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DTIAM: a unified framework for predicting
drug-target interactions, binding affinities
and drug mechanisms

Zhangli Lu1,6, Guoqiang Song2,6, Huimin Zhu1, Chuqi Lei1, Xinliang Sun1,
Kaili Wang1, Libo Qin1, Yafei Chen2, Jing Tang 3 & Min Li 1,4,5

Accurate and robust prediction of drug-target interactions (DTIs) plays a vital
role in drug discovery but remains challenging due to limited labeled data,
cold start problems, and insufficient understanding of mechanisms of action
(MoA). Distinguishing activation and inhibition mechanisms is particularly
critical in clinical applications. Here, we propose DTIAM, a unified framework
for predicting interactions, binding affinities, and activation/inhibition
mechanisms between drugs and targets. DTIAM learns drug and target
representations from large amounts of label-free data through self-supervised
pre-training, which accurately extracts their substructure and contextual
information, and thus benefits the downstream prediction based on these
representations. DTIAM achieves substantial performance improvement over
other state-of-the-art methods in all tasks, particularly in the cold start sce-
nario. Moreover, independent validation demonstrates the strong general-
ization ability of DTIAM. All these results suggest that DTIAM can provide a
practically useful tool for predicting novel DTIs and further distinguishing the
MoA of candidate drugs.

Accurately predicting drug-target interactions (DTIs) is an essential
step in drug discovery and development1,2. The biochemical experi-
mental method for identifying new DTIs on a large scale is still
expensive and time-consuming3–5, despite the wide application of
various experimental assays in drug discovery. Various computational
methods have been applied to drug discovery and successfully predict
novel DTIs, and they can substantially reduce development time and
costs6–9. Current computational methods mainly focus on the binary
prediction of DTI or the regression prediction of drug-target binding
affinity (DTA).

In binary classification-based DTI prediction studies, the goal is to
predictwhether there is an interactionbetween thedrug and the target
or not. Generally, the approaches for in silico DTI prediction can be
divided into four major categories: structure-based approaches,

ligand-based approaches, network-based approaches, and machine
learning-based approaches. Structure determination of compound-
protein complexes can provide insights into the mode of action and
thus significantly facilitate lead compound selection and optimization
in the target-based drug discovery10,11. There aremany structure-based
approaches, such as molecular docking12, molecular dynamics
simulations13, pharmacophore modeling14 and GOLD15, which are
widely applied in virtual screening of drugs binding with proteins.
However, these methods generally fail to predict binding affinities
when the three-dimensional (3D) structure of the target protein is
unknown, and require tremendous computational resources. And
ligand-based approaches, such as quantitative structure activity rela-
tionship (QSAR), compares a candidate ligand with the known ligands
of a specific target protein to predict the potential interaction.
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However, the predictive power of such methods is limited by the
number of known ligands for a specific target protein. To overcome
the current limitations of the structure-based and ligand-based
approaches, various computational models have been developed for
DTI prediction16–19. An example is the network-based inference (NBI)
methods that construct reliable networks from several data resources
(e.g., chemical, genomics, proteomics, and pharmacology) and exploit
the topological and structural information in the networks for poten-
tial association prediction20–24. For instance, Luo et al.25 develop a
computational pipeline, called DTINet, to predict novel DTIs from a
heterogeneous network constructed by integrating diverse drug-
related information. Another promising approach for predicting DTIs
is the machine learning-based methods that mainly consist of two
steps: feature extraction andDTI prediction26–29. This type of approach
fully exploits the latent features from input data of known drug com-
pounds and target proteins to predict their interactions30,31. The binary
classification-based DTI prediction models can successfully predict
whether there is an interaction between a drug and a target and have
strong performance. The drug-target interaction is not a simple binary
on-off relationship, but a continuous value named binding affinity,
which reflects how tightly the drug compound binds to a particular
target protein32.

In order to further predict the putative strengths of the interac-
tions, various regression-based models have been proposed to infer
the binding affinities between drugs and targets32–35. Binding affinity
reflects how tightly the drug binds to a particular target, which is
quantified by measures such as inhibition constant (Ki), dissociation
constant (Kd), and the half-maximal inhibitory concentration (IC50).
The DTA prediction approaches focus on affinity scoring, which is
frequently used after virtual screening and docking campaigns.
Recently, deep learning methods have emerged as a successful alter-
native to scoring functions, employing various deep neural network
architectures such as convolutional neural network (CNN) and recur-
rent neural network (RNN). These methods fully extract contextual
features and learn the representations of drugs and targets from the
input raw data for DTA prediction. For example, DeepDTA36 proposed
by Öztürk et al. used CNN to learn representations from the simplified
molecular-input line-entry system (SMILES) strings of compounds and
amino acid sequences of proteins, and fed into fully connected layers
to predict their affinities. Karimi et al.37 presented a semi-supervised
deep learningmodel, namedDeepAffinity, which unifies RNN andCNN
to jointly encode molecular and protein representations and predict
affinities. Although thesemethods can successfully predict the binding
affinity between drugs and targets, their interpretability remains lim-
ited. The attention mechanism has therefore been applied to increase
the interpretability of the model by assigning greater weights to the
“important” features38–40. As an example, Li et al.41 developed a multi-
objective neural network called MONN, which uses non-covalent
interactions as additional supervision information to guide the model
to capture the key binding sites.

While much effort has been devoted to predicting DTI and DTA,
there are still several limitations in the previous studies. First, most
existing methods heavily depend on the scale of the high-quality
labeled data. Only large-scale labeled data can help models achieve
great performance. Unfortunately, existing labeled data is insufficient,
and data labeling is expensive and time-consuming. In addition, these
methods often exhibit limited generalization when new drugs or tar-
gets are identified for a complicated disease, which is similar to the
cold start problem in recommendation systems. More importantly,
recent approaches fail to elucidate the mechanism of action (MoA) of
the compound. The MoA refers to how a drug works on its target to
produce the desired effects, which involve two major roles: activation
and inhibition mechanisms. Distinguishing the activation and inhibi-
tion MoA between drugs and targets is critical and challenging in the
drug discovery and development process, as well as their clinical

applications42. It helps pharmaceutical scientists identify potential
drug interactions and adverse effects, and develop safe and effective
treatments for diseases43,44. For example, drugs that activate dopamine
receptors can treat Parkinson’s disease, while drugs that inhibit
dopamine receptors can treat psychosis45. Recently, some proteo-
chemometrics modeling and gene expression profiles-based approa-
ches were proposed to predict the activation and inhibition
relationships between drugs and targets45–48. However, there is a
manifest need for developing amore powerful deep learningmodel to
predict and decipher MoA, which is crucial and challenging scientific
research in drug development.

In this work, we develop DTIAM, a unified framework for pre-
dicting DTI, DTA, and MoA. DTIAM learns drug and target repre-
sentations from a large amount of unlabeled data via multi-task self-
supervised pre-training, which requires only the molecular graph of
drug compounds and primary sequences of target proteins as input. It
accurately extracts the substructure and contextual information from
massive compound and protein data during pre-training, which
improves generalization performance and provides benefits for
downstream tasks. In comprehensive comparison tests across differ-
ent types of tasks and under three common and realistic experiment
settings (i.e., warm start, drug cold start, and target cold start), DTIAM
outperforms other baseline methods in all tasks, especially in the cold
start scenario. Furthermore, we successfully identify effective inhibi-
tors of TMEM16A from a high-throughputmolecular library (10million
compounds), which are verified by the whole-cell patch clamp
experiment. Besides, independent validation on EFGR, CDK 4/6, and
10 specific targets indicates that DTIAM can provide a practically
useful tool for predicting novel DTIs and further distinguishing the
action mechanisms of potential drugs. In addition, the robustness
experiments demonstrate that the representations learned by the pre-
training models transfer well to downstream tasks, even with limited
labeled data for training. All these results suggest that DTIAM can
provide accurate representations for effectively predicting potential
drug molecules or target proteins, and thus greatly facilitate the drug
discovery process.

Results
Overview of DTIAM
Our proposed DTIAM is a general framework used for predicting DTI,
DTA, and MoA based on self-supervised learning. The overall archi-
tecture of DTIAM is illustrated in Fig. 1. DTIAM is not an end-to-end
neural network model, which consists of three modules: (1) a drug
molecular pre-training module based on multi-task self-supervised
learning for extracting the features of both individual substructures
and the whole compound from massive amounts of the molecular
graph (Fig. 1A), (2) a target protein pre-training module based on
Transformer attention maps for extracting the features of individual
residues directly from protein sequences (Fig. 1B), and (3) a unified
drug-target prediction module for predicting DTI, DTA, and MoA
between the given pair of drug and target, using the previously learned
features of drug molecular and target protein (Fig. 1C).

The drugmolecule pre-trainingmodule takes themolecular graph
as input, which is then segmented into several substructures. The
module then learns the representation of the drug molecule based on
multiple self-supervised models. Specifically, for a drug molecule with
n substructures, their representations aredefined as an×d embedding
matrix, in which each substructure is embedded into a d-dimensional
vector. These embeddings are fed into a Transformer encoder for
feature extraction and learned through three self-supervised tasks:
Masked Language Modeling, Molecular Descriptor Prediction, and
Molecular Functional Group Prediction. The drug molecule pre-
training module leverages the power of attention mechanism and
self-supervised learning from vast amounts of unlabeled data to
effectively extract contextual information and implicit features
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between molecular substructures. This process enables the module to
learnmeaningful representations of drugmoleculeswithout relying on
explicit labels. By using the attention mechanism, the module can
prioritize relevant substructures and relationships between them
during training, leading tomore effective feature extraction. Similarly,
the target protein pre-training module uses Transformer attention
maps to learn the representations and contacts of proteins based on
unsupervised language modeling from large amounts of protein
sequence data. The basic idea of the drug-target prediction module is
to integrate information from both drugs and targets to improve the
prediction of DTI, DTA, and MoA. The module combines representa-
tions of compounds and proteins to capture their complex interac-
tions and uses various machine learning models, such as neural

networks, to learn their relationship and properties for accurate and
reliable predictions. Thesemodels are integrated within an automated
machine learning framework that utilizes multi-layer stacking and
bagging techniques. Details about each module of DTIAM and the
training process can be found in the “Methods” section.

Performance of DTIAM on the DTI prediction task
In the DTI prediction task, the goal is to predict whether a given drug-
target pair interacts with each other, which is a binary classification
problem. We compared DTIAM with four baseline methods, including
CPI_GNN49, TransformerCPI50, MPNN_CNN51, and KGE_NFM9, on the
Yamanishi_08’s and Hetionet benchmark datasets under three com-
monly used andmore realistic cross-validation settings: the warm start
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Fig. 1 | The architecture overview of DTIAM. The framework mainly consists of
three modules. A The drug molecular pre-training module. The module segments
the molecular graph into several substructures and learns its representation
through three self-supervised models from massive amounts of label-free data.
B The target protein pre-training module. The module uses Transformer attention

maps to learn the representations and contacts of proteins based on unsupervised
language modeling from large amounts of protein sequence data. C The down-
stream drug-target prediction module. The module incorporates drug and target
representation and predicts DTI, DTA, and MoA via an automated machine
learning model.
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setting, the drug cold start setting, and the target cold start setting
(Fig. 2, Supplementary Materials Table 2). The training data and test
data are split via 10-fold cross-validation, and the ratio between the
positive and negative samples is 1:10.

First, on the smaller Yamanishi_08’s dataset, we observed that
DTIAM achieved higher and more robust predictive performance
under three different experiment settings, especially in the cold start
settings. Specifically, in the scenario of the warm start, DTIAM (AUPR =
0.931) significantly outperformed all the other baselines with a sig-
nificant leading margin of 50% in terms of AUPR when compared to
CPI_GNN (AUPR = 0.431). While for the end-to-end methods, Trans-
formerCPI (AUPR = 0.816) and MPNN_CNN (AUPR = 0.802), and the
network-based method KGE_NFM (AUPR = 0.817) achieved compar-
able predictive performance. These results indicate that the end-to-
end methods and network-based methods require more labeled data,
while DTIAM can partly overcome this limitation thanks to the
knowledge learned in the pre-training stage. In the scenario of the cold
start, we observed that the AUPR andAUROC values of all methods get
reducedbydifferent degrees, whileDTIAMstill achieves relatively high
predictive performance, especially in the target cold start. This result
highlights DTIAM’s potential capability to capture the latent features
of compound substructures and protein subsequences from the large-
scale unlabeled data, thus enables higher accuracy and more robust
prediction even for unknown drugs or targets.

On the other hand, in the larger Hetionet dataset, we observed
that DTIAM achieved the better, the best, and the second best pre-
dictive performance in the warm start, the drug cold start, and the
target cold start, respectively. Specifically, in the scenario of the warm
start, the average AUPR score achieved by DTIAM (AUPR = 0.808) was
higher than other baseline methods. While for the network-based
method, KGE_NFM (AUPR = 0.789) achieved comparable predictive
performance due to the increased volume of available data. In the
scenario of the drug cold start, DTIAM (AUPR = 0.529) significantly
outperformed CPI_GNN (AUPR = 0.219), MPNN_CNN (AUPR = 0.453),
and KGE_NFM (AUPR = 0.391). This phenomenon demonstrates the
powerful expressive and feature learning ability of the proposed drug
pre-trainingmodel, which provides a huge advantage for DTIAM in the
situation of unknown drug prediction. In the scenario of the target
cold start, KGE_NFM (AUPR = 0.651) performed better than CPI_GNN
(AUPR = 0.433), MPNN_CNN (AUPR = 0.470), and DTIAM (AUPR =
0.614). This is mainly attributed to the sufficient target-related asso-
ciation information for the network-based method KGE_NFM. While
DTIAM and the end-to-end methods only take the compound SMILES
and the protein sequences as input without extra association infor-
mation. Additionally, we found a similar phenomenon on the Yama-
nishi_08’s and Hetionet datasets that all methods achieved better
predictiveperformance in the target cold start than thedrug cold start.
It seems possible that this finding is attributed to the volume of
available data for targets, where both datasets have more targets than
drugs. For example, there are 5763 targets while only 1384 drugs are in
the Hetionet dataset (Supplementary Materials Table 1).

Performance of DTIAM on the DTA prediction task
The goal of the DTA prediction task is to predict the binding affinity
between a given pair of drug targets, which is a regression task. And
four baseline models were used in the performance comparison,
including DeepDTA36, MONN41, BACPI40, and GraphDTA34. We eval-
uated our model and all the baseline methods on two benchmark
datasets, the Kinase dataset Davis and KIBA dataset, under three
experiment settings (Fig. 3, SupplementaryMaterials Table 3). For each
experiment setting, we use 5-fold cross-validation to evaluate the DTA
prediction performance of DTIAM and baseline methods.

As can be seen from Fig. 3, DTIAM achieved better predictive
performance under all experimental settings on both datasets, espe-
cially in the cold start settings. For the scenario of the warm start,

DTIAM and three graph-based methods, MONN, BACPI, and
GraphDTA, achieved relatively high predictive performance on both
datasets. While for the sequence-based method, DeepDTA did not
performaswell due to the limitationof themodel structure,which fails
to extract accurate features from sequence information. In the sce-
nario of the cold start, we observed a similar situation with the DTI
prediction task in that the predictive performance gets reduced by
different degrees for all methods. GraphDTA achieved relatively high
predictive performance in the drug cold start setting, but do not
perform as well in the target cold start setting. In contrast, MONN
performed better in the target cold start setting than in the drug cold
start setting. These results suggested that GraphDTA is more suitable
for the binding affinity prediction of new drugs, while MONN is better
for the situation of the cold start for targets. DeepDTA and BACPI
behaved more stably in two cold start scenarios, which shows the
robustness of the predictions. For the pre-training model, DTIAM
performed the best in both the warm start setting and two cold start
settings. All these comparative results supported the strong predictive
power of DTIAM, which can successfully predict the binding affinities
betweendrugs and targets, and has a strong generalization ability even
for predictions on novel drugs or targets.

Performance of DTIAM on the MoA prediction task
To evaluate the prediction performance of DTIAM in the MoA pre-
diction task, we approach the MoA prediction as two distinct binary
classification tasks. Specifically, we aim to predict whether a given
drug-target pair exhibits activatory or inhibitory effects. Thus, our two
classification problems are predicting the presence of activation and
inhibition for a givendrug-target pair. The evaluationswere conducted
using two distinct types of MoA (i.e., activation and inhibition), and
each type of MoA has a corresponding dataset collected from the
TherapeuticTargetDatabase.We comparedDTIAMwithAI-DTI48 using
a 5-fold cross-validation on these two datasets under three experiment
settings (Fig. 4A–D, Supplementary Materials Table 4).

As shown in Fig. 4A–D, DTIAM significantly outperformed AI-DTI
in all three experiment settings, on both Activation and Inhibition
datasets. Specifically, on the smaller Activation dataset, DTIAM out-
performed AI-DTI with 16.1%, 17.9%, and 26.8% improvement in terms
of AUPR in the scenario of the warm start, the drug cold start, and the
target cold start, respectively. These results indicate that the repre-
sentations learned by self-supervised pre-training transfer well to
downstream tasks with a small amount of labeled training data. In
particular, with a larger size of labeled drug-target pairs on the Inhi-
bition dataset, the evaluation performance of DTIAM and AI-DTI
increase greatly compared to that on the Activation dataset. And
DTIAM performed slightly better than AI-DTI in the scenario of the
warm start and the drug cold start. While DTIAM outperformed AI-DTI
with a significant leading margin of 34% in terms of AUPR when the
experiment setting is the target cold start. This result demonstrated
that the target protein pre-training model has the potential to learn
patterns from large-scale protein amino acid sequences, and thus
benefits the downstream prediction for DTIAM in the situation of the
target cold start. In addition, we also observed an interesting phe-
nomenon in the Activation and Inhibition datasets that both methods
achieved better predictive performance in the drug cold start than the
target cold start. This resultmay be explained by the fact that there are
more drugs than targets in the two MoA datasets. This finding man-
ifests the influenceof the size of the predicted object in the scenario of
the cold start, and a larger number of the predicted object enable
better prediction performance.

Distinguishing the activation/inhibition mechanism between a
drug and its target is of great biological significance because it can
determine the type of biological response produced by the drug. Take
the alpha-1A adrenergic receptor (ADRA1A) for example, drugs such as
metaraminol activate ADRA1A for the treatment of hypotension52,
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Fig. 2 | Performance evaluation on theDTI prediction task.The performances of
DTIAM and baseline models were evaluated in terms of AUPR and AUROC on the
Yamanishi_08's and Hetionet datasets under three experiment settings. A, B AUPR
of different prediction models on the Yamanishi_08's and Hetionet datasets under
three experiment settings. C, D AUROC of different prediction models on the

Yamanishi_08's and Hetionet datasets under three experiment settings. All results
were obtained by 10-fold cross-validation. The ratio between the positive and
negative samples is 1:10. Box plots show the median as the center lines, upper and
lower quartiles as box limits, whiskers as maximum andminimum values, and dots
represent outliers.
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Fig. 3 | Performance evaluationon theDTAprediction task.Theperformances of
DTIAM and baseline models were evaluated in terms of MSE and Pearson correlation
on theDavis andKIBA datasets under three experiment settings.A,BMSEof different
prediction models on the Davis and KIBA datasets under three experiment settings.

C, D Pearson correlation of different prediction models on the Davis and KIBA data-
sets under three experiment settings. All results were obtained by 5-fold cross-vali-
dation. Box plots show the median as the center lines, upper and lower quartiles as
box limits, whiskers as maximum and minimum values, and dots represent outliers.
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Fig. 4 | Performance evaluation on the MoA prediction task. A–D Performance
comparison of DTIAM with AI-DTI on the Activation and Inhibition datasets under
three experiment settings in terms of AUPR and AUROC. All results were obtained
by 5-fold cross-validation. The ratio between the positive and negative samples is
1:10. Box plots show the median as the center lines, upper and lower quartiles as
box limits, whiskers asmaximum andminimumvalues, and dots represent outliers.

E–H Validating DTIAMon 10 specific targets. E Prediction accuracy for each target,
with the score at the top of the bar and the ratio inside indicating the number of
correctly predicted drugs out of the total number. F–G The recall of activation and
inhibition, respectively, with the top value indicating recall and the ratio inside
indicating the number of correctly predictedactivators or inhibitors out of the total
number. H AUROC score for each target.
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whereas drugs inhibit ADRA1A used for benign prostatic hyperplasia,
hypertension, schizophrenia, and bipolar disorder53,54. To demonstrate
the reliability of DTIAM in distinguishing activation and inhibition
interactions, we combined all activating and inhibiting DTIs to train
DTIAM, which is applied to predict the activation and inhibition rela-
tionships for 10 specific targets (including ADRA1A, ADRA1B, ADRA1D,
CYP3A43, CYP3A5, CYP3A7, DRD1, HTR1B, HTR1D, and HTR2A). These
targets can be categorized into four distinct subfamilies: alpha-1
adrenergic receptors (ADRA1), cytochromeP4503A enzymes (CYP3A),
dopamine receptors (DR), and 5-hydroxytryptamine receptors (HTR).
Each of these subfamilies possesses a considerable repertoire of
known agonists and antagonists, along with distinct mechanisms of
action that align with diverse therapeutic indications. The exploration
of themechanisms of interaction between these subfamilies and drugs
holds paramount importance in the realms of nervous system reg-
ulation, catalytic reactions, and beyond. We collect the activation/
inhibition relationships for these 10 targets from DrugBank, and all of
these relationships are independent of all the training data used
for DTIAM.

We list all prediction results in SupplementaryData 1 and show the
results in terms of accuracy, recall of activation, recall of inhibition,
and AUROC in Fig. 4E–H. We found that the prediction accuracy
exceeded 93% for all targets, including 100% for HTR1D, and 9 of the
targets had AUROC values above 0.96. These results suggest that
DTIAM can accurately distinguish the activation and inhibition rela-
tionships between drugs and targets. In addition, we observed that the
recall of activation was significantly lower than that of inhibition. This
is because the samples of the dataset used inDTIAM are out of balance
(far fewer samples for activation than for inhibition), which leads to a
more biased prediction result of the model with inhibition.

DTIAM identifies potential inhibitors for TMEM16A
To better demonstrate the effectiveness of DTIAM, we predicted the
potential inhibitors for TMEM16A from the high-throughput screening
molecular library using the DTI, DTA, and MoA prediction model and
outputted the list of top predictions. TMEM16A is widely expressed in
various cells, including epithelial, smooth muscle, endothelial, and
neuronal cells, and regulates key functions such as fluid secretion,
smooth muscle contraction, gut motility, cell volume regulation,
apoptosis, and pain55,56. Its dysfunction can lead to many diseases,
including various cancers, gastrointestinal disorders, hypertension,
and cystic fibrosis57. TMEM16A inhibitors have potential therapeutic
uses in hypertension, stroke, and overactive bladder, while activators
may treat epithelial dysfunction disorders like cystic fibrosis, and dry
eye syndrome58. Consequently, TMEM16A represents a significant
pharmacological target. Identifying potential drugs targeting
TMEM16A through computational models is a challenging task with
important implications for the treatment of various diseases. First, DTI
predictionmodel of DTIAMwas applied to score the compounds from
the commercial off-the-shelf high-throughput screening molecular
library, which contains approximately 10 million compounds, and the
top 50,000molecules (~top 0.5%, ensuring compound diversity) were
selected based on predicted interaction probabilities. Second, we fil-
tered these compounds by the Lipinski rules and filtered pan-assay
interference compounds, and clustered these molecules based on
their fingerprint similarities, obtaining approximately 350 clusters.
Finally, 75 representative compounds were selected from the top-
ranked clusters based on the predicted interaction, affinity, and inhi-
bition scores.

The predicted potential compounds inhibiting the TMEM16A
channel are shown in Supplementary Data 2. We found that daidzein
(ranked second in the predicted potential compounds) has been ver-
ifiedbyWang et al.59 to be a high-efficiencyTMEM16A inhibitor, with an
IC50 of 1.39 ± 0.59 μM, while DTIAM inferred that its interaction
probability with TMEM16A is 0.994, its inhibition probability is 0.999,

and its affinity is 0.121 μM.As we can see, there is a certain discrepancy
between 0.121 μM and 1.39 μM. The lower value of affinity indicates
higher strength binding. The predicted affinity value between daide-
zein and TMEM16A is lower than the actual value suggests that DTIAM
has higher confidence in daidezein. This is also illustrated by the fact
that the predicted interaction and inhibition probabilities both exceed
0.99. Furthermore, we use Auto-Docking Vina software to validate the
predicted potential compounds to select candidate drugs for further
experimental evaluation, and dehydrocostus lactone with better Vina
scores and relatively easier synthetic accessibility was selected to carry
out wet lab validation. We found that dehydrocostus lactone (ranked
12th in the predicted potential compounds) was verified its inhibitory
effectwith TMEM16Abywet-lab experiments, andDTIAM inferred that
its interaction probability with TMEM16A is 0.977, its inhibition
probability is 0.989, and its affinity is 205.84 nM. Specifically, to
investigate the inhibitory effect of dehydrocostus lactone on
TMEM16A channels, we performed whole-cell patch clamp recordings
in HEK293T cells transfected with TMEM16A plasmids. The pipette
solution containing 600 nM Ca2+ was adopted to elicit TMEM16A
currents in the transfected HEK293T cells. As illustrated in Fig. 5B, C,
the characteristic outward rectification and slow activation kinetics of
the TMEM16A current were obvious. The dose–response relationship
was established by plotting normalized current values at a holding
potential of +80 mV following exposure to various concentrations of
dehydrocostus lactone. Our findings revealed an IC50 value of
111.97 ± 22.96 nM for dehydrocostus lactone in inhibiting in TMEM16A
transfected HEK293T cells (Fig. 5D). We further verified the inhibition
effect of dehydrocostus lactone on TMEM16A with an outside-out
patch clamp. It was demonstrated that 100 μM of dehydrocostus lac-
tone can completely inhibit the current of TMEM16A (Fig. 5EF), indi-
cating that the inhibition of dehydrocostus lactone on TMEM16A was
directly exerted. In addition, we performed experiments on LA795 cell
with high endogenous expression of TMEM16A, which also proved the
inhibitory effect of dehydrocostus lactone on TMEM16A (Supple-
mentaryMaterials Fig. 1). The IC50 of dehydrocostus lactone inhibiting
TMEM16A in LA795 cell was 161.64 ± 61.96 nM. All these experimental
results demonstrate that dehydrocostus lactone predicted by DTIAM
is a highly effective inhibitor of TMEM16A.

To evaluate the performance of our framework on known inhi-
bitors of TMEM16A, we also applied DTIAM to infer the interactions,
affinities, and inhibition scores between TMEM16A and five known
inhibitors, including 1PBC60, niclosamide61, benzbromarone62,
crofelemer63, and CaCCinh-A01

64. The prediction results are shown in
Supplementary Data 2.We found that all five inhibitors were predicted
to have a high likelihood of inhibiting TMEM16A, and the interaction
probability of four inhibitors exceeded 0.95. Moreover, the predicted
binding affinity scores for the five inhibitors were closely aligned with
experimental measurements, demonstrating the robust predictive
capability of DTIAM in screening TMEM16A inhibitors.

Prediction of potential drugs for EGFR and CDK 4/6 virtual
screening
To further test the applicability for drug virtual screening, we tested
whether DTIAM could identify the DTIs of potential drugs for epi-
dermal growth factor receptor (EGFR) and cyclin-dependent kinase 4/
6 (CDK 4/6). EGFR is a transmembrane protein that is found at
abnormally high levels in cancer cells, and its inhibitors are known for
the treatment of cancers caused by EGFR up-regulation, such as non-
small-cell lung cancer and pancreatic cancer. CDK is a type of enzyme
that regulates the progression of cells through the cell cycle. CDK 4/6
inhibitors work by binding to and blocking the activity of CDK4 and
CDK6 enzymes and are commonly used to treat breast cancer and
other types of cancer that are driven by overactive CDK 4/6 activity.

WeusedYamanishi_08’s dataset (removingDTIs containing EGFR)
to trainDTIAMandpredictpotential interactions betweenEGFRandall
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Fig. 5 | Dehydrocostus Lactone inhibits TMEM16A current in the TMEM16A
recombinant HEK293T cells in a concentration-dependent manner. A Voltage
stimulation waveform scheme. B Representative TMEM16A current in whole-cell
patch clamp in HEK293T recombination system is activated by 600 nM Ca2+ and
inhibited by different concentrations ofDehydrocostus Lactone (n = 3), with 20μM
CaCCinh-A01 as the positive control. C I–V curve of TMEM16A inhibited by various
concentrations of dehydrocostus lactone (n = 3), with three independent biological
replicates performed for each group. Data are presented as mean values ± SD.
D Dose–response curve of TMEM16A currents at +80mV incubated with indicated

concentrations of dehydrocostus lactone (n = 3), with three independent biological
replicates performed for each group. The IC50 of dehydrocostus lactone on
TMEM16A channelswas 111.97 ± 22.96 nM. Data are presented asmean values ± SD.
E Representative TMEM16A current in outside-out patch-clamp in HEK293T
recombination system, which is activated by 600 nM Ca2+ and inhibited by 100 μM
dehydrocostus lactone (n = 3), with 20 μM CaCCinh-A01 as the positive control.
F I–V curve of TMEM16A inhibited by 100 μM dehydrocostus lactone (n = 3), with
20 μM CaCCinh-A01. n = 3 for each group, with three independent biological
replicates performed for each group. Data are presented as mean values ± SD.
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drugs in the dataset. We also predicted the interactions between EGFR
and 13 approved drugs (Afatinib, Osimertinib, Gefitinib, Erlotinib,
Lapatinib, Neratinib, Brigatinib, Dacomitinib, Mobocertinib, Vandeta-
nib, Fostamatinib, Zanubrutinib, and Lidocaine) fromDrugBank which
are used as EGFR inhibitors. The predicted results of the top-15
potential drugs are listed in Table 1. We found that 9 of the 13 EGFR
inhibitors were successfully rediscovered in the top-15 potential drugs
byourmethod, and 12 of 13 EGFR inhibitors ranked in the top 50of 802
results (more details in Supplementary Data 3). In addition, the other 6
drugs in the top-15 potential drugs list were all validated by external
databases (e.g., KEGG65, BRENDA66, and DrugBank67).

Similarly, the Yamanishi_08’s dataset (removing DTIs containing
CDK 4 andCDK 6) was used to train DTIAM,which is applied to predict
the interactions between CDK 4/6 and all drugs in the dataset and 4
approved drugs (Ribociclib, Abemaciclib, Trilaciclib, and Palbociclib)
from DrugBank which are used as inhibitors of CDK 4 and CDK 6.
Table 2 shows the top-15 potential drugs that potentially interact with
CDK4/6, ranked by the prediction scores ofCDK6.Weobserved that 4
approved CDK 4/6 inhibitors are successfully predicted by DTIAM.
Moreover, Imatinib mesylate, Alvocidib, and Alvocidib hydrochloride
were validated to interact with CDK 4/6 by external databases (CTD68

and KEGG65). In addition, the docking studies showed that the five
drugs (i.e., Granisetron, Axitinib, Canertinib dihydrochloride, Dor-
amapimod, andMubritinib)were able todock to theCDK6 (Fig. 6B–F).
In particular, Granisetron interacted with residue D163(A) and Axitinib
interacted with residue V101(A) when docked to CDK 6 (Fig. 6B, C),
which were observed similar to Palbociclib (Fig. 6A), the highly selec-
tive CDK4/6 inhibitor. All these results indicated that DTIAM can be
effectively applied for drug virtual screening and provide a powerful
tool to speed up the process of drug development.

Ablation study
As mentioned above, DTIAM achieves excellent performance in
downstream tasks even with a small amount of labeled data thanks to
the pre-trained model. To test the effectiveness of our proposed pre-
trained model, we compared DTIAM with the state-of-the-art baseline
models with different scales of labeled data on the DTI, DTA, andMoA
prediction tasks. We divided 20%, 40%, 60%, and 80% of the samples
on six datasets of different tasks for training, and used the remaining
samples for validation under the warm start setting.

As can be seen from Fig. 6G, with the increase of the number of
training samples, the predictive performance of all methods improves
by different degrees. DTIAM achieves the best performance under all
data partitions and significantly outperforms other models, especially
with less training data (20% and 40%). It is worth noting that DTIAM
can outperform other models trained with 60% or even 80% of the
samples using only 20% of the samples for supervised training. All the
results show that our proposed pre-training model can extract accu-
rate features from massive unlabeled data and can be effectively
applied to downstream prediction tasks, even with a small amount of
unlabeled data.

To analyze the impact of using different combinations of self-
supervised tasks for molecular representation learning pre-training,
we conducted ablation experiments on seven combinations of three
self-supervised tasks for our proposed molecular pre-training model.
The three self-supervised tasks are: (1) Masked Language Modeling
(MLM); (2) Molecular Descriptor Prediction (MDP); and (3) Molecular
Functional Group Prediction (MFGP). Details about each self-
supervised task can be found in the “Self-supervised molecular
representation learning” section.

As shown in Table 3, we find that MFGP task has the highest
impact on the performance, especially in the drug cold start scenario,
with a significant leading margin of 50% in terms of AUPR when using
the MFGP task alone (AUPR = 0.305) versus using the MDP task alone
(AUPR = 0.203). This demonstrates that the local functional group
information of the molecule is very helpful for DTI prediction. At the
same time, our molecular representation learning model can accu-
rately capture the key functional group information. Among the
combinations of the two self-supervised tasks, the molecular model
trained on both MLM and MFGP performed best. Although the best
performing model is trained on the combination of MLM, MDP, and
MFGP, the additive gain from the MDP task is relatively minor.

Discussion
Accurately predicting DTIs can provide a huge advantage for drug
discovery and development. Most existing methods only focus on the
DTI binary classification or the DTA regression prediction, neglecting
the pharmaceutical MoA information. The MoA prediction can help in
understanding modes of drug action and provide new insights into
drugdiscovery. In this study,wedeveloped a unified framework, called
DTIAM, to predict DTI, DTA, and MoA by combining the drug and
target pre-training models and AutoML techniques. The pre-training
models extract the substructure and contextual information from
massive unlabeled data via self-supervised learning and can be trans-
ferred to various prediction tasks including MoA, DTI, DTA, etc. The
high extendibility and generalization ability of the pre-trainingmodels
have been extensively validated on different types of prediction tasks.
Comprehensive comparison tests showed that DTIAM achieved
superior performance and significantly outperformed other state-of-
the-art machine learningmethods on different types of datasets under
three cross-validation settings. Further practical application of drug
screening demonstrates the reliability of DTIAM predictions and the
candidate inhibitor of TMEM16A predicted by DTIAM was verified by
wet-lab experiments. Besides, we also validated the applicability of
DTIAM for drug virtual screening on EGFR and CDK 4/6 targets, the
results showed that the top-15 predicted potential drugs were mostly
validated by external databases and literature. All of these results
demonstrate that DTIAM can be effectively used for a variety of drug-
target prediction tasks and provides a powerful tool for drug
development.

DTIAM uses only molecular SMILES and protein sequences as
input, and it effectively improves the performance of downstream
prediction tasks by using massive amounts of label-free data for self-
supervised pre-training. However, the sensitivity of a protein target to
a specific compound is influenced bymany factors beyond the protein

Table 1 | Top-15 predicted potential drugs for EGFR

Rank KEGG ID Drug Name Pred_Score Validation

1 D01441 Imatinibmesylate 0.9962 BRENDA

2 D01977 Gefitinib 0.9961 DrugBank

3 D04023 Erlotinib
hydrochloride

0.9954 KEGG,BRENDA

4 D04024 Lapatinib 0.9941 DrugBank

5 D03218 Axitinib 0.9937 BRENDA

6 D04025 Mubritinib 0.9918 KEGG

7 D03252 Bosutinib 0.9914 KEGG

8 D03350 Canertinib
dihydrochloride

0.9851 BRENDA,DrugBank

9 D09883 Dacomitinib 0.9750 DrugBank

10 D10766 Osimertinib 0.9359 DrugBank

11 D08950 Neratinib 0.9308 DrugBank

12 D09724 Afatinib 0.9143 DrugBank

13 D07907 Erlotinib 0.9099 DrugBank

14 D10866 Brigatinib 0.8799 DrugBank

15 D12001 Mobocertinib 0.8106 DrugBank

Note: The bolded drugs are the approved EGFR inhibitors collected from DrugBank, the others
are the drugs in the Yamanishi_08’s dataset. The column Pred_Score indicates the predicted
probability of the potential drug interacting with EGFR.
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sequences information. These factors, including the protein dynamics,
proteinmutations, cellular andmembrane environment, etc., can alter
the compound’s binding efficiency and efficacy. In future work, we will
consider the dynamics of proteins in the model to improve the
robustness and interpretability of the model, and integrate protein
mutation information to improve the sensitivity of the model at key
mutation sites.

Methods
The workflow of DTIAM
DTIAM consists of three main components: (1) Self-supervised mole-
cular representation Learning for drug pre-training; (2) Unsupervised
protein representation Learning for target pre-training; (3) The
representation integration and downstream drug-target inference
tasks via automated machine learning (AutoML).

Self-supervised molecular representation learning. We adopt the
BERT-style69 method for drug pre-training and develop a molecular
representation learning model called BERMol, which stands for Bidir-
ectional Encoder Representations of Molecular. BERMol learns vector
representations ofmolecular substructures from large-scale unlabeled
data with the languagemodel and domain-relevant auxiliary tasks. The
proposed model is pre-trained on the GuacaMol dataset70 which con-
tains 1.6million compounds collected from theChEMBL71 database. To
apply the languagemodel tomolecular, we define the substructures of
molecules as “words” and molecules as “sentences”. We then use the
Morgan algorithm72 to extract all substructures of radius 1 for each
molecule. After generating the corpus of compounds, the
Transformer38 architecture is applied to learn the low-rank repre-
sentations for all substructures of molecules. Specifically, a molecule
can be abstracted as a sentence S = (x1,…, xn), where xi is the i-th word
and n is the sentence length, each word in the sentence is then
embedded into a d-dimensional vector space Z = ð z!1, . . . , z

!
nÞ, where

z!i 2 Rd is the d-dimensional embedding of the i-th word. In the
encoding step using the transformer architecture, we transform all
embeddings into three matrices (Q, K, V) representing queries, keys,
and values, respectively, and then compute the self-attention weights
between words as follows:

AttentionðQ,K,V Þ= softmaxðQKT=
ffiffiffi
d
p
ÞV ð1Þ

where
ffiffiffi
d
p

is the scaling factor used to smooth the gradient of the
softmax function, and the output of the attention mechanism is a
matrix representing the global relationship between different words.
To integrate information from different representation subspaces,
multi-headattention is performedwith different linear projections, the
final output matrix can be written as,

MultiHeadðQ,K ,V Þ=Concatðhead1, . . . , headkÞWO ð2Þ

headi =Attention QWQ
i ,KW

K
i ,VW

V
i

� �
ð3Þ

where WQ
i ,W

K
i ,W

V
i are the projection matrices of i-th head. The com-

plete encoder is a stack of multiple blocks combined with a multi-head
self-attention mechanism and a fully connected feed-forward network.

In order to learn flexible and high-quality molecular representa-
tions, we combine three self-supervised tasks for pre-training: (1)
Masked Language Modeling (MLM); (2) Molecular Descriptor Predic-
tion (MDP); (3) Molecular Functional Group Prediction (MFGP). The
MLM task was proposed by BERT, whereby themodel randomlymasks
a portion of the tokens and is trained to predict the true identity of the
masked tokens. In this task, the final representations of the masked
tokes are fed into a neural network model for multiclassification pre-
diction. The task is optimized using the cross-entropy loss as follows:

LossMLM = � 1
Nmask

X
i2mask

XV
j = 1

yij logðpijÞ ð4Þ

where Nmask is the number of the masked tokens, V is the size of the
vocabulary, i.e., the size of the set of substructures, yij is a one-hot vector
representing the true distribution over the vocabulary for the i-th
masked token, and pij is the predicted probability of the j-th token in the
vocabulary being the correct replacement for the i-thmasked word. In a
word, the training loss of the MLM task is the sum of the mean masked
language modeling likelihood. The goal of the MDP task is to predict a
set of real-valued descriptors of chemical characteristics, which is a
regression task. The molecular descriptor encodes many physicochem-
ical properties and can be easily calculated by RDKit73. In this task, the
final representation of the first token incorporates the global features of
the entiremolecule and is fed into a neural networkmodel to predict the
normalized set of descriptors. The task is optimized using the mean

Table 2 | Top-15 predicted potential drugs for CDK 4 and CDK 6

Rank KEGG ID Drug Name Pred_Score1 Pred_Score2 Validation

1 D01441 Imatinib mesylate 1.0000 1.0000 CTD

2 D10883 Ribociclib 0.9995 1.0000 DrugBank

3 D02880 Alvocidib hydrochloride 1.0000 1.0000 KEGG

4 D01840 Fasudil hydrochloride 0.9997 1.0000 –

5 D10688 Abemaciclib 0.9843 0.9999 DrugBank

6 D09868 Alvocidib 0.9998 0.9999 KEGG

7 D11130 Trilaciclib 0.9347 0.9995 DrugBank

8 D03350 Canertinib dihydrochloride 0.9735 0.9994 –

9 D04370 Granisetron 0.9920 0.9992 –

10 D03736 Doramapimod 0.9974 0.9986 –

11 D03218 Axitinib 0.9901 0.9986 –

12 D03115 Fasudil hydrochloride hydrate 0.9964 0.9973 –

13 D02217 Raloxifene hydrochloride 0.9971 0.9942 –

14 D10372 Palbociclib 0.5924 0.9832 DrugBank

15 D04025 Mubritinib 0.9755 0.9758 –

Note: The bolded drugs are the approved CDK 4 and CDK 6 inhibitors collected fromDrugBank, the others are the drugs in the Yamanishi_08’s dataset. The column of Pred_Score1 and Pred_Score2
indicate the predicted probabilities of potential drugs interacting with CDK 4 and CDK 6, respectively. The potential drugs are ranked according to Pred_Score2.

Article https://doi.org/10.1038/s41467-025-57828-0

Nature Communications |         (2025) 16:2548 11

www.nature.com/naturecommunications


squared error over all predicted values as follows:

LossMDP =
1

Ndesc

XNdesc

i = 1

ðyi � ŷiÞ2 ð5Þ

where Ndesc is the number of the molecular descriptors used in this
task, yi is the normalized value of the i-th descriptors, and ŷi is the
predicted value of the i-th descriptors. The MFGP task can be for-
mulated as a multi-label classification, which aims to predict the

functional groups within the input molecule. The functional group
contains rich domain knowledge of molecules and also can be easily
detected by RDKit. The final representation of the first token is also fed
into a neural network model for multi-label classification. This task is
optimized using the cross-entropy loss as follows:

LossMFGP =
1

Nfun

XNfun

i = 1

yi logðŷiÞ+ ð1� yiÞð1� logðŷiÞÞ
� � ð6Þ
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Fig. 6 | Docking results of the predicted interactions and performance com-
parison on different scales of labeled data. A–F The docked poses for the pre-
dicted interactions between six potential drugs (i.e., Palbociclib, Granisetron,
Axitinib, Canertinib dihydrochloride, Doramapimod, and Mubritinib, where

Palbociclib is the reference drug) and the CDK 6. G The performances of DTIAM
and baseline models trained on different scales of labeled data
(i.e., 20%, 40%, 60%, and 80%) in DTI, DTA, and MoA prediction tasks under the
warm start settings.
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where Nfun is the number of the molecular functional groups used in
this task, yi is the true label indicating whether the molecule contains
the i-th functional group, and ŷi is the predicted probability of the i-th
functional group. The final training loss of the self-supervised
molecular representation learning model is given by the weighted
sum of all individual task losses as follows:

Loss = LossMLM +αLossMDP +βLossMFGP ð7Þ

where α and β are two weighting factors. The training objective is to
minimize the loss and use backpropagation to optimize themodel and
update the representations.

Unsupervised protein representation learning. In the target protein
representation learning step, we employ ESM-274, a family of large-
scale protein language models at scales from 8 million parameters up
to 15 billion parameters, to extract the embeddings of target proteins.
The ESM-2 language models also use the BERT-style69 encoder with
transformer38 architecture to train the masked language modeling
objective, which aims to predict the original identity of randomly
masked amino acids in a protein sequence based on their context. The
UniRef75 protein sequence database is used for the training of ESM-2
models, including ~138 million UniRef90 sequences and ~65 million
unique sequences.

The pre-trained ESM-2 models can directly predict the residue-
residue contact map of the protein extracted from the Transformer
self-attention patterns. Specifically, given a model with L layers, K
heads, let cijbe a binary randomvariable, indicatingwhether the amino
acids i, j are in contact. Then the probability of contact between
positions i and j is defined as a logistic regression:

pðcij ;βÞ=
1

1 + exp �β0 �
PL

l = 1

PK
k = 1 βkla

kl
ij

� � ð8Þ

where akl
ij is attention score between amino acids i and j from the k-th

attention head in the l-th layer of the transformer.
And the ESM-2 language models are also enabled to generate

high-resolution protein three-dimensional structure predictions from
the protein sequence (ESMFold). In this work, we employ one of the
ESM-2 models with 33 layers and 650 million parameters and use its
hidden states of the last layer as the representations of target proteins.

Downstream drug-target prediction. The last step is to integrate the
drug and target representations and make various downstream pre-
dictions via AutoGluon76. AutoGluon is an AutoML framework for
structured data that automatically utilize state-of-the-art techniques
without the need for frequent manual intervention to achieve strong

predictive performance in many applications. Unlike prior AutoML
frameworks that primarily focus on the task of Combined Algorithm
Selection and Hyperparameter optimization (CASH) to find the best
model from a sea of possibilities, AutoGluon performs advanced data
processing and powerful multi-layer model ensembling to train highly
accuratemachine learningmodels. AutoGluon integrates various types
of models (such as neural networks, LightGBM boosted trees and
Random Forests), and ensembles these models based on novel com-
binations of multi-layer stacking and repeated k-fold bagging.

In multi-layer stacking, the first layer has multiple base models,
whose inputs are the original data features, and outputs are con-
catenated with data features and then fed into the next layer. And the
last stacking layer leverages ensemble selection to aggregate the pre-
dictions of the stacker model in a weighted fashion. In the repeated k-
fold bagging, the training data is randomly divided into k disjoint
chunks, each chunk is used as a test set to produce out-of-fold (OOF)
predictions and the remaining chunks are used as a training set to train
a model. To minor overfitting in OOF predictions, AutoGluon repeats
the k-fold bagging process on n different random partitions of the
training data, and all OOF predictions are averaged over the repeated
bags. More specifically, the training data (X, Y) is first randomly split

into k chunks fXj
i, Y

j
ig
k

j = 1 in the i-th repetition, then train a model on

(X�ji , Y�ji ) and make predictions Ŷ
j
m, i on OOF data Xj

i for each model
typem in the family of modelsM. The outputs of model typem in the
stacking layer l are computed by averaging all OOF predictions over
the repeated bags, that is,

bYm =
1
n

X
i

bY j

m, i

( )k

j = 1

ð9Þ

which are concatenated with the inputs and then fed into the next
stacking layer, that is,

X  concatenateðX , fŶmgm2MÞ ð10Þ

The final predictions are the aggregation of the stacker models’ pre-
dictions in a weighted manner.

The framework, in this work, is highly adaptable and can be uti-
lized for various drug-target prediction tasks, including DTI, DTA, and
MoA. This framework employs pre-trained drug and target repre-
sentation learning models that can be shared across different tasks,
and are then fine-tuned using distinct labeled datasets in a supervised
learning manner. The pre-training phase enables the models to learn
precise representations from a vast amount of unlabeled data, leading
to an exceptional performance on downstream tasks.

Benchmark datasets
In this study, six benchmark datasets for three prediction tasks (i.e.,
DTI, DTA, and MoA), namely Yamanishi_08, Hetionet, Davis, KIBA,
Activation, and Inhibition, were used to comprehensively evaluate the
performance and ability of our model.

The Yamanishi_08 dataset and Hetionet are DTI datasets, in which
the labels are binary interactions between drugs and targets. The
Yamanishi_08’s dataset is originally introduced by Yamanishi et al.16

and consists of four sub-datasets: G-Protein Coupled Receptors
(GPCR), Ion Channels (IC), Nuclear Receptors (NR), and Enzymes (E)
obtained from KEGG BRITE, BRENDA, SuperTarget, and DrugBank
databases65–67,77. In this study, we use the combined dataset of the four
sub-datasets constructed by Ye et al.9. In total, the dataset contains 791
drugs, 989 targets, and 5127 known DTIs (i.e., positive samples). The
Hetionet dataset is constructed by Himmelstein et al.78, which inte-
grated thebiomedical data from29public resources. It comprises 1384
drugs, 5763 targets, and 49,942 DTIs.

Table3 | The impactofmolecular representation learningpre-
training with different self-supervised task combinations

MLM MDP MFGP Warm
Start

Drug
Cold Start

Target
Cold Start

✓ × × 0.697 0.247 0.543

× ✓ × 0.586 0.203 0.509

× × ✓ 0.783 0.305 0.594

✓ ✓ × 0.82 0.418 0.673

✓ × ✓ 0.902 0.527 0.802

× ✓ ✓ 0.851 0.489 0.769

✓ ✓ ✓ 0.931 0.568 0.865

Note: MLM, MDP, and MFGP are three self-supervised tasks for molecular pre-training, repre-
senting Masked Language Modeling, Molecular Descriptor Prediction andMolecular Functional
Group Prediction, respectively. The ablation experiment is performed on the Yamanishi 08’s
dataset under three experimental settings, and the evaluation metric is AUPR. Bold numbers
represent the best performance, higher values are better.
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Davis and KIBA are two DTA datasets and are popular standard
datasets used in previous work for DTA prediction evaluation36,79. The
Davis dataset contains binding intensities of the kinase protein family
and the relevant inhibitors measured using dissociation constant (Kd)
values. It consists of 68 drugs and 442 targets and was constructed by
Davis et al.80. KIBA is a large-scale kinase inhibitor bioactivity dataset
constructed by Tang et al.81. It combined different measurement types
such as Ki, Kd, and IC50, and contains 2111 drugs and 229 targets.

Activationand Inhibition are twoMoAdatasets thatwereobtained
from the Therapeutic Target Database (TTD)82. We selected those
MOAs that are explicitly defined as activation (e.g., “activator”, “ago-
nist”) or inhibition (e.g., “inhibitor”, “antagonist”). In total, we obtained
1913 activation MoAs between 1426 drugs and 281 targets for the
Activation dataset, and 21,055 inhibition MoAs between 14,049 drugs
and 1088 targets for the Inhibition dataset.

Baselines
In this work, three types of baseline models are used in the perfor-
mance comparison for the DTI, DTA, and MoA prediction tasks,
including CPI_GNN49, TransformerCPI50, MPNN_CNN51, and KGE_NFM9

for DTI prediction, and DeepDTA36, MONN41, BACPI40, and GraphDTA34

for DTA prediction, and AI-DTI48 for MoA prediction. CPI_GNN,
TransformerCPI, MPNN_CNN, DeepDTA, BACPI, and GraphDTA as well
as DTIAM require only SMILES strings of compounds and primary
sequences of proteins as input. KGE_NFM requires the heterogeneous
information extracted from multi-omics data to build a knowledge
graph and used theMorgan fingerprints of drugs and CTD descriptors
of targets as additional information. MONN requires not only SMILES
strings and protein sequences, but also pairwise non-covalent inter-
actions between atoms of compounds and residues of proteins as
extra supervision information. In this work, since the non-covalent
interactions labels of Davis and KIBA datasets were unavailable, we did
not provide the extra supervision information for MONN (denoted as
MONNsingle in the original paper). AI-DTI needs SMILES strings of
compounds and genetically perturbed transcriptome data of target
genes as input. Note that, the MPNN_CNN and DeepDTA models were
constructed with DeepPurpose83.

Experimental settings
DTIAMand thesebaselinemethods are evaluatedunder threedifferent
settings of cross-validation, i.e., the warm start setting, the drug cold
start setting and the target cold start setting. To explain these settings,
we denote the training and test drug sets by Dtrain and Dtest, and
training and testdrug sets byTtrain andTtest, respectively, anduse (di, tj)
to represent the drug-target pair between the i-th drug and j-th target.

In thewarm start setting, for a drug-target pair (di, tj) from the test
set (di ∈ Dtest and tj ∈ Ttest), both di and tj are encountered in the
training set (di∈ Dtrain and tj ∈ Ttrain). That is, the test and training sets
share common drugs and targets. This scenario is suitable for identi-
fying potential interactions between known drugs and targets.

In the drug cold start setting, for a drug-target pair (di, tj) from the
test set, the drug di is unseen in the training phase (di ∈ Dtest,
di ∉ Dtrain), while the target tj is present in both training and test sets
(tj∈ Ttest, tj∈ Ttrain). This experimental setting is relevant if we need to
discover potential candidate targets for new drugs.

In the target cold start setting, for a drug-target pair (di, tj) from
the test set, we have seen the drug di (di ∈ Dtrain), but the target tj is
unseen in the training phase (tj ∉ Ttrain). This scenario is often applied
in virtual drug screening of new targets.

Note that the DTI prediction task is evaluated under 10-fold cross-
validation, and the DTA andMoA prediction tasks are evaluated under
5-fold cross-validation. In addition, for the KGE_NFM model, the train-
test split schemes of the drug/target cold start setting only focus on
the drugs/proteins existing in the knowledge graph but without any
known DTI relations.

Evaluation metrics
In this study, we use the average scores of the area under the receiver
operating characteristics curve (AUROC) and the area under the
precision-recall curve (AUPR) to evaluate the performance of each
method in the DTI and MoA prediction tasks. In this work, we set the
ratio between the positive and negative samples to 1:10 because this is
more in line with real-world scenarios. Here, we adopt AUPR as the
main evaluation metric, since it gives a more accurate evaluation of a
method’s performance in the unbalanced dataset. In the DTA predic-
tion task, the performance of eachmethod was evaluated by themean
squared error (MSE) and the Pearson correlation.

Inhibitor identification of TMEM16A
Cell culture and transfection. HEK293T cells were maintained in
Dulbecco’s modified eagle medium (DMEM) (Gibco), supplemented
with 10% fetal calf serum (FBS) (Gibco), and 1% penicillin-streptomycin
solution (100 U/ml penicillin and 100 μg/ml streptomycin) in a humi-
dified incubator at 37 °C with 5% CO2. The cells were transiently
transfected with a cDNA for mouse TMEM16A (mTMEM16A), using
Lipofectamine 3000 Transfection Reagent (Thermo Fisher Scientific)
with a ratio of 1:3. The mouse cDNA clone mTMEM16A (ANO1, Acces-
sionNumber: NM_178642.5) was a kind gift from Prof. YoungDuk Yang
(Seoul National University, Korea) and was subcloned into expression
vector pEGFPN1. Following transfection, the cells were maintained at
37 °C for 24 h before patch clamp recording. The UniProt ID of
TMEM16A is A0A0A0MQF2. LA795 cells were cultured using RPMI
1640 medium (Gibco) with 10% fetal bovine serum (FBS) (Gibco) and
1% penicillin-streptomycin solution at 37 °C and 5% CO2. LA795 cell is a
mouse lung adenocarcinoma cell line with high endogenous expres-
sion of TMEM16A.

Electrophysiology. Currents were recorded using an EPC10 amplifier
and Pulse software with a Digi LIH1600 interface (HEKA, Lambrecht,
Germany). The borosilicate glass patch pipettes with a pipette resis-
tance of 3–5 MΩ (Sutter Instruments, Novato, USA) were drawn by a
P-97 puller (Sutter Instruments, Novato, USA). The series resistance is
less than 20 MΩ, with a compensation rate ranging from 60 to 80% in
the whole-cell patch-clamp. The liquid junction potentials were not
corrected and its magnitude was about 10 mV. The glass pipette has
beenfire-polished. Thedatawas sampled at 10 kHz after being lowpass
filtered at 2.9 kHz. The stimulation procedures included 150 ms vol-
tage steps from a holding potential of 0mV and membrane voltage
(mV) clamping in 20 mV increments from −80 to +80 mV, with a −80
mV hold at room temperature (22–25 °C). The bath solution used to
record TMEM16A currents contained the following (in mM): NaCl 150
mM,MgCl2 ⋅ 6H2O 1 mM, HEPES 10 mM, glucose 10 mM, andmannitol
10 mM adjusted to pH 7.4 with NaOH. The pipette solution contained
the following (in mM): CsCl 130 mM, EGTA 10 mM, MgATP 1 mM,
MgCl2 ⋅ 6H2O 1 mM, and HEPES 10 mM adjusted to pH 7.3 with CsOH.
The 600 nM free Ca2+ bath solution was prepared by adding standard
CaCl2 solution (1 M, Sigma-Aldrich, St. Louis, MO, USA) to a final con-
centration of 8.69mM, and adjusted to pH 7.3with CsOH. The osmotic
pressure was determined using the OM815 osmometer. The osmotic
pressure of the pipette and the bath solutions was in the range of
290–300 mOsm/L and 300–310 mOsm/L, respectively. Outside-out
membrane patches are formed by gradually retreating the patch pip-
ette from the cell after a whole-cell recording has been established.
This has the effect of drawing out a strand of membrane that even-
tually breaks and often reseals such that its extracellular surface faces
into the recording chamber. The membrane attached to the pipette
follows the retreating pipette, and a giga-ohm seal should form again
when the membrane breaks and an outside-out patch is excised. The
single channel current of TMEM16A is recorded when the drug is
administered through the perfusion system. The bath and pipette
solutions of the outside-out patch-clampwere the same as those in the
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whole-cell patch-clamp recording. Different concentrations of dehy-
drocostus lactone were prepared in the bath solution and adminis-
tered through the perfusion system. Specifically, whole-cell patch
clamp and outside-out patch-clamp were employed to study the inhi-
bitory effect of dehydrocostus lactone on TMEM16A.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data of six datasets used to train and evaluate the model is
provided at https://github.com/CSUBioGroup/DTIAM/tree/main/data.
The MoA datasets were constructed from the Therapeutic Target
Database (https://db.idrblab.net/ttd/). The source data of GuacaMol
dataset used to pre-train ourmolecular representation learningmodel
is available at https://github.com/BenevolentAI/guacamol. The targets
mentioned in our cases, including ADRA1A, ADRA1B, ADRA1D,
CYP3A43, CYP3A5, CYP3A7, DRD1, HTR1B, HTR1D, HTR2A, TMEM16A,
EGFR, CDK4 and CDK6 are available in the Uniprot repository (https://
www.uniprot.org/) under their accession codes. The virtual screening
results are available in the Supplementary data. Source data are pro-
vided with this paper through Figshare https://doi.org/10.6084/m9.
figshare.27896790.

Code availability
The source data and codes of DTIAMare available onGitHub at https://
github.com/CSUBioGroup/DTIAM, which has also been deposited in
the Zenodo under accession code https://zenodo.org/records/
14847966. ESM-2 v1.0.3 (https://github.com/facebookresearch/esm)
is used for calculating target protein representations. AutoGluon
v0.5.2 (https://github.com/autogluon/autogluon) is used for con-
structing predictive models. Data are analyzed using numpy v1.21.2
(https://numpy.org/), pandas v1.3.5 (https://pandas.pydata.org/), and
Matplotlib v3.5.1 (https://matplotlib.org/). Structures are visualized by
Pymol v2.5.2 (https://www.pymol.org/).
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