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Efficient and accurate framework for
genome-wide gene-environment interaction
analysis in large-scale biobanks

Yuzhuo Ma1, Yanlong Zhao2,3, Ji-Feng Zhang2,3 & Wenjian Bi 1,4,5,6

Gene-environment interaction (G×E) analysis elucidates the interplay between
genetic and environmental factors. Genome-wide association studies (GWAS)
have expanded to encompass complex traits like time-to-event and ordinal
traits, which provide richer phenotypic information. However, most existing
scalable approaches focus only on quantitative or binary traits. Here we pro-
pose SPAGxECCT, a scalable and accurate framework for diverse trait types.
SPAGxECCT fits a genotype-independent model and employs a hybrid strategy
including saddlepoint approximation (SPA) for accurate p value calculation,
especially for low-frequency variants and unbalanced phenotypic distribu-
tions.We extend SPAGxECCT to SPAGxEmixCCT, which accounts for population
stratification and is applicable to multi-ancestry or admixed populations.
SPAGxEmixCCT can further be extended to SPAGxEmixCCT-local, which identifies
ancestry-specific G×E effects using local ancestry. Through extensive simula-
tions and real data analyses of UK Biobank data, we demonstrate that
SPAGxECCT and SPAGxEmixCCT are scalable to analyze large-scale study cohort,
control type I error rates effectively, and maintain power.

Gene-environment interaction (G×E) refers to the interplay effect of
genetic and non-genetic factors on complex traits. Conducting
genome-wide G×E analyses contributes to identifying genetic variants
whose genetic effects are dependent on environmental conditions.
Although holding promising applications in precision medicine1,
genome-wide G×E studies require larger sample sizes than regular
GWAS for identifying marginal genetic effects, which greatly limits
potential discoveries2–10. Over the past decade, the emergence of
biobanks with hundreds of thousands of participants has motivated a
rapid growth of genome-wide G×E association studies11–15.

Most of G×E analysis approaches are designed for quantitative
or binary trait analysis, and are only applicable to a homogeneous
population. Wald test and likelihood ratio test require fitting full
models across the genome and thus are computationally intensive

when applied to a large-scale study cohort16,17. Recently, scalable
methods such as fastGWA-GE14, GEM13, and SPAGE12 have been pro-
posed. As an extension of fastGWA, fastGWA-GE is developed for
quantitative trait analysis. GEM can be applied to analyze binary traits
but cannot control type I error rates in the presence of case-control
imbalance13. SPAGE is a scalable and accurate method to analyze
binary traits, in which a matrix projection is used to exclude the
marginal genetic effects from G×E effect. SPAGE incorporates sad-
dlepoint approximation (SPA) and thus is accurate to analyze low-
frequency and rare variants even if case-control ratios are unba-
lanced. However, these approaches are only applicable to analyze
quantitative or binary traits. Additionally, when analyzing a hetero-
geneous or admixed population, the scalable methods mentioned
above have not been fully evaluated. There is still a lack of scalable
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G×E analytical frameworks for within-individual variability or diver-
sity populations10.

With the advances in electronic health records (EHR), the
response variables in GWAS have extended to complex traits with
more intricate structures beyond quantitative and binary traits. For
example, a time-to-event trait contains information not only whether
an event occurred but also when the event occurred18–21. An ordinal
trait is an extension of a binary trait to measure more than two
conditions22–26. Despite these traits can embed richer phenotypic
information, the proper tools for large-scale G×E analysis remain
relatively scarce. R package gwasurvivr can be applied forG×E analyses
of time-to-event traits but is not scalable to analyze a large-scale study
cohort due to its low computation efficiency27. Two-step methods can
reduce computation time but the variants with G×E effect could be
excluded in the screening step28,29. An alternative approach is to con-
vert the traits to quantitative or binary data, followed by G×E analysis
using existing methods22. Although effective, this strategy may lead to
reduced phenotypic information and thus statistical power. In general,
a scalable and accurate G×E analytical framework applicable to a wide
variety of complex traits are urgently needed.

Population stratification and admixture can result in inflated type
I error rates if not properly controlled30. This issue is particularly cri-
tical in large-scale biobank data analyses, in which the inclusion of
diverse ancestries or admixed populations is common31–33. It is crucial
to conduct G×E analyses on diverse or admixed populations. For G×E
analyses, the ancestry-specific diversities can manifest in the dis-
tribution of genotypes (e.g., minor allele frequency, MAF), environ-
mental factors of interest, and phenotypes (e.g., case-control ratios or
event rates)10. Due to these complex patterns, incorporating SNP-
derived principal components (PCs) as covariates may not be suffi-
ciently accurate. Moreover, sample relatedness is another major con-
founder that could inflate type I error rates if not properly
accommodated. Additionally, unbalanced phenotypic distributions
are frequently observed in biobanks. Examples include low case-
control ratios for binary traits, low event rates for time-to-event traits,
and unbalanced ratios for ordinal traits. Ignoring these features can
lead to inaccurate analyses, especially for low-frequency and rare
variants. This has been validated in previous studies for marginal
genetic effect18,25,34 and in SPAGE paper for G×E effect12. However, the
concerns related to population stratification, sample relatedness, and
unbalanced phenotypic distribution have not been fully addressed in
G×E analyses.

Recently, methods based on mixed effect model have been pro-
posed to address the issues related to population stratification or
sample relatedness in G×E analyses. Sul et al. proposed a linear mixed
model approach for quantitative trait analysis and suggested using an
additional kinshipmatrix to account for population structure on gene-
environment interaction (GEI) statistics35. fastGWA-GE is a fast and
powerful linear mixed model-based approach14. StructLMM is a
structured linear mixed model approach to identifying loci that
interact with one or more environments, while it cannot account for
sample relatedness36. LEMMA is a linear mixed model-based approach
based on a Bayesian whole-genome regression model for joint mod-
eling of main genetic effects and G×E interactions37. However, these
methods are based on linearmixedmodels and not directly applicable
to binary traits or other types of traits. GxEMM proposed a unifying
mixed model for G×E interaction, which has the ability to model both
quantitative and binary traits and is broadly applicable for testing and
quantifying polygenic interactions38. GxEMM can accommodate gen-
eral environments, noise heterogeneity, and modest sample size.
However, GxEMM is still computationally intensive. Consequently,
there exists an urgent need to develop scalable and accurate G×E
analytical frameworks that account for population structure or sample
relatedness, while also being applicable to a broader spectrum of
trait types.

Here, we propose a scalable and accurate analytical framework,
SPAGxECCT, for a large-scale genome-wide G×E analysis. SPAGxECCT
employs a retrospective strategy, which considers genotype as a ran-
dom variable and conducts association analysis conditional on phe-
notype, environmental factor, and other covariates. The retrospective
approaches are robust to model misspecifications and can be
straightforwardly applied to complex trait types, such as time-to-event
and ordinal traits39,40. Similar to SPAGE and GEM, SPAGxECCT fits a
covariates-only model and then uses a matrix projection to attenuate
the marginal genetic effect, which greatly reduces computational
burden across a genome-wide analysis. To calculate p values, a hybrid
strategy combining normal distribution approximation and SPA is
used to approximate the null distribution of test statistics. The precise
approximation ensures SPAGxECCT to outperform conventional
approaches, especially when testing low-frequency or rare variants in
the presence of unbalanced phenotypic distributions.

SPAGxECCT can be extended to SPAGxEmixCCT, an analytical fra-
mework robust to various patterns of ancestry-specific diversities, to
address population stratification and admixture in G×E analyses. In
addition, given local ancestry information, SPAGxEmixCCT can test for
ancestry-specific G×E effects, denoted as SPAGxEmixCCT-local. Cauchy
combination test (CCT) can combine p values fromSPAGxEmixCCT and
SPAGxEmixCCT-local to give a uniformly the most powerful testing in
analyses of admixed populations41,42. In addition, SPAGxECCT can be
extended to SPAGxE+, which can effectively accommodate sample
relatedness through leveraging genetic relationship matrix (GRM).

In this paper, we conducted extensive simulation studies to
evaluate SPAGxECCT, SPAGxE+, and SPAGxEmixCCT across various
traits, including binary, time-to-event, ordinal, and quantitative traits.
We applied SPAGxECCT, SPAGxEmixCCT, and SPAGxE+ to analyze time-
to-event and binary traits in UK Biobank. For the SPAGxECCT analyses,
281,299 White British (WB) individuals were included. For the
SPAGxEmixCCT analyses, 338,044 individuals from all ancestries were
included and more loci were additionally identified compared to the
analysis limited toWhite British individuals. For the SPAGxE+ analyses,
337,367 WB individuals with sample relatedness were included. We
demonstrated that the proposed methods are computationally effi-
cient to analyze large datasets with hundreds of thousands of indivi-
duals, can accurately control type I error rates while remaining
powerful to identify G×E findings.

Results
An overview of SPAGxECCT
SPAGxECCT is an analytical frameworkdeveloped forgenome-wideG×E
analyses in a large-scale study cohort. SPAGxECCT contains two main
steps (Fig. 1). In step 1, SPAGxECCTfits a covariates-onlymodel and then
calculates model residuals. The covariates include confounding fac-
tors such as age, genetic sex, SNP-derived principal components (PCs),
and environmental factors. The model specification and the corre-
sponding model residuals vary depending on the type of trait. In the
“Methods” section and Supplementary Note, we demonstrated
regression models to fit time-to-event traits, binary traits, and ordinal
traits, alongwith the correspondingmodel residuals. As the covariates-
only model is genotype-independent, the model fitting and residuals
calculation are only required once across a genome-wide analysis.

In step 2, SPAGxECCT identifies genetic variants withmarginal G×E
effect on the trait of interest. First, SPAGxECCT tests for marginal
genetic effect via score statistic ScG =

Pn
i = 1GiRi, where n is the number

of individuals, and Gi and Ri denote the genotype and model residual
for individual i, i≤n, respectively. If the marginal genetic effect is not
significant, we use SG× E =

Pn
i= 1ðGiEi � λGiÞRi as the test statistics to

characterize marginal G×E effect, where Ei, i≤n denote the environ-
mental factor and λ=

Pn
i = 1ðEiR

2
i Þ=

Pn
i= 1R

2
i . Otherwise, statistics SG× E is

updated to eSG× E =
Pn

i = 1GiEi
eRi where eRi, i≤n are genotype-adjusted

residuals.
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Step 2: Perform G E association test for each genetic variant
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Fig. 1 | Workflow of the SPAGxECCT framework. The SPAGxECCT framework con-
sists of two main steps: (1) fitting a genotype-independent model to calculate
residuals, and (2) computing test statistics based on p values for marginal genetic
effects and associating traits of interest with single genetic variant by approx-
imating the null distribution of test statistics. Leveraging a hybrid strategy

combining normal distribution approximation and saddlepoint approximation,
SPAGxECCT is scalable for analyzing large-scale biobank data and maintains high
accuracy for rare genetic variants, even under unbalanced phenotypic
distributions.
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In a retrospective context, SPAGxECCT treats the genotypes
Gi, i≤n as random variables and approximates the null distribution of
SG× E and eSG× E conditional on model residuals and environmental
factors. To balance the computational efficiency and accuracy,
SPAGxECCT employs a hybrid strategy to combine normal distribution
approximation and SPA to calculate p values, as in previous
studies12,19,34,43. For variants with significant marginal genetic effect,
SPAGxECCT additionally calculates p value through Wald test and then
uses Cauchy combination test (CCT) to combine p values from Wald
test and statistics eSG× E .

As an extension of SPAGxECCT, SPAGxEmixCCT is applicable to
individuals from multiple ancestries or multi-way admixed popu-
lations. SPAGxEmixCCT estimates individual-level allele frequencies
using ancestry PCs and raw genotypes. SPAGxEmixCCT can be
extended to SPAGxEmixCCT-local by integrating local ancestry
information. In addition, as an extension of SPAGxECCT, SPAGxE+ is
applicable to individuals with sample relatedness through incor-
porating a sparse GRM. Similar to SPAGxECCT, both SPAGxEmixCCT
and SPAGxE+ involve two main steps including genotype-
independent model fitting and testing marginal G×E effects. More
details can be found in the “Methods” section and Supplementary
Note. A summary of existing G×E methods and those proposed in
this work in terms of their key features is presented in Supple-
mentary Table 1.

Association analysis in the UK Biobank data
We applied SPAGxE-based approaches to conduct genome-wide G×E
analyses in which 281,299 White British individuals were included. We
highlighted four combinations of environmental factors and time-to-
event phenotypes: genetic sex and cardiac dysrhythmias (CDR, event
rate in WB=9.06%), genetic sex and colorectal cancer (event rate in
WB= 1.86%), smoking status and chronic airway obstruction (CAO,
event rate in WB= 4.03%), and smoking status and pulmonary heart
disease (PHD, event rate in WB= 1.55%).

We compared four proposed methods including SPAGxE,
SPAGxEWald, SPAGxECCT, and NormGxE. When marginal genetic effect
p value is not significant, SPAGxE, SPAGxEWald, and SPAGxECCT are
exactly the same, following strategies of matrix projection and a
combination of normal distribution approximation and SPA to calcu-
late p values. Otherwise, to test for marginal G×E effects, SPAGxE only
uses eSG× E , SPAGxEWald only uses Wald test, SPAGxECCT uses Cauchy
combination test to combine two p values from Wald test and eSG× E .
NormGxE only uses normal distribution approximation without SPA.
TheManhattanplots andQQplots for the above four combinations are
presented in Fig. 2, and QQ plots stratified by MAF are presented in
Fig. 3. NormGxE cannot control type I error rates and identified a
significant number of spurious loci, mostly low-frequency and rare
variants (MAF < 0.05), especially when analyzing traits with low event
rate. In contrast, SPAGxE, SPAGxEWald, and SPAGxECCT can well control
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a. Genetic Sex vs Cardiac Dysrhythmias (event rate in WB is 9.06%)
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c. Smoking Status vs Chronic Airway Obstruction (event rate in WB is 4.03%)
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Fig. 2 | Manhattan plots and quantile-quantile (QQ) plots for genome-wide G×E
analyses of four combinations of environmental factors and time-to-event
traits. Manhattan plots display the results of genome-wide analyses using
SPAGxECCT, SPAGxE, SPAGxEWald, and NormGxE for four combinations of envir-
onmental factors and time-to-event traits: a genetic sex and cardiac dysrhythmias
(event rate inWhite British: 9.06%), b genetic sex and colorectal cancer (event rate
inWhiteBritish: 1.86%), c smoking status and chronic airwayobstruction (event rate

in White British: 4.03%), and d smoking status and pulmonary heart disease (event
rate in White British: 1.55%). e Corresponding QQ plots for genome-wide G×E
analyses of the four combinations of environmental factors and time-to-event traits
shown in a–d. The QQ plots are color-coded based on methods used (SPAGxECCT,
SPAGxE, SPAGxEWald, and NormGxE). The red line indicates the genome-wide sig-
nificance level of α = 5 × 10�8. Genome-wide analyses included 281,299 individuals
of White British ancestry. Tests conducted in the analysis were two-sided.
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Fig. 3 | Quantile-quantile (QQ) plots for genome-wide G×E analyses of four
combinations of environmental factors and time-to-event traits, with genetic
variants grouped based on minor allele frequency (MAF). QQ plots display the
results of genome-wide analyses using SPAGxECCT, SPAGxE, SPAGxEWald, and
NormGxE for four combinations of environmental factors and time-to-event traits:
a genetic sex and cardiac dysrhythmias (event rate in White British: 9.06%),
b genetic sex and colorectal cancer (event rate in White British: 1.86%), c smoking

status and chronic airway obstruction (event rate in White British: 4.03%), and
d smoking status and pulmonary heart disease (event rate in White British: 1.55%).
QQ plots are color-coded based on minor allele frequency categories. Genome-
wide analyses included 281,299 individuals of White British ancestry. The red line
indicates the genome-wide significance level of α = 5 × 10�8. Tests conducted in the
analysis were two-sided.
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type I error rates. The results are consistentwith simulation results and
previous studies, affirming the necessity of SPA to control type I
error rates.

Benefiting from the Cauchy combination test, SPAGxECCT identi-
fied more loci than SPAGxE and SPAGxEWald at a significant level of
α = 5× 10�8 (Fig. 2). For instance, in the analyses of genetic sex ×CDR,
SPAGxECCT was similarly powerful as SPAGxE and identified more loci
than SPAGxEWald. Meanwhile, in the analyses of smoking status × PHD,
SPAGxECCT was similarly powerful as SPAGxEWald and identified more
loci than SPAGxE.

We clustered genetic variants within 200 kb region as one locus.
The top SNPs in each locus and the complete list of SNPs with
SPAGxECCT p values less than 5 × 10−8 are presented in Supplementary
Table 2 and SupplementaryData 1. In the analysis of CDR, we identified
a significant G×E effect of genetic sex and a variant rs2634073
(SPAGxECCT p value = 4.56 × 10−17) near PITX2. The gene PITX2 is
instrumental in cardiacmorphogenesis of the systemic andpulmonary
venous inflow tracts44–46. PITX2 plays an important role in cardiac
development and diseases, and the incidence of cardiac development
is known to be different for males and females12,47–49. PITX2 encodes an
evolutionarily conserved homeodomain transcription factor that is
involved in the establishment of left-right asymmetry and cardiovas-
cular development in the vertebrate embryo50. PITX2 usually has the
function of inhibiting irregular electrical signals, and if the expression
level of PITX2 decreases, electrical signal disorder will occur in the
heart, which is one of the causes of atrial fibrillation51. An association
between rs2634073 and atrialfibrillationhasbeen reported inprevious
studies44,50,52–54.

In the analysis of colorectal cancer, we identified a significant G×E
effect of genetic sex and variant rs9950013 (SPAGxECCT p
value = 4.78 × 10−8) in gene ZNF521 (Zinc Finger Protein 521). Colorectal
cancer is strongly influenced by biological sex differences and social-
cultural gender components,withmortality rates inmales significantly
higher than females55–63. ZNF521 is a protein coding gene and a co-
transcriptional factor withmultiple recognized regulatory functions in
a range of normal, cancer and stem cell compartments64. It has a
variety of functions in multiple cells, including hematopoietic, osteo-
adipogenic, neural progenitor, and cancer cells65–68. ZNF521 has been
identified as a candidate driver gene of colorectal cancer69,70.

In the analysis of CAO, we identified a significant G×E effect of
smoking status and highlighted a variant rs16969968 (SPAGxECCT p
value = 6.36 × 10−9) in CHRNA5 and a variant rs1051730 (SPAGxECCT p
value = 1.18 × 10−8) in CHRNA3. Smoking is an important risk factor to
the CAO, and three neuronal nicotinic acetylcholine receptors
encoding genes of CHRNA3 and CHRNA5 form a gene cluster and are
well known to be associated with the smoking behavior and some
smoking diseases such as chronic obstructive pulmonary disease, lung
cancer12,71–73. The variant of rs16969968 causes an amino acid sub-
stitution (D398N) and encodes the nicotinic acetylcholine receptor α5
subunit, predisposing to both smoking and Chronic Obstructive Pul-
monary Disease (COPD)74. It has been reported that rs16969968
involves in airway remodeling and related inflammatory response in
COPD, and directly contributes to COPD-like lesions, sensitizing the
lung to the action of oxidative stress and injury, and represents a
therapeutic target74. The allele A of the variant rs16969968 is a risk
allele, and its risk effect will increase significantly smoker. TheCHRNA3
gene encoding the neuronal nicotinic acetylcholine receptor has been
associated to COPD, lung cancer and nicotine dependence in
case–control studies with high smoking exposure73,75. SNP rs1051730 is
located in the exon of CHRNA3 gene and causes a synonymous
nucleotide substitution. It has been reported in previous researches
that smoking interacted with genotype of rs1051730 on forced
expiratory in 1 s (FEV1), and the association was observed only in
smokers75. In the analysis of PHD, we identified a significant G×E effect
of smoking status and variant rs57198405 (SPAGxECCT p

value = 5.52 × 10−11) near genes MIR4539 and MIR4472-1. Epidemiologi-
cal studies have concluded that active cigarette smoking caused heart
disease76–79.

To demonstrate the superiority of time-to-event traits over binary
traits in real data analysis, we additionally used SPAGxECCT(CC0) to
analyze the combination of smoking status and PHD in which event
indicator δi was treated as a binary outcome. The QQ plot is presented
in Supplementary Fig. 1. At a genome-wide significance level of
α = 5 × 10−8, SPAGxECCT(CC0) identified no variants, whereas
SPAGxECCT identified one locus. This suggested that time-to-event
traits are more informative than binary traits, which could result in
enhanced statistical powers and more discoveries. In addition, we
applied the proposed SPAGxE-based approaches, NormGxE, and
SPAGE to analyze the combination of genetic sex and CDR in which
CDR was treated as a binary trait. The QQ plots illustrated that
SPAGxECCT and SPAGxE were more powerful than SPAGxEWald and
SPAGE (Supplementary Fig. 2). The consistent enhancement in statis-
tical power across various trait types validates a superior performance
of SPAGxECCT over other methods. We also applied SPAGE to analyze
binary traits. In addition, we applied SPAGxE+ to analyze time-to-event
traits for 337,367 WB individuals with sample relatedness. Compared
to SPAGxECCT analyses, 56,068 additional related individuals were
included. We scale up the real data analyses to 30 E-phenotype pairs
(Supplementary Data 2). SPAGxE+ and SPAGxECCT identified more loci
(or more significant SNPs) than SPAGE. Manhattan plots and QQ plots
for several combinations of environmental factors and traits are illu-
strated in Supplementary Figs. 3–8. As related individuals were inclu-
ded, SPAGxE+ generally outperformed SPAGxECCT and SPAGE. For
example, in the analyses of genetic sex and CDR, the signals identified
by SPAGxE+ and SPAGxECCT are more significant than SPAGE. For top
SNP rs2634073, p values of SPAGxE+, SPAGxECCT, and SPAGE are
1.19 × 10−18, 4.56 × 10−17, and 7.33 × 10−15, respectively. In the analysis of
Townsend deprivation index (TDI) and Schizophrenia, SPAGxE+ and
SPAGxECCT identified several loci, while SPAGE identified no significant
SNPs. The advantage of time-to-event traits over binary traits in GWAS
have been widely reported18,19,80–82. However, due to the low effect size
of G×E, testing for G×E effects generally identifiedmuch fewer findings
than testing for marginal genetic effects at a stringent GWAS sig-
nificance level. Thus, formostof the analyses, only oneor two lociwere
identified,mostly by time-to-event trait analyses. For the loci identified
by both time-to-event trait analyses and binary trait analysis, p values
from time-to-event trait analyses were more significant. More discus-
sion about the difference can be found in the Supplementary Note.

To demonstrate the superiority of SPAGxEmixCCTover SPAGxECCT
in terms of enhancing powers through incorporatingmore individuals
from diverse ancestries in real data analysis, we additionally applied
SPAGxEmixCCT to analyze two combinations of environmental factors
and time-to-event (and binary) traits including (1) genetic sex and CDR
and (2) smoking status and CAO, in which 338,044 unrelated indivi-
duals from multiple ancestries were included. Compared to the pre-
vious real data analysis using SPAGxECCT, 56,745more individuals from
the other ancestries were included in the analysis. The QQ plots and
Manhattan plots showed that SPAGxEmixCCT was more powerful than
SPAGxECCT (Fig. 4), which is expected as SPAGxECCT removed ~17%
non-white British individuals. Genetic variants within 200 kb region
were clustered as one locus. The top SNPs in each locus and the
complete list of SNPswith SPAGxEmixCCT p values less than 5 × 10−8 are
presented in Supplementary Table 3 and Supplementary Data 3.
Compared to the analysis limited to White British individuals, more
significant genetic variants and loci were additionally identified. An
elucidating example is the combination of smoking status and time-to-
event trait CAO for which a locus with its top SNP rs76418688 was
identified by SPAGxEmixCCT (SPAGxEmixCCT p value = 2.34 × 10−9) but
missed by SPAGxECCT (SPAGxECCT p value = 0.595151). SNP rs76418688
is an intergenic variant between LINC02508 and LINC01262 on
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b. Smoking Status vs Chronic Airway Obstruction (event rate is 3.92%)

Fig. 4 | Manhattan plots and quantile-quantile (QQ) plots for genome-wide G×E
analyses of two combinations of environmental factors and traits using
SPAGxEmixCCT and SPAGxECCT.Manhattan plots and QQ plots display the results
of genome-wide analyses for two combinations of environmental factors and traits:
a genetic sex and cardiac dysrhythmias (event rate: 8.83%) and b smoking status
and chronic airway obstruction (event rate: 3.92%). SPAGxEmixCCT was applied to

analyze 338,044 individuals ofmultiple ancestries for time-to-event traits (denoted
as SPAGxEmixCCT (Surv-ALL)) and binary traits (denoted as SPAGxEmixCCT (Binary-
ALL)). SPAGxECCT was applied to analyze 281,299 individuals of White British
ancestry for time-to-event traits (denoted as SPAGxECCT (Surv-WB)) and binary
traits (denoted as SPAGxECCT (Binary-WB)). The red line indicates the genome-wide
significance level of α = 5 × 10�8. Tests conducted in the analysis were two-sided.
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chromosome 4. For SNP rs76418688, its MAF in non-white British
(0.012991) is approximately 93 times higher than that in White British
(0.000139). Moreover, this locus was missed by either SPAGxEmixCCT
or SPAGxECCT in the binary trait analysis. The results highlight the
necessity of incorporating individuals from diverse ancestries and
analyzing time-to-event traits to increase statistical powers and dis-
cover more novel G×E findings. Generally speaking, the UK Biobank
analyses validate that SPAGxECCTwas close to themost powerful in the
analysis of White British, making it optimal for G×E analysis across
various types of traits. SPAGxE+ were generally more powerful than
SPAGxECCT and SPAGE through includingmore related individuals into
analyses. Meanwhile, as SPAGxEmixCCT can include individuals from
multiple ancestries, it wasmore powerful thanSPAGxECCT as expected.
Furthermore, the application of SPA is essential to control type I error
rates for unbalanced phenotypic distribution, especially when testing
for low-frequency and rare variants. The above conclusions align with
the simulation studies and previous analyses12,18,34,43.

We selected two smoking-related values of pack years of smoking
(field ID: 20161) and past tobacco smoking (field ID: 1249) to conduct
additional sensitivity analyses. Note that in analysis of smoking status
(E) and CAO (time-to-event trait) using SPAGxECCT, top SNPs
rs16969968 (in CHRNA5) and rs146009840 (in CHRNA3) have sig-
nificant p values of 6.36 × 10−9 and 9.36 × 10−9, respectively. Meanwhile,
if we use pack years of smoking as environmental factor, the proposed
methods (SPAGxECCT and SPAGxE+) and Wald tests show that the G×E
effects of the two SNPs were not significant anymore, both in analysis
of unrelatedWBor allWB including related individuals, for both binary
and time-to-event trait analyses. Similarly, when analyzing past
tobacco smoking as phenotype, the two top SNPs of rs16969968 and
rs146009840 were also only identified when using smoking status as
environmental factor. The top SNPs influence smoking quantity spe-
cifically in smokers, which would show up as a pervasive G×E on
smoking-related phenotypes. These findings suggest that gene-
environment (G-E) correlation and mis-measured environmental fac-
tors would result in a true positive, statistically, although not aligning
with the conventional understanding of G×E. Therefore, statistically
valid G×E might have complicated relationships to the underlying
biology. For further details, please refer to Supplementary Note.

SPAGxECCT is scalable to analyze large-scale biobank data
The projected computation time to conduct genome-wide G×E ana-
lyses via SPAGxECCT and gwasurvivr is presented in Fig. 5 and Sup-
plementary Table 4. For smoking status × PHD and genetic sex ×CDR,
gwasurvivr took ~4418 and 4373 CPU hours, respectively. Meanwhile,

SPAGxECCT only took 301 and 283 CPU hours, which were 14.7 and 15.5
times faster. The higher computational efficiency is mainly due to the
projection, which is applied to genetic variants covering more than
99% of the genome (given a p value cutoff of 0.001). The superiority
ensures that SPAGxECCT is scalable to a large-scale genome-wide G×E
analysis including hundreds of thousands of individuals.

Type I error rates simulations
To assess type I error rates, we carried out extensive simulation studies
for G×E analyses of time-to-event, binary, and ordinal traits. We
simulated genotypes, covariates, environmental factors, and time-to-
event, binary, and ordinal traits of n= 10, 000 individuals. The
empirical type I error rates are shown in Supplementary Figs. 9–13 and
Table 1 and Supplementary Tables 5–8. The QQ plots are presented in
Supplementary Figs. 14–22.

SPAGxE-based approaches can control type I error rates. For var-
iants without marginal genetic effect (i.e., in scenario 1 that
βG× E =βG =0), SPAGxE-based approaches and SPAGE generally
performed well in terms of type I error rates. If the phenotypic
distribution is unbalanced, Wald test produced deflated type I error
rates when testing for rare or low-frequency variants. We con-
sidered extensive settings in terms of (1) genotypic distribution, (2)
phenotypic distribution, (3) environmental distribution, (4) mar-
ginal genetic effect and G×E effect, etc. The large number of simu-
lation settings results in massive computational burden. As a result,
we conducted 108 tests for each setting and then evaluated type I
error rates under a significance level of 5 × 10−7. The results
demonstrate that SPAGxECCT can well control type I error rates.
Meanwhile, NormGxE had inflated type I error rates (Supplementary
Figs. 9–12, 14–19). We additionally evaluated the type I error rates
under the significance level of 5 × 10−8 (Supplementary Table 5 and
Supplementary Fig. 11), which demonstrate that SPAGxECCT pro-
duced well-controlled type I error rates even under a stringent level
of significance. The results indicate that SPA approaches outper-
form normal distribution approximation in a wide range of pheno-
typic distributions. The conclusion aligns with previous research
and real data analysis, underscoring the need to employ SPA for
accurately approximating the null distribution of test statistics.

For genetic variants withmarginal genetic effect (i.e., in scenario 2
that βG× E =0, βG≠0), SPAGxE-based methods can still control type I
error rates across various trait types (Supplementary Figs. 13, 20–22).
The results demonstrated that using matrix projection can well
attenuate marginal genetic effects from the G×E effect.

Impact of environmental factor distribution to type I error rates. For
Wald test and NormGxE, type I error rates are highly relevant to the
distribution of environmental factor. When analyzing time-to-event
traits and ordinal traits with an unbalanced phenotypic distribution,
Wald test producedmore deflated type I error rates if the environmental
factor followed a Bernoulli distribution. For example, in the analysis of
time-to-event trait, if the event rate was 0.01 and MAF was 0.01, the
empirical type I error rateswere 1.6 × 10−5 (0.32 alpha) and0 (0 alpha) for
normal and Bernoulli distributed environmental factors, respectively.
ThedeflationofWald testwas alsoobserved inpreviousbinary traitG × E
analysis12. For NormGxE, if the environmental factors followed a Ber-
noulli distribution, the type I error rates were less inflated.

SPAGxECCT is accurate under heteroscedasticity of E-dependent
noise and G-E dependence. To evaluate the impact of E-dependent
noise on G × E tests of SPAGxECCT, we simulated binary traits of
n= 10, 000 individuals. The empirical false positive rates (FPR) are
shown in Supplementary Fig. 23. The results demonstrate that
E-dependent noise cannot inflate G×E tests of SPAGxECCT. For further
details, please refer to Supplementary Note.

Genetic Sex vs CDR

Smoking Status vs PHD

0 300 1500 3000 4500
CPU hours

SPAGxECCT Wald test (gwasurvivr)

Fig. 5 | Computational efficiency of SPAGxECCT andWald test (gwasurvivr).G×E
analysis included 281,299 individuals of White British ancestry. CPU hours were
recorded based on 10,000 randomly selected genetic variants from chromosome 1
and projected to a genome-wide analysis of 18,583,853 variants. SPAGxECCT and
gwasurvivr were employed to analyze time-to-event traits using Cox PH regression
models, incorporating age, genetic sex, environmental factors, and the top 10 SNP-
derived PCs as covariates. All analyses were performed on a CPUmodel of Intel(R)
Xeon(R) Gold 6342 CPU @ 2.80GHz.
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Toevaluate empirical type I error rates of SPAGxECCT in the caseof
G-E dependence, we simulated binary traits of n = 10, 000 individuals.
The QQ plots are shown in Supplementary Fig. 24. The results indicate
that SPAGxECCTproducedwell-calibratedp values and can control type
I error rates even in the presence of G-E dependence. For further
details, please refer to Supplementary Note.

SPAGxE+ can control type I error rates for related samples. We
evaluated type I error rates of SPAGxE+, SPAGxE+ (SAIGE), and
SPAGxECCT (SAIGE) in the presence of sample relatedness in binary
and time-to-event trait analysis. SPAGxE+ (SAIGE) and SPAGxECCT
(SAIGE) employ SAIGE to fit a null model, and then pass the model
residuals to the proposed SPAGxE+ and SPAGxECCT framework,
respectively. We simulated phenotypes of related samples and then
calculated the variance ratio ρ = σ̂2

GRM=σ̂
2
UR (see “Method” section for

details) for each phenotype. The distributions of the variance ratio
for binary and time-to-event traits are shown in Supplementary
Figs. 25 and 26, respectively. The QQ plots for binary and time-to-
event trait analyses are presented in Supplementary Figs. 27–32.
The results indicated that most of the ratios are close to 1, i.e., σ̂2

GRM
is close to σ̂2

UR, and thus SPAGxECCT (SAIGE) and SPAGE work well.
Meanwhile, if the ratio is less than 1 or greater than 1, then
SPAGxECCT (SAIGE) and SPAGxECCT are inflated or deflated. In con-
trast, SPAGxE+ and SPAGxE+ (SAIGE) can control type I error rates
under all settings. As expected, type I error rates of NormGxE+ were
inflated, emphasizing the necessity of SPA.

SPAGxEmixCCT can control type I error rates in admixedpopulation
analyses. To assess the performance of SPAGxEmixCCT in terms of
type I error rates in admixed population analyses, we simulated
genotypes, environmental factors, and time-to-event traits of
n= 10,000 subjects, mimicking an admixed population of European
(EUR) and East Asian (EAS). Other types of traits were not simulated as
the corresponding results and conclusions are expected to remain
similar.

For each genetic variant, we simulated genotypes using ancestry
vectors and allele frequency qEUR, qEAS

� �
downloaded from the 1000

Genomes Project83. Depending on the difference of MAFs (i.e.,
DiffMAF = qEUR � qEAS) and the minimal MAF value (i.e., minMAF =
min qEUR,qEAS

� �
) in populations EUR and EAS, genetic variants were

categorized into 15 groups. Two scenarios were used to simulate time-
to-event traits. In scenario 1, the event rates in EUR and EAS were the
same; and in scenario 2, the event rate in EUR was higher than that in
EAS. In each scenario, we simulated traits with low event rates (ERlow),
moderate event rates (ERmod), and high event rates (ERhigh). More
details about the data simulation can be found in the “Data simulation”
subsection of the “Methods” section.

The empirical type I error rates for the admixed population ana-
lyses based on 107 association tests at a genome-wide significance level
5 × 10−6 are presented in Supplementary Fig. 33 and Supplementary
Data 4 and 5. If event rates in EUR and EAS were the same (i.e., in
scenario 1), SPAGxEmixCCT and SPAGE generally performed well and
can control type I error rates under all settings ofMAFs and event rates
(or disease prevalence rates). In a limited number of settings, SPAGE
produced slightly deflated type I error rates (Supplementary Fig. 33a
and Supplementary Data 4). Meanwhile, if event rates were low,
NormGxEmix cannot control type I error rates when testing for low-
frequency variants. For example, if DiffMAF ~ 0, MinMAF < 0.01 (i.e.,
minMAFlow), and event rates in both EUR and EAS were 0.01 (i.e.,
ERlow), the empirical type I error rates corresponding to
SPAGxEmixCCT, SPAGE, and NormGxEmix were 3.2 × 10−6 (0.64α),
6 × 10−7 (0.12α), and 0.0032678 (>600 α), respectively.

If event rates in EUR and EAS were different (i.e., in scenario 2),
SPAGxEmixCCT can still control type I error rates well (Supplementary
Fig. 33b and Supplementary Data 5). Meanwhile, SPAGE cannot control
type I error rates if the disease prevalence rates were different across
ancestries. If event rates weremoderate or high, despite incorporating
ancestry PCs to fit the null model, SPAGE resulted in inflated type I
error rates forDiffMAF << 0orDiffMAF >> 0. For example, ifDiffMAF >> 0,
min qEUR,qEAS

� �
<0:01 (i.e.,minMAFlow), and event rates in EUR and EAS

Table 1 | Empirical type I error rates and ratios of empirical type I error rates/significance level of SPAGxECCT, SPAGxE,
SPAGxEWald, NormGxE at a significance level 5 × 10−7, and Wald test at a significance level 5 × 10−5 for time-to-event trait
analysis under scenario 1

Simulation scenarios Empirical type I error rates (Empirical type I error rates/Significance level)

Envi. factor distribution Event rate MAF SPAGxECCT SPAGxE SPAGxEWald NormGxE Wald

N(0,1) 0.01 0.01 2.8e−07 (0.56) 3.7e−07 (0.74) 1.9e−07 (0.38) 0.0001568 (313.6) 1.6e−05 (0.32)

0.05 5.2e−07 (1.04) 6.1e−07 (1.22) 4.5e−07 (0.9) 7.31e−06 (14.62) 7.2e−05 (1.44)

0.3 4.8e−07 (0.96) 4.9e−07 (0.98) 4.3e−07 (0.86) 3.5e−07 (0.7) 9.1e−05 (1.82)

0.1 0.01 4.2e−07 (0.84) 4.4e−07 (0.88) 3.8e−07 (0.76) 2.39e−06 (4.78) 6.1e−05 (1.22)

0.05 4e−07 (0.8) 4.2e−07 (0.84) 4e−07 (0.8) 6.5e−07 (1.3) 5.5e−05 (1.1)

0.3 4.4e−07 (0.88) 4.4e−07 (0.88) 4.4e−07 (0.88) 4.2e−07 (0.84) 6.1e−05 (1.22)

0.5 0.01 3.5e−07 (0.7) 3.5e−07 (0.7) 3.5e−07 (0.7) 8.5e−07 (1.7) 5.8e−05 (1.16)

0.05 5.9e−07 (1.18) 5.9e−07 (1.18) 5.9e−07 (1.18) 6.7e−07 (1.34) 5.4e−05 (1.08)

0.3 5.4e−07 (1.08) 5.4e−07 (1.08) 5.4e−07 (1.08) 5.3e−07 (1.06) 5.7e−05 (1.14)

Bernoulli(0.5) 0.01 0.01 0 (0) 0 (0) 0 (0) 1.496e−05 (29.92) 0 (0)

0.05 2.9e−07 (0.58) 2.9e−07 (0.58) 2.9e−07 (0.58) 2.28e−06 (4.56) 0 (0)

0.3 4.9e−07 (0.98) 4.9e−07 (0.98) 4.9e−07 (0.98) 4.4e−07 (0.88) 2.7e−05 (0.54)

0.1 0.01 2.9e−07 (0.58) 2.9e−07 (0.58) 2.9e−07 (0.58) 9.1e−07 (1.82) 0 (0)

0.05 4.1e−07 (0.82) 4.1e−07 (0.82) 4.1e−07 (0.82) 5.4e−07 (1.08) 2.7e−05 (0.54)

0.3 5.9e−07 (1.18) 5.9e−07 (1.18) 5.9e−07 (1.18) 5.8e−07 (1.16) 5.2e−05 (1.04)

0.5 0.01 3.8e−07 (0.76) 3.8e−07 (0.76) 3.8e−07 (0.76) 4.9e−07 (0.98) 3e−05 (0.6)

0.05 5.8e−07 (1.16) 5.8e−07 (1.16) 5.8e−07 (1.16) 6.1e−07 (1.22) 6e−05 (1.2)

0.3 4.7e−07 (0.94) 4.7e−07 (0.94) 4.7e−07 (0.94) 4.7e−07 (0.94) 5e−05 (1)

Formost of thegenetic variants, themarginal geneticeffect is not significant, and thus, all of SPAGxECCT, SPAGxE, andSPAGxEWald output identicalp valuesbasedon statisticsSG ×E. Tests conducted
in the analysis were two-sided.
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are 0.5 and 0.2 (i.e., ERhigh), respectively, the empirical type I error rate
of SPAGE was 1.56 × 10−5 (3.12α). In addition, similar to scenario 1,
NormGxEmix produced inflated type I error rates. The results
demonstrated the accuracy of SPAGxEmixCCT in the presence of
ancestry-specific event rates and MAFs.

SPAGxEmixCCT is well calibrated under heterogeneity of environ-
mental factors. To assess the performance of SPAGxEmixCCT in terms
of type I error rates under heterogeneity of environmental factors, we
simulated genotypes, environmental factors, and time-to-event traits
ofn= 10, 000 subjects,mimicking an admixedpopulation of European
(EUR) and East Asian (EAS).We simulated traits in scenario 2, the event
rate in EUR was higher than that in EAS. The environmental factor
distributions for individuals in EUR-dominant community and EAS-
dominant community were different. The empirical type I error rates
are presented in Supplementary Fig. 34. SPAGxEmixCCT can still con-
trol type I error rates well, whereas SPAGE had inflated type I error
rates. The results demonstrated that SPAGxEmixCCT is robust to the
heterogeneity of environmental factors.

Empirical power simulations
To assess empirical powers, we simulated genotypes, covariates,
environmental factors, and time-to-event, binary, and ordinal traits
of n= 50, 000 individuals. The empirical powers were evaluated
based on 104 tests at a significance level α = 5× 10�8 under the
alternative model (Fig. 6 and Supplementary Figs. 35–40). Across all
simulation settings, SPAGxECCT was always close to the most pow-
erful, indicating that SPAGxECCT can be an optimal unified approach
to maximize power.

Power simulation results for binary trait analysis. For binary trait
analysis, if the environmental factor follows a normal distribution
(Supplementary Fig. 35), SPAGxE and SPAGxECCT were more powerful
than Wald test, SPAGxEWald, and SPAGE, especially for low disease
prevalence (e.g., 0.1 or 0.01). If the environmental factor follows a
Bernoulli distribution (Supplementary Fig. 36), SPAGxE was less pow-
erful than SPAGxEWald, Wald, and SPAGE if the disease prevalence is 0.1
or 0.5; meanwhile, SPAGxE outperformed SPAGxEWald and Wald if the
disease prevalence is 0.01. The empirical power in settings with a
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Fig. 6 | Empirical powers of SPAGxECCT, Wald test, SPAGxECCT(CC),
SPAGxECCT(CC0), and SPAGEmethods at a significance level of 5 × 10−8 for time-
to-event trait analysis under a normally distributed environmental factor.
Sample size was set to n = 50,000. Time-to-event traits were simulated with βG =0
and βG × E≠0. Three MAFs were considered: 0.01, 0.05, and 0.3 (from top to

bottom).Three event rateswere evaluated:0.01 (extremely unbalancedphenotypic
distribution), 0.1 (moderately unbalanced phenotypic distribution), and 0.5
(balanced phenotypic distribution) (from left to right). The environmental factor
was generated from a standard normal distribution. In each case, 104 tests were
conducted. Tests conducted in the analysis were two-sided.
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Bernoulli distributed environmental factorwas consistently lower than
that in settings with a normal distributed environmental factor. The
results indicate that empirical powerswere relevant to the distribution
of environmental factor, with a trend similar as shown in type I error
results. SPAGxECCT was always close to the most powerful, regardless
of the environmental factor distribution settings and disease pre-
valence rates.

Power simulation results for time-to-event trait analysis. For time-
to-event trait analysis, SPAGxECCT was always close to the most pow-
erful, similar as in binary trait analysis. For both normal distributed
(Fig. 6) and Bernoulli distributed (Supplementary Fig. 37) environ-
mental factors, SPAGxECCT was more powerful than Wald if the event
ratewas0.01. If the event ratewas0.1 or 0.5, SPAGxECCT andWaldwere
similarly powerful.

In all settings, SPAGxECCT was more powerful than the approaches
designed for binary trait analyses, including SPAGxECCT(CC0),
SPAGxECCT(CC), and SPAGE. The results underscore that time-to-event
traits were more informative than binary traits. Meanwhile,
SPAGxECCT(CC) was more powerful than SPAGxECCT(CC0) and SPAGE,
which was logically reasonable as SPAGxECCT(CC) incorporated survival
time as an additional covariate. Similar as the simulation results for
binary trait analysis, SPAGxECCT(CC0) was more powerful than SPAGE if
the event ratewas0.01. The results under scenariosof non-zeromarginal
genetic effects are consistent to those without marginal genetic effects,
indicating that SPAGxECCT is powerful (Supplementary Fig. 38).

Power simulation results for ordinal trait analysis. For ordinal trait
analysis, SPAGxECCTwas still always close to themostpowerful approach
across all scenarios (Supplementary Figs. 39 and 40). If the ratio across
the four categories was 100:1:1:1, SPAGxECCT was more powerful than
Wald test, with the advantages being greater for the normal distributed
environmental factor than the Bernoulli distributed environmental fac-
tor. For a balanced phenotypic distribution, SPAGxECCT and Wald test
were similarly powerful. In all settings, SPAGxECCT was more powerful
than the approaches designed for binary trait analyses including
SPAGxECCT(CC0) and SPAGE. The power loss of SPAGxECCT(CC0) and
SPAGE stemmed from the dichotomizing process.

SPAGxEmixCCT ismorepowerful than cross-ancestrymeta-analysis
in multiple discrete populations. To assess empirical powers of
SPAGxEmixCCT and cross-ancestry meta-analysis based on SPAGxECCT
in a cross-ancestry analysis, we simulated genotypes, environmental
factors, and time-to-event phenotypes of n = 20,000 individuals,
mimicking two discrete populations of European (EUR) and East Asian
(EAS). We also simulated genotypes using allele frequencies down-
loaded from the 1000 Genomes Project and categorize genetic var-
iants into 15 groups depending on the difference of MAFs and the
minimal MAF value in populations EUR and EAS.

The empirical powers at a genome-wide significance level 5 × 10−8

are presented in Supplementary Fig. 41. The results demonstrated that
jointly modeling multiple ancestries using SPAGxEmixCCT is generally
more powerful than cross-ancestrymeta-analysis based on SPAGxECCT
in both scenarios, particularly when DiffMAF << 0 and DiffMAF >>0.
Note that the meta-analysis can only support two or more than two
discrete populations, while SPAGxEmixCCT can allow for admixed
individuals. Moreover, SPAGxEmixCCT (PCxE) incorporating PC×E
interaction terms as covariates into model fitting was similarly pow-
erful as SPAGxEmixCCT in our simulations.

SPAGxEmixCCT can utilize local ancestry tomaximize power across
various cross-ancestry genetic architectures. To evaluate
SPAGxEmixCCT, SPAGxEmixCCT-local, and SPAGxEmixCCT-local-global,
we simulated multiple cross-ancestry genetic architectures in an
admixed population. The QQ plots demonstrated SPAGxEmixCCT,

SPAGxEmixCCT-local, and SPAGxEmixCCT-local-global can control type I
error rates when analyzing binary and quantitative traits (Supple-
mentary Figs. 42 and 43). For binary traits, normal distribution
approximation (denoted as NormGxEmixlocal) had inflated type I error
rates if the prevalence was low (Supplementary Fig. 42), suggesting
that incorporating SPA increased the accuracy. For quantitative
traits, all approaches can well control type I error rates (Supplemen-
tary Fig. 43).

The empirical powers were evaluated for a binary trait with a
prevalence of 0.2 (Fig. 7, Supplementary Figs. 44–46 for null mar-
ginal genetic effects, and Supplementary Figs. 51–54 for non-zero
marginal genetic effects). If the marginal ancestry-specific G×E effect
sizes were equal, SPAGxEmixCCT was always more powerful than
SPAGxEmixCCT-local (Supplementary Fig. 44). In scenarios in which
marginal ancestry-specific G×E effect sizes were different, we fixed
the marginal G×E effect size of ancestry 1, i.e., β 1ð Þ

G× E , and increased
marginal G×E effect size of ancestry 2, i.e., β 2ð Þ

G× E . The results
demonstrated a power gain of SPAGxEmixCCT-local over
SPAGxEmixCCT (Fig. 7 and Supplementary Figs. 45 and 46). For
example, if β 1ð Þ

G× E was fixed at 0.5, β 2ð Þ
G× E was close to 0, and the MAF in

ancestry 1 was 0.1 and the MAF in ancestry 2 was 0.3, the empirical
powers of SPAGxEmixCCT were close to 0 but SPAGxEmixCCT-local can
still identify the genetic variants with relatively high powers (Fig. 7).
In all simulation scenarios, SPAGxEmixCCT-local-global was always close
to the most powerful methods across various cross-ancestry genetic
architectures, demonstrating that SPAGxEmixCCT-local-global can be an
optimal unified approach to maximize powers. The empirical powers
for quantitative traits (Supplementary Figs. 47–50 and 55–58) were
consistent as the results for binary traits. As expected, the power
results in scenarios with non-zero genetic effects are similar to sce-
narios without marginal genetic effects (Supplementary Figs. 51–58).

Discussion
In this paper, we proposed a scalable and accurate analytical frame-
work, SPAGxECCT, to conduct G×E analyses in a large-scale GWAS.
SPAGxECCT fits a genotype-independent model and then uses a matrix
projection to adjust for marginal genetic effects. Thus, the computa-
tional burden is greatly reduced compared to conventional methods.
SPAGxECCT treats genotype as a randomvariable and approximates the
null distribution of the test statistic conditional on phenotypes and
covariates. The retrospective framework allows SPAGxECCT to be
applicable to complex traits with intrinsic structures including time-to-
event and ordinal traits. A hybrid strategy including SPA ensures the
stringent accuracy to analyze common, low-frequency, and rare var-
iants, even if the phenotypic is extremely unbalanced. In addition,
SPAGxECCT employs Cauchy combination test to maximize statis-
tical power.

Through extensive simulation studies of binary, time-to-event,
andordinal traits, SPAGxECCT is demonstrated tobe scalable to analyze
hundreds of thousands of individuals and can control type I error rates
while maintaining sufficient power. Meanwhile, regular approaches
based on normal distribution approximation could be deflated or
inflated. In general, SPAGxECCT is always close to the most powerful
across all trait types, phenotypic distributions, genotype distributions,
and environmental factor distributions.

We applied SPAGxECCT to analyze several time-to-event traits
in UK biobank. SPAGxECCT is ~15 times faster than gwasurvivr and
has identified multiple G×E findings. An elucidating example is
the analysis of smoking status and pulmonary heart disease. If the
outcome is a time-to-event trait, SPAGxECCT identified SNP
rs57198405 (SPAGxECCT p value = 5.52 × 10−11). Meanwhile, if the
outcome is a binary trait defined as event occurrence status, no
significant variant was identified. The example highlights that
SPAGxECCT can fully leverage the rich information embedded in
complex traits for identifying novel G×E signals. Moreover, the
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real data analysis of genetic sex and cardiac dysrhythmias vali-
dated that SPAGxECCT can be more powerful than SPAGE when
analyzing binary traits. In addition, both simulation studies and
real data analysis have demonstrated that SPAGxECCT outper-
forms regular approaches based on normal distribution approx-
imation in terms of controlling type I error rates.

Admixed populations are groups of individuals with genetic
contributions from multiple ancestral populations84. Analyses in
admixed or diverse populations can provide unique opportunities for
G×E studies30,85–89. Currently, there is a lack of G×E studies for diversity
across ancestries10. The simulation studies have shown that regular
methods such as SPAGE could still result in inflation, even if SNP-
derived PCs were incorporated as covariates. An extension of
SPAGxECCT, denoted as SPAGxEmixCCT, can account for population
stratification in admixed populations. We applied SPAGxEmixCCT to
analyze time-to-event and binary traits using 338,044 individuals from
all ancestries in UK Biobank data. Compared to analyzing a homo-
geneous population with White British only, powers were enhanced
and more loci were identified as ~ 17% additional individuals were
incorporated into analysis. Additionally, it is also crucial to account for
local ancestry10,90,91. We extend SPAGxEmixCCT to SPAGxEmixCCT-local
and SPAGxEmixCCT-local-global, which can effectively and efficiently
incorporate local ancestry information.

In large-scale genome-wide analyses, sample relatedness is
another major confounder that could inflate type I error rates if not
properly controlled. To address this issue, we extended SPAGxECCT to
SPAGxE+, an analytical framework that can effectively and efficiently
account for sample relatedness through leveraging a GRM.We applied
SPAGxE+ to analyze time-to-event traits using 337,367 WB individuals
with relatedness inUK Biobank data. Compared to analyzing unrelated
White British individuals only, powers were enhanced and more loci
were identified. Currently, mixed-model based methods have been
widely used on biobank scales to address the concerns related to

population stratification or sample relatedness. However,mostmixed-
model based G×E approaches are designed for quantitative or binary
traits and not applicable to other complex types of traits. Our pro-
posed scalable and accurate analytical frameworks, SPAGxEmixCCT and
SPAGxE+, can address the concerns related to population stratification
and sample relatedness for a wide range of types of traits.

There are several limitations in SPAGxECCT. Firstly, SPAGxECCT is
based on amodified score statistic without fitting a fullmodel and thus
cannot estimate the marginal G×E effect size. If marginal G×E effect
size is required for the follow-up analysis, SPAGxECCT can serve as a
screening process to prioritize variants to fit a full model. Secondly,
SPAGxECCT cannot conduct gene- or region-based tests. Thirdly,
SPAGxECCT does not test joint effects including both genetic main
effect and G×E effect. In the future, we plan to expand the current
analytical framework to allowing for gene- or region-based analysis
and testing for joint effects of genetic main effect and G×E effect.

For the significant G×E interactions, it is important to acknowl-
edge potential complexities that could arise from misclassified envir-
onmental factors. It is crucial to highlight that statistically valid G×E
interactions may have complicated relationships to the underlying
biology. Specifically, while G×E findings could be statistically robust,
they still should be interpreted with caution. This complexity under-
scores the importance of cautious interpretation and highlights the
need for further biological validation of G×E findings. Our real data
analysis in the context of smoking behavior gives an intuitive example.

Currently, there is a noticeable trend towards leveraging complex
traits with intricate structures in GWAS. For G×E studies, most existing
tools are developed for binary or quantitative traits. However, for com-
plex traitswith intricate structures, researchersoften resort toconverting
these traits into binary or quantitative traits before analysis, leading to a
loss of phenotypic information and statistical power. We believe
that SPAGxECCT, SPAGxE+, and SPAGxEmixCCT can serve as a universal
framework for genome-wide G×E studies to analyze complex traits.
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Fig. 7 | Empirical powers of SPAGxEmixCCT, SPAGxEmixCCT-local (ance1),
SPAGxEmixCCT-local (ance2), and SPAGxEmixCCT-local-global at a significance level
of 5 × 10−8 for binary trait analysis under the scenario of G×E effect size het-
erogeneity, with the marginal G×E effect size of ancestry 1 fixed at 0.5.
SPAGxEmixCCT-local (ance1) tests for β

1ð Þ
G × E =0, and SPAGxEmixCCT-local (ance2) tests

for β 2ð Þ
G× E =0. A two-way admixed population was simulated with a sample size

n = 10,000. The disease prevalence of the simulated binary phenotypes was 0.2.
Two minor allele frequencies (MAFs) in ancestry 1 (from top to bottom) and four
MAFs in ancestry 2 (from left to right) were considered. The true G×E effect size of
ancestry 1 was fixed at 0.5, and that of ancestry 2 was increased. In each case, 1000
tests were conducted. Tests conducted in the analysis were two-sided.
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Methods
Ethics approvals and compliance
This study complies with all relevant ethical regulations. The
study protocol was approved by the UK Biobank (Application No.
[78793]), and all participants provided informed consent. The use
of UK Biobank data was conducted under approved protocols,
and all analyses were performed in accordance with the UK Bio-
bank’s data access guidelines.

Cox proportional hazard (PH) model for time-to-event traits
In themain text, weprimarily demonstrated the use of SPAGxECCTwith
the Cox proportional hazards model to analyze time-to-event traits.
For individual i≤n, we let Xi denote a k × 1 vector of non-genetic
confounder factors including age, genetic sex, SNP-derivedPCs, etc., Ei

denote an environmental factor, Gi denote a raw genotype call or
imputation. Cox proportional hazard model specifies the hazard
function λ t;Xi, Ei,Gi

� �
for the failure (i.e., event) time T *

i in the form of:

λ t;Xi, Ei,Gi

� �
= λ0 tð Þ exp ηi

� �
= λ0 tð Þ exp XT

i βX + EiβE +GiβG +GiEiβG× E

� � ð1Þ

where λ0 tð Þ is the baseline hazard function and
ηi =X

T
i βX + EiβE +GiβG +GiEiβG× E is a linear predictor, βX and βE are

coefficients for confounder factors and environmental factor,
respectively. Coefficient βG is the marginal genetic effect, βE is the
marginal environmental effect, βG× E is the marginal G×E effect. The
observed time-to-event phenotype is Ti,δi

� �
, whereCi is the censoring

time, Ti = minðT *
i ,CiÞ is the observed time-to-event, δi = IðT *

i ≤CiÞ
indicates that failure is observed, and I :ð Þ is an indicator function. Null
hypothesis to test for the marginal G×E effect is H0: βG× E =0.

Score statistics to test for G×E effect
Regular score test requires fitting a genotype-dependent model under
the null hypothesis H0 : βG× E =0 to estimate parameters

β̂
H0

X , β̂
H0

E , β̂
H0

G

� �
, followed by testing for marginal G×E effect via score

statistics SH0
G× E =

Pn
i = 1GiEiR

H0
i , where RH0

i , i≤n are the model residuals
under model H0 (see Supplementary Note). This strategy is compu-
tationally expensive for a genome-wide analysis because it requires
fitting a separate model for each genetic variant to test.

To improve computational efficiency, we fit a genotype-
independent model under Hc : βG =βG× E =0 to estimate parameters

β̂
Hc

X , β̂
Hc

E

� �
, followed by calculating a model residual vector

R = R1, . . . ,Rn

� �T. If the marginal genetic effect βG =0, score statistics

ScG× E =
Pn

i = 1GiEiRi is asymptotically equivalent to SH0
G× E and can char-

acterize the marginal G×E effect. However, if the marginal genetic
effect βG≠0, the underlying correlation between Gi and Ri can result in
inflated type I error rates.

To adjust for the marginal genetic effect, we propose a modified
score statistic:

SG× E = S
c
G× E � λScG =G

T
ER � λGTR =

Xn
i = 1

GiEi � λGi

� �
Ri ð2Þ

where λ=
Pn

i = 1ðEiR
2
i Þ=

Pn
i= 1R

2
i , genotype vector G= G1, . . . ,Gn

� �T, and
G×E vector GE = G1E1, . . . ,GnEn

� �T. If the marginal genetic effect is

moderate, the correlation between ScG× E and ScG is λ and the statistics

SG× E can reasonably approximate SH0
G× E . The modification idea is

initially proposed by SPAGE12 and also used in GEM13. More details of
the projection strategy can be seen in Supplementary Note.

Following Hardy-Weinberg Equilibrium (HWE), we employ a ret-
rospective view to consider Gi, i≤n as independent and identically
distributed random variables following a binomial distribution
Binom(2, q), where q is minor allele frequency (MAF). Conditional on
residual vector R and environment vector E = ðE1, . . . , EnÞT, the mean
and variance of SG× E under Hc are 2q �Pn

i = 1EiRi � 2λq �Pn
i = 1Ri and

2qð1� qÞ �Pn
i= 1ðRiEi � λRiÞ

2
, respectively, in whichMAF q is estimated

using q̂= ð1=2nÞ �Pn
i= 1Gi. Since

Pn
i= 1Ri =

Pn
i= 1EiRi =0 holds formost of

the regression models incorporating environmental factors as covari-
ates, the mean of SG× E is 0.

Limitation of the projection strategy and alternative solutions. In
general, using SG× E to approximate SH0

G× E is accurate while greatly
boosting computational efficiency. However, the approximation could
be inaccurate if βG is far away from 0. To avoid inflated type I error
rates, SPAGxECCT uses score statistic S

c
G =

Pn
i= 1GiRi to test formarginal

genetic effects and gives alternative solutions depending on the test-
ing results.

Suppose that ScG follows a normal distribution with a mean of 0
and a variance of dVar ScGjR

� �
=2q̂ 1� q̂

� �Pn
i = 1R

2
i under the null

hypothesis, we calculate a two-sided p value to characterize the mar-
ginal genetic effect. If the p value is greater than a pre-selected positive
cutoff ϵ, we use SG× E as the test statistic for the marginal G×E effect.
Otherwise, we define a genotype-adjusted residual vector:

eR = eR1, . . . , eRn

� �
= In �W WTW

� ��1
WT

� �
R ð3Þ

in which marginal genetic effect is projected out from R through a
linear regression on G. Here, In is an n×n identity matrix and
W= 1n,G

� �
is an n × 2 matrix including a column of genotype vector

and a column of 1. We calculate eSG× E =G
T
E
eR =

Pn
i = 1GiEi

eRi as the test
statistic for marginal G×E effect. To maximize statistical powers, we
also calculate p values based on Wald test and then use Cauchy com-
bination test (CCT) to combine two p values fromWald test and eSG× E .
In numeric simulation and real data analysis, we followed SPAGE paper
to set the cutoff ϵ=0:001. For simulations of selecting the parameter ϵ,
please refer to the Supplementary Note.

Normal distribution approximation and saddlepoint
approximation
For both SG× E and eSG× E , we use a hybrid strategy combining normal
distribution approximation and saddlepoint approximation to calcu-
late p values12,18,19,25,34. In this section, we demonstrate the calculation
for SG× E ; the corresponding calculation for eSG× E is similar.

Conditional on (R, E), the mean and variance of SG× E under the
null hypothesis are 0 and σ̂2 = 2q̂ð1� q̂Þ �Pn

i = 1 RiEi � λRi

� �2
, respec-

tively. Suppose that test statistic SG× E follows a normal distribution,
then the probability Pr SG× E<sG× E jR,E

� �
under the null hypothesis can

be estimated by Φ sG× E=σ̂
� �

, whereΦð:Þ is the cumulative distribution
function (CDF) of a standard normal distribution and sG× E is the
observed statistics SG× E . The normal distribution approximation
works well when the test statistic is close to the mean of 043. However,
in the presence of unbalanced phenotypic distributions, the normal
distribution approximation could perform poorly at tails and cannot
control type I error rates.

Wepropose a retrospective SPA approach to approximate the null
distribution of SG× E . Suppose that genotype Gi, i≤n follow a binomial
distribution Binomð2, q̂Þ, the moment generating function (MGF) of Gi

is bMG tð Þ= 1� q̂+ q̂et
� �2. Its derivatives are:

bM 0
G tð Þ=2q̂et � 1� q̂+ q̂et

� �
, bM 00

G tð Þ= 2 q̂et
� �2

+ 2q̂et � 1� q̂+ q̂et
� � ð4Þ
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The corresponding cumulant generating function (CGF) is
K̂G tð Þ= lnbMGðtÞ, and its derivatives are:

K̂
0
G tð Þ=

bM 0
G tð ÞbMG tð Þ

, K̂
00
G tð Þ=

bM 00
G tð Þ bMG tð Þ � bM 0

G tð Þ
h i2

bMG tð Þ
h i2 ð5Þ

Hence, under H0, the estimated CGF of SG× E conditional on (R,E)
is:

Ĥ tð Þ=
Xn
i= 1

K̂G RiEi � λRi

� �
t

� �
=
Xn
i= 1

ln bMG RiEi � λRi

� �
t

� �
ð6Þ

and its derivatives are:

Ĥ
0
tð Þ=

Xn
i= 1

RiEi � λRi

� �
K̂

0
G RiEi � λRi

� �
t

� �
ð7Þ

Ĥ
00
tð Þ=

Xn
i= 1

RiEi � λRi

� �2K̂ 00
G RiEi � λRi

� �
t

� �
ð8Þ

Given an observed statistic sG× E , environmental factors Ei, i≤n
and martingale residuals Ri, i≤n, we calculate ζ such that Ĥ

0
ζð Þ= sG× E ,

and

ω= sgn ζð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ζsG× E � Ĥ ζð Þ
� �r

ð9Þ

and

ν = ζ
ffiffiffiffiffiffiffiffiffiffiffiffi
Ĥ

00
ζð Þ

q
ð10Þ

Following Barndorff-Nielsen’s formula92, the null distribution of
SG× E can be approximated as:

Pr SG× E < sG× E jR,E
� � � Φ ω+

1
ω
� log ν

ω

� �	 

ð11Þ

whereΦð:Þ is the CDF of the standard normal distribution.
We adopt a hybrid strategy to combine normal distribution

approximation and SPA. If the absolute value of the observed statistics
sG× E

�� ��<rσ̂, where r = 2 is a pre-specified value, we use normal dis-
tribution approximation. Otherwise, the retrospective SPA approach is
used to calibrate p values in tail areas.We output a two-sided p value of
pl +pr , where:

pl = bPr SG× E<� sG× E

�� ����R,E� � ð12Þ

and

pr = bPr SG× E> sG× E

�� ����R,E� � ð13Þ

are left-tailed and right-tailed p values, respectively, and bPr :ð Þ denotes
the probability estimated from the normal distribution approximation
or SPA. The hybrid strategy can reduce computation time while
avoiding false positive discoveries. For further details, please refer to
Supplementary Note.

SPAGxE+ employs sparse GRM to account for sample
relatedness
SPAGxECCT assumes that genotypes for different individuals dis-
tributed independently, which could be violated if the study cohort
includes related samples. To address this issue, we propose SPAGxE+
following a similar idea from ROADTRIP93, MASTOR40, and L-GATOR94

to incorporate a GRM Φ to characterize the correlation between the
genotypes of related samples.

Test statistics adjusted for sample relatedness. Suppose that the
study cohort includes n genetically related individuals. We let Φ
denote an n×n genetic relationship matrix (GRM) to characterize
sample relatedness. We update test statistics SG× E to:

SG× E GRMð Þ =
Xn
i = 1

GiEi � λGRMGi

� �
Ri ð14Þ

where λGRM =RTΦRE=R
TΦR, RE = R1E1, . . . ,RnEn

� �T. More details
about the GRM estimation can be found in Supplementary Note.
SPAGxE+ follows a similar framework as SPAGxECCT to test for mar-
ginal genetic effect based on ScG and to test for marginal G×E effects
based on SG× EðGRMÞ and eSG× E . Suppose that ScG follows a normal dis-
tribution with a mean of 0 and a variance ofdVar ScGjR

� �
= 2q̂ 1� q̂

� �
RTΦR under the null hypothesis, we calculate a

two-sidedp value to characterize themarginal genetic effect. Note that
when marginal genetic effect p value is smaller than ϵ, SPAGxE+ only
uses eSG× E to test for marginal G×E effects, since it is computationally
intensive to perform Wald test via fitting a mixed-effect model.

Normal distribution approximation and SPA adjusted for sample
relatedness. Suppose that genotypeGi follows a binomial distribution
Binom 2, qð Þ, the mean and variance of SG× EðGRMÞ are 0 and
σ̂2
GRM =2q 1� qð Þ � ðRT

E � λGRMR
TÞΦðRE � λGRMRÞ, respectively. SPAGxE

+ follows previous strategies to calculate p values following a hybrid
strategy combining normal distribution approximation and SPA.

We follow the SPA as in SPAGxECCT to approximate the null
distribution of SG× EðGRMÞ and eSG× E , respectively. For SG× EðGRMÞ,
instead of the observed statistics sG× EðGRMÞ, we calculate an
adjusted test statistics sG× EðadjÞ = ðσ̂UR=σ̂GRM Þ � sG× EðGRMÞ, where σ̂2

UR =
2q̂ð1� q̂Þ �Pn

i= 1 RiEi � λGRMRi

� �2
. Then, the adjusted statistics sG× EðadjÞ

was used as in SPAGxECCT. For eSG× E , a similar adjustment was
conducted to incorporate variance ratio in SPA. For further details,
please refer to Supplementary Note.

SPAGxEmixCCT uses individual-level allele frequency to adjust
for population admixture
SPAGxECCT relies on an assumption that genotypes for different indi-
viduals follow an identical binomial distribution Binom (2,q). The
assumption is usually valid in a homogeneous population. However, if
the study cohort consists of individuals from multiple ancestries, this
assumption could be violated. To address this issue, we propose
SPAGxEmixCCT in which genotypes for different individuals follow
binomial distributions but the corresponding allele frequencies
q̂1, q̂2, � � � q̂n could be different. We follow the idea from Conomos
et al.95 to estimate individual-level allele frequency using SNP-derived
PCs and raw genotypes. More details can be found in
Supplementary Note.

Test statistics adjusted for population admixture. For a genetic
variant, given q̂= ðq̂1, q̂2, � � � q̂nÞ where q̂i is the estimated allele
frequency for individual i, we update test statistics SG× E to
SG× EðmixÞ =

Pn
i = 1ðGiEi � λmixGiÞRi, where λmix =

Pn
i = 12q̂ið1� q̂iÞðEiR

2
i Þ=Pn

i = 12q̂ið1� q̂iÞR2
i . SPAGxEmixCCT follows the same analysis framework

as SPAGxECCT to test formarginal genetic effect basedon ScG and to test
for marginal G×E effects based on SG× EðmixÞ, eSG× E and Wald test. Note
that test statistic ScG follows a normal distribution with a mean of
ÊcðScGjRÞ=

Pn
i = 12q̂iRi and a variance of dVarc ScGjR

� �
=
Pn

i = 12q̂ið1� q̂iÞR2
i .

Normal distribution approximation and SPA. Suppose that genotype
Gi follows a binomial distribution Binom 2, qi

� �
, i≤n, the mean and
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variance of SG× EðmixÞ are:

μ̂mix =
Xn
i= 1

2q̂i EiRi � λmixRi

� �
ð15Þ

and

σ̂2
mix =

Xn
i = 1

2q̂i 1� q̂i

� �
EiRi � λmixRi

� �2 ð16Þ

respectively. The estimated MGF and CGF of Gi are:

bMGi
tð Þ= 1� q̂i + q̂ie

t� �2 ð17Þ

and

K̂Gi
tð Þ= ln bMGi

tð Þ ð18Þ

respectively. Conditional on R,E, λmix

� �
, the estimatedCGFof SG× EðmixÞ

under the null hypothesis is:

Ĥmix tð Þ=
Xn
i = 1

K̂Gi
RiEi � λmixRi

� �
t

� �
=
Xn
i = 1

lnbMGi
RiEi � λmixRi

� �
t

� �
ð19Þ

For observed statistics sG× EðmixÞ, SPAGxEmixCCT follows previous
strategies to calculate p values following a hybrid strategy combining
normal distribution approximation and SPA. For further details, please
refer to Supplementary Note.

SPAGxEmixCCT-local tests for G×E allowing for ancestry-specific
effects
Tractor proposed a framework in which local ancestry is used to
enhance power of GWAS in an admixed population84. Potential
ancestry-specific patterns of G×E and the necessity to account for local
ancestry in G×E analyses have been demonstrated in previous
researches10. In this section, we extend SPAGxEmixCCT to
SPAGxEmixCCT-local to incorporate local ancestry into analysis.

Ancestry-specific test statistics for G×E allowing for ancestry-
specific effects. Suppose that the study cohort consists of n indivi-
duals from an admixed population composed of K ancestries, we let

G= G1, . . . ,Gn

� �T denote the genotype vector of a genetic variant and

G kð Þ = ðG kð Þ
1 , . . . ,G kð Þ

n ÞT, k ≤K , denote the genotypes from the k-th
ancestry, i.e., the vector of the number of copies coming from the k-th
ancestry. SPAGxEmixCCT-local is designed to test for G×E allowing
ancestry-specific effects, i.e., to associate the interaction of ancestry-

specific genotypes G kð Þ and environmental factor E to the trait of
interest. The latent linear predictor:

ηi =X
T
i βX + EiβE +

XK
k = 1

G kð Þ
i β kð Þ

G + EiG
kð Þ
i β kð Þ

G× E

� �
ð20Þ

can well characterize the ancestry-specific effects to the phenotype,
where coefficients β kð Þ

G and β kð Þ
G× E are the ancestry-specific marginal

genetic effect and ancestry-specific marginal G×E effect of the k-th
ancestry, respectively. Testing for ancestry-specific G×E effect of the k-
th ancestry is equal to testing for a null hypothesis H kð Þ

0 : β kð Þ
G× E =0.

For individual i, i≤n, we let h kð Þ
i denote the number of haplotypes,

i.e., local ancestry counts, of the k-th ancestry at one locus, and let

h kð Þ = ðh kð Þ
1 , . . . ,h kð Þ

n ÞT denote the corresponding vector for all indivi-
duals. Suppose that the ancestry-specific allele frequencies
q 1ð Þ, . . . , q Kð Þ are available. We assume that ancestry-specific genotype

G kð Þ
i , i≤n follow a binomial distribution Binomðh kð Þ

i , q kð ÞÞ in which

h kð Þ
i =0, 1, or 2. Similar to SPAGxEmixCCT, SPAGxEmixCCT-local calcu-

lates ancestry-specific score statistics Sc kð Þ
G =

Pn
i= 1RiG

kð Þ
i and then tests

for ancestry-specific marginal genetic effects. The mean and variance

of Sc kð Þ
G under the hypothesis H kð Þ

c : β kð Þ
G× E =β

kð Þ
G =0 are:

Ec Sc kð Þ
G jR

� �
= q kð Þ �

Xn
i = 1

Ri � h kð Þ
i ð21Þ

and

Varc Sc kð Þ
G jR

� �
=
Xn
i= 1

R2
i � h kð Þ

i � q kð Þ 1� q kð Þ
� �

ð22Þ

respectively. For SPAGxEmixCCT-local, the ancestry-specific allele fre-
quencyq kð Þ is estimatedby using q̂ kð Þ =

Pn
i= 1G

kð Þ
i =

Pn
i= 1h

kð Þ
i . If thep value

from Sc kð Þ
G is greater than a pre-selected positive cutoff ϵ, we use

statistic:

S kð Þ
G× E = S

c kð Þ
G× E � λ kð ÞSc kð Þ

G =
Xn
i = 1

G kð Þ
i Ei � λ kð ÞGi

� �
Ri ð23Þ

to test for marginal G×E effect corresponding to k-th ancestry, where
λðkÞ =

P
sni = 1ðh

ðkÞ
i EiR

2
i Þ=

Pn
i= 1h

ðkÞ
i R2

i . Otherwise, we define an ancestry-
specific genotype-adjusted residual vector:

eR kð Þ
= eR kð Þ

1 , . . . , eR kð Þ
n

� �
= In �W kð Þ W kð ÞTW kð Þ

� ��1
W kð ÞT

� �
R ð24Þ

and use eS kð Þ
G× E =

Pn
i = 1G

kð Þ
i Ei

eR kð Þ
i to test for themarginal G×E effect, where

W kð Þ = ð1n,GðkÞÞ. Then, SPAGxEmixCCT-local uses CCT to combine two p

values from eSðkÞG× E andWald test. For S kð Þ
G× E and

eS kð Þ
G× E , the hybrid strategy

to combine normal distribution approximation and SPA to calculate p
values is the same as in previous sections. Further details can be found
in Supplementary Note.

Combining p values of SPAGxEmixCCT and SPAGxEmixCCT-local to
maximize powers
Suppose that the admixed population is composed of K ancestries.
SPAGxEmixCCT-local outputs K ancestry-specific p values, and the ori-
ginal SPAGxEmixCCT outputs one p value assuming that theG×E effects
are the same for all ancestries.WeproposedSPAGxEmixCCT-local-global in
which Cauchy combination test is used to combine the K + 1 p values.
Benefiting from the advantage of Cauchy combination test,
SPAGxEmixCCT-local-global can control type I error rates while remaining
powerful regardless of whether ancestry-specific G×E effect sizes are
homogeneous or heterogeneous.

The framework can be applied to other types of traits
The above proposed analysis framework only requires score statistics
with a format of:

ScG× E =
Xn
i = 1

GiEiRi, S
c
G =

Xn
i = 1

GiRi ð25Þ

to test for marginal G×E effect and marginal genetic effect, respec-
tively. For other types of traits and regression models, SPAGxECCT and
SPAGxEmixCCT are also applicable. The below gives two examples.

Binary traits and logistic model. For individual i, we let Y i denote a
binary trait (0 or 1, e.g., disease status), μi = Pr Y i = 1jXi, Ei,Gi

� �
denote

the probability of Y i = 1 conditional on Xi, Ei, and Gi. We consider the
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following logistic model:

logit μi

� �
= ηi =X

T
i βX + EiβE +GiβG +GiEiβG× E , i≤n ð26Þ

where the denotations of Xi (including an intercept term), Ei, Gi, βX,
βG, βE , βG× E , and ηi are the same as those in Cox PH model. We are
interested in testing for the marginal G×E effect with a null hypothesis
H0 : βG× E =0. More details, including model fitting, theoretical deri-
vations about the score statistics, and the model residuals Ri, can be
found in Supplementary Note.

Ordinal traits and proportional odds logistic model. Ordinal traits
are widely available in biobanks to measure human behaviors, satis-
faction, andpreferences. For individual i≤n, we let Y i = 1, 2,…, Jdenote
the ordinal phenotype, in which J is the number of category levels. We
let νij = Pr Y i ≤ jjXi, Ei,Gi

� �
denote a cumulative probability of Y i ≤ j

conditional on Xi, Ei, and Gi. We consider the proportional odds
logistic regression model as below:

logit νij

� �
= εj � ηi = εj � XT

i βX � EiβE � GiβG � GiEiβG× E , i≤n, j ≤ J

ð27Þ

where the denotations ofXi, Ei,Gi,βX, βG,βE , βG× E , and ηi are the same
as those in Cox PHmodel. The cutpoints εj, j ≤ J are used to categorize
the data. More details, including model fitting, theoretical derivations
about the score statistics, and the model residuals Ri, can be found in
Supplementary Note and previous work25.

Data simulation
In this section, we demonstrated the simulation of genotypes, covari-
ates, environmental factors, and time-to-event traits. The simulation of
binary and ordinal traits can be seen in Supplementary Note.

For individual i, we first generated an underlying failure time T *
i

and a censoring time Ci, and then calculated a time-to-event value
Ti = minðT *

i ,CiÞ and an indicator δi = IðT *
i ≤CiÞ. We simulated the cen-

soring time Ci following a Weibull distribution with a scale parameter
of 0.15 and a shape parameter of 1. The underlying failure time T *

i was
generated from a Cox PH model with a Weibull baseline hazard func-
tion as:

T *
i =α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lnUi

exp ηi

� �s
ð28Þ

where Ui was simulated following a uniform distribution U(0,1), and
linear predictor ηi =0:5Xi1 + 0:5Xi2 + 0:5Ei +βGGi +βG× EGiEi, where a
binary covariate Xi1 was simulated following a Bernoulli(0.5) distribu-
tion, a continuous covariate Xi2 was simulated following a standard
normal distribution, and genotype Gi was simulated following Hardy-
Weinberg equilibrium, i.e., Binom(2, MAF) distribution. Parameters βG

and βG× E are to characterize marginal genetic effect and the marginal
G×E effect, respectively. The scale parameter α was chosen to
correspond to a given event rate, i.e.,

Pn
i= 1δi=n.

We considered two settings to simulate an environmental factor
Ei: (1) Ei was simulated following a standard normal distribution N(0,1)
to mimic a quantitative value, and (2) Ei was simulated following a
Bernoulli(0.5) distribution to mimic a binary value. For time-to-event
traits, we considered three event rates of 1%, 10%, and 50% to mimic
extremely unbalanced, moderately unbalanced, and balanced pheno-
typic distribution, respectively.

In the simulation studies within a homogeneous population, we
evaluated SPAGxE-based approaches including SPAGxE, SPAGxEWald,
and SPAGxECCT. If the marginal genetic effect p value is greater than ϵ,
all the three SPAGxE-based approaches employ SG× E as test statistics
and output the same marginal G×E effect p value. However, if the p

value is less than or equal to ϵ, the SPAGxE-based approaches calculate
p values following different strategies: SPAGxE takes eSG× E as the test
statistic, SPAGxEWald employs Wald test, and SPAGxECCT applies Cau-
chy combination test to combine the two p values from eSG× E andWald
test. In addition, we also evaluated Wald test and NormGxE. Similar to
SPAGxE, NormGxE also calculates p values based on SG× E and eSG× E ,
with the exception that only normal distribution approximation is
used. For binary trait analyses, we additionally evaluated SPAGE.

Type I error rates simulation. To evaluate type I error rates, we fixed
sample size n = 10,000 and simulated traits under nullmodel βG× E =0.
We simulated genotypes and traits to assess type I error rates under
the below two scenarios.

• Scenario 1. Test for variants without marginal genetic effect, that is,
βG × E =βG =0. We considered three fixed MAFs of 0.3, 0.05, and
0.01 tomimic common, low-frequency, and rare variants. For each
MAF, we simulated genotypes of 10,000 independent variants
following HWE. Traits were simulated using a linear predictor
ηi =0:5Xi1 + 0:5Xi2 +0:5Ei. For each phenotypic distribution set-
ting, we simulated 10,000 datasets of phenotypes and covariates.
Thus, for each pair of MAF and phenotypic distribution setting, a
total of 108 tests were conducted to associate time-to-event traits
to genetic variants without marginal genetic effect.

• Scenario 2. Test for variants with marginal genetic effect, that is,
βG × E =0, βG≠0. We simulated m = 1000 variants with MAFs fol-
lowing a uniform(0.05, 0.5) distribution. Traits were simulated
using a linear predictor ηi =0:5Xi1 + 0:5Xi2 +0:5Ei +

Pm
k = 1GkiβGk

,
where Gki is the genotype value of the kth variant and marginal
genetic effects βGk

were simulated following a uniform(−0.4, 0.4)
distribution. For each phenotypic distribution setting, we simu-
lated 1000 datasets of phenotypes and covariates. Thus, 106 tests
were conducted for variants with marginal genetic effect.

Power simulation. We fixed sample size n = 50,000 and simulated
traits under an alternative model in which linear predictor:

ηi =0:5Xi1 + 0:5Xi2 +0:5Ei +GiEiβG× E , i ≤ n ð29Þ

where Gi was the genotype value of a causal genetic variant. We con-
sidered three fixedMAFs of 0.3, 0.05, and0.01 tomimic common, low-
frequency, and rare variants. The settings of phenotypic distribution
and environmental factor distribution were the same as in previous
sections. For each parameter setting, we simulated 104 datasets to
evaluate empirical powers.

For time-to-event trait analysis, we considered two settings of
marginal genetic effect of βG =0 and βG≠0, similar as in the previous
section of type I error simulations. We treated event indicator δi as a
binary outcome (0 or 1) and additionally evaluated the methods
designed for binary trait analyses, including SPAGE, SPAGxECCT(CC),
and SPAGxECCT(CC0). Both SPAGxECCT(CC) and SPAGxECCT(CC0) fit a
logisticmodel to adjust for covariates and thenpassmodel residuals to
SPAGxECCT framework.When fitting a logisticmodel, SPAGxECCT(CC0)
incorporates covariates ofXi1 andXi2, and SPAGxECCT(CC) additionally
incorporates a covariate of time-to-event Ti. For ordinal trait analysis,
we dichotomized ordinal traits to binary traits depending on whether
the individual is in level 1 or not25. Then, we evaluated SPAGxECCT(CC0)
which fits a logistic regression model with covariates of Xi1 and Xi2.

Type I error simulations in related samples. We carried out simula-
tions to evaluate type I error rates of SPAGxE+ and SPAGxECCT (SAIGE)
in the presenceof sample relatedness for binary and time-to-event trait
analysis. We simulated n = 10,000 individuals consisting of 5000
related individuals from 1250 four-member families and 5000 unre-
lated individuals. We considered three fixed MAFs of 0.3, 0.05, and
0.01. For each MAF, we simulated genotypes of 106 independent
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variants following HWE. We conducted the gene-dropping simulation
using these variants as the founding haplotypes, which were then
passed down through the pedigrees of four-member families, as illu-
strated in Supplementary Fig. 59.

We simulated binary and time-to-event phenotypes using a linear
predictor ηi =0:5Xi1 + 0:5Xi2 +0:5Ei +bi, where bi denotes random
effect simulated from multivariate normal distribution N 0, τϕð Þ, ϕ is
an n ×n GRM, and τ is the additive genetic variance. We set τ = 1 in our
simulations. The covariates Xi1 was simulated following a Ber-
noulli(0.5) distribution, Xi2 was simulated following a standard normal
distribution, and the environmental factor Ei was simulated following a
standard normal distribution.

For each phenotypic distribution setting, we simulated 1000
datasets of phenotypes of related samples and then calculated the
variance ratio ρ = σ̂2

GRM=σ̂
2
UR for each phenotype. We analyzed the

phenotypes corresponding to the variance ratio distribution quantiles
0, 0.5, and 1. Thus, for each setting of quantile, MAF, and phenotypic
distribution, a total of 106 tests were conducted.

Type I error simulation in an admixedpopulation. For individual i≤n,
we let ai = aEUR

i ,aEAS
i

� �T
denote an ancestry vector, where 1≥aEUR

i ≥0
and 1≥aEAS

i ≥0 are to represent ancestry proportions of EUR and EAS,
respectively, and aEUR

i +aEAS
i = 1.We assumed that the first n=2 = 5, 000

individuals were from a EUR-dominant community with an ancestry
vector ai following a Dirichlet(9, 1) distribution, and the remaining
5000 individuals were from an EAS-dominant community with an
ancestry vector ai following a Dirichlet(1, 9) distribution95–99. The dis-
tribution of ai, i≤n can be found in Supplementary Fig. 60.

In this paper, we used the real MAF values from 1000 Genome
Projects to mimic the allele frequency diversity between EUR and
EAS83. For a genetic variant, we let qEUR and qEAS denote the MAFs in
EUR and EAS, respectively. Depending on the difference of MAFs
corresponding to the two populations, i.e., DiffMAF = qEUR � qEAS, we
categorized variants into five groups: DiffMAF << 0, DiffMAF < 0,
DiffMAF ~ 0, DiffMAF > 0, and DiffMAF >>0 based on cutoffs of −0.05,
−0.01, 0.01, and 0.05. Depending on the minimal MAF value, i.e.,
min qEUR,qEAS

� �
, we categorized variants into three groups of

minMAFlow, minMAFmod, minMAFhigh based on two cutoffs of 0.01 and
0.05. Thus, all variants were categorized into 15 (5 × 3) groups. In each
group, we randomly sampled 1000 pairs of qEUR,qEAS

� �
and simulated

1000 SNPs. For each variant, qi =a
EUR
i qEUR +aEAS

i qEAS is the allele fre-
quency of individual i and the genotype Gi follows a Binom(2, qi) dis-
tribution. In addition, we simulated 100,000 common SNPs with
qEUR +qEAS>0:1 to calculate SNP-derived PCs (Supplementary Fig. 60).

To simulate time-to-event traits in an admixed population, we
simulated a linear predictor ηi =β1Xi1 + 0:5Xi2 +0:5Xi3 + 0:5Ei +
βGGi +βG× EGiEi. Covariate Xi1 =a

EAS
i = 1� aEUR

i was the proportion of
EAS ancestry, Xi2 was simulated following a Bernoulli(0.5) distribution,
Xi3 was simulated following a standard normal distribution, and
environmental factor Ei was simulated following a standard normal
distribution. We selected a scale parameter λ and a coefficient β1 to
obtain desired event rates EREUR and EREAS in EUR and EAS popula-
tions. Here, EREUR and EREAS are the expected event rates for a pure
EUR population (i.e., Xi1 = 0, i≤n) and pure EAS population (i.e.,
Xi1 = 1, i≤n), respectively. Then, we followed the same procedures in
previous homogeneous population simulations to simulate a censor-
ing time Ci and an underlying failure time T *

i = λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�lnUi= exp ηi

� �q
.

To assess type I error rates, we simulated traits under two sce-
narios, either of which followed the null hypothesis of no G×E effects
and genetic effects (i:e:βG× E =βG =0).

• Scenario 1. The event rates in EUR and EAS were the same, that is,
EREUR =EREAS .We consider three events rates including 0.01 (low
event rate, ERlow), 0.05 (moderate event rate, ERmod), and 0.2
(high event rate, ERhigh).

• Scenario 2. The event rates in EUR were higher than those in EAS,
that is, EREUR>EREAS. We considered three pairs of event rates
EREUR, EREAS

� �
= (0.1, 0.01) (low event rate, ERlow), (0.3, 0.05)

(moderate event rate, ERmod), and (0.5, 0.2) (high event rate,
ERhigh).

We did not consider a scenario in which the event rates in EAS
were higher than those in EUR since it is exactly the opposite direction
of scenario 2. In either scenario, 10,000 datasets of phenotypes and
covariates were simulated, and thus a total of 107 tests were conducted
for each pair of MAF group and event rate.

Null model fitting incorporates covariates X2 =
X 12,X22, � � � ,Xn2

� �T,X3 = X 13,X23, � � � ,Xn3

� �T,E= E1, E2, � � � , En

� �T, and
the top 4 PCs derived from genotype data. In addition to
SPAGxEmixCCT, we also evaluated NormGxEmix and SPAGE. For
NormGxEmix, p values of all variants are calculated using only normal
distribution approximation without SPA. For SPAGE, we treated event
indicator δi as a binary trait.

Type I error simulation under heterogeneity of environmental fac-
tors. To evaluate the impact of environmental factors heterogeneity
on type I error rates, we simulated a scenario in which the distribution
of environmental factors varies between EUR-dominant and EAS-
dominant communities. The environmental factor Ei was simulated
following a standard normal distribution in the EUR-dominant com-
munity and a normal distribution N (1,10) in the EAS-dominant com-
munity. We simulated traits under scenario 2, that is, the event rates in
EUR were higher than those in EAS. We simulated 1000 datasets of
phenotypes, environmental factors, and covariates, and thus a total of
106 tests were conducted for each pair of MAF group and event rate.
Although the environmental factors heterogeneity seems too extreme
to be available in real data analyses, it can demonstrate the advantage
of SPAGxEmixCCT in terms of the robustness and accuracy.

Power simulation in cross-ancestry analyses. We simulated two
discrete populations of EUR and EAS with a total sample size
n = 20,000 (10,000 individuals were from a EUR population, and the
remaining 10,000 individuals were from EAS population). We also
used the real MAF values from 1000 Genome Projects to mimic the
allele frequency diversity between EUR and EAS. We simulate time-to-
event phenotypes using a linear predictor
ηi =β1Xi1 + 0:5Xi2 + 0:5Xi3 +0:5Ei + βG× EGiEi. The settings of event
rates and processes of categorizing variants, generating genotypes
and SNP-derived PCs, and covariates were the same as in previous
section of type I error simulation in an admixed population. We
simulated βG× E = � 2log10

dMAF where dMAF= 1
2n

Pn
i= 1Gi. Null model

fitting incorporates covariates X2 = X 12,X22, � � � ,Xn2

� �T,X3 =
X 13,X23, � � � ,Xn3

� �T,E = E1, E2, � � � , En

� �T, and the top 4 PCs (see Sup-
plementary Fig. 61) derived from genotype data. In addition to
SPAGxEmixCCT, we also evaluated SPAGxEmixCCT (PCxE), SPAGxECCT
(EUR), SPAGxECCT (EAS), and SPAGxECCT (meta). SPAGxEmixCCT (PCxE)
denotes SPAGxEmixCCT method fitting null model including the
interaction term of PCs-by-E as covariates. SPAGxECCT (EUR),
SPAGxECCT (EAS), and SPAGxECCT (meta) denote SPAGxECCT method
analyzing 10,000 individuals fromEUR population, 10,000 individuals
from EAS population, and cross-ancestry meta-analysis based on
SPAGxECCT (EUR) and SPAGxECCT (EAS), respectively.

Simulation studies considering ancestry-specific marginal G×E
effect sizes
To evaluate the performance of SPAGxEmixCCT-local and
SPAGxEmixCCT-local-global, we simulated a two-way admixed population
with sample size n = 10,000, including ancestry-specific genotypes,
local ancestry counts, genotype-derived PCs, and phenotypes. We
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considered extensive scenarios of ancestry-specific G×E effect sizes
and MAFs.

We followed procedure as inMester et al.41 to simulate genotypes.
First, we generated an individual-level global ancestry proportion of
ancestry 2 (denoted as di, i≤n) from a normal distributionN θ, σ2

� �
for

each individual, in which θ is the expected global ancestry proportion
and σ is the corresponding standard deviation. We let σ =0:125 and
coerced di between [0,1]. For individual i, i≤n, we simulated local
ancestry count h 1ð Þ

i and h 2ð Þ
i , in which h 2ð Þ

i follows a binomial distribu-
tion Binom di, 2

� �
and h 1ð Þ

i =2� h 2ð Þ
i . Then, we simulated ancestry-

specific genotype G kð Þ
i following a binomial distribution

Binomðh kð Þ
i , q kð ÞÞ, where q kð Þ is the allele frequency corresponding to

the ancestry k. Genotype Gi =G
1ð Þ
i +G 2ð Þ

i . In simulation studies, we
considered two fixed MAFs of 0.01 and 0.1 in ancestry 1 and four fixed
MAFs of 0.01, 0.05, 0.1, and 0.3 in ancestry 2. A total of 100,000
common SNPs were simulated to calculate SNP-derived PCs. Supple-
mentary Fig. 62 showed the global ancestry distribution and the top
PCs and for the 10,000 two-way admixed individuals.

Type I error simulations. We simulated binary and quantitative traits
following a logistic regression model and a linear regression model as
below:

logit μi

� �
=β0 +0:5Zi1 + 0:5Zi2, + 0:5Ei, i ≤ n ð30Þ

Y i =0:5Zi1 + 0:5Zi2 +0:5Ei + εi, i ≤ n ð31Þ

where covariates Zi1 and Zi2 were simulated with a standard normal
distribution and a Bernoulli(0.5) distribution, environmental factor Ei

was simulated a standard normal distribution, μi is the probability of
being a case for a binary trait, and Y i is a quantitative trait. For a binary
trait, the intercept β0 was determined to correspond to a certain dis-
ease prevalence. We considered disease prevalence of 0.01 and 0.2.
For a quantitative trait, random term εi was simulated following a
standard normal distribution. We simulated 100 datasets of pheno-
types and covariates for each phenotypic distribution and 10,000
SNPs for each setting of MAF, and thus a total of 106 tests were con-
ducted in each scenario.

Power simulations. We simulated binary and quantitative traits under
an alternative hypothesis to evaluate powers. For both binary and
quantitative traits, we simulated phenotypes under an alternative
model by using the linear predictor:

ηi =β0 +0:5Zi1 + 0:5Zi2 +0:5Ei +
X10
j = 1

β 1ð Þ
G G 1ð Þ

i, j +β
2ð Þ
G G 2ð Þ

i, j

h i
+ Ei

X10
j = 1

β 1ð Þ
G× EG

1ð Þ
i, j +β

2ð Þ
G× EG

2ð Þ
i, j

h i
ð32Þ

whereZi1,Zi2, and Ei were simulated following the samedistribution as
in type I error simulations, G 1ð Þ

i, j and G 2ð Þ
i, j were the ancestry-specific

genotype of individual i in SNP j from ancestry 1 and 2, respectively,
and β 1ð Þ

G× E and β 2ð Þ
G× E were corresponding ancestry-specificmarginal G×E

effect sizes. For binary traits, we fixed disease prevalence at 0.2. For
quantitative traits, we set β0 =0.

We considered two scenarios including homogeneity and het-
erogeneity of marginal genetic effect sizes and G×E effect sizes for
ancestries 1 and 2. For heterogeneous marginal G×E effect sizes, we
fixed β 1ð Þ

G× E and increased β 2ð Þ
G× E from 0. For both homogeneous and

heterogeneous marginal G×E effect sizes, we consider three pairs of
marginal genetic effect sizes of (0, 0), (0.1, 0.1), and (0.2, 0.1) in
ancestries 1 and 2, respectively. We simulated 100 datasets of pheno-
types and covariates for each scenario, and thus a total of 1000 tests
were conducted to evaluate powers.We calculated empirical powers at
a genome-wide significance level 5 × 10−8.

Association analysis of SPAGxEmixCCT-local in simulation studies.
SPAGxEmixCCT-local fitted a null model with covariates of Zi1, Zi2,
Ei, and top 4 SNP-derived PCs. Regular linear model and logistic
model were used to fit quantitative and binary traits, respectively.
SPAGxEmixCCT-local returned two p values corresponding to
ancestry-specific marginal G×E effect sizes β 1ð Þ

G× E and β 2ð Þ
G× E .

SPAGxEmixCCT-local-global calculated one p value by combining the
two p values outputted by SPAGxEmixCCT-local and one p value
outputted by SPAGxEmixCCT.

Application to UK Biobank data
To assess the performance in a real-data application, we applied the
proposed approaches to conduct genome-wide gene-environmental
interaction analyses of time-to-event traits in UK Biobank. Environ-
mental factors and traits were defined based on UK Biobank field ID
(FID) and PheWAS codes (PheCodes), respectively. The analyses of
White British participants (sample size = 281,299) comprised 8 pairs of
environmental factors and time-to-event traits, including two envir-
onmental factors: smoking status (FID: 20116) and genetic sex (FID:
22001), along with four time-to-event traits: cardiac dysrhythmias
(CDR), pulmonary heart disease (PHD), chronic airway obstruction
(CAO), and colorectal cancer. Smoking status was encoded into vari-
ables of 0, 1, and 2, representing never, former, and current smoker,
respectively. Genetic sex was encoded into categorical variables of 0
and 1, representing male and female, respectively. Further detailed
summary information about these time-to-event traits was provided in
the Supplementary Table 9.

UK Biobank contains 338,044 unrelated individuals with in-
patient diagnosis data, of which 281,299 (83.2%) are White British
participants and the remaining participants (16.8%) are from
other ancestries including African, Asian, and other ethnic groups
(field ID: 21000). To construct time-to-event traits, we leveraged
the PheWAS code system based on the International Statistical
Classification of Diseases (ICD) codes version 9 and 10. If at least
one in-patient diagnosis was observed, we designated an event
indicator δi = 1 and let time-to-event Ti be the age at the initial in-
patient diagnosis date. For individuals without related in-patient
diagnosis, we set δi =0 and let time-to-event Ti be the age at the
right-censoring date or the date of being lost to follow-up. Fur-
thermore, the observed survival time was left truncated at the in-
patient data collection date15.

To demonstrate the superiority of time-to-event trait over binary
trait (i.e., case or control), in real data analysis, we conducted additional
G×E analyses using SPAGxECCT(CC0) andSPAGE inwhich event indicator
δi was treated as a binary outcome. To highlight the importance of
ancestry diversities in genome-wide G×E analyses and the superiority of
SPAGxEmixCCT over SPAGxECCT in real data analysis, we additionally
applied SPAGxEmixCCT to analyze time-to-event traits in which 338,044
unrelated individuals from multiple ancestries were included.

For each trait, top ten principal components (PCs), genetic sex,
age, and the relevant environmental factor were incorporated as cov-
ariates to fit nullmodels.Markers imputedby theHaplotypeReference
Consortium (HRC) panel with a minor allele counts (MAC) > 20 and
imputation INFO score > 0.6 were used in the analysis.

Comparison of computation time in analyzing large-scale
biobank data
To assess computation time in analyzing a large-scale biobank
data, we selected smoking status × PHD and genetic sex × CDR in
UK Biobank as two examples (sample size = 281,299) corre-
sponding to low and high event rates, respectively. All analyses
were conduct on a CPU model of Intel(R) Xeon(R) Gold 6342 CPU
@ 2.80 GHz. In addition to SPAGxECCT, we also evaluated an R
package gwasurvivr in which Wald test was used to calibrate p
values for G×E analyses. As the package gwasurvivr does not

Article https://doi.org/10.1038/s41467-025-57887-3

Nature Communications |         (2025) 16:3064 18

www.nature.com/naturecommunications


support BGEN format, we converted the genotype data to plink
format. It is expected that reading text-based formats (such as
VCF format) is slower than reading binary format (such as plink
and BGEN formats). To mimic a genome-wide analysis, we ana-
lyzed 10,000 genetic variants randomly selected in chromosome
1, recorded the computation time, and then projected it to all
chromosomes including 18,583,853 genetic variants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level genotype and phenotype data are available through
formal application to the UK Biobank (https://www.ukbiobank.ac.uk/).
Results from the genome-wide association study analyses presented in
this paper are available from https://zenodo.org/records/14249034100.

Code availability
The methods SPAGxECCT, SPAGxE+, SPAGxEmixCCT, and
SPAGxEmixCCT-local are implemented in an open-source R package
available at https://github.com/YuzhuoMa97/SPAGxECCT. The code
for generating simulation results and real data analyses canbe found at
https://github.com/YuzhuoMa97/SPAGxECCT101. The R package
SPAGE (version 2.0.1) is available from https://github.com/WenjianBI/
SPAGE. The R package gwasurvivr (version 1.18.0) is available from
https://bioconductor.org/packages/release/bioc/html/
gwasurvivr.html.
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