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Driving comfort is a crucial consideration in the automotive industry. In the
realm of autonomous driving, comfort has always been a factor that requires
continuous improvement. A common approach to improving driving comfort
is through the optimization of local path planning. Nevertheless, it is
imperative to recognize that macroscopic factors, including traffic flow and
road conditions, wield a substantial influence on comfort. For instance, com-
plex traffic scenarios increase the possibility of emergency braking, thereby
affecting comfort. Consequently, investigating the intricate interplay between
comfort and global path planning becomes essential. This paper introduces a
methodology and framework for predicting driving comfort by leveraging
road information. The study established a road information-driving comfort
dataset and devised prediction models using multi-head attention mechanism.
The ensuing discussion elucidates the practical application of the model in
path planning through examples and tests. Following the path optimized by
the model, the vehicles exhibited a reduction in jerk. This research predicted
driving comfort based on road information and integrated it with global path
planning, which holds significant implications for autonomous driving navi-
gation systems and provides a valuable reference for related research.

Autonomous driving vehicles have emerged as a focal point in the
realm of transportation research, garnering attention for their pivotal
role in accident prevention, emissions reduction, and mitigating
traffic congestion’. A critical element integral to autonomous driving
is its motion planner, tasked with orchestrating the vehicle’s trajec-
tory and path, enabling it to navigate the road judiciously®. The pro-
cess of path planning can be dichotomized into global path planning
and local path planning®*. For instance, when utilizing a map for
navigation, the recommended route is derived from global path
planning. Key considerations in global path planning encompass
factors such as path length, time cost, and other pertinent data,
providing drivers with the ability to select the optimal path to
traverse.

In recent years, the emphasis on the safety and comfort of
autonomous driving has become prominent, leading to the integration
of these crucial dimensions into related studies on path planning and
trajectory tracking. Safety, recognized as a fundamental prerequisite
for autonomous driving, has garnered substantial attention, prompt-
ing numerous studies in this domain®. On the other hand, the comfort
of autonomous driving, being an advanced requirement, also merits
attention®’. Several researchers have investigated the comfort of
autonomous driving in local path planning and vehicle control®*™. This
includes integrating acceleration or jerk values as constraints during
control to enhance lane-change and braking smoothness, which
abrupt changes in acceleration are prone to occur during lane changes
and braking, that can affect comfort. Sara Luciani et al." conducted a
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comfort assessment utilizing metrics such as equivalent acceleration
and motion sickness dose value (MSDV). The design of model pre-
dictive control (MPC) weight parameters was guided by assumed
values of these metrics, aiming to enhance passenger comfort in tra-
jectory tracking. In a study by ref. 16, segmented quadratic Bézier
curves, grounded in safe lane-change distances, were employed in
local path planning to optimize the ride comfort of autonomous
vehicles. Meixin Zhu et al.” introduced a speed control model for
following vehicles based on reinforcement learning. This model opti-
mized the speed of the following vehicles, enhancing the X-direction
ride comfort to some extent. It is noteworthy, however, that its pri-
mary emphasis was on safety rather than comfort. Even with sub-
stantial advancements in local path planning to enhance the comfort
of steering and other behaviors, autonomous driving vehicles still lag
behind traditional driving modes in terms of comfort”. This phe-
nomenon arises from the inherent contradiction between safety and
comfort in autonomous driving vehicles®, coupled with their decision-
making and judgment capabilities that remain inferior to those of
human drivers. In this context, focusing solely on local path planning
falls short of achieving a sufficient comfort level for autonomous
vehicles. Hence, global path planning also holds significant impor-
tance. Factors such as the number of traffic lights, intersections,
required turns, and even the weather over extended distances can
significantly impact the comfort of autonomous driving.

However, comfort considerations are often overlooked in global
path planning and selection. To incorporate the comfort factor into
global path planning, obtaining relevant information in advance is
essential. The fundamental basis for global path planning relies on road
information, including the length of a specific path and the degree of
road congestion, both of which are easily accessible. Unlike these factors,
comfort is difficult to calculate or predict based on intuitive road infor-
mation. Current researches predominantly center on forecasting human
comfort by other information. For instance, ref. 17 delved into the fea-
sibility of predicting passenger seat comfort and discomfort by analyzing
human, environmental, and seat characteristics. Their research empha-
sized quantifying these characteristics to serve as input for predictive
models. The findings underscored a correlation between anthropo-
metric variables and interface pressure variables, with body posture
further influencing this relationship. The study is more of a review study,
with specific models and simulations being more abbreviated. Endeavor,
S. Lerspalungsanti et al.”® devised an artificial neural network-driven
method for predicting ride comfort. This method employed design
parameters associated with driveline comfort, such as the friction coef-
ficient gradient of the clutch friction pair and the inertial mass and
damping of the dual mass flywheel, as inputs for subjective comfort
prediction. The article amalgamated an objective measurable dataset,
representing the input data, with a subjective evaluation set, represent-
ing the target data, to formulate the model. The resultant output was a
10-digit quantity scale denoting NVH (Noise, Vibration, and Harshness).
While this method demonstrated efficacy in predicting comfort, it did
not incorporate road information into its predictive framework.

Motion sickness is the manifestation of comfort, and with the dri-
ver of an autonomous vehicle relieved of the driving task, they transi-
tion into a passive role akin to a regular passenger. Consequently, the
susceptibility to developing motion sickness (MS) symptoms is notably
heightened. Numerous current studies delve into the prediction of
motion sickness, with a predominant focus on the swift prediction of
motion sickness (MS) from the driver’s biosignals, given the substantial
variation in MS onset observed among individuals. While the majority of
this research' has concentrated on virtual reality or simulator envir-
onments, ref. 20 introduced a method for predicting MS in a realistic
driving setting. This method utilized a practical and easy-to-wear dry
EEG device, relying solely on EEG signals for MS prediction. The
approach can adapt the planning control of an autonomous vehicle to
mitigate motion sickness through an assisted driving system. However,

it is very difficult to apply it to global path planning. Although some
researchers currently enhanced driving comfort by evaluating motion
sickness or predicting motion sickness”** based on partial human body
movements?, and adjusted driving modes accordingly, this approach
lacks integration of real road information and did not focus on pre-
dicting future variations in driving comfort. Therefore, it is challenging
to consider this type of comfort prediction with global path planning,
which is based on road information. Hence, it is necessary to explore a
method for calculating or predicting comfort based on road informa-
tion, Autonomous driving is enabling this possibility.

In contrast to autonomous driving, the perception of driving
comfort in conventional driving is intricately linked to individual
factors®. For the same person driving a car at different times, even
with consistent driving habits, the level of fatigue and mood can sig-
nificantly impact their driving comfort. For example, due to distrac-
tions, a driver may fail to notice the vehicle ahead, leading to sudden
braking. Similarly, because of a bad mood or an argument with pas-
sengers, the driver might suddenly accelerate by pressing the gas
pedal harder. This makes driving comfort difficult to predict. There-
fore, the driving comfort in traditional driving cannot be solely
obtained from road information, nor can it be considered exclusively
in the route selection process. However, in the realm of autonomous
driving, the driving habits and patterns of autonomous vehicles are
explicitly defined by code. Autonomous driving, on the other hand,
does not involve such subjective factors; it does not experience the
same variability as humans do, thereby minimizing the impact of
subjective factors. With a predetermined autonomous driving algo-
rithm, it becomes feasible to predict macroscopic driving comfort,
including parameters like jerk or acceleration, based on road infor-
mation. Nevertheless, if some personal data sampling is added, it may
be able to predict the comfort of traditional driving mode, but the
effect may have a certain gap with automatic driving, the paper has
also carried out relevant tests as shown in the result section.

In this work, a prediction method that forecasts the macroscopic
comfort indicators of the vehicle based on road information is sys-
tematically presented, enabling the selection of a relatively optimal
path according to the result. The related process is shown in Fig. 1. This
research holds significant importance in enhancing the comfort of
autonomous driving, promising a notably improved riding experience
for both passengers and drivers. Furthermore, it possesses high
commercial potential, with the ability to positively impact major
navigation map software in adapting to the era of autonomous driving.
Moreover, it introduces a novel perspective to the domain of global
path planning for autonomous driving. The primary contributions of
this paper are outlined as follows:

1. The problem of driving comfort prediction is systematically pro-
posed. Develops autonomous driving comfort prediction (ADCP)
model based on multi-head attention and XGBoost. This model is
capable of driving comfort prediction from road information.

2. Gives a method of constructing the road information-driving
comfort dataset by real vehicle collection and simulation. The
dataset describes the relationship between road information and
comfort in the context of an autonomous driving solution.

3. A scientific evaluation index of driving comfort is proposed by
combining human experiment and actual measurement.

4. Real vehicle tests were undertaken to validate and ascertain the
significance of the model. The results show that the path planning
scheme using the ADCP model can effectively reduce the jerk
value and improve human comfort.

Results

Road information-driving comfort dataset

After simulation and real vehicle data collection, we selected four
typical environmental scenarios and four road scenarios for con-
structing the dataset as shown in Fig. 2.
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Fig. 1| Frame diagram of driving comfort prediction. Through simulation and real vehicle data collection, various kinds of information were obtained, which were used

for training the ADCP model for global path planning.

Fig. 2 | Dataset scenarios of real vehicle collection and simulation. a Urban fast roads. b Urban roads. ¢ Highways. d Rural ways. e Simulated urban roads. f Intersections.

g Traffic circles. h Straight roads.

Four environmental scenarios: urban fast roads, urban roads,
highways, and rural roads were covered in the dataset. The urban
fast roads are shown in Fig. 2a, representing a fast road in the city
without traffic lights, but always with heavy traffic flow and
numerous entries and exits. Conversely, the rural roads, are char-
acterized by narrow lanes and generally poor road conditions.
These scenarios essentially cover different driving conditions and
driving routes. The traffic flow information was obtained in real-
time through the API of commercial mapping software, and the

information includes real-time road traffic congestion levels,
semantic descriptions of congestion on specific road sections,
average travel speeds, congestion distances, and more. Relevant
scenarios are shown in Fig. 2a-d.

Four micro-view road scenarios, straight roads, intersections,
traffic circles, and micro-urban roads, were simulated. Vehicle data was
collected at intervals of 0.016 ms by configuring various traffic flow
scenarios, and the dataset was constructed accordingly. The simula-
tion map and environment are depicted in Fig. 2e-h.
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Table 1| Dataset structure example

Features Path Entrance Entrance Turns Traffic Vehicle Left Turning  Straight Lanes Speed Vehicle  Weather
distance(m) (same side) (opposite) lights density turns degree intersection Llimit density
1300 1 o 2 2 10 2 150 2 3 60 30 0.2
Labels Jerk x Jerk 'y Acceleration x Acceleration y
0.35151313991958205 0.1841569799715372 0.3501355696717623 0.233740259764202
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Fig. 3 | Uncomfortable driving phenomenon. Six typical uncomfortable behaviors that may lead to rapid increase or decrease of jerk and acceleration are presented:
front car changes lanes, traffic jam, turning at the intersection, giving way to pedestrians, stop for the red light, emergency braking and starting.

Table 2 | MAE result

Model Real vehicle dataset Simulation dataset

Jerk Acc Jerk Acc
BP 0.1191 0.1345 0.0925 0.1339
XGBoost 0.0767 0.1060 0.0503 0.0664
Attention 0.0908 0.1297 0.0619 0.0696

In total, 274 sets of real vehicle data and 252 sets of simula-
tion data are included in the dataset. Initial data is illustrated in
Supplementary Table 1. The key information of the dataset is
shown in Table 1. The preprocessing methods are presented in
the Methods section.

The collected data has a strong correlation with the character-
ization data of comfort (jerk and acceleration), as shown in Fig. 3.

The model input takes the number of traffic lights and the number
of intersections as examples. When the vehicle encounters more traffic
lights on the path, the driver must frequently shift down and accel-
erate. This will cause significant changes in the acceleration of the
vehicle multiple times. Every stop and restart means a change from
zero acceleration to positive acceleration, and then to zero accelera-
tion again. This frequent change has led to an essential correlation
between the number of traffic lights, acceleration, and jerk. At every
crossroad, there may have the phenomenon of vehicles meeting, and
the amount of entry on the road or traffic flows merging will promi-
nently increase. Therefore, drivers need to slow down to observe the

traffic situation. Deceleration and subsequent acceleration can cause
changes in jerk and speed. So more crossroads mean that drivers need
to perform acceleration and deceleration operations more continually,
which directly affects the frequent changes in acceleration and jerk,
bringing an uncomfortable feeling.

Prediction

The model was trained and tested using both the real vehicle dataset
and the simulation dataset, yielding comparable results. The models
were compared and evaluated using MAE (mean absolute error), as
shown in Table 2 below.

The effect of the model trained with the real vehicle collected
dataset is shown in Fig. 4.

Figure 4 illustrates a comparison between the true values and the
predicted values for 42 test set data points. It can be observed that the
real vehicle collected data exhibits some randomness, but most of the
predicted values are concentrated within a small range near the true
values, which effectively reflects the trend of comfort. Among these,
both the Attention and XGBoost models have lower MAE values than the
BP model. XGBoost performs better in regions close to the average value,
but its prediction performance significantly decreases under relatively
extreme conditions, with predicted values concentrated within a smaller
range. In contrast, the Attention model performs relatively better in this
regard, being able to predict some extreme cases, and to some extent,
responding to the randomness of the actual driving environment. The
description of the error and the values of lateral jerk is provided in
Supplementary Note 1.
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The model performance trained on the simulation dataset is
shown in Fig. 5:

Overall regression results demonstrate that the regression for jerk
and acceleration by Attention and XGBoost appears relatively sound,
which proves the effectiveness of both models in predicting driving
comfort. The overall prediction accuracy of the simulation dataset is
better than that of the real vehicle dataset. This is because both the
training and test sets of the simulation dataset are generated through
simulation, which, to some extent, represents a more ideal traffic flow.
However, driving comfort has a high degree of randomness, as unex-
pected phenomena on the road—such as accidents, drunk driving
behavior from other vehicles, or sudden braking caused by distrac-
tions—cannot be accurately simulated in the simulation. As a result, the
error in the simulation model is relatively smaller, as it excludes the
interference of many random behaviors.

Predicting the absolute value of driving comfort is quite challen-
ging. This situation is similar to some related problems, such as pre-
dicting the trajectory of adjacent vehicles, where there is high
uncertainty due to the inability to predict the behavior of other vehi-
cles. However, judging the relative comfort of choosing driving paths
based on predicted values, or predicting the range of driving comfort
for future paths and using this information for global path planning,
can help select a more comfortable path to some extent. This has
significant implications for improving driving comfort.

We conducted a path selection comparison using random inputs,
comparing the model trained on the simulation dataset with the one
trained on the real vehicle dataset. Most of the results were similar.
When selecting different paths, if the difference in predicted values
between two routes is greater than 20%, 94% of the model choices are
the same. When the predicted value difference is less than 20%, 61% of
the choices are the same. This essentially indicates that the actual
driving comfort of the two selected routes at this time is quite similar,
and at this point, randomness becomes a key factor in determining the
driving comfort of these two segments. For example, a single-lane
change could lead to significantly more discomfort.

Path selection

The relationship between comfort and both global and local path
planning is mentioned in the introduction section. Braking, lane
changing, and steering affect driving comfort, as reflected in the
abrupt changes in lateral and longitudinal acceleration, as shown in
Fig. 3. Global path planning can, to some extent, reduce the prob-
ability of braking, lane changing, and steering, as illustrated in Fig. 6.
Reasonable path planning can reduce the frequency of steering and
lane changes, as well as avoid roads that may lead to discomfort,
thereby reducing the frequency of braking and acceleration. This
requires integrating comfort prediction to achieve. Regarding path
planning and selection, this paper presents cases and results as
follows:

This work selects a real scenario through commercial mapping
software and performs path selection considering comfort based on
the models, as shown in Supplementary Fig. 1.

Feeding the data of three paths into the model can get the results,
as shown in Supplementary Table 2.

The path A (Predicted Jerk=0.44) has the lowest traffic flow
density, resulting in fewer instances of merging in front of vehicles or
similar scenarios, leading to a lower number of emergency brakes and,
consequently, the lowest jerk value. The predicted results align with
the actual situation, choosing path A is deemed optimal.

The specific decision on which path to take must be considered in
conjunction with the particular situation, and further investigation into
the impact of jerk and acc values on the human body will be a focal
point of future research. While the prediction model aligns with the
true value, the disparity in comfort is not particularly pronounced over
short distances when comparing similar path data for different routes.

However, over longer distances, the difference becomes more evident.
For instance, in the comparison of a highway and an ordinary road with
the same destination and departure, the predicted jerk of the highway
is much lower than the ordinary road.

Real car test
The change of jerk value before and after loading the model into
Global Path Planning is shown in Fig. 7a and Supplementary Fig. 2.

Following data processing, when the autonomous vehicles utilize
the path optimized by the model, the average jerk is reduced by ~15% in
the X-direction and around 9% in the Y direction. This indicates a
notable improvement in the average comfort level facilitated by the
model. Notably, areas with heavy traffic demonstrated relatively poor
performance. Subsequent research endeavors will prioritize enhan-
cing the model’s generalizability.

From the results of the human experiment scoring, it can be clearly
seen that after deploying the ADCP model, the scores of the relevant
testers have improved to a certain extent. Using the comfort evaluation
method proposed in this article, the comprehensive evaluation results
also made some progress, with a total score increase of about 13%.

Through testing in manual driving mode, we found that the ADCP
maodel can also be applied to traditional driving, the human experiment
result is shown in Fig. 7d. But there are certain differences for different
people, which is due to driving habits. If the driving habits of individual
drivers differ greatly from the autonomous driving strategy used in
training, the path planning strategy based on the ADCP model will fail to
select the most comfortable path that matches it. In the current path
planning of commercial map apps, there are similar situations. For
example, if a “shortest time” path it plans requires passing through a
long highway section, and some drivers are accustomed to driving at the
standard speed on the highway section (as novices or for safety reasons).
Therefore, the “shortest time” path may not be the fastest. In summary,
the ADCP model has shown good performance when trained using its
own driving data for a specific autonomous driving solution. However, if
used in other autonomous driving solutions or manual driving, it also
has the same effect, but it is not perfectly suitable for all.

Discussion

This paper systematically proposes the problem of driving comfort
prediction. The study was initiated by constructing a framework for
predicting driving comfort based on road information. A compre-
hensive dataset consisting of both real vehicle collection and simula-
tion data, has been provided to fulfill the requirements for prediction
and training. This paper summarizes the relevant evaluation indexes of
driving comfort, and puts forward the evaluation method of comfort.
Moreover, a comfort prediction model based on multi-head attention
is provided. The results demonstrate that the model’s efficacy meets
the fundamental prediction requirements. Following this, the paper
elucidates the application of the model in path selection and planning.
The validity and reasonableness of the theory and method were ver-
ified through real vehicle tests, the autonomous vehicles exhibited an
approximate 15% reduction in the mean longitudinal jerk and a 9%
reduction in the mean lateral jerk, and with a total score increase of
about 13%. Given the pioneering nature of this study, the richness of its
content has led to a selective focus, with certain simpler and funda-
mental elements not elaborated upon in detail due to space con-
straints. This model holds significant implications for path planning
and autonomous driving comfort, achieving the integration of
autonomous driving comfort and global path planning.

This paper focuses on the problem of comfort prediction, while
providing a well-performing model and baseline for this issue. This
paper has not conducted a more detailed study of the variable weight
values in path planning or used more advanced optimization algo-
rithms for iterating the weight values in this paper. Future research will
focus on the weight optimization of comfort path planning under
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different driving scenarios, and will also be directed towards enhan-
cing the overall effectiveness of the model and lowering the value of
jerk through the methods, with the hope of advancing progress in the
relevant field.

Methods

Dataset construction

Integrating global path planning with comfort considerations, and pre-
dicting comfort based on road information has emerged as a promising
approach. The development of road information-comfort prediction
datasets holds paramount importance in this regard. Presently, datasets
pertaining to road information can be categorized into three main types.
Firstly, there are macroscopic traffic flow information datasets coupled
with road databases®. Secondly, microscopic vehicle datasets are
available. Lastly, there are vehicle-road cooperative datasets that
amalgamate information from both vehicles and roads. Road databases
primarily encompass road network data. Common examples of such
databases include Nature Earth, VMap0¥ %, and the GRIP database®. On
the other hand, traffic flow information datasets provide insights into the

traffic conditions across specific sections or regions. For instance, the
Xi'an traffic dataset from the DiDi platform offers a comprehensive view
of historical and real-time road conditions, encompassing parameters
such as traffic density, road dimensions, lane count, traffic direction,
speed limits, functional classification, and road hierarchy. Notably, these
datasets do not capture the individual travel trajectories of vehicles.
Micro-vehicle datasets, meanwhile, capture the driving trajectories of
numerous individual vehicles. Examples include the Beijing T-driver
dataset and the New York TLC dataset. Both traffic flow datasets and
individual vehicle datasets present limitations when applied in scenarios
that necessitate the integration of traffic flow with individual vehicles.
This limitation is somewhat mitigated by vehicle-road cooperative
datasets, such as the NGSIM dataset”, developed under the auspices of
the Next Generation Simulation project. In this initiative, researchers
post-processed raw video data to derive trajectory information for each
vehicle within the traffic flow, thereby combining traffic flow data with
individual vehicle data. However, it’s essential to clarify that this dataset
contains information from regular vehicles rather than autonomous
vehicles. Consequently, it cannot be utilized in the context of this study.
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Hence, this paper introduces a novel method for constructing datasets
for the ADCP model.

The dataset provides diverse data, including data collected from
actual measurements, as well as data obtained through simulations.
Both sources contribute extensive driving comfort data across multi-
ple scenarios.

The real vehicle data was collected using Dewesoft’s SIRIUS XHS
and DS-IMU systems, the relevant acquisition vehicles and equipment
are shown in Fig. 8.

In the simulations, traffic flow density was configured across three
dimensions: vehicles, pedestrians, and bicycles. Additionally, three
distinct vehicle types with varying volumes can be specified. Based on
actual road conditions, vehicle types were quantified with a ratio of

7:2:1 for vehicles, buses, and engineering vehicles, respectively.
Throughout the simulation, lighting remained constant, while weather
and other variables were manipulated separately to conduct simula-
tions using a specified autonomous driving algorithm. The study also
considered road roughness as an input; However, due to challenges in
obtaining precise road roughness values for the future path in real
environments, it was approximated using road grade. In this paper’s
simulation, the pavement roughness for short-distance urban roads
was assumed to be relatively constant.

The speed information obtained from the 51sim-one simulation
was in the global coordinate system and needs to be converted.

The above data were processed according to the theory of vehicle
kinematics and dynamics, the global coordinate system is transformed
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into the vehicle coordinate system as follows:
V.=Xcosy+Ysing O
V,=Ycosy— Xsing

Where V, 'indicat_es the x-directional velocity. V,, denotes y-directional
velocity, X and Y denote the derivative of X and Y, ¢ denotes the
heading angle.
Calculate the vehicle acceleration based on vehicle dynamics:
a,=V,—
{ X .X Vy("z (2)
a,=V,+V,w,
Where a, indicates x-directional acceleration,a, is y-directional accel-
eration, V, andV, are derivative of V, and V,, w, indicates yaw rate.
At the same time, part of the real-time traffic information obtained
by commercial map software is calculated as a road traffic congestion
index to unify with the dimension of simulation data:

S ESAL

p=25=0

—-02V+C, 3

In the equation, P represents the traffic congestion index, ranging
from O to 100, consistent with the simulation dataset. L is the path
length, and S is the average congestion level of the segment, which
includes four levels: 1-4. V is the average traffic speed of the segment,
measured in kilometers per hour. C, represents the congestion trend,
where if the congestion has eased compared to 10 min ago, C; is
defined as -5; if it has worsened, C, is defined as +5; and if it remains
the same, C, is defined as O.

The autonomous driving system adopts relatively traditional and
universal methods for acceleration and jerk control strategies. Under
the condition of meeting safety requirements, the system includes
functions for comfortable braking and acceleration, where jerk and
acceleration (or deceleration) thresholds are set. For example, the jerk
threshold is set to 1m/s=3. However, in emergency situations, the
comfort braking function will not be activated, and the vehicle will
directly brake using the ideal deceleration.

Driving comfort evaluation

In a moving vehicle, we may experience sudden impacts, which are
actually the result of changes in vehicle speed or acceleration. Frequent
impacts can lead to discomfort and even endanger the safety of drivers
and passengers. Therefore, it is necessary to control these impacts in an
acceptable way. However, which kind of impact is acceptable and how to
effectively quantify it are issues that need to be considered. At present,
there is no clear method for measuring driving comfort. Some
researchers use the car ride comfort index (CI) to represent riding
comfort, but this is different from driving comfort. Riding comfort does
not entirely depend on driving, but largely on the design of seats, sus-
pension, and other factors. More researchers*>* are using jerk (a deri-
vative of acceleration) to evaluate driving comfort. SAE summarized
early research and demonstrated two methods for quantifying jerk®,
namely (a) peak jerk and (b) root mean square of jerk. For method (a), Ge
A® believes that the upper limit of jerk that humans can tolerate is 10 m/
s3, and exceeding this value will not cause discomfort. However, the
frequency is related to human physiological sensation, so using only the
peak jerk does not seem comprehensive. Shouren Z*° believes that at
frequencies below 3 Hz, the acceptable upper limit for jerk is 2.6 g/s,
which is 25.5 m/s3. There are also some doubts about the method (b), as
the guidelines provided by SAE suggest that using the root mean square
of a jerk as a measure of comfort may overlook the peak jerk, which
cannot effectively evaluate comfort. Afterward, SAE proposed a method
to evaluate the impact of acceleration on ride comfort by combining the

peak and root mean square values of jerk, which is represented as:

AJV = 0.004hpj? + rmsj “

hpj = max(jerk(t)) 5)

. 1 /7
=/= K*(¢) dt (6)
rmsj T/Ojer (t)

Among them, hpj represents the highest peak value of jerk, and
rms;j represents the root mean square value of jerk. This formula cal-
culates AJV by taking the square of the peak jerk and adding it to the
root mean square value of the jerk, and then multiplying it by an
empirical coefficient of 0.004. It can be said that the method provided
by SAE is a mixed model that integrates multiple factors, and it has a
certain representative significance. However, ref. 33 investigated the
relationship between vehicle motion attributes and passenger comfort
through experiments. The experimental results show that an increase
in jerk amplitude is positively correlated with an increase in discomfort
level, and this effect is influenced by the direction of motion. Com-
pared to forward motion, backward motion has lower comfort, while
lateral motion has lower comfort. In addition, they believe that higher
jerks (shorter duration pulses) are considered more compatible. This
conclusion is very novel and differs from the methods provided by SAE
and previous studies. It takes into account the impact of frequency and
believes that a larger jerk in a shorter period of time does not neces-
sarily mean more uncomfortable. In summary, a standardized system
for evaluating Jerk values and comfort has not yet been established.
The simple use of measured values cannot indicate the magnitude of
driving comfort. Therefore, this article integrates previous research
and proposes a driving comfort evaluation method that combines
measured values with human experiments.

Among the measured parameters, we use acceleration and jerk to
evaluate driving comfort. The focus of this article is on the overall path
planning of vehicles, while the smoothness evaluation method pro-
vided by ISO 2631-1* focuses on the riding comfort of a single vehicle.
The comfort index (CI) value largely depends on the design of the car
seat and suspension, which is not the content of this article. Therefore,
the acceleration evaluation method used in this article is the vehicle
body acceleration, which is commonly used in enterprises, rather than
the acceleration on the seat (CI), this needs to be clearly pointed out.
According to the evaluation of vehicle body acceleration used by
relevant enterprises in vehicle production, there will be no weighted
summary in the X, Y, and Z directions. Vehicle acceleration can also be
used for qualitative evaluation of comfort on different paths. The root
mean square value CA and jerk value CJ of acceleration are calculated
using the formulas:

N 2
._as - At;
cA= 72'2-; L2 @
i=1A;
2
- Y (a; — a)”/A¢ @)
YA

In addition to using objective parameter evaluations, evaluating
comfort should also consider the subjective feelings of passengers.
Subjective feelings refer to the personal feelings and emotional reac-
tions experienced by passengers during the driving process, which
often reflect comfort more accurately than objective parameters.
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Through subjective evaluation, testers can understand passen-
gers’ true feelings and expectations for driving comfort. The com-
prehensive evaluation of objective parameters and subjective feelings
can provide a more comprehensive understanding of comfort. The
subjective evaluation method is shown in Supplementary Fig. 3, the
relevant testing score according to Supplementary Table 3.

As shown in Supplementary Fig. 3, the human evaluation score
(HES) is weighted and added to the measurement values after
adjusting the importance parameters of the three evaluations to
obtain the driving comfort evaluation score (DCES). The jerk value
and the score of the human body have been standardized and nor-
malized through normal distribution to ensure that the obtained
trend and correlation are reasonable. The calculation formulas are as
follows:

Jerknd = w (9)

Jerk,q — MIN(Jerk,q)

Jerkgg = MAX(Jerk,q) — MIN(Jerk,q) (0
HES = k; BE + k,AE + k;SE an
HES, 4= m> 12)
o
_ HES,q — MIN(HES, )
HES st = MJAX(HES, ) — MIN(HES ) 13)
DCES = k(1 — Jerkgq) + ksHES 4 14

In Formula 9, Jerk,, is the standardized jerk value, p is the target
expectation (mean),o is the standard deviation of jerk, Jerk,, is the
normalized final score, BE is the brake evaluation score, AE is the
acceleration evaluation score, SE is the shake evaluation score,
ky, k5, k3, k4, ks are the importance correction coefficients. For the
values of these parameters, we refer to the weight values of each
direction in ISO 2631 for ride comfort evaluation. Brake and Acc are
more sensitive to X-direction, which is also the reason why related
driving comfort studies****** mainly focus on longitude direction.
Therefore, we choose the positive and negative scores in the X-direc-
tion, and each of them has the same weight as the shake score. The
three scores are averaged to get the final score. When the sample size is
small, the jerk value can also be directly put into Formula 14 without
pretreatment, while the HES needs to be normalized.

Driving comfort prediction model

Due to the complexity of predicting driving comfort and the fact that it
is a topic without reference from other methodological materials, it is
necessary to try different types of machine learning methods and then
comprehensively consider the effects of multiple methods, and then
select the best prediction method from them. Therefore, from two
representative machine learning methods, neural network*° and bin-
ary tree*, we select the multi-head Self-Attention mechanism and
XGBoost for comfort prediction according to the matching degree
with the data and the relevance of the research content. In addition, we
will use the BP*? as a baseline to compare the performance of the
Attention and XGBoost mentioned above.

XGBoost*™¢, a highly efficient boosting algorithm, demon-
strates outstanding performance in regression tasks. It is comprised
of numerous weak classifiers, implemented using classification and
regression trees (CART). These trees can be viewed as decision rules
derived from multiple features, enabling them to capture cross

information. Residuals serve as the learning objective for each deci-
sion maker, and XGBoost grows a tree by continuously adding trees
and performing feature splitting. Each time a tree is added, it actually
learns a new function f(x) to fit the last predicted residual, which can
make the loss function more accurate and better fit the data. In
addition, XGBoost incorporates regularization to avoid overfitting of
trees and improve the model’s generalization ability. It also adopts a
block structure and parallel computing to improve training speed
and efficiency, enabling it to handle large-scale datasets. The objec-
tive function for the overall model is illustrated in formulas as fol-
lows:

n K
L= 10uy)+ > 0(fi) (15)
i=1 k=1
n I t
L= (03 +f ) + Y0 (16)
i=1 j=1
l()’i'j’f'FU +f (x,-)) :l(yirj’;til)) +gif )+ %hiftz(xi) 17

As shown in Formula 15, [(y;, y;) represents the loss function of an
individual sample, while Q(f ) denotes the complexity of the ensem-
ble of all trees, serving as a regularization term. For each weak classi-
fier, the preceding classifier results are known, thus enabling the
expansion of the overall loss function as depicted in Formula 16. In this
formula, y,“™" represents the known predicted results of all trees
before the t-th tree, and f, represents the predicted residuals.
Expanding the loss function further leads to Formula 17, in which
y;, j;ﬁt_l)) represents a constant value, g; represents the first derivative
of the loss function, and h; represents the second derivative. The
complexity of the tree is characterized by two components: the
number of nodes in the tree and the L2 norm, as illustrated in Formula
18. Finally, by summing the loss functions of all classifiers and incor-
porating the regularization term, the final loss function is obtained, as
depicted in Formula 19.

1 T
Q(ft):yT+§AZw} (18)
j=1

T
3 (Se)ord(Speda]or o

j=1| \ e

The design of XGBoost demonstrates powerful performance in
solving practical problems, especially when dealing with high-
dimensional data and missing values. It is worth noting that although
XGBoost performs well in many tasks, it is not omnipotent. In certain
scenarios, models based on attention mechanisms may have advan-
tages. Therefore, when choosing a model, we have comprehensively
considered the specific problem and data characteristics.

The attention mechanism has recently gained popularity as an
algorithm for learning information from feature crosses. It is necessary
to effectively learn the cross information between multiple features in
the comfort prediction of global path planning. For instance, the cross-
information between traffic flow density and weather provides a more
insightful characterization of the situation compared to solely con-
sidering traffic flow density or weather individually. Therefore, we
attempt to use self-attention to enrich each feature by utilizing the
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cross information between this feature and other features.

S Fweather, Length, ) = (Ver VE, V}/) (20)
VE=wpf 1)
VE=W§f (22)
Vi=Wif (23)

T
Attention (£, Fuyeather, engen,.. ) = % (24)
Or= ZF V/ Attention ( I Fweather, Lengen, )) (25)

Self-attention, each feature f, F yyeqrner, 1engen, ) Undergoes a linear
transformation to obtain three hidden vectors specific to itself, as
shown in Formula 20. These are called the query vectoer?, the key
vectorl/}( , and the value vector V}/ ,as shown in Formulas 21, 22, and 23.
Where f represents the feature, and W, W}< , and W}/ are the corre-
sponding parameter weight matrices. Then, as shown in Formula 24,
the query vector V¢ of a feature is dot-multiplied with the transposed

NS ) K - K

key matrix V' (where Vi represents the matrix composed of all V).
This results in the attention score vector of the feature for all features.
The Softmax function is a normalization function used to eliminate
differences in magnitudes. \/d is a scaling factor, where dy repre-
sents the vector dimension of VX, used to scale the dot product result
to prevent excessively large values from reducing the effectiveness of
Softmax normalization. Finally, as shown in Formula 25, the value
vector va of all features is dot-multiplied with the attention score
Attention(f, F yeather, Lengtn, ) O Obtain the value of the feature influ-
enced by all other features O.

On the other hand, the influence between different features can
be interpreted differently in various domains. For example, in the
domain of road traffic conditions, the interaction between traffic
density and weather can reflect road congestion; in the domain of safe
driving, the interaction between these two features reflects the like-
lihood of accidents. Therefore, based on the attention mechanism, we
use the multi-head self-attention mechanism to simulate different
domains. The description of multi-head attention is outlined below*’:

where head;, Fouveather nget» — Attention ( o Fveather, Length, )) (26)

MultiHead (f, Fweather, Length, )) =W°Concat (headf,F

(Weather, Length, ...) >

@7)

The interpretation of different features f in different domains
requires representation as multiple heads, where self-attention is com-
puted separately for each head. This is reflected in Formula 21, 22, and 23
by the subscript f and in Formula 26 by f, F(yyeather, 1ength, .- T€SUlting in
the self-attention representation for each heady . ... ., whichcan
be comprehensively represented by Formula 27. On this basis, a con-
catenation function Concat(head, Fveather enget ) is added to form a
vector. After concatenating the vectors, a linear transformation is per-
formed to obtain the final output of multi-head self-attention
MultiHead(f, F eather, Lengen, .) USing the weight matrix W°. The multi-
head self-attention mechanism captures cross-information from differ-
ent dimensions, making it more effective than self-attention. As shown in

Supplementary Fig. 4, this model mainly consists of three parts:
embedding, attention model, and linear layer. First, the features are
mapped to a high-dimensional vector space, then the multi-head
attention model is used to capture cross-information, and finally, the
vectors are concatenated, and a linear layer is used to complete the
regression. In this work, the number of heads is 16, and the length of the
hidden representation is 128.

Because of the maturity, classicism, and wide application of the BP
neural network, it is widely used as the baseline for experimental
models in the industry. In this article, we also consider the universality
of the experiment and use BP neural network as the experimental
reference baseline for XGBoost and multi-head Self-Attention.

Path-planning algorithm
Any path planning algorithm can incorporate comfort considerations
based on comfort prediction models, such as the A* algorithm®®;
f(n)y=g(n)+h(n) (28)
where f(n) represents the total estimated cost of the cheapest solution
through node n. The function g(n) denotes the cost from the start
node to node n, effectively measuring the path cost incurred so far.
The heuristic function h(n) estimates the cost from node n to the goal
node, providing a forward-looking assessment of the remaining
distance or effort required to reach the goal. The balance between
g(n) and h(n) is critical to the performance of the A* algorithm. By
incorporating both the actual cost to reach the current node and an
optimistic estimate of the cost to reach the goal, the A* algorithm
ensures that it explores paths that appear promising based on past
information while also considering potential future costs. This dual
consideration helps to efficiently guide the search towards the goal,
ideally finding the optimal path with minimal computational overhead.
This paper proposes a path-planning algorithm based on the A*
algorithm. This method comprehensively considers path length, travel
time, path congestion, and path comfort, represented as follows:

C(m)=al(n)+BT(n)+yl(n)+6J(n) (29)
Lm=3""_ 1, (30)
Tm=3"7 1, 31
o

I(n)= —2051’0 (32)
oy

J(n)= pT:LI” (33)

C(n) is the cost function, L(n) represents the total distance of the
path. T(n) denotes the time required to travel on the path. /(n) signifies
the level of path congestion. J(n) represents the evaluation of path
comfort. a, 8, y, 6 are the weights of the above four functions. [, is the
distance of a segment of a path, ¢, is the time taken for a segment of a
path, i, is the degree of congestion of a segment of a path, and j, is the
comfort level of a segment of a path. Although these four functions are
somewhat interrelated, such as path length affecting travel time, we
still calculate them separately because they retain their independence.

In subsequent experiments involving real vehicles, normalize L(n),
T(n), I(n) and J(n) to the range [0, 1] using the following formula. Then,
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assign weights to the four functions.

X(n) — Xmin

X normatizea(M) = X X (34)

max — “‘min

X min is the minimum value of the function, X ,, is the maximum
value of the function, X(n) is the current value of the function, and
X normatized 1S the normalized value.

The path planning method in this study includes four modes:
shortest path, shortest time, congestion avoidance, and most com-
fortable, as shown in Fig. 6. In order to rationally assign weights, the
following considerations are proposed. In the shortest path mode,
priority should be given to the minimization of the total path length,
and therefore a higher weight should be assigned to L(n). In the fastest
time mode, priority should be given to the minimization of the total
journey time while ensuring that the path length weights are max-
imized, and therefore, higher weights should be assigned to T(n).
Similarly, in the congestion avoidance mode, higher weights should be
assigned to /(n) in order to alleviate traffic congestion. Finally, the Most
Comfortable Route model emphasizes the factors affecting passenger
comfort and, therefore, deserves to be assigned a higher weight to J(n).
The weights for these models are shown in Supplementary Table 4.

Not just restricted to A* algorithms, any path planning algorithm
can incorporate comfort considerations based on ADCP models.

Real car testing

The purpose of this experiment is to further verify the effectiveness of
applying the ADCP method to autonomous driving path planning and
to explore whether the ADCP method can be applied to traditional
driver-driven vehicles. The equipment and personnel required for the
experiment are shown in Fig. 8, and important equipment such as
acceleration sensors have been labeled.

Five combinations of starting and ending points were selected for
testing. Each group underwent testing at a consistent time every
weekday, utilizing the same autonomous driving solution loaded onto
the autonomous vehicle. Data, including jerk and acceleration, was
collected, and metrics such as weighted average and maximum values
were computed. Concurrently, tests were conducted on the vehicle
without loading the model, using the standard global path planning,
for comparative analysis. Meanwhile, for the same destination, the
ADCP model was used for path planning and tested using traditional
manual driving mode. The schematic diagram illustrating this experi-
ment is shown in Supplementary Fig. 5.

A total of 33 volunteers completed the scoring tests. We used a
quota sampling technique to match the survey sample with the
population (age and gender quotas) to enhance the representativeness
of the survey results. Among them, 30 participants, representing the
mainstream driving and riding age group (males=18; females =12;
average age: 22), were recruited through public announcements.
Additionally, three volunteers from the middle-aged and older group
(males = 2; females =1; average age: 50) were invited to participate in
the experiment after a screening process. During the recruitment
phase, a brief preliminary questionnaire about exclusion criteria was
sent to volunteers who expressed interest in participating. This ques-
tionnaire included the following questions:

(i) The average number of car rides per week; (ii) Whether you
have any health issues that affect your riding comfort (e.g., motion
sickness, back problems, chronic pain, etc.); (iii) Have you ever
experienced any unusual discomfort while driving or riding in a car?
(iv) Are you willing to participate in a long-duration car-riding experi-
ment that includes breaks? (up to 2 h in total).

This information was obtained through direct questioning, and
we established criteria for screening participants for each question.
Specifically, participants were initially excluded from the study if their

average number of vehicle rides per week was below 5 or if they
responded negatively to any of the other questions.

We provided the volunteers with written informed consent forms
and copies of the questionnaires. They did not receive any monetary or
credit compensation for their participation, other than the cost of
transportation to the experimental site. Since the established experi-
ments on the comfort of autonomous driving is rare, we referenced
ISO 2631-1 to a certain extent. This project has been approved by the
Ethics committee under the approval number THUO1-20240121.

After obtaining informed consent, a single-blind approach was
used to prevent certain information (such as the difference between
traditional driving and autonomous driving) from biasing partici-
pants due to prior knowledge or expectations, which could affect the
experiment’s results. Participants were divided into ten groups and
invited to the experimental site. In each session, participants were
unaware of whether they were riding in an autonomous vehicle or
whether the vehicle had undergone comfort optimization using a
model, aiming to obtain more reasonable scoring results. Each par-
ticipant group was assigned an alphanumeric code for subsequent
survey statistics. The survey was conducted via a questionnaire,
including demographic questions (gender, age) and the final eva-
luation scores. Additionally, to ensure participants were focused
during the survey, a control question was added (requiring partici-
pants to mark a specific answer option). Participants who did not
successfully complete the entire survey were excluded from the
study and subsequent analyses, resulting in a total sample of 33
participants.

Based on the total sample, to ensure the fairness and reliability of
the experimental results, some experiments with significant deviations
were repeated with replacement groups, ultimately showing good
internal consistency. In the experimental design, all non-experimental
variables that might influence the results were controlled. For exam-
ple, the models of all test vehicles were kept consistent to eliminate
these factors’ influence on the outcomes.

To minimize bias in the analysis process and ensure the reliability
of the results, after final data processing, participants’ scores were
randomly ordered using a computer-generated random number table.
This process effectively avoided bias from researchers’ expectations
during data analysis. Additionally, a double-blind state was maintained
during data processing and analysis, ensuring that those analyzing the
data were unaware of the specific participants or experimental groups
corresponding to each score, thus guaranteeing objectivity in data
processing. A rigorous standardized data processing procedure was
adopted, including data cleaning, organization, and analysis, with dif-
ferent teams or individuals reviewing the work to minimize human
error and bias. The appropriate statistical method was chosen to
analyze the data, controlling for potential confounding variables to
further ensure the accuracy and reliability of the results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets generated in this study are available via Figshare under
accession code https://doi.org/10.6084/m9.figshare.24915945%. The
ADCP datasets that are continuously updated and continuously col-
lected are available at https://github.com/shujukaiyuanzhuanyong/
adcp-, which can be used for further studies and to validate the
method. Source data are provided with the paper.

Code availability

The code for the autonomous driving comfort prediction model is
available as Code Ocean (https://doi.org/10.24433/C0.4148871.v1)*°.
Source data are provided with this paper.
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