred to as Synthetic Derivative (SD)
database. The SD contains longitudinal clinical data from more than
3.6million patients cared for at the VUMC’s hospitals and primary-care
clinics since 2001. All patients of the VUMCconsented to their residual
samples from routine clinical testing and data being contributed to
BioVU®. BioVU® extracts and banks germline DNA samples that are de-
identified and only linked to the SD through a randomly assigned
unique identifier, not back to the patient or their underlying medical
record. The use of BioVU® is classified as non-human subject research
by VUMC’s IRB, and NashBio is not required to seek study-specific
consent for use of these datasets. The overall biobanking program is
reviewed annually by the IRB tomaintain this determination andmake
decisions about patient protections, privacy, and ethical issues. Each
individual study seeking to use the SD database and BioVU® biobank is
filed with VUMC’s IRB to validate its non-human subject classification
and appropriate use of the data. NashBio takes steps to protect client
confidentiality during this submission.

Germline DNA samples from more than 307,000 patients have
been collected, and thereof, 250,000 samples were selected for WGS
under the Alliance for Genomic Discovery, which is a collaboration
between NashBio/VUMC and Illumina on one hand, and eight phar-
maceutical companies (including Amgen/deCODE genetics) on the
other hand89. The aim of the Alliance for Genomic Discovery is to
accelerate development of therapeutics through large-scale genomics
and to establish a preeminent clinical genomic resource for diverse
ancestries. The Diverse Ancestry Cohort included in this study is a
subset of the BioVU® cohort, consisting of 36,750 WGS individuals of
diverse ancestries, primarily of African ancestry. We further restricted
our sample set to 27,871 study participants thatwe assessed as carrying
African genomic ancestry by analyzing their genotypeswith supervised
ADMIXTURE v1.2390, using the 1000Genomes populations91 CEU (Utah
Caucasian), CHB (BeijingHan), ITU (Indian Telugu), PEL (Peruvian), and
YRI (NigerianYoruba) as training samples.We included individualswho
were modeled by ADMIXTURE as either (1) carrying > 90% YRI-like
ancestry, or (2) carrying > 30%YRI-like ancestry, > 2%CEU-like ancestry,
and YRI-like plus CEU-like ancestry proportions summing to > 90%.
Both in-house and previously published analyses of human diversity
datasets such asHumanOrigins92 indicate that thisfiltering enriches for
genomes similar to those carried by reference dataset samples labeled
as African American (e.g., 1000G “African Ancestry in Southwest US”)
or Afro-Caribbean (e.g., 1000G “African Caribbean in Barbados”), as
well as those of West African origin (e.g., 1000G “Yoruba in Ibadan,
Nigeria”) whose genomic ancestry is related to the African genomic
ancestry in African Americans and Afro-Caribbeans. We note that our
subset was defined solely on the basis of genomic ancestry.

Measurements for height and weight were available from the SD
database for 23,211 individuals of genetically determined African
ancestry. Suspected data entry errors were removed by filtering out
extreme values and BMI was calculated from individual’s mode of
height and each weight measurement. Measurements for blood pres-
sure, HbA1c, and total cholesterol, aswell as information on ICD-coded
diagnoses, were also retrieved from the SD database. For quantitative
traits, including BMI, values were regressed separately by sex using
linear regression and included age, YOB, and top seven PCs calculated
by bigsnpr93 to adjust for population stratification as covariates. For PC
calculation, we included variants with minor allele frequency (MAF) >

0.5% LD-pruned by plink –indep-pairwise 60000 6000 0.494, and
samples without 3rd-degree or closer relatives according to king
–ibdseg95, using bigsnpr’s OADP-projected coordinates for samples
with relatives. To better account for ancestral diversity in the NashBio
dataset, all samples regardless of assigned YRI ancestry proportion
were used to calculate PCs. In case of multiple residuals per individual
derived from the linear regression, one final value was obtained for
each individual by averaging residuals. Residuals for men and women
were then combined and inverse-normally transformed before genetic
association analysis.

All samples were WGS using Illumina NovaSeq sequencing
machines at deCODE genetics in Iceland. The average genome-wide
sequencing coverage was 33.9x (sd 3.5, min:28.7x, max:66.4x), and
joint variant calling was performed using GraphTyper (v.2.7.5)76. See
Supplementary Methods for more detailed description on sample
preparation and the WGS protocol.

The Finnish study population. The FinnGen study, controlled by the
University of Helsinki, is a large-scale genomics initiative that has
analyzed over 500,000 Finnish Biobank samples and correlated
genetic variation with health data to understand disease mechanisms
and predispositions28. The project is a collaboration between research
organizations and biobanks within Finland and international industry
partners. The FinnGen study has been approved by the Coordinating
Ethics Committee of The Hospital District of Helsinki and Uusimaa (Nr
HUS/990/2017). Participants in FinnGen provided informed consent
for biobank research on basis of the Finnish Biobank Act. Alternatively,
separate research cohorts, collected before the Finnish Biobank Act
came into effect (in September 2013) and the start of FinnGen (August
2017), were collected on the basis of study-specific consent and later
transferred to the Finnish biobanks after approval by Fimea, the
National Supervisory Authority for Welfare and Health. Recruitment
protocols followed thebiobankprotocols approvedby Fimea. FinnGen
has provided publicly available GWAS results for numerous pheno-
types through their online FinnGen database. We utilized publicly
available GWAS summary statistics for BMI and other relevant phe-
notypes from FinnGen Data Freeze 10.

The FinnGen samples were genotypedwith Illumina (Illumina Inc.,
San Diego, CA, USA) and Affymetrix arrays (Thermo Fisher Scientific,
Santa Clara, CA, USA). Genotype imputation in FinnGenData Freeze 10
was performed with Beagle 4.1 using the Sequencing Initiative Suomi
v4 population-specific reference panel developed from high-quality
data for 8554 high-coverage (25×) whole-genome sequences in Finnish
individuals. The variant call set for the reference panel was produced
with the GATK HaplotypeCaller algorithm following GATK best prac-
tices for variant calling, and genotype, sample, and variant quality
control were iteratively applied to the high-coverage whole-genome
sequencing data using Hail framework v0.1.

Other study populations. Publicly available summary statistics were
utilized from Genes & Health96, BioBank Japan9,97, the Korean Genome
and Epidemiology Study (KoGES) Consortium10,98, Taiwan Biobank8,99,
the Million Veteran Program5,100, the African Ancestry Anthropometry
Genetics Consortium (AAAGC)11,101, and the GIANT consortium15 (see
Data Availability). For GIANT, exome-array summary statistics derived
from individuals of European, East Asian, and South Asian ancestry
were utilized. Their summary statistics from individuals of African
ancestry were excluded because of an overlap with the NashBio/
BioVU® samples15.

Genetic association testing and meta-analysis
When testing for association between BMI and sequence variants in the
deCODE, UKB, CHB/DBDS, Intermountain, and NashBio datasets, we
used a linear mixed model implemented in BOLT-LMM102, used to test
for association between sequence variants and quantitative traits, and
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assumed an additive genetic model. We used logistic regression to test
for association between sequence variants and binary phenotypes,
assuming an additive genetic model. For the Icelandic population, the
logistic regression model included the following covariates: sex,
county of birth, current age or age at death (first and second order
terms), blood sample availability for the individual, whether the indi-
vidual was whole genome sequenced, and an indicator function for the
overlap of the lifetime of the individual with the time span of pheno-
type collection. For CHB/DBDS, the covariates were sex, age (first and
second order terms), whether the individual was whole genome
sequenced, and 12 PCs to adjust for population stratification. For UKB,
PCs (20 for XBI, 45 for XSA, and 20 for XAF) were used to adjust for
population stratification, and sex, age (first and second order terms)
and whether the individual was whole genome sequenced were inclu-
ded as covariates in the logistic regression model. For Intermountain,
the covariateswere sex, age (first and secondorder terms),whether the
individual was whole genome sequenced, top four PCs, and an indi-
cator function for the overlap of the lifetime of the individual with the
time span of phenotype collection. For NashBio, associations were
adjusted for sex, age (first and second order terms), sequencing batch,
and top seven PCs. All statistical tests performed were two-sided.

For the meta-analysis of summary-level statistics from different
populations, we used a fixed-effects inverse variancemethod based on
effect estimates and standard errors103. To account for inflation in test
statistics due to cryptic relatedness and stratification, we applied the
method of LD score regression104. For imputed variants in our data,
those with an imputation info score < 0.95 were excluded from the
meta-analysis. If variants were found in external datasets from which
summary statistics were used in our study, the imputation info cutoff
of 0.95 was used if information on the imputation info score was
available. When information on the imputation info score was not
available in external datasets, all variants were included.

For genome-wide significance (GWS), we accounted for multiple
testing with a weighted Bonferroni adjustment using as weights the
enrichment of variant classes with predicted functional impact among
association signals estimated from the deCODE data (Supplementary
Data 2)18. This yielded significance thresholds of 3.7 × 10−8 for variants
with high impact (including stop-gained and loss, frameshift, splice
acceptor or donor and initiator codon variants), 7.4 × 10−9 for variants
with moderate impact (missense, splice-region variants and in-frame-
indels), 6.8 × 10−10 for low-impact variants (including synonymous, 3’
and 5’ UTR, and upstream and downstream variants), 3.4 × 10−10 for
other variants in DNase I hypersensitivity sites (DHS), and 1.1 × 10−10 for
all other variants. We did not perform sex stratified analysis due to
incomplete information or unavailable data for a large proportion of
studies included in the meta-analysis.

To test for independent associations of large-effect GWS variants
at the TMEM18 and MC4R loci, we performed a conditional analysis in
the deCODE, UKB, CHB/DBDS and Intermountain datasets, adding the
top variant for stronger signals at their locus as covariates. The top
variants of stronger signals were identified in the datasets where
associations of the large-effect BMI variants predominated, i.e., in the
deCODE and UKB datasets, respectively. Conditional analysis was also
performed for publicly available BMI summary statistics in FinnGen
using conditional and joint association analysis (COJO)105, where the
same top variants were used as covariates as for the other cohorts.

R v3.6.0 was used extensively to analyze data and create plots.

LoF burden analysis
For the burden analysis, carriers of a LoF were coded with genotype
count 1 if they carry any LoF variants in FRS3 and their expected allele
count was > 0.9, and 0 otherwise. For sequenced individuals, all
identified LoF variants were used, and for imputed individuals (only
applies to deCODE, Iceland), LoF genotypes were used if the LoF var-
iant imputed had imputation information > 0.7. For deCODE, familial

imputation was also used as in the GWAS. Only high-quality sequence
variants were considered for selection. We used the following quality
metrics from GraphTyper76 and considered variants where ABHet
> 0.175, ABHom > 0.85, QD> 6, QUAL > 10, PASS_ratio < 0.05 and
AAscore >0.8. To further estimate thequality of the sequence variants,
we regressed the alternative allele counts (AD) on the depth (DP)
conditioned on the genotypes (GT). Deviations from the identity line
on the regression indicate that the sequence variant is spurious or
somatic. We filtered out variants with slope less than 0.5. For the gene
burden analysis, we only used variants with MAF< 2%.

Secondary phenotypes
The four FRS3missense variants identified in the study were tested for
association with other relevant phenotypes in two separate analyses.
The first analysis included 19 binary and quantitative phenotypes
correlated with BMI, including several cardiometabolic disorders,
whole body lean and fat mass measured by dual-energy X-ray
absorptiometry (DXA), blood pressure, blood lipids, HbA1c, and grip
strength. The second analysis included 4 binary neurologic pheno-
types associated with impaired BDNF-TrkB signaling, i.e., autism,
ADHD, intellectual disability, and pain.

The four missense variants were only tested for association with
those phenotypes in datasets representing their predominant
ancestry, yielding a Bonferroni adjusted P value thresholds of
8.2 × 10−4 (0.05/61) for the first analysis and 6.3 × 10−3 (0.05/8) for the
second analysis. Several phenotypes were not available for ancestries
other than European, including total fat and lean mass by DXA, and
were thus not tested for all four missense variants. Phenotype defi-
nitions, data sources, and references are summarized in Supple-
mentary Data 17.

Functional characterization of BMI-associated FRS3 missense
variants
We sought to explore the functional effects of BMI-associated FRS3
missense variants by assessing their effects (and of correlated variants
with r2 > 0.8) onmRNA expression (cis-eQTL), mRNA splicing variation
(sQTL), and plasma protein levels (pQTL).

We could only test p.Arg316Gln (rs35744673-T) for association
with expression or protein levels because the required data were
unavailable for cohorts whose summary statistics were utilized in the
study, including FinnGen, and for other ancestries than European. We
tested whether p.Arg316Gln and correlated variants were sentinel cis-
eQTLs in RNA-sequencing data at deCODE, derived from whole blood
(N = 17,848) and adipose tissue (N = 700). The variants’ effect on the
expression of genes within 1 megabase (Mb) window and with a suffi-
cient expression (> 1 transcript permillion) in the respective tissuewas
tested using a generalized linear regression, assuming an additive
model for genetic effect. Expression association for p.Arg316Gln and
correlated variants were also looked up in the GTEx online database
V836. P.Arg316Gln and correlated variants were tested for association
with levels of circulating proteins, measured with 4907 aptamers by
SomaScan v4106 in 35,559 Icelanders at deCODE107, and levels of 2941
immunoassays using the Olink Explore 3072 in 46,218 participants of
European ancestry in the UK Biobank108.

Variant frequency map
Data from the UK Biobank were utilized to create a frequency map for
the four FRS3missense variants identified in the study (Fig. 2a–d). UKB
participants were first grouped by birth country. We then defined
regional ancestry groupings with the aims that groups be representa-
tive of the region’s current population, be homogeneous by genetic
ancestry, and have at least 200 individuals (for accurate estimation of
variant frequencies).

We assessed the current genetic ancestry profiles of regions by:
comparing our ancestry analyses79 to in-house andpublished results of
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human genome diversity datasets like Human Origins92 and HGDP109;
comparing genetic ancestry results across neighboring countries;
surveying country demographics through sources like The World
Factbook110; and examining participants’ self-reported ethnicity infor-
mation and UK census data111 to determine whether participants born
in certain countries were representative of those countries’ current
demographics.

In some cases, we split off ancestry-based groupings representing
distinct populations or unrepresentative migrant communities (e.g.,
“South Asian ancestry born in Africa and West Asia”) to achieve
homogeneous birthplace-based groupings. Groups depicted on map
figures are those best representing the current demographicmajority.
For Finland, the FinnGen frequency is shown. If countries had fewer
than 200 participant birthplaces, we merged them with neighboring
countries with similar assessed ancestry profiles.Map geometries were
obtained from Natural Earth via R package maps112 and manipulated
with sf113.

Variant annotation
We used Variant Effect Predictor (VEP, release 100)114 to attribute
predicted consequences to the variants sequenced in eachdataset.We
classified as high-impact variants those predicted as start-lost, stop-
gain, stop-lost, splice donor, splice acceptor or frameshift, collectively
called LoF variants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS meta-analysis summary statistics are available at https://
download.decode.com/form/2025-Jonsdottir-Sveinbjornsson. The
sequence variants from the Icelandic population whole-genome
sequence data have been deposited at the European Variant Archive
under accession PRJEB15197. The Icelandic, Danish, Intermountain and
NashBio individual-level data are not publicly available due to data
privacy laws and policies. Those wishing to access individual-level data
should contact the corresponding author, Kari Stefansson (kste-
fans@decode.is), to organize a visit to deCODE genetics’ facilities in
Iceland, where data can be accessed and computation resources uti-
lized to perform analyses that conform to the studies’ ethical
approvals (see Methods). Individuals must provide a rationale for data
access and work for a legitimate research organization with a track
record of ethically conducted health-related research. Requests will be
answered within one month or upon availability of the corresponding
author. For the Danish studies, i.e., the CHB-OCMS and the DBDS, data
access requires collaboration with principal investigators for the
genetic cohorts (CHB-OCMS: Sisse Rye Ostrowski (Sisse.Rye.Os-
trowski@regionh.dk), Erik Sørensen (Erik.Soerensen@regionh.dk) or
Ole Birger Vesterager Pedersen (olbp@regionsjaelland.dk); DBDS:
Sisse Rye Ostrowski (Sisse.Rye.Ostrowski@regionh.dk), Erik Sørensen
(Erik.Soerensen@regionh.dk), Ole Birger Vesterager Pedersen (olb-
p@regionsjaelland.dk) or Christian Erikstrup (christian.er-
ikstrup@skejby.rm.dk)). FinnGen data are publicly available and were
downloaded from https://www.finngen.fi/en/access_results. In this
study, FinnGen Data Freeze 10 was utilized. The individual-level gen-
otype data from Finnish biobanks can be accessed through the Fin-
genious portal at https://site.fingenious.fi/en/ (for further information,
contact contact@finbb.fi). The UK Biobank data were downloaded
under application no. 56270. Individual-level genomic and phenotypic
data from the UK Biobank are available to researchers upon applica-
tion (https://ukbiobank.ac.uk). The BMI exome-array summary statis-
tics from the GIANT consortium15 are publicly available at https://
portals.broadinstitute.org/collaboration/giant/index.php/GIANT_
consortium_data_files. The Genes & Health GWAS dataset,

precomputed for all available phenotypes, is publicly available as a
whole using gcloud CLI, installed from https://cloud.google.com/sdk/
docs/install and then accessed at gs://genesandhealth_publicdatasets/
(see https://www.genesandhealth.org/researchers/data/ for more
information). In this study, Genes & Health data version 5 was used for
binary phenotypes and version 6 for quantitative phenotypes. GWAS
summary statistics from the Taiwan Biobank are available as Supple-
mentary Information in their published article8. BMI summary statis-
tics from the BioBank Japan9 and the National Biobank of Korea10 are
publicly available and can be accessed at https://pheweb.jp/pheno/
BMI and https://koges.leelabsg.org/pheno/KoGES_BMI, respectively.
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium summary results from genomic studies,
including the AAAGC BMI GWAS summary level data utilized in this
study11, are available from dbGaP under accession code phs000930.
v10.p1. MVP BMI GWAS summary statistics used in this study5 are
available from dbGaP under accession code phs001672.v12.p1. BMI
summary level data at birth from the Norwegian Mother, Father and
Child (MoBa) study30 were downloaded from https://www.fhi.no/en/
ch/studies/moba/for-forskere-artikler/gwas-data-from-moba/. Other
data supporting the findings of this study are available within the
Article or its Supplementary Information. Source data are provided
with this paper.
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