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Eating disorder symptoms and emotional
arousal modulate food biases during reward
learning in females

Nina Rouhani1 , Cooper D. Grossman2, Jamie Feusner3,4,5 & Anita Tusche 6,7

Food seeking and avoidance engageprimary reward systems todrive behavior.
It is nevertheless unclear whether innate or learned food biases interact with
general reward processing to interfere with goal-directed choice. To this end,
we recruited a large non-clinical sample of females with high eating-disorder
symptoms (‘HED’) and a matched sample of females with low eating-disorder
symptoms (‘LED’) to complete a reward-learning task where the calorie con-
tent of food stimuli was incidental to the goal ofmaximizingmonetary reward.
We find and replicate a low-calorie food bias in HED and a high-calorie food
bias in LED, reflecting the strength of pre-experimental food-reward associa-
tions. An emotional arousal manipulation shifts this group-dependent bias
across individual differences, with interoceptive awareness predicting this
change. Reinforcement-learning models further identify distinct cognitive
components supporting these group-specific food biases. Our results high-
light the influence of reinforcement-basedmechanisms and emotional arousal
in eliciting potentially maladaptive food-reward associations.

The visceral drive to eat is a primary reinforcer of the brain’s reward
system, motivating the seeking and consumption of food critical for
survival1. Preference for energy-dense or high-calorie food is thought
to indicate evolutionary adaptation, orienting cognitive processes,
including attention, motivation, and memory mechanisms, towards
food that is more likely to provide energy and satisfy hunger2,3.
Nonetheless, food preferences and dietary behavior are linked to a
range of clinically-relevant conditions, from obesity to eating dis-
orders with highmortality rates, such as anorexia nervosa and bulimia
nervosa4. The high prevalence of disordered eating5, characterized by
patterns of restricted eating or loss of control overeating, has trig-
gered substantial medical attention, including a focus on psy-
chotherapeutic, pharmaceutical and neuromodulatory interventions6.
Research on the underlying cognitive mechanisms, which remains
incomplete, may further help delineate the progression of aberrant
eating behavior and offer cognitive targets for treatment.

Previous work has highlighted the role of reward and control
mechanisms in supporting eating decisions, as a food-rich environ-
ment extends the function of feeding beyond homeostatic balance,
risking the deployment of maladaptive hedonic pathways7. Over-
consumption is linked to the neural signatures of substance use dis-
order and compulsive behavior3,7,8. Moreover, underconsumption or
restricted eating may engage similar neural circuits to generate
opposite behavior9. Of special interest aremodels of anorexia nervosa,
as patients can develop the motivation to forgo food altogether,
against all biological instincts. While control strategies may be
required to initiate such behavior, repeatedly restricting eating (and
experiencing its associated rewards) is thought to deploy dopami-
nergic circuits to form rigid habits9,10. Accordingly, food decisions in
anorexia nervosa are supported by habit-specific regions in the
brain11–13, which likely reinforce the avoidance of high- versus low-
calorie food. In fact, implicit preference for low- versus high-calorie
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food predicts disease severity in anorexia nervosa14, and persists after
weight restoration (regardless of explicit liking), with the opposite
pattern in healthy controls15.

The current study tested if and how innate or learned reward
associations with high- or low-calorie food (‘food bias’) may interfere
with goal-directed behavior in a task where the food stimuli were
completely incidental to the goal of maximizing rewards. We addi-
tionally investigated how emotional arousal, thought to modulate
decision-making by altering somatic states16 as well as its subjective
perception (interoception), may shift food biases. We examined two
populations with putatively distinct food biases: those with active
eating disorder symptoms and a self-reported history of anorexia and/
or bulimia nervosa (i.e., high eating-disorder symptoms, ‘HED’ group;
n = 138) and those without any symptoms or history of eating disorder
(i.e., low eating-disorder symptoms, ‘LED’ group; n = 141). Computa-
tional models of choice data further identified which components of
reinforcement learning weremodulated by group-specific food biases
and emotional arousal.

To examine food biases and their underlying cognitive mechan-
ism, we designed a reward learning paradigm (Fig. 1A). Here, partici-
pants learned the values of two categories from trial and errorwith the
objective of choosing the more (probabilistically) rewarding category
to maximize monetary earnings. The categories were either food-
related (food task: ‘raw’ versus ‘cooked/baked’ food, serving as a cover
for low- versus high-calorie food, respectively) or unrelated to food
(control task: indoor versus outdoor scenes). Participants completed
both the food and control tasks, and we predicted that overall task
performance would be similar between groups. We nevertheless
expected a food-specific bias, such that the LED group would learn to
associatemonetary reward better with high- (versus low-) calorie food,
while theHEDgroupwould show the opposite bias, associating reward
more strongly with low- (versus high-) calorie food. Notably, we pre-
dicted these group-specific biases even though the calorie content of
the food stimuli was irrelevant to the goal of choosing the more
rewarding category.

Interestingly, emotional arousal and stress can also influence and
even predict the trajectory of maladaptive eating habits17. Negative
arousal, such as anxiety, aswell as positive arousal, such as excitement,
can both drive maladaptive eating patterns7,18. To examine the mod-
ulating role of affective states, our main study included an emotional
arousal manipulation halfway through the reward learning task: par-
ticipants won or lost $8 by ‘spinning’ a wheel of fortune, either
experiencing heightened positive emotion (win) or negative emotion
(loss) after the spin19 (50% likelihood of either outcome, Fig. 1A). We
expected that heightened emotion, regardless of a positive or negative
outcome, may enhance the salience of food stimuli and inhibit goal-
relevant mechanisms, further enabling habit-related food biases in
learning and decision-making.

Nonetheless, emotional arousal can be experienced differently
given an individual’s interoception, meaning their ability to perceive
and interpret physiological signals from their body20. Deficits in
interoception have been consistently reported across eatingdisorders,
and are thought to drive maladaptive eating behaviors by suppressing
hunger and satiety cues as well as general autonomic arousal
systems21,22. Lower self-reported interoception has been especially
pronounced in anorexia and bulimia nervosa (less so in binge-eating-
disorder) in both current and recovered patients23. We therefore
investigatedwhether groupdifferences in self-reported arousal ratings
and individual differences in interoceptive awareness predicted
changes in food biases across the emotional arousal manipulation.

In this study, we find and replicate a food-related bias during
reward learning: participants with high eating disorder symptoms
better associate low- (versus high-) calorie foodwithmonetary reward,
while participants with low eating disorder symptoms better associate
high- (versus low-) calorie food with monetary reward. Emotional

arousalmoreover homogenizes the group-dependent food bias across
individual differences in interoceptive awareness. Reinforcement
learning models highlight pre-experimental (innate or learned) food
values and food-specific learning rates for positive (prediction-error)
outcomes in supporting the observed food biases.

Results
Similar overall learning between groups and tasks
As our measure of learning and task performance, we considered
‘correct’ responses as the choice for the more rewarding category
(regardless of whether the outcome on that trial was probabilistically
rewarded or not). As expected, the LED and HED groups did not
significantly differ in their learning performance (mixed-effects
logistic regression predicting correct choice as a function of group
across all tasks and blocks: Β = 0.06, z = 0.84, p = 0.400; M = 0.06
[−0.08, 0.19]), nor in their ability to learn in the food versus the
control task (interaction between group and task: Β = −0.04,
z = −0.68, p = 0.495; M = −0.04 [−0.16, 0.08]; Fig. 2A). We further-
more did not find significant group differences in either the food or
control task analyzed separately (food task: Β = 0.03, z = 0.43,
p = 0.668; M = 0.03 [−0.12, 0.19]; Fig. 2C; control task: Β = 0.08,
z = 1.04, p = 0.298; M = 0.08 [−0.06, 0.22]; Fig. 2D). There were
therefore no statistically significant group differences in the overall
ability to perform the task.

Reward learning was guided by group-specific food biases
While both groups performed equally well on average, we identified
group-specific biases in the expected direction in the food task: par-
ticipants in the HED group performed better when the low- (versus
high-) calorie foodcategorywasmore rewarding, and viceversa for the
LED group (across all food blocks, mixed-effects logistic regression
predicting correct choice as a function of the interaction between
group and reward category, Β = −0.23, z = −2.19, p =0.0288; M= −0.23
[−0.44, −0.03]). This pattern of results replicated our pre-registered
pilot results, which did not include an emotional arousal manipulation
in the reward learning task (for visual comparison to the pilot study,
see SI 5 and Fig. S10A-B). Importantly, this bias was food specific: We
did not find a significant group-specific category bias (for indoor or
outdoor scenes) in the control task (interaction between group and
reward category in control task, Β = −0.11, z = −1.08, p = 0.279;
M= −0.10 [−0.30, 0.10]), which was significantly different from the
food task (three-way interaction between group, reward category and
task, Β = −0.33, z = −3.67, p <0.001; M= −0.33 [−0.50, −0.15]). These
findings demonstrate that food-reward associations can selectively
influence general reward learning processes, even if the rewards are
unrelated to actual food consumption.

Heightened emotional state modulated group-specific
food biases
The emotional arousalmanipulation increased alertness across groups
(mixed-effects linear regression predicting alertness ratings as a
function of (pre- versus post-) arousal block, Β = 0.26, t = 4.53,
p <0.001;M=0.26 [0.15, 0.37]; Fig. 3B; for visualization and analysis of
all ratings, see SI 3.2 and Fig. S5).Wedid not find significant differences
in arousal ratings between groups (ratings as a function of group,
Β =0.08, t = 0.67, p = 0.507; M =0.07 [−0.15, 0.30]), indicating that we
did not replicate lower arousal ratings in the HED group from the pilot
study (SI 5.3 and Fig. S10C-D). We further did not find the emotional
arousal manipulation to significantly influence overall learning per-
formance in either the food task (mixed-effects logistic regression
predicting correct choice as a function of arousal block, Β = 0.02,
z = 0.50, p =0.616; M=0.03 [−0.08, 0.12]) or in the control task (Β =
0.03, z = 0.69, p =0.491; M=0.03 [−0.06, 0.12]; Fig. 2B).

We instead found the emotional arousalmanipulation to generate
the group-specific food bias across participants in the food task (three-
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way interaction between group, reward category, and arousal block:
Β = −0.45, z = −3.46, p < 0.001; M= −0.45 [−0.69, 0.19]; Fig. 3A versus
3 C). This effectwas specific to the food (versus control) task (four-way
interaction between group, reward category, arousal block, and task:
Β = −0.86, z = −4.87, p < 0.001; M= −0.87 [−1.24, −0.51]). When testing
the food blocks separately, we did not find a significant group-specific
food bias in the pre-arousal block (interaction between group and
reward category, Β = −0.02, z = −0.10, p = 0.921; M= −0.01 [−0.38,
0.35]), although there were marked individual differences (e.g., in
interoceptive awareness, see below). The overall group-specific food
bias emerged in thepost-arousal block (interactionbetweengroup and
reward category, Β = −0.47, z = −2.55, p =0.0109; M= −0.48
[−0.84, −0.11]).

We next examined whether the valence of the wheel-of-fortune
outcome influenced learning. Consistent with previous work19,24, we
found a win on the wheel of fortune to increase happiness ratings
(mixed-effects linear regression predicting happiness ratings as a
function of (pre- versus post-) arousal block, Β = 0.91, t = 12.20,
p <0.001; M=0.91 [0.76, 1.06]; Fig. S5D), while a loss decreased hap-
piness ratings (Β = −1.21, t = −14.73, p < 0.001; M= −1.22 [−1.38, −1.05];
Fig. S5F; loss (versus win) outcome led to a stronger change in ratings,
see SI 3.2), with no statistically significant difference in these changes
between groups (interaction between group and arousal block, Β =
0.08, t = 0.53, p =0.598;M=0.08 [−0.23, 0.39]; Fig. S5B). Interestingly,
we did not find the valence of the wheel of fortune’s outcome ($8 win
or $8 loss) to have a statistically significant effect on the group-specific
food bias (mixed-effects logistic regression predicting correct choice
as a function of a four-way interaction between group, reward cate-
gory, arousal block, and wheel-of-fortune outcome, Β = 0.88, z = 1.53,
p =0.127; M =0.93 [−0.22, 2.13]). These findings point to a general
effect of heightened emotion (rather than a statistically significant
effect of positive versus negative emotion), in shifting food biases.
Moreover, we did not find the valence of the outcome to significantly
influence overall learning performance in either the control or food
tasks (for visualization and analysis, see SI 3.3 and Fig. S6).

Interoceptive awareness predicted food biases
Given deficits in interoceptive awareness in eating disorders23, we
tested whether individual differences in overall interoceptive aware-
ness predicted food bias. We indeed found that interoceptive aware-
ness (Multidimensional Assessment of Interoceptive Awareness,
‘MAIA’25) modulated the change in the group-specific food bias across
the emotional arousal manipulation (mixed-effects logistic regression
predicting correct choice as a function of a four-way interaction
between group, reward category, arousal block, and interoceptive
awareness score, Β = –0.61, z = –4.54, p < 0.001; M= –0.61[–0.89,
–0.35]). Interoceptive awareness did not predict such changes in the
control task (four-way interaction between group, reward category,
arousal block, and interoceptive awareness score, Β = 0.19, z = 1.40,
p =0.163; M =0.18 [–0.08, 0.44]), which was significantly different
from the food task (five-way interaction between group, reward cate-
gory, arousal block, interoceptive awareness score, and task:Β = –0.78,
z = –4.21, p < 0.001; M= –0.78 [–1.15, –0.44]).

For visualization, we split our participant sample by the median
interoceptive awareness score across LED and HED groups (median =
20.47; Fig. 3D–I). Higher interoceptive awareness additionally pre-
dicted higher self-reported alertness (a proxy for arousal) overall
(mixed-effects linear regression predicting ratings as a function of
interoceptive awareness score, Β = 0.15, t = 3.09, p =0.00221; M=0.16
[0.05, 0.25]),with no statistical significant difference betweenHED and
LED groups (interaction between group and interoceptive awareness
score, Β = 0.16, t = 1.57, p = 0.117; M =0.16 [-0.04, 0.37]; Fig. 3E, H). To
note, while interoceptive awareness was, on average, lower in the HED
group (median = 19.72) versus the LED group (median = 21.78; Β = 2.36,
t = 3.13, p =0.00194; M = 2.36 [0.93, 3.81]), there was substantial
overlap between the groups’ distributions of scores, see SI Fig. S1A.

Next, we examined the influence of individual interoception on
the pre- and post-arousal blocks of the food task separately. We found
interoceptive awareness to predict differences in food biases before
the emotional arousal manipulation (three-way interaction between
group, reward category, and interoceptive awareness score, Β = 0.54,
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Fig. 1 | Experimental study design. A An example of a sequence of trials and
(B) the overall structure of the reward learning task in the main study. Participants
learned through trial and errorwhichof two categorieswasmore rewarding in each
of 4 blocks (outcomes were $10 or $0); reward contingencies were probabilistic
(0.75/0.25 reward probability); half the blocks included food stimuli (‘food task’,
categories: ‘raw’ and ‘cooked/baked’ food, which served as a cover for low- and
high-calorie food, respectively) or scene stimuli (‘control task’, categories: indoor
and outdoor scenes). After completing one block of each task, participants
experienced an emotional arousal manipulation in which they ‘spun’ a computer-
ized wheel of fortune (0.50 probability of winning or losing $8). They next

completed twomore learning blocks of each task (order of blocks counterbalanced
across participants). Participants completed self-ratings throughout the reward
learning task (indicating level of ‘alertness’ (arousal), as well as hunger, thirst, and
happiness) to check for changes induced by the emotional arousal manipulation.
Food images (catalog numbers 280 and 143; Blechert J, Lender A, Polk S, Busch NA
and Ohla K (2019). Food-Pics_Extended—An Image Database for Experimental
Research on Eating and Appetite: Additional Images, Normative Ratings and an
Updated Review. Front. Psychol. 10:307. https://doi.org/10.3389/fpsyg.2019.
0030764) are released under a Creative Commons-Attribution-NonCommercial-
Sharealike 3.0 license (https://creativecommons.org/licenses/by-nc-sa/3.0/).
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z = 2.75, p = 0.00593; M=0.54 [0.14, 0.93]), but not after it (Β = -0.16,
z = -0.84, p =0.401; M= -0.16 [–0.56, 0.24]). Moreover, when grouping
participants by lower versus higher interoceptive awareness
(Fig. 3D–I), overall HED and LED food biases were immediately
apparent in participants with lower interoceptive awareness (interac-
tion between (HED versus LED) group and reward category, Β = –0.62,
z = –2.30, p = 0.0217;M= –0.63 [–1.17, –0.07]; Fig. 3D), but not in those
with higher interoceptive awareness, who demonstrated flipped food
biases (Β = 0.59, z = 2.22, p = 0.0264; M=0.59 [0.05, 1.12]; Fig. 3G). In
fact, higher interoceptive awareness predicted a food bias for high-
calorie (instead of low-calorie) food in the HED group and vice-versa
for the LED group.

Participants with higher interoceptive awareness further experi-
enced a shift in their food biases after the emotional arousal manip-
ulation (three-way interaction between group, reward category, and
arousal block, Β = –1.17, z = –6.26, p <0.001; M= –1.17 [–1.54, –0.79]),
whereas those with lower interoceptive awareness did not demon-
strate a significant shift (Β = 0.22, z = 1.14, p = 0.254; M=0.22 [–0.16,
0.60]). We therefore found that individuals with higher interoception
demonstrated an initial reversal of potentially harmful (to HED or LED)
food-reward associations, but they were also the most affected by the
emotional arousal manipulation. These results point to a potential
intervention (increasing interoceptive awareness) as well as a chal-
lenge (emotional arousal) to reversing maladaptive food-reward
associations.

In an exploratory analysis (SI 1.5), we additionally determined
which of eight MAIA subscales (SI Fig. S4) supported this effect of

interoceptive awareness (correcting for multiple comparisons). We
found that four subscales modulated the group-specific food bias
across the emotional arousal manipulation (all in the same direction as
the overall interoceptive awareness score). The predictive subscales
were related to actively engaging with and trusting physical and
emotional signals from the body (attention regulation, body listening,
trust, and emotional awareness),whereas the remaining four subscales
– related to simply noticing body signals (noticing) or regulating
negative emotional states (not-distracting, not-worrying, self-regula-
tion)—were not predictive (for full analysis, see SI 1.5).

Group-specific food biases were captured in reinforcement
learning models
To identify the precise cognitive mechanism underlying food biases in
reward learning, we fit hierarchical reinforcement learning models to
choice data (see Methods for model specifications). We used standard
Q-learning26 as our baseline model. Within this reinforcement learning
framework, we examined four cognitive components that could sup-
port group biases in decision-making: (1) sensitivity to reward receipt,
meaning the extent to which the reward outcome is valued27, (2) dis-
tinct learning rates for positive versus negative prediction errors
(‘positive/negative learning rates’), referring to the extent to which
positive versus negative outcomes asymmetrically update values28,29,
(3) persistence in choosing the same category that was previously
chosen30, and (4) initial values for each reward category, reflecting pre-
experimental and potentially Pavlovianbiases for low- and high-calorie
food14. For each parameter, participant and population-level posterior
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the high eating-disorder (‘HED’, red) and low eating-disorder (‘LED’, gray)
symptom groups. A The average proportion of correct choice for the more
rewarding category in the control and food tasks (across blocks), and B within the
control task between the first block (before the emotional arousal manipulation,
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proportions of correct choicewithin the food task andD control task (dotted line at
trial 20 indicates a ‘change-point’ event where there was a switch in the rewards
associated with each category). The LED and HED groups did not differ in overall
learning performance within or across (food/control) tasks and (pre-/post-arousal)
blocks. Diamond points indicate average model predictions from the best-fitting
model across participants. Error bars represent the standard error of the mean.
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distributions were estimated simultaneously via Hamiltonian Monte
Carlo sampling31. WAIC scores (Watanabe-Akaike Information
Criterion32) that penalize for model complexity were used to compare
alternative models (see Methods for complete model fitting/compar-
ison procedures and results). We further evaluated the best-fitting
model through posterior predictive checks (diamond points in Figs. 2,
3) and parameter recovery (SI 4.3, Fig. S9). For computational mod-
eling of the control task, see SI 4.1 and Fig. S7.

We first compared hierarchical models that successively included
all possible combinations of each of the tested four components (see
M1 to M4 in Fig. 4A for a subset of single-component model fits). We
found that a model (M2+M4) that fit distinct (‘asymmetric’) learning

rates for positive andnegative predictionerrors (‘positive andnegative
learning rates’) and initial category values provided the best fit overall.
We next added group-level differenceparameters (HED versus LED) on
the initial values and learning rates. If there were no differences
between groups on these parameters, then the estimated group dif-
ference would be near 0, and the model would fit worse. We instead
found that including group-level difference parameters for each
learning block (pre- and post-arousal) and food category (low- versus
high-calorie) in the initial category values and for positive (but not
negative) learning rates, better fit behavior (Fig. 4A). Importantly, this
model captured the observed patterns of learning behavior (diamond
points in Figs. 2, 3) and its parameters were recoverable (SI 4.3 and
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in the food task when the underlying reward category was either high-calorie food
stimuli (‘cooked/baked’ food category) or low-calorie food stimuli (‘raw’ food
category). B The increase in self-reported alertness ratings (from ‘sleepy’ to ‘alert’)
before (‘pre’) and after (‘post’) the wheel of fortune served as amanipulation check
that the wheel of fortune generated an increase in arousal. C Second block in the
food task (post-arousal): the emotional arousal manipulation shifted the group-
specific food bias in reward learning, such that the HED group performed better
when low- (versus high-) calorie stimuli weremore rewardingwhereas the opposite
was true for the LED group.D–I Behavior in (A–C) divided by individuals with high

and low interoceptive awareness. Interoceptive awareness predicted initial food
biases, such that (D) participants with lower interoceptive awareness showed the
overall group-specific food bias immediately while (G) those with higher inter-
oceptive awareness demonstrated the opposite pattern. E,H Lower interoceptive
awareness predicted lower overall alertness ratings. F, I The emotional arousal
manipulation had a greater impact on individuals with higher interoceptive
awareness by flipping their initial food biases to the overall (and replicated)
pattern. A reinforcement learning model that included group-specific food biases
for the initial values (pre-existing preferences for the food categories) and
category-specific learning rates for positive outcomes reproduced the pattern of
behavioral results. Diamond points indicate average model predictions from the
best-fitting model across participants. Error bars represent the standard error of
the mean.
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Fig. S9). We next focused on which of these parameter distributions
reflected significant differences between groups (where the 95% con-
fidence interval did not span 0; Fig. 4B–G).

During the first learning block of the food task (pre-arousal), the
HED group had higher initial values for the low- (versus high-) calorie

food category (Fig. 4B). This points to apre-experimentalpreference in
the HED group for low- versus high-calorie food (or, equivalently, an
aversion against high- versus low-calorie food relative to the LED
group). HED participants also demonstrated higher (‘positive’) learn-
ing rates for positive prediction errors in general (irrespective of high-
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Table 1 for parameter values), ‘M0’: base model, standard Q-learning model; ‘M1’:
base model adding a reward-sensitivity parameter; ‘M2’: base model adding dif-
ferent learning rates for positive and negative prediction errors; ‘M3’: base model
adding a choice persistence parameter for a particular category; ‘M4’: base model
with fit initial values for each food category; ‘M2+M4’: model that includes the
asymmetric learning rate (M2) and initial value (M4) components; ‘group-differ-
ence + M2 +M4’: best-fitting model that includes group-difference parameters
(high eating-disorder ‘HED’ versus low eating-disorder ‘LED’ group) in the positive
learning rates (M2) and in the initial values (M4) of the food categories (fit sepa-
rately for each learning block). B–G Group-difference (HED versus LED) parameter

distributions for the best-fitting model; y-axis indicates density. Parameters were
considered significant if their 95% confidence interval did not span 0 (dotted line).
In thefirst learningblockof the food task (pre-arousal, top row), (B) HEDhadhigher
initial values for low- (versus high-) calorie food stimuli and (C, D) higher positive
learning rates across food categories (low andhigh calorie). However, in the second
learning block of the food task (after the emotional arousal manipulation, bottom
row), group differences in (E) initial values for the food categories and (F) positive
learning rate for low-calorie stimuli no longer passed significance. Nevertheless, (G)
HED’s positive learning rates for high-calorie food shifted to be lower than that
estimated for LED after the emotional arousal manipulation. This change was
specific to high-calorie foods (not low-calorie foods) and accounted for the beha-
vioral pattern of food biases in the second block of the food task.
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or low-calorie food category; Fig. 4C, D). Further corroborating this
finding, we also found higher positive learning rates in the HED (versus
LED) group before the emotional arousal manipulation in the control
task (SI 4.1, Fig. S7C; no group differences in any other parameter,
Fig. S7B, D). This finding indicates greater HED sensitivity (updating
values more) for outcomes associated with positive prediction errors
than the LED group. To note, these group differences in the first block
led to similar overall behavior across groups (Fig. 3A), suggesting that
interactions between initial values and learning rates produced beha-
vioral patterns that obfuscated group differences.

After the emotional arousal manipulation in the second block of
the food task, overall group-specific foodbiasesmore clearly emerged.
In the model, this pattern was supported by a striking change in HED’s
positive learning rate for high-calorie food (but not low-calorie food),
whichwas now significantly lower than the LED group (Fig. 4G). That is
to say, individuals in the HED group were less sensitive to positive
outcomes associated with high-calorie food items compared to the
LED group. This relative group shift in the positive learning rate for
high-calorie stimuli enabled the model to capture post-arousal food
biases wherein the HED group learned to associate reward better with
low- versus high-calorie food, and vice-versa for the LED group
(Fig. 3C). Group differences in the initial values and positive learning
rate for low-calorie stimuli were no longer significant (Fig. 4E, F). In the
control task, there were no longer any group differences in fit para-
meters after the emotional arousal manipulation, including that for
positive learning rates (Fig. S7E–G). These results suggest that the
emotional arousal manipulation selectively decreased positive learn-
ing rates for high-calorie food in the HED (relative to the LED) group.

Binge-eating behavior predicted an attenuated change in
food bias
Given the potential heterogeneity of our non-clinical HED sample, we
evaluated individual differences in eating disorder symptoms and
behaviors in an exploratory analysis (for statistical approach, see SI
1.3). While we did not find any of the tested variables to exert inde-
pendent effects on learning performance, individual differences in
binge-eating behavior interacted with emotional arousal effects to
predict food-reward biases.

Specifically, we found that greater binge-eating behavior in HED
participants (reported in the last 6 months; EAT-26 questionnaire33)
predicted less of a post-arousal change in reward bias in the food task
(mixed-effects logistic regression predicting correct choice as a func-
tion of a three-way interaction between reward category, arousal
block, and the amount of binge behavior, Β = −0.25, z = −3.41,
p <0.001; M = −0.26 [−0.41, −0.11]; Fig. 5). In other words, binge-eating
behavior was associated with a relatively weaker reward bias for low-

calorie food and a higher reward bias for high-calorie food compared
to HED participants who did not report binge eating. This result sug-
gests that binge eating may be less predictive of the food bias for low-
versus high-calorie stimuli than other symptoms of anorexia and/or
bulimia. Binge-eating disorder can moreover underlie the rapid con-
sumption of high-calorie food34. While we did not explicitly recruit
participants with binge-eating disorder, comorbid symptoms in our
study suggest different reward associations than that for anorexia and
bulimia, potentially including less avoidance of high-calorie food.

Explicit food ratings
After the reward learning task, participants explicitly evaluated a
subset of high- and low-calorie food items on healthiness, liking, and
calorie amount. Participants in the HED group rated high-calorie food
as less healthy and low-calorie food as healthier than the LED group
(mixed-effects linear regression predicting health ratings as a function
of the interaction between group and food category, Β = −0.27,
t = −3.34, p <0.001; M= −0.27 [−0.43, −0.10]). We also found that HED
participants were less likely to underestimate the number of calories in
high-calorie food (relative to low-calorie food) than LED participants
(mixed-effects linear regression predicting calorie accuracy as a
function of the interaction between group and food category, Β =
116.22, t = 3.46, p <0.001; M= 116.54 [49.65, 185.30]). This result is
consistent with findings demonstrating greater knowledge of calorie
content in eating disorders35. Despite these group differences in health
judgment and calorie accuracy, we did not find the HED and LED
groups to differ in explicit food liking: low-calorie (raw) food was liked
less than high-calorie food across participants (mixed-effects linear
regression predicting liking ratings as a function of food category,
Β = −0.37, t = −5.25, p <0.001; M= −0.37 [−0.51, −0.24]), with no sta-
tistically significant difference in this effect between groups (interac-
tion between group and food category, Β = −0.02, t = −0.17, p =0.868;
M= −0.03 [−0.31, 0.24]).

Discussion
Food plays a pivotal role in life, influencing a wide range of behaviors
including affective and cognitive processes not directly related to
eating. In this study, we examined whether and how innate or learned
biases for food modulate general reward learning mechanisms in
participants with high (‘HED’) and low (‘LED’) eating-disorder symp-
toms. Given the impact of emotional arousal on dietary behaviors and
goal-directed actions, we also included an emotional arousal manip-
ulation where participants either won or lost a spin on a wheel of
fortune. While participants in the LED and HED groups performed
equally well in the reward learning task, we identified and replicated a
food-related bias: the HED group was biased to associate low- (versus
high-) calorie food with reward, performing better when the under-
lying reward category was represented by low-calorie stimuli (‘raw’
food category). In contrast, the LED group was biased to associate
high- (versus low-) calorie food with reward, performing better when
high-calorie stimuli (‘cooked/baked’ food category) represented the
underlying reward category. An emotional arousal manipulation
modulated these group-specific food biases regardless of valence (win
or loss). Individual differences in the ability to perceive and interpret
arousal—interoceptive awareness–further predicted this change.
Lastly, computational modeling of choice behavior emphasized the
role of pre-experimental (innate or learned) food values and learning
rates for positive (prediction-error) outcomes in driving the observed
food biases in reward learning.

Eating behavior holds special reigns in recruiting goal-directed
and habit-learning systems as a primary reinforcer.Maladaptive eating
patterns, across restricted and unrestricted eaters, have been asso-
ciated with the greater use of habit-learning mechanisms in behavior
and in the brain8,12,13,36. In the current paradigm, the task goal was to
select the category associated with a higher probabilistic reward.
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Fig. 5 | Learning performance in participants with high eating-disorder symp-
toms (‘HED’ group) who self-reported binge eating versus not.HEDparticipants
who reported binge-eating behavior in the last 6 months, relative to those who did
not, showed a smaller post-arousal shift in the HED bias for low- (versus high-)
calorie food. Error bars represent the standard error of the mean.
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Images of high- and low-calorie food stimuli tested whether food
preferences would elicit habit- or Pavlovian-like biases on behavior
thatmay competewith goal-directed choice. Across ourpilot study (no
emotional arousal manipulation) and main study (with an emotional
arousal manipulation), we replicated such food biases on reward
learning. Consistent with work demonstrating attentional and moti-
vational preference for high-calorie food in typical eaters2,3—a putative
marker of adaptive evolution—LED participants performed better
when high-calorie stimuli generated more reward. On the other hand,
HED participants, potentially having learned to associate high-calorie
food with punishment and low-calorie food with reward, performed
better when low-calorie stimuli were more rewarding. In other words,
the congruence of innate or learned reward associations with goal-
directed action predicted learning performance across groups.

These food-reward associations further interfered with goal-
directed behavior, indicating the potential benefit of treatment that
targets habit-related, reward-learning systems. Previous interventions
include goal-directed strategies, which can alter food decisions by
regulating focus; for example, attending to the ‘health’ or ‘tastiness’ of
food can shift choice in the goal-consistent direction37–39, while
focusing on the ‘positive’ or ‘negative’ outcomes of consuming food
can increase or decrease food craving, respectively40. Whether these
goal-directed strategies are effective for those with eating disorders is
unclear. Our results encourage future studies to test interventions that
target pre-experimental habits41, which, although less flexible to
change, may support long-term behavior modification. Improved
decision-making in anorexia nervosa is indeed related to reduced use
of habit-related regions in the brain42.

Emotional events can further modulate internal physiological
states and shift our decisions16. Interoception, the ability to perceive
and interpret such internal signals, including hunger, satiety and
general arousal, is impaired across eating disorders, potentially facil-
itating maladaptive eating behaviors21,23. In our pilot sample, we found
HED participants to self-report generally lower arousal ratings, indi-
cating potentially reduced interoception. We did not replicate this
finding, possibly due to differences in the LED samples between stu-
dies. In ourmain study, but not the pilot study, all LED participants had
self-reported at least one non-eating-related psychiatric disorder (to
match the psychiatric comorbidities in our HED sample), which also
predicts increased interoceptive dysfunction43. Instead, we found that
individual differences in interoceptive awareness (across groups)
predicted initial food biases aswell as their change after the emotional
arousal manipulation. Participants with lower interoceptive awareness
immediately showed the overall group-specific food bias, which did
not change after the emotional arousal manipulation. On the other
hand, participants with higher interoceptive awareness initially
showed a flipped learning pattern, wherein the HED group demon-
strated a food bias for high- (instead of low-) calorie food and vice-
versa for the LED group, indicating a reversal of potentially maladap-
tive (to HED or LED) food-reward associations. The emotional arousal
manipulation however shifted these flipped biases to the overall
replicated pattern. This underscores interoceptive awareness as a
possible intervention while also highlighting the challenge posed by
emotional arousal. Note that the overall pattern of group-specific food
biases was immediately apparent in the pilot study, perhaps indicating
that the pilot sample may have included more participants with lower
interoceptive awareness. Furthermore, in an exploratory analysis, we
found that certain components of interoceptive awareness25 – related
to actively engaging with and trusting physiological and emotional
signals from the body—predicted this effect (but not the ability to
simply notice body signals or regulate negative emotional states).
Body mistrust has in fact been proposed as the core mechanism
through which low interoception drives eating disorder behavior44,
including suicidal ideation45. Our findings suggest the possibility that
interventions promoting active listening and trusting of internal,

bodily signals may help reverse learned and potentially harmful food-
reward associations46. While heightened emotional arousal may tem-
porarily disrupt this process, we speculate that emotional arousal may
also make underlying food-reward associations more labile to change
during interventions. Future research should formally test such
interventions.

Moreover, while group-level food biases in the main study only
fully emerged after the emotional arousal manipulation, the results of
computational modeling point to cognitive components that differed
between groups even before emotional arousal. Capturing dynamics
of trial-by-trial behavior enabled a more fine-grained and mechanistic
interpretationofwhat, if anything, is drivingdifferent groupbehaviors,
an approach fueling the burgeoning field of computational
psychiatry47,48. Results of the best-fitting computational model indi-
cated that decision-making across tasks was guided by individual
variability in pre-experimental values for reward categories (‘initial
values’) as well as the extent to which those values were updated after
experiencing a rewarding or disappointing outcome (‘positive and
negative learning rates’, respectively). Adding group-level difference
parameters to the initial values and positive learning rates improved
model fit in both the control and food tasks, although model fitting of
the food task further benefited from group differences applied to
category-specific parameters (for high- and low-calorie food).

We found higher initial values for low-calorie stimuli in the HED
(compared to LED) group during the pre-arousal block, pointing to
pre-experimental, potentially habit- or Pavlovian-like, reward associa-
tions with low-calorie food and/or avoidance of high-calorie food14.
Group differences in the positive learning rates for high- and low-
calorie food (fit separately), represented the extent to which a better-
than-expected outcome amplified or diminished value updating of
either food category (similar to a confirmation-bias model49). In the
pre-arousal blocks,HEDparticipants exhibited higher positive learning
rates across food (and control) categories, demonstrating greater
value updating or sensitivity to outcomes that were better than
expected (for further discussion, see SI 4.1). We did not find group
differences for negative learning rates, i.e., when outcomes dis-
confirmed expectations. Despite these model-estimated differences
before the emotional arousal manipulation, there were no overall
group differences in raw or model-generated behavior, pointing to
how averaged data can mask group differences in trial-by-trial
dynamics.

After the emotional arousalmanipulation, therewas a specific and
marked group shift in the strength of positive learning rates for high-
calorie stimuli. Here, HED (compared to LED) participants updated
their values less for high-calorie, but not low-calorie, stimuli after
experiencing outcomes that were better than expected. In other
words, the emotional arousal manipulation modulated food biases by
shifting learning away from positive outcomes associated with high-
calorie stimuli in the HED, relative to the LED, group. No other group-
difference parameters were significant after the emotional arousal
manipulation (including the control task), showcasing the specificity of
arousal-related effects. This finding suggests greater avoidance of
high-calorie stimuli, putatively strengthened by emotional arousal, in
our HED sample.

Although heightened emotional arousal can sometimes help or
hurt goal-directed performance50, we did not find our manipulation to
significantly influence learning performance overall. Instead, the
emotional arousal manipulation brought out more habit-like behavior
in both groups, advantaging learning for stimuli consistent with pre-
experimental reinforcement across individual differences (such as
interoceptive awareness). We further did not find the valence of the
emotion (win or loss) to significantly modulate choice behavior, sug-
gesting global arousal effects rather thanmood-congruent effects that
dependonpositive or negative emotion. Nevertheless,we did find that
the loss condition led to a larger self-reported change in happiness

Article https://doi.org/10.1038/s41467-025-57872-w

Nature Communications |         (2025) 16:2938 8

www.nature.com/naturecommunications


ratings, indicating that a lossmayhave hada greater impact than awin,
in line with previous literature51. While this difference did not sig-
nificantly influence subsequent learning, it may also be because our
between-subjects design for the wheel-of-fortune manipulation was
underpowered to detect potential differences. Future work could
moreover examine how different magnitudes and durations of nega-
tive versus positive emotionmay prompt distinct food biases in typical
and disordered eaters.

Given the strong negative associations with high-calorie food in
anorexia and bulimia nervosa,we further investigatedwhether specific
eating disorder behaviors may predict this avoidance. In an explora-
tory analysis, we examined the influence of restraint, binge, and purge
behaviors in the last 6 months. Binge-eating predicted relatively less
avoidance of high-calorie stimuli after the emotional arousal manip-
ulation, which may indeed be a distinguishing factor of binge-eating
disorder where food is rapidly consumed in large quantities versus
anorexia and bulimia nervosa, where food is often abstained from or
purged34. Future investigations could examine how emotional arousal,
including physiological measures of arousal, may interact with food
biases to predict actual eating behavior in disorders characterized by
restrictive versus binge-type eating.

We lastly compared the potentially implicit foodbiases in our task
to explicit ratings of high- and low-calorie food. We found the
observed pattern reflected in judgments of health, but not liking. This
finding may be inconsistent with anorectic patients’ diminished per-
ception of ‘tastiness’ for high-fat food12. Nevertheless, anorectic
patients – across restricting and binge/purge subtypes52—make deci-
sions based on health rather than tastiness12,13 suggesting that the food
biases observed in our task may be drivenmore by health associations
rather thanby liking. Regardless, research into the implicit and explicit
preferences for high- and low-calorie food has been proposed as a
promising avenue for understanding the trajectory of eating disorders
and developing targeted treatment for implicit reactions53.

While our investigation provides insight into the mechanisms
supporting food-reward associations in individuals with high and low
eating-disorder symptoms, it has limitations. One limitation of the
current study is that our HED group was not clinically evaluated, pre-
cluding the characterization of specific disorder as well as the stage of
disease or recovery. TheHED samples in our pilot andmain studywere
selectedbased onhigh EDE-Q scores (minimumof 3), indicating severe
eating disorder symptoms54. Our main study sample was further dis-
tinguished by a self-reported history of anorexia nervosa and/or buli-
mia nervosa (113 out of 138 participants reported a history of anorexia
nervosa). Nonetheless, our HED group represented a range of eating
disorder symptoms andbehaviors,whichwe identified and tested in an
exploratory analysis. While these individual differences in our HED
sample did not undermine our group results, a larger study recruiting
clinically well-characterized participants for particular eating disorder
behaviors may reveal relevant distinctions in food biases (such as
binge-eating disorder). Additionally, our online HED sample self-
reported a relatively high average weight status (as assessed by body
mass index, BMI), which is unusual for anorectic patients55. There has
however been a rise in even anorectic patientswith higher BMI56, which
has called into question the utility of BMI as a marker of disease
severity57. Higher BMI has in fact been associated with stronger eating
disorder symptoms as measured by the EDE-Q58, which we also found
in our sample. To address this concern, we ensured consistency in self-
reports between the screener and main study, although we acknowl-
edge that self-reported BMI may not always be accurate59. We further
included BMI as a nuisance variable in statistical models and did not
find BMI to significantly modulate our effects of interest (all ps > 0.05;
for analysis, see SI 1.4). Future studies should replicate our key findings
in clinically-evaluated samples where BMI, body composition, and
food consumption can be more directly assessed (controlling for self-
report biases).

That being said, we did replicate an overall food bias in our HED
sample across two independent studies, in line with our preregistered
hypothesis. Notably, both studies varied regarding numerous factors
(e.g., recruitment from different online platforms, male/female parti-
cipation, emotional arousal manipulation, trial structure, etc.),
demonstrating the robustness of the bias. Moreover, the results held
whenwecontrolled for and separately evaluated individual differences
in self-reported eating disorder (anorexia nervosa, bulimia nervosa, or
both), BMI, diagnostic history, psychotropic medication as well as
specific eating disorder symptoms and behaviors. Altogether, our
findings show how food-reward associations and emotional arousal
may interfere with goal-directed action in people with low or high
eating-disorder symptoms, highlighting potential cognitive targets for
treating maladaptive eating behaviors.

Methods
Pilot study and preregistration
To address our research goals, we implemented a two-step approach.
We first conducted a behavioral pilot study using our paradigm (for
details, see Supplementary Information SI 5). We found female and
male HED participants (n = 108) to show a food bias for low-calorie
food, performing better when the low- versus high-calorie food cate-
gory was more rewarding, whereas female and male LED participants
(n = 119) showed the opposite bias (mixed-effects logistic regression
predicting correct choice as a function of the interaction between
group and reward category, Β = −0.33, z = −3.71, p <0.001; M= −0.33
[−0.50, −0.15]; SI 5.2 and Fig. S10A). In the pilot study, we also tested
the emotional arousal manipulation (wheel of fortune) in a separate
session (independent from the reward learning task, and different
from our main study). HED participants self-reported overall
lower arousal ratings (mixed-effects linear regression predicting rat-
ings as a function of group, Β = −0.38, t = −3.24, p = 0.00138; M= −0.37
[−0.60, −0.15]; SI 5.3 and Fig. S10C) as well as a steeper change across
the emotional arousal manipulation (SI Fig. S10C), indicating poten-
tially distinct interoceptive processing. We preregistered60 these two
findings as hypotheses to replicate in our main study. In the main
study, we further examined the impact of the emotional arousal
manipulation and individual interoceptive awareness on group-
specific food biases.

Participants
The study protocol was approved by Caltech’s Institutional Review
Board (IR20-1051), and all participants provided informed consent
prior to beginning. We preregistered the main study on June 10, 2022
(https://osf.io/yp6na) and report all deviations in SI 5.4. To recruit our
low eating-disorder (‘LED’) and high eating-disorder (‘HED’) symptom
groups, we administered a screener to 4000participants on the online
platformProlific (half self-reported female (2000), 18–50years old; for
further detail, see SI 1). The screener included the EDE Questionnaire
(EDE-Q61), which asked participants to rate the frequency of eating
disorder symptoms and behaviors from 0 (‘No days’) to 6 (‘Every day’)
as well as self-reports of eating-related and non-eating-related psy-
chiatric disorders.

Consistent with the selection method outlined in our
preregistration60, for our HED group, we invited participants who
scored at least 3—above the clinical cutoff of 2.854 on the global mea-
sure of the EDE-Q—andwho self-reported histories of anorexia nervosa
across its subtypes, including the binge/purge subtype, and bulimia
nervosa, given similarities in food preference and potential diagnostic
overlap52,62. For our LED group, we invited participants who scored less
than 1.5 on the EDE-Qanddidnot report current or past histories of any
eating disorder. Additionally, all participants must have correctly
answered all attention checks, which were items randomly inserted
within four questionnaires that asked participants to press a particular
response63, leading to the exclusion of 414 participants.
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Based on the above criteria, we invited a total of 1003 participants
to take part in our reward-learning paradigm one week later, and 575
completed our study. In line with our preregistration, we excluded
participants who missed more than 5% of the decision-making trials
and/or failedmore than two attention checks in the questionnaires.We
also excluded participants who reported an inconsistent height and
weight (used to calculate BMI) between the original screener and the
experiment, meaning their self-reported height could not have devia-
ted more than one inch (in the present sample, 8% of participants
reported at most a one-inch difference) and their self-reported weight
could not have deviated more than 15 pounds (in the present sample,
90% of participants reported a fluctuation of less than five pounds).

While we initially recruited an even number of participants based
on sex assigned at birth, the majority of participants who qualified for
the eating disorder groupwere female (138 out of 165). Due to this low
sample of male participants in the HED group (statistically under-
powered to detect effects, see SI 1.1), we excluded male participants
from both groups. We further matched the HED group (n = 138) with
participants from the LED group (n = 141) based on age, education, and
self-report of at least one non-eating-related psychiatric disorder
(given comorbidities in eating disorders). We did not find any non-
eating-related psychiatric disorder to significantly predict group-
specific food biases (SI 1). We were not able to match on BMI (BMI
was tested and controlled for across all analyses with no statistically
significant effects, see SI 1.4). For characteristicsof thefinal sample, see
SI 1 and Table S1.

While our heterogeneous HED sample is defined by disordered
eating rather than clinically-diagnosed eating disorders, self-reported
histories of anorexia (n = 113) or bulimia (n = 84; 59 indicating both)
along with active eating disorder symptoms, suggest that HED parti-
cipants may have developed food-reward associations similar to those
observed in clinical populations. Moreover, the heterogeneity of a
large online sample enabled us to examine whether specific eating
disorder symptomsandbehaviors predicted task outcomes (SI 1.3).We
checked for differences in behavior between self-reported eating dis-
order, diagnostic history, current psychotropic medication, as well as
current eating disorder behaviors (e.g., restraint, binge, and purge
behaviors; for HED sample characteristics and analysis, see SI 1.3).
These exploratory analyses did not find any variable related to eating
disorder symptoms and behaviors to exert significant, independent
effects on learning performance, nor did any subgroup exhibit a dif-
ferent pattern of results. However, in supplementary post-hoc ana-
lyses, we found individual differences in binge eating to interact with
the change in food bias across the emotional arousal manipulation,
which we report as an exploratory finding in the manuscript.

Procedure
Participants in the main study completed three sections: (1) reward-
learning task (Figs. 1), (2) eight short questionnaires evaluating eating
behaviors and mental health (SI 1.2), and (3) assessment of a selection
of food stimuli on health, liking, and calorie accuracy (participants
were not aware of these assessmentswhen they completed the reward-
learning task). The online study took, on average, 40min to complete,
and participants were paid a rate of $15 per hour.

Reward learning task
The probabilistic learning task consisted of six blocks in the following
order: (1) practice block, (2–3) two learning blocks (one of the ‘food
task’ and one of the ‘control task’), (4) wheel-of-fortune emotional
arousal manipulation (win or loss), and (5–6) two post-manipulation
learning blocks (one per food and control task; Fig. 1B). Across parti-
cipants, we counterbalanced three task elements: (1) the order of the
food and control tasks, (2) whether the wheel of fortune resulted in a
win or a loss, and (3) which stimulus category was initially more
rewarding in each block, leading to a total of 8 configurations. The

trial-unique food and scene stimuli were randomly selected on each
trial (each item only appeared once in the reward-learning task; for
stimuli information, see SI 2). Food stimuli were selected from the
‘Food-Pics_Extended’ database64 and the scene stimuli were selected
from the SUN database65 (SI 2).

Participants were instructed to learn which of two categories on a
trial (represented by two stimuli displayed on the screen) was more
rewarding through trial and error; they chose one stimulus and
received feedback about the outcome (rewarded or not). During the
practice block (14 trials), participants were walked through the task,
made decisions between indoor and outdoor scenes (control task),
and experienced one ‘change-point’ event to the underlying reward
distribution. A change-point event indicated a reversal of the rewards
associated with each category, meaning the more rewarding category
became the less rewarding one. They had to correctly answer all
comprehension questions before moving on to the actual task.

Each learning block included either two food items as cate-
gories (‘food task’) or two scene categories (‘control task’;
Fig. 1A). One stimulus category was always more rewarding than
the other (75% versus 25% reward probability). The categories
were specified in the instructions but were not labeled on
decision-making trials. In the food task, the categories were raw
versus cooked/baked foods, which highly correlated with the
calorie content of the food and served as a cover story for low-
and high-calorie foods, respectively (high-calorie mean calories:
1208.14; low-calorie mean calories: 99.18). The categories in the
control task were indoor and outdoor scenes. Each learning block
consisted of 40 trials, and on trial 20, the reward categories
reversed (change-point). On each trial, participants had 5 s to
make a choice (‘1’) for the left category and ‘2’ for the right
category, or else they would miss the outcome on that trial;
category placement (left or right side of the screen) was rando-
mized. On average, participants missed less than 0.2% of trials.
The outcome of any trial was presented for 1 s and showed either
‘$0’ (‘not rewarded’) or ‘$10’ (‘rewarded’), a small proportion of
which participants were told they would receive (in reality, par-
ticipants received the same payment of $15/hour for this task
regardless of performance). Each trial was separated by a one-
second inter-trial-interval.

After two learning blocks, participants ‘spun’ a digital wheel of
fortune via a key press (emotional arousal manipulation). They were
told that the length of their press predicted the wheel’s outcome;
however, the outcome of the wheel (winning or losing $8) was pre-
determined. Participants were told the full $8 would be added or
removed from their earnings.

Additionally, throughout the learning task, participants rated
their current state on four measures: arousal (denoted as ‘alertness’ to
avoid semantic confusion and positive/negative connotations), hap-
piness, hunger, and thirst on Likert scales ranging from 1 through 6
(see SI 3.2 for further detail). Alertness and happiness ratings were
collected to verify changes induced by the emotional arousal manip-
ulation (see Results). We also checked for changes in thirst and hunger
ratings, which did not significantly change across task (see SI 3.2 and
Fig. S5 for visualization and analysis).

Food-stimuli ratings
After completing the questionnaires, participants rated a selection of
high and low-calorie food items, 20 from each category (40 in total).
They rated each food item (randomized order) on the perceived
healthiness on a 6-point scale ranging from 1 ‘very unhealthy’ to 6 ‘very
healthy’, and on how much they liked each food on a 6-point scale
ranging from 1 ‘dislike very much’ to 6 ‘like very much’. Participants
had a maximum of 10 s to answer. They next estimated the total
number of calories for 20 food items (10 low and 10 high-calorie items)
and had a maximum of 15 s to answer.
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Statistical approach
For repeated-measures statistical tests (all two-tailed), we usedmixed-
effects models (R package, lme466) and Bayesian multilevel modeling
(R package, brms67) to generate estimates and confidence intervals for
reported effects;M denotes themean of the posterior distribution and
the bracketed range denotes the 95% Credibility Interval (CI). We
considered an effect reliable if the Bayesian CI did not span 0. We
treated participants as a random effect for both the slope and the
intercept of each fixed effect. If the model did not converge due to
insufficient data in estimating parameters, we incrementally simplified
the random effect structure until convergence was achieved (the
simplest structure included participant intercept as a random effect).
To predict binary choice data in the reward-learning task, we ran
generalized linear mixed-effects logistic regression models (pooling
across reward change-points) and otherwise ran linear mixed-effects
regressionmodels. Datamet the assumptions of each statistical test. In
each model, we also statistically accounted for individuals’ BMI as a
nuisance variable, although we never found BMI to exert statistically
significant effects (see SI 1.4 for further detail).

Computational modeling
Model specifications. Our baseline model was a standard Q-learning
model26, where the value (‘Q’) of a chosen stimulus category (‘s’) is
updated during a trial (t) using the following equation,

Qs
t + 1 =Q

s
t +α rt �Qs

t

� � ð1Þ

a fit learning rate ðαÞ determines the extent to which the reward pre-
diction error on that trial (calculated by subtracting the value of that
category, Qs

t , from the reward outcome, rt) is used to change the value
of that category on the next trial. While outcomes were either a win
($10) or not a win ($0), we coded rt as 1 and −1, respectively. To note,
coding the reward omission as 0 rather than −1 is functionally
equivalent as the decision function relies on relative rather than
absolute values.

We modeled the probability of choosing a stimulus category
during a trial ðps

t Þ using a softmax function,

ps
t =

expðβQs
t ÞPs

i = 1 expðβQi
tÞ

ð2Þ

where the fit inverse temperature (β) governs the stochasticity in
choice.

We next investigated four potential processes that could support
participant-level biases within this standard reinforcement-
learning model:

(M1) Reward sensitivity (‘rs’): We implemented amodel where the
reward outcome was scaled by a parameter ðρÞ, capturing potential

differences in outcome sensitivity:

rt =ρ � rt ð3Þ
(M2) Asymmetric learning-rate: We tested whether positive and

negative reward prediction errors may have an asymmetric effect on
learning rate. In this model, separate learning rates were fit when the
reward prediction error was positive ðα+ Þ and negative ðα�Þ:

αt =
α+ , ifðrt �Qs

t Þ≥0,
α�, ifðrt �Qs

t Þ<0:

(

ð4Þ

(M3) Choice persistence (‘cp’): In order tomodel the tendency for
participants to repeatedly choose a category (regardless of outcomes),
we fit a persistencemodel which bonused the value of a category ðϕÞ if
it had been chosen one trial back:

Qs
t =

Qs
t�1 +ϕ, if chosen t� 1,

Qs
t�1, if not chosen t� 1:

(

ð5Þ

(M4) Initial values: Given that preferences for high and low-calorie
food were established prior to this task, we included a model that fit
category values ðQ0Þ for the first trial of each block:

Qs
t =

Q0, if t = 1,

Qs
t , if t > 1:

�
ð6Þ

We tested each of these four components independently on
learning across the emotional arousal manipulation (food and control
task were modeled separately; food task: Table 1, Fig. 4A; control task:
SI 4.1, Fig. S7), and then ran models that included different combina-
tions of each (see ‘Model fitting and comparison’, below). We found
that a model including (M2) an asymmetric learning rate for positive
and negative prediction errors and (M4) initial values best fit choice
data overall.

We next investigated whether group-level difference parameters
(HED versus LED) for the components of the model (initial category
values and learning rates for positivepredictionerrors) improvedfit. In
the control task, group-difference parameters fit across the scene
categories (i.e., no group-specific scene bias) provided a better fit
(model predictions in Fig. 2; model fits in Fig. S7). In the food task, we
further found that adding category-specific group-difference para-
meters (for the high- and low-calorie food categories) better fit choice
data and predicted biased patterns of learning (model predictions in
Figs. 2, 3, model fits in Fig. 4A). Note that without comparing groups,
choice persistence may be equivalent to asymmetric learning rates in
this behavioral context68. However, allowing single parameters to
change in the asymmetric learning model captured group differences
better than choice persistence.

Table 1 | Parameters for base and best-fitting reinforcement learning models in the food task

learning rate (α) beta (β) # added parameters added parameter values

M0: base (Rescorla-Wagner) 0.44 3.04 baseline

M1: reward sensitivity 0.43 3.39 1 ρ = 0.96

M2: asymmetric learning rate α + = 0.81
α- = 0.33

2.91 1 (see α)

M3: choice persistence 0.56 2.22 1 φ = 0.44

M4: initial values 0.56 2.36 1 Q0 = −0.85

asymmetric learning rate (M2)
+ initial values (M4)

α + = 0.76
α- = 0.50

2.33 2 (see α)
Q0 = −0.67

asymmetric learning rate (M2)
+ initial values (M4)
+ group differences (by block)

α + = 0.72
α- = 0.50

2.37 8 (see α)
Q0 = −0.67
(see Fig. 3 for difference parameters)

Learning rate, beta and added parameter values indicate the means of the posterior distributions for that parameter in the corresponding model.
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Model fitting and comparison
We fit hierarchical reinforcement learningmodels to choice data using
Stan31, modeling the food and control tasks separately. Parameters
from Eqs. 1–6 were simultaneously fit at both the participant and
(across-group) population level using Hamiltonian Monte Carlo sam-
pling. Population-level parameters were drawn from normal distribu-
tions, and participant-level parameters were drawn from uniform
distributions that placed equal probability on all possible values
(through the Phi_approx function69). We report the population-level
(hyperparameter) distribution means of fit parameters in Table 1 and
include the distributions in SI Fig. S8. We ran each model 2000 itera-
tions (500 warmup) on 4 chains, and verified that there were no
divergences, a BFMI (Bayesian Fraction ofMissing Information) of ≥0.2
for all chains, R-hat values ≤ 1.01, and effective sample sizes≥400 for all
parameters70. If the number of effective sample sizes was too low, we
ran the model for 5000 iterations. All included models met these
diagnostic criteria. RStan scripts are publicly available: https://zenodo.
org/records/14676167.

To compare models, we computed the Widely Applicable (or
Watanabe-Akaike) Information Criterion (‘WAIC’32) for each mod-
el (Fig. 4A). The WAIC reflects a model’s out-of-sample predictive
performance bymeasuring the difference between the average log-
likelihood of a model for the observed data with the variance of
the average log-likelihood for simulated data drawn from the pos-
terior distribution. This approach is considered robust to over-
fitting as it adjusts for the effective number of parameters in the
model, accounting for model complexity. Lower scores indicate a
better fit.

We conducted checks on the best-fitting model, including pos-
terior predictive checks (model predictions in Figs. 2 and 3) and
parameter recovery, see SI 4.3 and Fig. S9.

Group-difference parameters from best-fitting model
We added group-difference parameters to the two components of
the model (initial category values and positive learning rate) on each
learning block (pre- and post-arousal); food task: Fig. 4B–G, control
task: Fig. S7B–G. For the food task, group-difference parameters
were fit on low (versus high) initial Q-values (2 parameters in total, 1
for each block), and were fit separately on positive learning rates for
high- and low-calorie food stimuli (4 parameters in total, 2 for each
block). Note that fitting group-difference parameters on negative
learning rates did not improve fit and were not included in the win-
ning model. For the control task, group-difference parameters were
fit on overall (rather than category-specific) parameters, as we did
not expect nor find group biases for scene categories (for model
fitting and comparison to the control task, see SI 4.1 and Fig. S7). We
considered parameter distributions to reflect significant differences
between the HED and LED groups only if their 95% confidence
interval did not span 0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All (de-identified) data used in this study are available71: https://
zenodo.org/records/14676167.

Code availability
All code (and data) to reproduce statistical results and figures are
available71: https://zenodo.org/records/14676167.
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