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Intrinsic strain of defect sites steering
chlorination reaction for water purification

Yinqiao Zhang1,5, Mohan Chen1,5, Xuanyu He1, Erzhuo Zhao 2, Hao Liang1,
Jingge Shang1, Kai Liu 3, Jianqiu Chen 1 , Sijin Zuo 1 & Minghua Zhou4

Carbon nanotube (CNT)–based heterogeneous advanced oxidation processes
(AOPs) used for water purification have been exploited for several decades.
Many strategies for modifying CNTs have been utilized to improve their cat-
alytic performance in remediation processes. However, the strain fields of the
intrinsic defect sites on CNT steering AOPs (such as chlorination) have not yet
been reported. Here, we explored the strained defect sites for steering the
chlorination process for water purification. The strained defect sites with the
elongated sp2 hybridized C–C bonds boost electronic reactivity with the
chlorine molecules via the initial Yeager–type adsorption. As a result, the
reactive species in chlorination can be regulated on demand, such as the ratio
of high–selectivity ClO• ranging from 38.8% in conventional defect–based
systems to 87.5% in our strain–dominated process, which results in the gen-
eration of harmless intermediates and even deep mineralization during
2,4–DCP abatement. This work highlights the role that strain fields have on
controlling the extent of chlorination reactions.

Recently, widely focused strain engineering of carbon nanotube (CNT)
substrate has enabled the optimization of the physicochemical char-
acteristics of molecular catalysts even at the sub–nanoscale; an
example includes tuning the curvature of monodispersed metal
phthalocyanines1–3. The strain fields caused by the substrates can
continuously or discretely transform the geometric and electronic
layout and energy level of the metal–based overlayer to increase the
catalytic activity via so–called essential interface reconstructions4–6.
Interface reconstructions have been customarily attained using inter-
layer interactions, which involve van der Waals, π–π or donor‒accep-
tor conjugation between the substrate and molecular catalysts3,7. As
such, the interface reconstructions from the substrates and catalytic
center of the metal–based overlayer usually consume considerable
energy in the strain fields. In addition, the contributions of the strain
fields on the improvement in the reaction performances always appear
to be dependent on the reaction sites. Thus, limited reactivity
enhancement is usually observed8‒10; for example, the continuous
tuning the strain of the IrO6 octahedron in Sr2IrO4 slightly enhances

the oxygen evolution from 1.55 to 1.40 V overpotential at 10mA cm−2 9.
Therefore, the strain fields on CNTs need to be efficiently utilized
without useless energy consumption in the foregoing removable
interface reconstruction. To the best of our knowledge, this type of
design in CNT–based chemical remediation technologies for water
purification has not yet been reported.

Together with these considerations, herein, we report a simple
pyrolysis strategy for CNT modification to develop a set of catalysts
with stable defect sites and tunable strain fields. These catalysts have
beenused in themature chlorination reactions formore thana century
for water purification11,12, where the emerging contaminant of
2,4–dichlorophenol (2,4–DCP) as a model pollutant was abated. A
series of characterizations, such as electronmicroscopy, spectroscopy
techniques such as X-ray absorption fine structure (XAFS) spectro-
scopy, X–ray photoelectron spectroscopy (XPS) and electron para-
magnetic resonance (EPR) were used to identify the defect sites and
strain fields on the modified catalysts. Chlorination by CNTd–S2 with
the optimum strain for water purification was expected to overcome
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the limitations of the high cost of UV irradiation and poor anti‒dis-
turbance performance during the conventional homogenous UV/
chlorine process. Many experimental results and theoretical analyses
based on density functional theory (DFT) calculations clearly revealed
the important roles of the strain fields in the high–efficiency activation
of chlorine and the green abatement pathway of 2,4–DCP to pre-
liminarily respond to the aforementioned attainable expectations.
Lastly, possible practical applications of this technology were con-
firmed by evaluating its capacity for decontaminating water.

Results
Characterizations of the CNT series
A commercial multi–walled CNT (Supplementary Fig. 3) was used as a
catalyst precursor considering that it had facile defect sites and tun-
able strain fields13. The CNTs were first modified by a widely used
dicyandiamide pyrolysis strategy14,15; during this strategy, CNTd (with
defects), CNTd‒S1 (with defects and weak strain) and CNTd‒S2 (with
defects and strong strain) were respectively obtained under increasing
pyrolysis temperatures (see the Supplementary Methods for catalyst
synthesis). Characterizations of high–resolution TEM (HR–TEM,
Fig. 1a–c and Supplementary Fig. 4) and atomic force microscopy
(AFM, Supplementary Fig. 5) intuitively revealed that the above mod-
ification process worked effectively. In detail, the HR–TEM image of
CNTd–S2 (Supplementary Fig. 4c) illustrates the evident lattice dis-
tortion inCNTd–S2. Integratedpixel intensities of theCNTd–S2 (Fig. 1c)
from its lattice fringes (Fig. 1a) display a more distorted intensity
compared with the smooth intensity on the CNTd (Fig. 1b, c), qualita-
tively uncovering the above lattice distortion. In addition, compared to
CNTd, CNTd–S2 has a larger diameter (from 15.2 to 19.4 nm, Supple-
mentary Figs. 3, 5 and 6), higher porosity (Supplementary Fig. 7) and
greater expanded d–spacing (0.34 to 0.36 nm, Fig. 1c). These char-
acteristics of CNTd–S2 were likely attributed to feasible
thermo–expansion and gas evolution (such as NH3 and NO) during the
high temperature and dicyandiamide pyrolysis processes16. These
factors would destabilize the sp2 hybridized C–C bonds of CNTs, as
demonstrated by the characterizations (Supplementary Fig. 8) and
molecular dynamical simulations (Supplementary Fig. 9). The Raman
spectra of the catalysts display three main peaks: D band, G band and
2D peak (Fig. 1d). The D band of the catalysts that usually depicts the
site defects on the basal plane, displays a higher intensity for CNTd

than thatof CNT,whereas theDband is nearly stable for these catalysts
of CNTd, CNTd–S1 and CNTd–S2 (Supplementary Fig. 10). These results
indicate heavier defects on the CNTd than on the pristine CNT but a
similar degree of defects for CNTd, CNTd–S1 and CNTd–S2. Moreover,
high–resolution XPS spectra of C 1 s on 286.15 eV binding energy
assigned to the defects of catalysts (Fig. 1e) and EPR technique (Sup-
plementary Fig. 11) for analysis of the unpaired electrons trapped by
the defects of catalysts, both confirmed the above stable defects for
the CNTd series. Combining the theoretical analyses (Supplementary
Fig. 12) and the conclusions from the reported works17, dual vacancy
defects were potentially present in our catalysts.

Our catalysts’ G band in the Raman spectra is associated with the
planar stretching of sp2–hybridized C atoms (Fig. 1d)18. Interestingly,
we clearly observed a bathochromic shift in the G band from 1592 to
1560 cm–1 for CNT to CNTd–S2. The findings highlight the increased
tensile strain of the CNTd series because of the elongated sp2 hybri-
dized C–C bonds8,9. The 2D peak of the Raman spectra, which is often
related to the stretching vibration of the stacking sheet, increases in
intensity in the catalysts (Fig. 1d), indicating expanded planes19. Addi-
tionally, their X–ray diffraction (XRD) patterns (Supplementary Fig. 13)
demonstrate the shift of the (002) facet toward a smaller angle for the
CNTd series, further indicating expanded planes20. We accordingly
observed the enlarged average crystallite sizes (La) on the tubewalls of
the catalysts using the Debye–Scherrer equation (Fig. 1f)18. The corre-
sponding geometric phase analysis of CNTd–S2 (Fig. 1g) from its

HR–TEM results (Supplementary Fig. 4c) visually reveals the homo-
genous strain mapping on the wall21. Based on these observations, we
conclude that the CNTd series developed with a stable degree of
defects but increased tensile strain. Electron energy–loss spectroscopy
(EELS) analysis of the C K–edge in the catalysts of the CNTd series
obtained from an aberration–corrected high–angle annular dark field
scanning transmission electron microscopy (AC–HADDF–STEM) dis-
plays increasingly intensity on the sharp peaks at 284.5 eV (Fig. 1h and
Supplementary Fig. 14). These results indicate more excited electron
transitions from the C 1 s to the π* orbital on the sp2 hybridized C
atom20. Furthermore, the C K–edge near–edge XAFS (NEXAFS) spectra
of the CNTd series in Fig. 1i show the two evident peaks at 285.0 eV and
~292.7 eV, which are respectively assigned to the π* and σ* excitations
in the sp2 hybridized C–C bond. The peak of π* excitation increased
and correlated to the complex energy transition of C 1 s to π*22.
Importantly, intensive resonance at the σ* sites (~292.7 eV, Fig. 1i)
further highlights the incremental strain in our catalysts23. Notably,
these changes in the C 1 s chemical microenvironment potentially
indicate improved chemical reactivity of the sp2 hybridized C atom
after strain (Fig. 2a).

Chlorination process of the CNT series
We used CNTd series activating oxidants for the reactive species
evolution to evaluate the above chemical reactivity. The fastest
decay of the probe molecule via chlorine activation manifested that
the chlorination process of CNTd–S2 enabled to produce a sig-
nificant number of reactive species (Supplementary Fig. 15). Thus,
free chlorine utilization was further evaluated under activators of
the CNTd series. As expected, CNTd–S2 displayed the best utilization
of free chlorine (Fig. 2b and Supplementary Figs. 16, 17). Sluggish
rates and nearly no catalytic kinetics were observed in CNTd and
CNT‒based chlorination processes, respectively. An inveterate opi-
nion is that defects and/or doped heteroatoms in CNT usually serve
as active sites for oxidant activation24,25. The contribution of defects
during chlorination process was considered to be non‒negligible
owing to the enhanced performance fromCNT to CNTd. Considering
the absence of heteroatom doping (Supplementary Figs. 14,
18 and 19) and the similar degree of defects for the CNTd series
(Fig. 1d and Supplementary Figs. 8 and 11), we attributed the above
improved performance to the strain fields on our catalysts, such as
the highest strain of CNTd–S2.

The reactive species generated in the above chlorination reac-
tions were further examined using the spectroscopy characterization
and probe experiments. The DMPOX signal characterized by the EPR
technique using 5,5–dimethyl–1–pyrroline n–oxide (DMPO) as a
spin–trapping agent highlighted the increased exposures of the reac-
tive species under enhanced strain fields (Fig. 2c and Supplementary
Fig. 20)26. The results from the probe experiments indicated that •OH,
Cl• and ClO• were present throughout the chlorination process (Fig. 2d
and Supplementary Figs. 21 and 22). The unpaired electrons of the
three radicals delocalized on Cl or O atoms (Fig. 2e), and the radicals
enabled the electrophilic attack; for example, the ClO• electrophilicity
index of 2.15 eV was even higher than the well–known •OH of 1.98 eV
(Supplementary Table 1)27,28. Other reactive species, such as singlet
oxygen (1O2, Supplementary Fig. 23), were not detected in the present
system. Interestingly, as shown in Fig. 2d, the strained catalysts could
increase the exposure of reactive species by 13.2 times using the strain
fields, and this valuewasmuch greater than that of the defects (only 1.7
times). Moreover, the strained catalysts could tune the distribution of
reactive species, and the ratio of ClO• increased from 38.8% to 87.5%.
The vital product of ClO• in chlorination was desirable for water pur-
ification because of its outstanding advantages, such ashigh selectivity
and mild oxidation ability29. These deductions clarified the highly
important role of the strain fields on CNTd than the widely reported
defects alone during oxidant activation.
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Chemical structures of the CNTd series
We analyzed the electronic structures and energy band levels of the
catalysts to clarify the above diverse chlorination performances. The
decreased oxidation temperature from 627.1 to 587.0 °C for the
strained catalysts in their differential thermogravimetry (DTG) curves
(Fig. 3a and Supplementary Fig. 24) indicated that the strained cata-
lysts had the ability of more thermodynamic–feasible electron
transfer20. This ability was further confirmed by electrochemical
experiments based on Tafel polarization curves (Fig. 3b) and electro-
chemical impedance spectroscopy of the catalysts (Supplementary
Fig. 25). For example, themore negative corrosion potential and larger
corrosion current occurred in the Tafel polarization curves of the
strained catalysts indicate more beneficial electron transfer30. This
likely originated from the elongated sp2 hybridized C–C bond along
with the larger spin–lattice relaxation (as demonstrated in Fig. 1) due to
the metallic or semiconducting nature of CNT31. The electronic band

gap of the CNTd series was then determined via ultraviolet photo-
emission spectroscopy (UPS, Fig. 3c and Supplementary Fig. 26). The
highest occupied state (HOS),whichcorresponds to thehighest orbital
energy level of the occupied electron32, displayed an increased energy
level from 0.74 eV in CNTd to 1.20 eV in CNTd–S2. This result indicated
a downward p band center and increased electronic reactivity for the C
atom with greater spin–lattice relaxation caused by strain33. These
changes in the electronic state induced the total energy improvement
of the catalysts (Fig. 3d). Our experimental (Fig. 3c) and theoretical
(Fig. 3d and Supplementary Fig. 27) results demonstrated the
increased work function on the strained catalysts, and revealed the
improved ability of the electron transition from the Fermi energy to
the vacuum level. Additionally, the strained catalysts caused a shift
their energy band structure toward Fermi energy (Fig. 3e), indicating a
growing number of gap states near the Fermi energy34. Therefore, the
strain fields that modified the electronic state and improved the
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reactivity of C atoms to boost the electron transfer with free chlorine
were clearly demonstrated.

Interactive process between the CNT series and free chlorine
We subsequently investigated the evolution mechanism of the above
reactive species during chlorination of the CNTd series. The EPR test of
the catalysts showed a stimulated signal intensity on the strained
catalysts after they reacted with free chlorine (Fig. 4a and Supple-
mentary Fig. 28). These results indicated thatmore unpaired electrons
on the strained catalysts participated in the chlorination process35. A
set of electrochemical linear sweep voltammetry (LSV) tests for the
CNTd series in a rotating disk electrode apparatus under an inert gas
atmosphere revealed enhanced electron transfer and selectivity
(Supplementary Figs. 29 and 30, Fig. 4b) to quantify the above elec-
tronic conduct. For example, the electron transfer number calculated
by the modified Koutecky–Levich equation (Supplementary Methods
for Electrochemical experiments) was 5×10–3 μA rpm-1 for the CNTd–S2
and 2.9 × 10−3 μA−1 for the CNTd catalyst

36,37. DFT calculations based on
charge density difference and Bader charge analysis demonstrate an
evident increase of charge transfer (1.442|e | ) from the CNTd–6% strain
tohypochlorous acid (HOCl) (Fig. 4c)11. The free chlorine usedherewas
mainly HOCl based on the solution pH and its pKa=7.5 (Supplementary
Figs. 31 and 32)38. In the above electrochemical process, a negative
increase and a positive decrease in the current response occurred for
CNTd and CNTd–S2, respectively, when both reactedwith free chlorine
(Supplementary Figs. 29a, e, and 30a, e). Both the supplementary LVS
tests in a common three–electrode system (Fig. 4d and Supplementary
Fig. 33) and conductivity tests of catalysts with orwithout free chlorine
(Supplementary Fig. 34) supports these results. In contrast, almost no
current change in the positive potential zone was observed (Supple-
mentary Fig. 35). These observations emphasized the changeable
electronic reduction of free chlorine via strain fields.

A plausible explanation for the above findings is that the strained
catalysts likely tuned the chemisorption types of free chlorine. HOCl
adsorbed on the CNTd–0 strain and CNTd–6% strain displayed adsorp-
tion energies of −0.264 and −1.445 eV, respectively (Fig. 4e). This dif-
ference in the adsorption energy was likely attributed to the different
chemisorption types between the HOCl and CNTd series. Our DFT cal-
culations confirmed that the side–on Yeager–type adsorption between
HOCl and CNTd–6% strain was more thermodynamically favorable, in
which both Cl and O atom were simultaneously contact with two C
atoms at the strained defect sites (Supplementary Figs. 36–38, 42).
However, the end–on Pauling–type adsorption between the HOCl and
CNTd–0 strain was thermodynamically feasible because of the negative
adsorption energy (–0.264 eV), during which the Cl atom first contacted
oneC atomat a defect site (Supplementary Figs. 39–S42). In–situ Raman
spectroscopy was further used to detect bond stretching during the
above chlorination reactions (Supplementary Fig. 43). Two clear evolu-
tionary peaks at approximately 660cm–1 and 1015 cm−1 assigned to C–Cl
and C–O stretching, respectively, were observed in the CNTd–S2/free
chlorine system (Fig. 4f)39. In contrast, only one peak at approximately
675 cm−1 was observed in the CNTd/free chlorine system (Fig. 4g).
Notably, the slight redshift of the C–Cl stretching from 675 to 660cm–1

after being strained again indicated intensive electronic interactions
between free chlorine molecules and CNTd–S2

40. These findings clearly
showed the regulated adsorption types for free chlorine by the strained
catalysts. Importantly, this regulated chemisorption conducted via our
strain fields accelerated the possible rate–determining step in chlor-
ination because the adsorption of free chlorine onto catalysts was an
uphill endothermic process, according to their Gibbs free energy dia-
gram (Fig. 4h). The subsequent heterolytic cleavage of Cl–O in free
chlorine is a spontaneous exothermic process especially for CNTd–6%
strain, since the energy barrier showed a decrease from –0.912 eV for
CNTd–0 to –4.291 eV for CNTd–6% strain. These results elucidate the
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improved adsorption and enhanced cleavage of free chlorine by our
strained catalysts.

Water purification by chlorination of the CNTd series
Weapplied this chlorination towater purification in viewof the surging
demand for clear water41,42. 2,4–DCP, a widespread emerging con-
taminant in aqueous environments43, was treated in the chlorination
process. Its degradation rate after the optimized dosage of reactants
(Supplementary Figs. 44 and 45) was in good accordance with the free
chlorine utilization inducedby theCNTd series (Fig. 2b). For example, a
slight utilization of free chlorine (Fig. 2b) along with the slow abate-
ment of 2,4–DCP (Supplementary Fig. 45) occurred in the CNTd–based
system. In contrast, remarkable 2,4–DCP abatement was achieved in
the CNTd–S2/free chlorine system, i.e., the strain–dominated system
displayed a degradation rate of 2.7 times higher than that of the
defect–based chlorination process (Supplementary Fig. 45b). Notably,
the strain–dominated system significantly increased the mineraliza-
tion during the 2,4–DCP abatement (Fig. 5a and Supplementary
Figs. 46–48). The removal of total organic carbon (TOC) was 5.0–fold
greater in the CNTd–S2–based system than that in the CNTd–based
system during 2,4–DCP mineralization (Supplementary Fig. 47). Thus,
our system was superior to most reported works for 2,4–DCP miner-
alization (Supplementary Fig. 49). These results indicated that our
strained catalysts for highly efficient utilization of free chlorine resul-
ted in accelerated mineralization of 2,4–DCP by the C–C cleavage and
did not involve the C–C or C–O coupling, as recently reported28,44.

We further explored themechanism of 2,4–DCP abatement in the
present system. The results from the scavenger experiments (Sup-
plementary Figs. 50a–c) reconfirmed that ClO• was responsible for
2,4–DCP abatement in the strain–dominated system (Fig. 2d), and
other degradation pathways, such as 1O2 oxidation (Supplementary

Figs. 23 and 50d–f) or mutual activation degradation (Supplementary
Fig. 51)45, were not observed. Moreover, the electrochemical ampero-
metric i–T curves of CNTd–S2 showed a negative and
concentration–dependent current jump after the addition of free
chlorine. This phenomenon reasserted the reduction of free chlorine
by the foreign electron fromCNTd–S2 (see discussion in Fig. 4). Almost
no fluctuation for the current after 2,4–DCP addition demonstrated
that no electron transfer occurred between 2,4–DCP and the reactants.
It was possibly caused by the frontier molecular orbitals of reactants
and the lowest electrophilicity index for 2,4–DCP (1.18 eV, Supple-
mentaryTable 1)46. For instance, a higher lowest unoccupiedmolecular
orbital (LUMO) for 2,4–DCP than HOCl (Supplementary Fig. 52) indi-
cates difficulty acquiring electrons for the former when both co‒
existed. Moreover, the electrostatic potential (ESP) and Fukui index
mapping of 2,4–DCP further reveal the uneven charge distribution of
its surface chemical sites (Supplementary Fig. 53 and Table 2). These
results indicate that 2,4–DCP was vulnerable to the electrophilic,
nucleophilic and radical attacks of the reactive species. Closer obser-
vation of both the ESP and Fukui indices of the 2,4–DCP molecule
enables determination of the two C–Cl bonds and the single –OH
group as the electrophilic sites and the three C (1 C, 3 C or 6C) prob-
ably as the radical or the nucleophilic sites.

To verify the previously mentioned predictions, we detected
the intermediates of 2,4–DCP degradation via HPLC–MS. The
seven possible monomers (Supplementary Fig. 54) detected as
the mainproducts included the ortho– or para–chlorophenol (P4),
ortho– or para–chlorinated dihydroxybenzenes (P3), ortho– or
para–benzoquinone (P2) and chlorinated p–benzoquinone (P1).
After considering the foregoing theoretical analysis of the ESP and
Fukui indices, we reasoned three possible pathways of 2,4–DCP
degradation, as shown in Supplementary Fig. 55. Further evaluation
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by thermodynamics and kinetics demonstrated that pathway I was
more beneficial (Fig. 5c, Supplementary Figs. 56 and 57). In pathway
I, 2,4–DCP first underwent a single electron transfer by a hydrogen
abstract process on the –OH group to form the crucially excited
2,4–DCP• (an oxygen radical) due to the electrophilic attack of ClO•,
•OH and Cl• (Fig. 5c inset and Supplementary Fig. 58). The excited
2,4–DCP•, which was obtained from some elemental reactions
involving free–radical addition and hydrogen abstract, was then
desaturated to generate chlorinated p–benzoquinone (P1). P1 was
further dechlorinated to generate ortho– or para–benzoquinone
(P2) by the homolytic cleavage of 4C–12Cl by ClO• electrophilic
oxidation, considering that there is a negative change of Gibbs free

energy (ΔG) in the reaction of P1 oxidized to P2 by ClO• (Fig. 5c).
Nevertheless, it is thermodynamically unfavorable for P2 production
from P1 oxidation by •OH or Cl• due to the positive ΔG (Fig. 5c). The
minimum gap (9.15 eV) between the HOMO of P1 and the LUMO of
ClO• also indicated the favorable oxidation of P1 by the ClO• (Sup-
plementary Fig. 59). This process consumed OH–, decreasing the pH
of the solution (Supplementary Fig. 31b). For 2,4–DCP abatement in
the CNTd/free chlorine system, six possible intermediates, including
trichlorophenol and some dimers were detected (Supplementary
Fig. 60). Similarly, two possible pathways of 2,4–DCP degradation
were proposed (Supplementary Fig. 61). In the two pathways, the
excited 2,4–DCP• (a carbon radical) was formed via single electron
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transfer from the •OH attack at 6 C or 1 C because f0 on the two Cwas
highly positive and ΔG was negative (Supplementary Figs. 62 and 63
and Supplementary Table 2). Subsequently, the excited 2,4–DCP•

underwent either self–coupling to generate P1 dimers and then
generated a desaturation product of P2 via Cl• oxidation, or a Cl•

addition for the production of P3. We evaluated the toxicity using
the well‒known Ecological Structural Activity Relationships (ECO-
SAR) program35. A greener and simpler pathway toward 2,4–DCP
degradation existed in our strain–dominated chlorination process,
as outlined in Fig. 5a and c, and Supplementary Figs. 47 to 49, and 64.
Unfortunately, some chlorinated products with high toxicity, such
as trichlorophenol and dimers, were present in the traditional
defect–based chlorination systems for the 2,4–DCP abatement

(Supplementary Fig. 64). These contrasts in the degradation path-
way were mainly attributed to the high–concentration and selective
reactive species and the sensitized surface energy after the 2,4–DCP
addition in the strain–dominated system (Figs. 2d, 5d and Supple-
mentary Fig. 65).

The possible practical applications of our technology were eval-
uated by exploring the anti–disturbance ability with respect to water
matrix and long–term water remediation. On the one hand, the
experimental results showed that our system could not only resist the
disturbance of some common inorganic anions (such as Cl–, SO4

2– and
HCO3

–, Supplementary Figs. 66a–c) and typical natural organic matter
(humic acid, Supplementary Fig. 66d), but also bear broad pH range
(from pH 3.18 to 9.20, Supplementary Fig. 66e) and different practical
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water bodies (including drinking water, tap water and surface water,
Supplementary Fig. 66f andTable 3). These results highlight the crucial
role of the high–selectivity ClO• and the qualified anti–disturbance
ability to water matrix in future practical popularization. On the other
hand, a continuous–flow reactor was constructed for the long–term
treatment of contaminants. The core part of the reactor was the
CNTd–S2membrane which was prepared fromCNTd–S2 supported on
a mixed cellulose film (Fig. 5e inset and Supplementary Fig. 67a). This
reactor equipped with a CNTd–S2 membrane could effectively treat
organics including 2,4–DCP, 4–chlorophenol andmethylene blue, and
had a stable degradation rate of more than 99% for long–term
operation (10 hours, Fig. 5f and Supplementary Fig. 67b). The stable
performance likely resulted from the robust physicochemical struc-
ture of CNTd–S2 (Supplementary Fig. 68). Hence, these admirable
indices indicated that our strain–dominated chlorination technique
was suitable for practical applications.

Discussion
Here, we systematically illustrated the strained catalysts for the
steering of the chlorination process for water purification. Stable
defects and increased strain fields were produced on easily available
CNT using one–step pyrolysis process. The strained catalysts have
an increased energy level of HOS and an improved work function.
They display the enhanced electronic activity of the C atom and then
benefit the charge transport in the chlorination process. Owing to
these characteristics, the strained catalysts could tune the adsorp-
tion types of free chlorine (a side–on Yeager–type adsorption) by
increasing the adsorption energy, thus boosting the heterolytic
cleavage of Cl–O. As a result, the strain–dominated chlorination
process could result in higher exposure of reactive species and a
tunable distribution of reactive species. Thus, 2,4–DCP abatement
by our systemdisplayed in faster kinetics, deepermineralization and
a greener pathway. Finally, our technology was capable of prevent-
ing disturbances in water matrix and long–term water remediation.
Therefore, this technology nears the practice applications in water
purification.

Despite these encouraging lab–scale results, such as the ultralow
dosage of chlorine (4.5mg L−1) and the greener pathway of 2,4–DCP
abatement, concerns regarding the disinfection by–products (DBPs)
during the chlorinationprocess still remain an issue for future practical
applications47. Further identifying the site–specific reactivity of the
strain fields (e.g., imperfection types on tubes) for more effective
chlorination and controllable evolution of reactive species is a pro-
mising alternative for mitigating DBP generation prior to large–scale
real applications6.

Methods
Chemicals, characterizations such as Cl– concentration (Supplemen-
tary Fig. 1), catalysts’ synthesis, chlorination process involving free
chlorine measurement (Supplementary Fig. 2), electrochemical test,
DFT calculation method and the Supplementary Figs. and tables, etc.,
were recorded in the file of Supplementary Information.

Data availability
The data supporting the findings of the study are included in the main
text and supplementary information files. Raw data can be obtained
from the corresponding author upon request. Source data are pro-
vided with this paper.
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