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Information about the likelihood of various outcomes is needed to inform
discussions about climate mitigation and adaptation. Here we provide inte-
grated, probabilistic socio-economic and climate projections, using estimates
of probability distributions for key parameters in both human and Earth sys-
tem components of a coupledmodel. We find that policy lowers the upper tail
of temperature change more than the median. We also find that while human
system uncertainties dominate uncertainty of radiative forcing, Earth system
uncertainties contribute more than twice as much to temperature uncertainty
in scenarios without fixed emissions paths, reflecting the uncertainty of
translating radiative forcing into temperature. The combination of human and
Earth system uncertainty is less than additive, illustrating the value of inte-
grated modeling. Further, we find that policy costs are more uncertain in low-
and middle-income economies, and that renewables are robust investments
across a wide range of policies and socio-economic uncertainties.

Addressing climate change is ultimately a challenge of risk manage-
ment, recognizing that our ability to predict future climate with any
precision is limited. Many coupled human-Earth systems models have
been developed to explore potential future energy, emissions, climate
and other outcomes of interest. However, in thesemodels the limits to
prediction are often addressed through sensitivity analysis, scenarios
and model comparisons. In particular, much focus has been on the
Shared Socioeconomic Pathways (SSPs) and Representative Con-
centration Pathways (RCPs) developed for the Intergovernmental
Panel on Climate Change (IPCC), taking the ranges of outcomes from
these scenarios from different models as indicative of uncertainty1–5.
While these exercises provide useful insights, they limit the uncer-
tainty space explored by focusing on a limited set of pre-defined
socioeconomic and emissions concentration pathways and corre-
sponding climate outcomes, and provide no quantitative probabilistic
interpretation6,7. With just a range of scenarios or outcomes, decision
makers are left to ponder whether all of the scenarios are equally

probable, and whether more extreme outcomes outside the given
range are possible. Thus, there are growing calls for more formal
probabilistic, risk-based approaches to inform discussions about
mitigation and adaptation8–12. In coupled human-Earth system analysis,
there is value in quantifying both socioeconomic and climate uncer-
tainty in an integratedmanner to capture the cascade of uncertainty as
more variables are considered along the chain fromhumanactivities to
emissions to climate, in an attempt to provide insights for further
analysis of climate impacts13. While there are limits to uncertainty
analysis and not all uncertain aspects of our climate future can be
quantified, providing transparent quantification where there is a sci-
entific foundation can help work against well-known biases in decision
making when uncertainty is present14.

There is also a need to regularly update projections of uncertainty
as new information becomes available. For example, many studies
continue to use the IPCC 8.5 watts per square meter (W per m2) sce-
nario (RCP8.5) as a referencenopolicybaseline. However, given slower
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economic growth, falling costs of low-carbon energy options and
government interventionsworldwide directed at expanding the roleof
renewables and limiting emissions, many analysts now believe the
RCP8.5 no policy scenario and the heavy use of fossil fuels like coal it
implies to be unlikely8,15–18. Theremay be good reasons to still examine
RCP8.5 to understand the implications of high consequence, albeit,
possibly low probability outcomes. Formal uncertainty analysis can
help to provide some indication of the probability of more extreme
scenarios based on transparent assessments of underlying
uncertainties.

To date, scenario analysis has been the most widely used
approach to addressing uncertainty in projections. In general, a sce-
nario approach limits the number of different input assumptions
explored and therefore the range of possible outcomes. The set of
assumptions explored via scenarios is ultimately a judgment, which
may reflect biases or miss important areas of the uncertainty space19.
Focusing on the results of limited tests can also lead to overconfidence
that certain criteria must be met to achieve certain outcomes. Thus,
while scenarios can be a helpful tool for investigating and commu-
nicating different potential futures, they can also focus attention on a
narrow set of pathways, some which may be quite unlikely, which can
be counterproductive.

The advantage of uncertainty quantification via a probabilistic
Monte Carlo approach is that it more fully and systematically explores
the uncertainty space, investigating wide ranges of values for inputs in
many different combinations, helping to focus attention on more
important regions and providing insight about how likely different
outcomesmight be19. Being transparent about the assumptions behind
an uncertainty analysis allows for a clear linking of beliefs about future
emissions and their underlying drivers to outcomes and subsequent
climate risk analysis, and enables investigation of how differences in
those beliefs might change projected outcomes and potential strate-
gies to manage resulting risks.

Despite these benefits, probabilistic approaches also face limita-
tions and challenges (which are discussed in more detail in Supple-
mentary Discussion 1). Judgments must be made regarding the data
used to estimate the distributions, the distributional forms, and the
correlations between parameters, with the resulting distributions of
outcomes depending on those assumptions19. There are also limita-
tions related to the interpretation of relationships between outcome
distributions that are separately characterized and to structural
uncertainty. Scenario discovery approaches20 can address the former
and multi-model analyses can address the latter. The existence of
‘deep’ uncertainties, where information or agreement is insufficient to
characterize a distribution, or where processes are so poorly known
that they are not represented in the underlying models, also present
challenges. Some examples include unknown future carbon-free
technologies or destabilization of methane hydrates in permafrost or
in the ocean and resulting methane emissions and temperature feed-
backs. The exclusion of such possibilities from models means uncer-
tainty analysis conducted using those models does not capture the
true tails of outcomes, necessitating complementary what-if analysis.
Even for processes that are represented in underlying models, there
can be differing views about which uncertainties can be characterized
with probability distributions and which are too deep to do so. How-
ever, there is room to combine a probabilistic approach with repre-
sentations of deep uncertainty, for example by generating ensembles
conditional on assumptions about deep uncertainties. A number of
recent studies have embraced probabilistic projections, even in the
presence of deep uncertainties19,21–24, in order to provide insight for
decision-making.

As long as the limitations and assumptions of uncertainty quan-
tification are made clear, the results of such analyses can provide
important insights. There have been a number of valuable uncertainty
analyses in the literature focused on global economic development,

emissions and climate, however, they generally focus on a limited set
of uncertainties or employ relatively simplemodels, andmany are now
quite dated25–36. The economic outlook, technology costs, and esti-
mates of Earth system response have changed considerably in recent
years with new data, analysis and evidence, making it useful to revisit
these uncertainties. Recent work provides useful updates for a few
uncertain parameters (population, total factor productivity and cli-
mate sensitivity)9 anduncertainty in long-run economic growth rates37.
Other newer work has used simple models to make probabilistic pro-
jections of emissions38 or both emissions andglobalmean temperature
change39,40.

In this work, we take a probabilistic ensemble approach to
representing a comprehensive set of both socio-economic and climate
uncertainties in a complex human-Earth system model to provide an
updated set of probability distributions of both human and Earth
system outcomes that can help inform a risk-based decision-making
process. This work builds on a previous study focused on socio-
economic uncertainties19 and work using an optimal fingerprint
method to assess Earth system uncertainties41. We follow earlier
studies29,33,34, but employ an updated version of the MIT Integrated
Global System Model (IGSM), a coupled human-Earth systems model,
and a reassessment of uncertainty in input parameters. Analysis of the
resulting integrated, probabilistic socio-economic and climate pro-
jections shows varying contributions of human and Earth system
uncertainties to different climate outcomes and finds that they are not
simply additive.We alsofind that emissionspolicy lowers theupper tail
of temperature changemore than the median, policy costs in low- and
middle-income economies42 are more uncertain than in high-income
economies, and that renewables are robust investments across a wide
range of uncertain futures. This type of uncertainty analysis can inform
decision-making about mitigation and adaptation. Chapter 2 of
Working Group III of the IPCC’s Fifth Assessment Report (AR5) pre-
sented a set of approaches, rules and tools for decision-making, many
of which would be aided by uncertainty quantification43. In particular,
the probability distributions from this analysis could be used in formal
decision-making under uncertainty analyses that employ expected
utility theory, decision analysis, robust decision making or other
deliberative methods. However, they can also provide an under-
standing of uncertainty and risk that can aid decision-makers in more
intuitive decision-making processes.

Results
Uncertainty quantification via Monte Carlo analysis
Our Monte Carlo-based approach to uncertainty quantification
involves developing probability distributions for key input parameters
in both the human and Earth system components of the coupled
model. These include: climate sensitivity, ocean heat uptake, aerosol
forcing, population, labor and capital productivity, autonomous
energy efficiency improvement rate, fossil fuel resource availability,
advanced technology costs, new technology penetration rates, urban
pollutant initial inventories and trends, capital vintaging rate, abate-
ment cost elasticities formethane and nitrous oxide, and elasticities of
substitution (labor versus (vs.) capital, energy vs. labor/capital, energy
vs. non-energy, inter-fuel substitution, and resource supply elasti-
cities). Estimated distributions for socioeconomic parameters are
based on statistical estimates using historical data where possible,
published estimates of uncertainty, literature results and expert
judgment, with correlations among subsets of related parameters
imposed. A joint distribution for Earth system parameters is estimated
using an optimal fingerprint approach41,44,45. These input distributions
may be a useful result of the effort in themselves. See Supplementary
Methods 1 for distributions of all input parameters.

We then sample from the distributions, using Latin Hypercube
Sampling (LHS)46,47 to draw samples from each input probability dis-
tribution, and imposing a correlation structure amongst subsets of
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parameters, using @Risk software in Excel. Next, we generate
ensembles of model runs using the sampled parameter values and
develop integrated, probabilistic socio-economic and climate projec-
tions. These projections provide insight into the probability of out-
comes of interest, including emissions, CO2 concentrations, radiative
forcing, temperature, precipitation, Gross Domestic Product (GDP)
and energy use. Global climate mitigation policy remains a ‘choice’
variable or a ‘deep uncertainty’ which we explore with four separate
policy ensembles. The ensemble scenarios include a no new climate
policy reference case (Reference), a case extrapolating Nationally
Determined Contribution (NDC) targets of the Paris Agreement (Par-
isForever), and two policy cases that achieve long-term temperature
stabilization targets of 2 °C and 1.5 °C (Paris2C and Paris1.5 C). Further
details of our approach are described in the Methods section and
Supplementary Methods 1.

The distribution of model outcomes from the ensemble of simu-
lations for a particular scenario provides estimates of future states and
their uncertainty, conditional on themodel structure, the distributions
of the uncertain input parameters and their assumed correlations, and
the assumed scenario attributes (e.g. policy pathway). To address
uncertainty in the form of the underlying input distributions, we also
test an alternate setting using uniform distributions for all socio-
economic parameters. This follows the approach of robust decision
making, which assumes all values are equally likely, defining only the
ranges for each parameter from which to sample. We use the 1st and
99th percentiles of our original distributions for the range of the uni-
form distributions19. While changing the distributional form of the
inputs does affect the resulting distributions of outputs, the differ-
ences arenot large and the tails of distributions are affecteddifferently
depending on the outcome (see Supplementary Fig. 7). Different
assumed correlations between inputs would also affect results, with
missing correlations potentially widening the outcome distributions
by allowing for a great variety of input sample combinations. For
example, capturing regional correlation for labor and capital pro-
ductivity growth results in more narrow global GDP outcomes than if
regional productivity growth was uncorrelated. Correlation

assumptions can have other implications for results as well. For
example, uncorrelated technology costs mean that even if one fossil-
based (or renewable) technology is not competitive, anothermight be.
If these fossil or renewable costs were correlated, it could lead to
overly difficult or easy energy transitions. Given the computational
demands of the models we use, we limit the ensemble size to 400
members, which, with LatinHypercube sampling has been shown to be
sufficient46,47. We further test the adequacy of this sample size by
creating 1000-member ensembles. We find that this does not sub-
stantially impact the outcome distributions19 (see Supplemen-
tary Fig. 8).

Emissions
The variance in emissions is greatest in the Reference scenario, with
greenhouse gas (GHG) emissions in 2100 ranging from about 76 to 118
gigatonnes ofCO2-equivalent (Gt CO2eq) for the 5th to 95th percentile,
with a median of 96 Gt. The range of Reference emissions is shifted
down compared to the high end of the full range of emissions from the
IPCC Sixth Assessment Report (AR6)4 (Fig. 1). While our Reference case
does not include themitigation pledgesmade by the countries in their
submissions under the Paris Agreement, it does include policies tar-
geting an expansion of renewables in power generation consistent
with the International Energy Agency (IEA)48, which have resulted in
lower renewable technology costs and a slowing rate of emissions
growth over the last decade. The Economic Projection and Policy
Analysis (EPPA) model (the human system component of the MIT
IGSM) employed here also reflects slower prospects for long-term
regional economic growth (particularly for China).

The three policy scenarios reduce or effectively eliminate emis-
sions uncertainty as policies are implemented in the model as emis-
sions caps thatmust bemet. The 90th percentile range for ParisForever
2100 emissions is 64–91 Gt CO2eq, with amedian of 77 Gt. NDC targets
specified as reductions from reference emissions or as emissions
intensity goals leave some room for uncertainty in emissions projec-
tions due to the nature of the policies imposed and the underlying
uncertainty in emissions growth. In 2100, median emissions in
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Fig. 1 | Total global greenhouse gas emissions over time. Shown for each
ensemble scenario from this study (Reference in magenta, ParisForever in blue,
Paris2C in yellow and Paris1.5 C in green; colored shaded areas represent 90%
probability bounds and solid colored lines are the medians) compared with

scenarios from the International Panel on Climate Change (IPCC) Sixth Assessment
Report (AR6)5 (in shades of gray; the AR6 Full 90% range spans all the shades
of gray).
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ParisForever are about 19% lower than median 2100 emissions in
Reference. Median 2100 emissions in Paris2C and Paris1.5 C are 13 Gt
and 9 Gt, respectively, which is 87% and 91% below median 2100
Reference emissions. The emissions constraints are binding in all cases
in the Paris2C and Paris1.5 Cpolicy ensembles, so there is effectively no
uncertainty in global emissions under those scenarios.

However, there is uncertainty about how those emissions are
distributed across regions, sectors and greenhouse gases since emis-
sions trading is allowed. These distributions depend on the cost of
abatement opportunities, which change with different sampled values
of input parameters. The greatest variance in regional emissions is in
China, and the greatest variance in sectoral emissions is in the elec-
tricity and industry sectors (see Supplementary Figs. 9-10). Sectoral
results also suggest that there are limited abatement opportunities in
the agricultural, residential and industrial sectors. This reflects chal-
lenges in those sectors, where good options for reducing or elim-
inating emissions have yet to be identified.

Due to the many unresolved issues (e.g., cost, public acceptance,
ability to operate sustainably and at scale) related to negative emission
technologies (NETs) such as biomass electricity with carbon capture
and storage (BECCS), direct air capture (DAC) and afforestation,wedid
not include these technologies in this study. However, we have
explored their role in other studies49–52, and if available and scalable at
reasonable cost, NETs could reduce the need for near-term emissions
reductions, but in turn risk exceeding temperature targets if they
cannot be scaled up53,54.

There is a presumption in many policy circles that there is a need
to get to net zero emissions in this century, possibly as early as 2050,
and meeting this goal would require NETs in order to offset hard-to-
abate emissions, such asmethane from rice and ruminants and nitrous
oxide from soil management. However, all of our ensemble members
meet the emissions constraints imposed in the Paris2C and Paris1.5 C
ensembles without negative emissions or even achieving net zero
emissions. As emphasized in the IPCC, it is the cumulative budget over
the century that matters for temperature outcomes4,55. Net zero or
negative emissions in the latter half of the centurywouldprovidemore
near-term headroom, allowing for a more gradual transition from the
current fossil fuel-heavy energy system, and lower near-term costs. In
particular, to meet the Paris1.5 C emissions target under our formula-
tion (without negative emissions options) requires an almost 60%drop
in emissions between 2030 and 2035. This results in very high costs
even in the early years since much more abatement is needed early to
balance out emissions in the 2nd half of the century.

The carbon budgets for the Paris2C and Paris1.5 C scenarios are
somewhat larger than estimates for these temperature targets pre-
sented in the IPCC Special 1.5 °C Report55–57. For the set of climate
parameters used in this study, the median transient climate response
to (cumulative carbon) emissions (TCRE) obtained in our ensembles of
simulations of the MIT Earth SystemModel (MESM) component of the
IGSM is nearly identical to the value used in the IPCC Special 1.5 °C
Report55. However, the 90% probability range of the TCRE from the
estimates weuse41 is narrower. As a result, the CO2-only carbon budget
for achieving a given targetwith 50%probability as simulatedbyMESM
is similar to that shown by IPCC Special 1.5 °C Report55, while the
allowable budget for the 33%/66% probability is lower/higher. How-
ever, themain reason for the difference in carbon budget is the smaller
temperature change associated with non-CO2 forcing in MESM. Com-
pared with most IPCC scenarios, we have lower non-CO2 GHG emis-
sions and somewhat higher SO2 emissions resulting in greater negative
aerosol forcing, both of which allow for more CO2 emissions. As a
result, our carbon emissions (relative to 2017) are near the high end of
the range reported by Rogelj et al.56. It is important to note that IPCC
carbon budget studies generally make exogenous assumptions about
non-CO2 GHGs and then find the resulting remaining CO2 budget. In
contrast, our approach dynamically determines the most cost-

effective balance of reductions across all GHGs (using global warm-
ing potentials, GWPs, as weights).

Atmosphere and climate
Over the period from 2020 to 2100, the Paris2C and Paris1.5 C sce-
narios have a smaller 90% range of CO2 concentrations and of total
radiative forcing (which is the sum of the effects of all long-lived
greenhouse gases plus tropospheric ozone and aerosols) compared to
the Reference and ParisForever scenarios due to their fixed emissions
constraints (Fig. 2a, c). The driver of uncertainty in CO2 concentrations
under those scenarios is the rate of carbon uptake by the ocean and
terrestrial ecosystems. When emissions are also uncertain (as in the
Reference and ParisForever scenarios), the range of concentrations is
wider, with the Reference scenario having the widest range. The
uncertainty in radiative forcing is driven by: (1) varying concentrations,
and (2) uncertainty in the strength of sulfate aerosol forcing. Moving
from Reference to ParisForever to Paris2C, the distributions of end-of-
century concentrations and radiative forcing become increasingly
asymmetric, with policy (implemented as an emissions cap achieved
with certainty) trimming the upper tail more than the lower tail
(Fig. 2b, d). Paris1.5 C is slightly less skewed than Paris2C. In 2100, the
90% bounds of CO2 concentrations are 692–871 ppm for Reference,
629–747 ppm for ParisForever, 448–497 pmm for Paris2C and 412–451
ppm for Paris1.5 C. For total radiative forcing, those 90% bounds are
6.9–8.6W per m2 for Reference, 6.1–7.5W per m2 for ParisForever,
3.2–3.8W per m2 for Paris2C and 2.5–3.0W per m2 for Paris1.5 C. We
find that there is a ~ 8% chance that emissions will be high enough to
achieve 8.5W perm2 in 2100, supporting the concern of some analysts
that it no longer should be considered a central estimate in the
absence of additional policy8,15–18. However, scenarios as high as this or
higher are still possible in our analysis and, hence, relevant for evalu-
ating the expected damages.

As with concentrations and radiative forcing, policy also lowers
the upper tails for temperature and precipitation (Fig. 2e, f). Uncer-
tainty in temperature outcomes are driven by varying concentrations
and radiative forcing (which in turn are driven by uncertainty in carbon
uptake and aerosol forcing), along with uncertainty in ocean heat
uptake and overall climate sensitivity (Earth system response to higher
emissions). At the end of the century, the median 2091–2100 tem-
perature change relative to pre-industrial levels (1861–1880) is 3.5 °C
for Reference, 3.1 °C for ParisForever, 1.9 °C for Paris2C and 1.5 °C for
Paris1.5 C. The 90% range is 2.8–4.3 °C for Reference, 2.4–3.8 °C for
ParisForever, 1.5–2.3 °C for Paris2C and 1.2–1.9 °C for Paris1.5 C. The
Reference temperature change aligns well with IPCC’s AR6
projections4 for the SSP3-7.0 scenario, which yields end-of-century
median and very likely (90–100%) estimates of 3.6 °C and 2.8–4.6 °C,
respectively. ParisForever is similar to AR6’s SSP2-4.5 scenario (median
of 2.7 °C; very likely range of 2.1–3.5 °C), while Paris2C is similar to
SSP1-2.6 (median of 1.8 °C; very likely range of 1.3–2.4 °C) and Paris1.5C
is similar to SSP1-1.9 (median of 1.4 °C; very likely range of 1.0–1.8 °C)
(see Supplementary Table 5).

However, importantly, the AR6 estimates are based on the range
of estimates of different runs from different models, not an uncer-
tainty quantification effort designed to generate probability distribu-
tions of temperature outcomes based on emissions. There are limited
studies that have done the latter. Gillingham et al.9 conducted a mul-
timodal uncertainty quantification exercise and found median tem-
perature resulting from baseline (no climate policy) trajectories to be
3.79 °C, with a 90% range of 2.53–5.48 °C. A study using the Kaya
Identity and IPCC’s relationship between cumulative CO2 emissions
and temperature to develop a probabilistic forecast of temperature
change to 2100 foundamedianof 3.2 °C and a90% rangeof 2.4–4.9 °C,
assuming continuation of current trends (i.e. no climate policy)39.
Older studies tended to project higher temperature changes in the
absence of policy—for example, a median of 5.69 °C and 90% range of
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Fig. 2 | Global-average climate outcomesover time and frequencydistributions
in 2091–2100. a,bCarbondioxide (CO2) concentrations inparts permillion (ppm),
(c,d) total radiative forcing (relative to 1861–1880) inwatts per squaremeter (Wper
m2), (e, f) surface air temperature (relative to 1861–1880) in degreesCelsius (C), and

(g, h) precipitation (relative to 1861–1880) in millimeters (mm) per day. Shown for
each ensemble scenario (Reference in magenta, ParisForever in blue, Paris2C in
yellow and Paris1.5 C in green; shaded areas represent 90% probability bounds;
lines are the medians).
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4.02–7.96 °C33. However, government interventions worldwide, falling
costs of low-carbon technologies and slower economic growth over
the last decade have reduced estimates of emissions and, in turn,
temperature change under a no climate policy scenario.

At a global scale, the uncertainty in precipitation change can be
directly associated to the uncertainty in average surface-air tem-
perature change. Higher surface-air temperatures strengthen
potential evapotranspiration (across ocean surfaces and land soil-
vegetation systems) and in doing so, accelerate the hydrologic cycle.
Thus, at a global scale, increasing (or reducing) near-surfacewarming
results in larger (or smaller) increases in evapotranspiration to sup-
port the associated precipitation increases. By the end of the cen-
tury, global precipitation increases by 0.15–0.28mm per day (90%
range) for Reference, 0.13–0.24mm per day for ParisForever,
0.10–0.16mm per day for Paris2C and 0.08–0.13mm per day for
Paris1.5C (Fig. 2g, h).

Importantly, an emissions cap policy lowers the upper tail of the
temperature change distributionsmore than themedian. For example,
comparing Paris2C to the Reference, the median temperature is
reduced by 1.6 °C (from 3.5 °C to 1.9 °C) and the 95th percentile is
reduced by 2 °C (from 4.3 °C to 2.3 °C). This illustrates one of the
greatest roles of climate policy—to lower (or effectively eliminate) the
chance of extreme temperature outcomes. This is highlighted in
Table 1, which shows how the percentage of runs exceeding given
temperature levels varies across the ensemble scenarios. Results
indicate that even relatively modest emissions cap policies can sub-
stantially reduce the probability of dangerously high temperature
outcomes. For example, the ParisForever scenario has modest emis-
sions reductions relative to the Reference (see Fig. 1), yet greatly
reduces the chance of temperature changes above 4 °C (decreasing it
from 15% to <0.25%). For the Paris2C and Paris1.5 C scenarios, tem-
perature is essentially bound at 2.5 °C and 2 °C, respectively, with less
than0.25% of runs exceeding those levels. Other policymeasures, such
as carbon pricing or intensity targets, that do not necessarily place an
absolute limit on emissions could have amore symmetric effect on the
distribution. Also important are the lower tails of the temperature
change distributions. As seen in Fig. 2e, under Reference and Par-
isForever, the 2 °C temperature target is exceeded for all ensemble
members.

Another important insight from these results is that, due to
uncertainties in the climate system, a given emissions constraint can-
not guarantee that a particular temperature target ismet. Herewehave
designed emissions trajectories (Paris2C and Paris1.5 C) to achieve a
particular temperature target (2 °C or 1.5 °C) with a given probability

(66% or 50%), accounting for our estimated climate system uncer-
tainty, meaning there is still substantial probability (33–50%) that the
temperature targets will be exceeded. Looked at in another way,
depending on how Earth system uncertainties are resolved, we may
find that we can allow somewhat higher emissions (with low climate
response) or will need to cut emissionsmore deeply (with high climate
response) if indeed we want to remain below a given temperature
target. One important implication of these results is that emissions
targets intended to achieve specific temperature goals would need to
be adjusted over time as the uncertainty in the climate system is
resolved.

Economy
For all ensemble scenarios, GDP is endogenously determined in the
model and therefore uncertain. In this particular approach, the
impacts of climate change on the economy are not included. For
example, if climate change causeddamage to the economy, energy use
and emissions might be reduced, making it less likely that such large
increases in temperatures were actually possible58. On the other hand,
high temperatures are likely to increase the demand for air con-
ditioning and energy, and if that energy is from fossil fuels, the result
would be an increase in emissions and a positive feedback onwarming.
Similarly, climate damage to agricultural yields might require more
land under cultivation, more fertilizer, and more livestock, and result
in more deforestation andmore carbon dioxide, methane, and nitrous
oxide emissions. Natural feedbacks, such as increased forest growth
from higher ambient CO2, or changes in forest and land productivity,
and natural sources of methane and nitrous oxide due to changes in
temperatureprecipitation are included in the Earth systemcomponent
of themodel. Including climate change impacts on the economywould
also affect the relative economic impact of different policy scenarios,
however, notably, the benefits of reduced damages from climate
change are not included.

For the Paris2C and Paris1.5 C scenarios, which have the same
emissions trajectories for all ensemble members, the GDP impact of
meeting that trajectory varies because the level of abatement needed
to keep emissions on the specified trajectory, and the abatement and
technology costs of doing so, varies. Here we focus on GDP results
through 2050. Relative to the Reference scenario, median global GDP
in 2050 is 2.1% lowerunder ParisForever, 6.2% lower under Paris2C, and
18.4% lower under Paris1.5 C (Fig. 3a). This highlights the additional
reduction in GDP of achieving 1.5 C vs. 2 C (but we caution that our
analysis does not include the climatedamages toGDPavoidedby these
stricter policies). In all scenarios, GDP is growing, with median GDP in
2050 ending up 2.2 times higher (2.2x) than 2020 levels under Refer-
ence (with a 90% range of 2–2.4×), 2.16 times higher under ParisFor-
ever (with a 90% range of 2–2.3×), 2.16 times higher under Paris2C
(with a 90% range of 1.9–2.2×), and 1.8 times higher under Paris1.5 C
(with a 90% range of 1.7–2×).

In terms of the average annual GDP growth rate from 2020–2050
(Fig. 3b), Reference has a median of 2.66% (with a 90% range of
2.36–2.96%). ParisForever has a median of 2.6% (with a 90% range
of 2.3–2.9%), Paris2C has a median of 2.45% (with a 90% range of
2.2–2.7%), and Paris1.5 C has a median of 1.97% (with a 90% range
of 1.7–2.3%). As such, even stringent climate policy allows for global
economic growth. TheGDP impacts of policy could be lowered further
by the availability of additional mitigation options, such as negative
emissions technologies (NETs), which, as noted earlier, are not inclu-
ded in the modeling here. In particular, under the Paris1.5 C scenario,
the availability of NETs in the second half of the centurywould provide
headroom for more near-term emissions, allowing for a more gradual
energy transition and lower economic impact.

We also project regional economic growth across the policies,
which is conditional on assumptions about the regional emissions
allocations imposed. Here, we first determined a global carbon price

Table 1 | Percent of ensemble runs exceeding a given
temperature

% of runs exceeding temperature

Reference Paris
Forever

Paris2C Paris1.5C

Temperature
(°C)

1.5 100% 100% 95% 50%

2 100% 100% 33% <0.25%

2.5 99% 94% <0.25% …

3 86% 59% … …

3.5 50% 15% … …

4 14% <0.25% … …

4.5 1% … … …

Temperature thresholds are defined as the average global surface air temperature in 2091–2100
relative to 1861–1880 in degrees Celsius (°C). As each ensemble included 400 runs, the lowest
percentage of runs resolved is 0.25% (1 out of 400). If none of the runs in the ensemble meet a
given criteria, we assume the percentage to be <0.25% rather than 0% as there is still a chance
that the tail outcomes could extend beyond the values produced here if more than 400
ensemblememberswere used. The three dots indicate that a cell has the same value as the cell
above it.
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trajectory starting in 2030 and increasing at 4% per year that, given
median socio-economic parameter values, resulted in global emissions
pathways consistent with the temperature targets. Assuming a 4%
discount rate, this results in a constant present value carbon price,
consistent with minimizing the net present value policy cost. This
approach results in regional emissions trajectories that ensure mar-
ginal abatement costs in each region are equal to the global carbon
price at median values for all input parameters. The resulting regional
emissionswere thenused to determine the initial regional allocation of
emissions allowances for the Paris2C and Paris1.5 C ensembles imple-
mented as global emissions trading systems. This procedure implies
that under the emissions capswithmedian parameter settings, there is
no emissions trading among regions. However, uncertain economic
growth, technology costs and resource availabilities across regions
mean that, within a given ensemble, regions will be net allowance
buyers in some simulations and net sellers in others, and their net
trading positionmay change over the timeframeof the simulation. The
neutral assumption of no net trading undermedian parameter settings
provides a starting point from which one might consider financial
transfers or mechanism designs that could achieve more equitable
outcomes.

For this setting, we find wide variation in GDP growth impacts
across regions under the scenarios. For some regions, like the United
Stated and Europe, the scenarios largely overlap, meaning the policies
have a relatively small impact on GDP (Fig. 4). However, for other
countries, such as China and India, and even more so for regions like

the Middle East and Africa, GDP under the 2 C and 1.5 C policies
increasingly diverges from the Reference and ParisForever scenarios,
reflecting higher policy costs. For policy costs, measured as the dif-
ference in average annual GDP growth between a policy scenario and
the Reference scenario (the difference between distributions in Fig. 4),
uncertainty tends to be higher for low- andmiddle-income economies
than high-income economies. For Africa, even though the GDP growth
rate within each scenario is less uncertain than other regions (due to it
being a large aggregated region), the policy costs are more uncertain
than the United States and Europe. For example, under the 2C policy,
the policy impact on the average annual GDP growth rate in the United
States ranges from a growth rate increase of 0.03 percentage points
(5th percentile) to a rate decrease of 0.05 percentage points (95th
percentile). For Africa under 2C, the 90% range spans a growth rate
decrease of 0.46–0.76 percentage points. This result highlights the
very important issue of equity among countries, especially between
higher-income countries where the economies are now less energy-
intensive, and low-income countries still in a relatively energy-
intensive stage of growth. The results show developing countries as
likely to bear the greatest costs of global climate mitigation unless
specific actions are taken to avoid that outcome.With a global cap and
trade policy, allowance allocation can be used to facilitate financial
transfers to achieve more equitable outcomes. However, with uncer-
tainty in growth and other factors, determining an allowance alloca-
tion that would achieve a given level of transfer would be a challenge.

Energy
Not surprisingly, our results indicate that an energy transition away
from fossil fuels is required in order to achieve the long-term tem-
perature goals of the Paris Agreement. This is achieved in our scenarios
by a combination of switching to low-carbon energy sources and by
reducing the amount of energy used in both production and con-
sumption (which is driven in turn by the ease of substituting energy for
non-energy inputs toproductionandconsumption). The fossil shareof
total global primary energy falls from2020 levels (88%) in all scenarios,
but 2100 shares are dramatically larger in Reference and ParisForever
(79% and 76% medians) compared to Paris2C and Paris1.5 C (26% and
23% medians) (see Supplementary Fig. 11).

As fossil energy is phased down under stringent climate policy,
other low-carbon energy sources take its place. Figure 5 shows the
uncertainty in global primary energy by source for 2030, 2050 and
2100 under the Reference and Paris2C scenarios. The sources of pri-
mary energy in ourmodel are coal (with orwithout carbon capture and
storage (CCS)), natural gas (with or without CCS), oil, bioenergy,
renewables (wind and solar), nuclear and hydro (hydro is not shown in
Fig. 5 as it is modeled as a fixed resource so there is virtually no
uncertainty around its deployment). The amount of primary energy
from each of these sources is uncertain. Notably, Reference and Par-
is2C diverge substantially for coal, gas and oil without CCS. Under
Reference all three fossil energy sources continue to grow throughout
the century from 2015 levels. Under Paris2C, fossil levels are only
somewhat lower in 2030 than under Reference, but they decline over
time, increasingly diverging from Reference levels. Under Paris2C,
there is a particularly dramatic reduction in primary energy from coal
between 2030 and 2050, and from oil between 2050 and 2100. The oil
use is offset by a dramatic increase in bioenergy between 2050 and
2100, largely in the form of bio-oil as a substitute for refined oil.
However, evenunderReference there is a large expansionof bioenergy
by 2100. Coal and gaswith CCS are unused under Reference as there is
not an economic incentive for them, but there is some potential for
CCS under Paris2C in the second half of the century.

In terms of energy investment decisionsmade today in the face of
policy uncertainty, the results suggest that renewables offer the safest
bet, with great future potential regardless of the level of policy and
across a broad range of potential socioeconomic futures, including

Fig. 3 | Economic outcomes. a Global Gross Domestic Product (GDP) 2020–2050
in trillion U.S. Dollars (USD), (b) frequency distributions of average annual global
GDP growth from 2020 to 2050. Shown for each ensemble scenario (Reference in
magenta, ParisForever in blue, Paris2C in yellow and Paris1.5 C in green; shaded
areas represent 90% probability bounds; lines are the medians).
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different assumptions about technology costs. Based on our assess-
ment of the probability distributions of the cost of different technol-
ogies, while the scale of competing technologies (such as nuclear, CCS
or bioenergy) does vary across ensemble members, a sizable role of
renewables is quite robust across the different cost assumptions. In
contrast to theAR64, which showsmore renewables in the policy cases,
in our results renewables end up somewhat lower in 2100 in Paris2C
than inReference, although their shareof energyuse ishigher, because
energy and electricity use are lower under stringent policy due to a

greater efficiency response to policy and overall economic consump-
tion being lower. However, if the model represented more options for
electrification, it is possible that total electricity consumption would
increase in the Paris2C scenario relative to the Reference scenario, and
renewables would grow beyond Reference levels throughout the
century. Expanding electrification opportunities is an area for further
model development. Advanced nuclear generation also has the
potential to play an important role under Paris2C in the second half of
the century, with the large uncertainty range largely driven by China.

Fig. 4 | Average annual grossdomestic product (GDP)growth rate from2020to
2050 for selected regions. a United States (USA), (b) Europe (EUR), (c) China
(CHN), (d) India (IND), (e) Africa (AFR) and (f) Middle East (MES). Shown for each

ensemble scenario (Reference in magenta, ParisForever in blue, Paris2C in yellow
and Paris1.5 C in green; shaded areas represent 90% probability bounds). Note:
scales differ for each panel.
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Relative role of socioeconomic and Earth system uncertainties
in climate projections
Efforts to partition climate projection uncertainty59,60 have found that
internal variability and uncertainty in the climate system andmodeling
of it are the largest drivers in the near-term. However, beyond the next
decade or two, uncertainty in human systems and resulting emissions
becomes an increasingly important contributor to uncertainty in cli-
mate change projections. Climate system uncertainty remains impor-
tant, but the influence of socioeconomic-driven scenario uncertainty
grows over time, and becomes the largest source of uncertainty after

50–100 years59. However, different approaches to estimate underlying
climate and socioeconomic uncertainty can give widely varying esti-
mates of uncertainty in scenarios, leading to different assessments of
how different sources of uncertainty contribute to the overall uncer-
tainty in climate outcomes.

It is also essential to understand that different sources of uncer-
tainty (and related risks) can interact with one another. Terms such as
cascading, propagating and compounding have been used in literature
to describe the interacting uncertainties and risks related to climate
change61–68. If uncertainties were simply additive, it would seem that
uncertainty would grow unbounded. However, in our analysis, uncer-
tainty ranges do not grow in an unbounded fashion as more uncer-
tainties are considered, as many of the sampled uncertainties end up
offsetting one another.

Uncertainty in the global climate outcomes presented above for
Reference and ParisForever scenarios are driven by parametric uncer-
tainties in both the socioeconomic system, which drives emissions, and
the Earth system, which drives climate responses to emissions. To
explore the relative contribution of socioeconomic/emissions uncer-
tainty and climate-response uncertainty, we compare the distributions
from the full ensembles (both socioeconomic/emissions and climate-
response uncertainty, thick lines in Fig. 6) to those from two different
ensemble variations: (1) ensembles with only Earth system uncertainty,
with emissions held at the median level (ClimUnc), and (2) ensembles
with only socioeconomic variables and resulting emissions uncertain,
with climate-parameters held to their median values (EmiUnc). Figure 6
compares the end-of-century (2091–2100) frequency distributions. A
visual comparison of the ClimUnc and EmiUnc distributions can quickly
reveal the relative contribution of uncertainties in socioeconomic and
Earth system response. More formally, we can compare dispersion
metrics for the distributions—here we focus on the mean absolute
deviation (MAD) summarized in Table 2, but also calculate the inter-
quartile range (IQR) and the range between the 5th and 95th percentiles
(see Supplementary Table 6). Figure 7 shows the ratio of MAD for the
distributionswithonlyone sourceofuncertainty relative toMADfor the
distributions with both uncertainties over time for the Reference
ensemble. These MAD ratios reflect how much of the dispersion in the
full uncertainty distribution is captured by only one source of uncer-
tainty (either emissions or climate).

For CO2 concentrations, uncertainty due to emissions is greater
than uncertainty due to climate by the end of the century, especially
for the Reference ensemble (Figs. 6a and 7a). However, climate
uncertainty plays an important role as well—even when emissions are
certain (as in ClimUnc), there is considerable uncertainty in con-
centrations because of uncertainty in ocean and land uptake of CO2 as
well as natural sources of other gases because of their dependence on
climate. When emissions are more tightly controlled (as in the Par-
isForever policy scenario), then climate uncertainty becomes relatively
more important. At the end of the century the MAD ratio is 0.77 for
EmiUnc and 0.56 for ClimUnc under Reference. The corresponding
values under ParisForever are 0.62 and 0.72.While climate uncertainty
begins asmore important, the importance of emissions uncertainty to
uncertainty inCO2 concentrations growsover time, surpassing climate
uncertainty by 2070 in the Reference scenario (Fig. 7a).

Emissions uncertainty becomes even more important for total
radiative forcing (Figs. 6b, 7b) because forcing is also affected by
uncertainty in other greenhouse gases and aerosols, such as sulfates
(from SO2 emissions) and black carbon. At the end of the century the
MAD ratios for EmiUnc and ClimUnc, respectively, are 0.87 and 0.38
under Reference and 0.85 and 0.43 under ParisForever. We again see
climate uncertainty as more important in early decades, but the
importance of emissions uncertainty to uncertainty in total radiative
forcing grows quickly, surpassing climate uncertainty by 2060 (Fig. 7b).

However, that pattern is not seen for temperature (Figs. 6c, 7c)
and precipitation (Figs. 6d, 7d)—for those outcomes, uncertainty due

Fig. 5 | Box and whisker plots of global primary energy by source under
Reference (red) and Paris2C (blue) ensemble scenarios. a 2030, (b) 2050, and (c)
2100. The 2015 emissions are shown in black as a point of reference. The boxes are
the interquartile range (25th–75th percentile), with the center line showing the
median, and the whiskers extend up to 1.5 times the interquartile range. These
statistics are based on 400 samplemodel runs (n = 400) for the Reference scenario
and 400 sample model runs (n = 400) for the Paris2C scenario. CCS stands for
carbon capture and storage; Bio stands for modern biomass energy (liquid- or
electricity-based); Renew stands for renewables (wind and solar).
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to climate is greater than uncertainty due to emissions throughout the
century. For end-of-century temperature, the MAD ratios for EmiUnc
and ClimUnc, respectively, are 0.40 and 0.90 under Reference and
0.36 and0.91 under ParisForever. For end-of-century precipitation, the
role of climate uncertainty is even stronger: the MAD ratios for Cli-
mUnc are 0.95 and 0.96 under Reference and ParisForever, respec-
tively. The corresponding vales for EmiUnc are 0.26 and 0.24. The
greater effect of climate uncertainty on temperature and precipitation
is not surprising as the uncertain climate parameters most directly
relate to how temperature is affected by a given level of radiative
forcing, with only a secondary effect on carbon uptake by oceans and
the terrestrial biosphere in response to warming, and precipitation
outcomes are heavily driven by temperature.

Importantly, we find that emissions and climate uncertainty are
less than additive—for each climate outcome, the dispersion metrics
for the distributions with both emissions and climate uncertainty are
less than the sum of climate uncertainty alone (ClimUnc) and emis-
sions uncertainty alone (EmiUnc) (see Table 2 and Supplementary
Table 6). Focusing on uncertainty in temperature projections in
Figs. 6c, 7c, for example, the combined effect of uncertainty in climate
and emissions is almost identical to climate uncertainty alone—adding
emissions uncertainty barely changes the overall uncertainty. How-
ever, there is still considerable temperature uncertainty resulting from
emissions uncertainty alone. These results indicate that cascading
uncertainties are not necessarily additive, and capturing more

uncertainties does not automatically widen the uncertainty range of
outcomes because uncertainties can offset one another. This illus-
trates the need for an integrated modeling system for uncertainty
analysis as it is unclear how to combine separate analyses of Earth
system uncertainty and human system uncertainty. An assumption
that such analyses are additive would be misleading.

These results may appear to contradict the results of Lehner
et al.59, which finds uncertainty in human systems and resulting emis-
sions (what they call scenario uncertainty) to be the predominate dri-
ver of temperature change uncertainty by the end of the century, since
Figs. 6 and 7 shows climate uncertainty as dominating the end-of-
century temperature uncertainty in both of the ensembles. However, a
major reason for this is that uncertainties in our analysis are conditional
on policy assumptions (i.e. whether the near-term Paris targets aremet
or not). Results from Lehner et al.59 are not conditional on policy but
are based on sets of emissions scenarios that span both scenarios with
no policy and those that at least implicitly have different policy out-
comes. Still, the time evolving contribution of uncertainty follows the
same general pattern of Lehner et al.59—climate response uncertainty
dominating at least the first few decades, but emissions scenario
uncertainty generally becoming more important over time (Fig. 7).

Discussion
Uncertainty is unavoidable in economic, energy and climate projec-
tions. However, with advances in understanding of underlying

Fig. 6 | Impact of climate and emissions uncertainties on climate outcomes.
Frequency distributions for global-average climate outcomes in 2091–2100 for
Reference and ParisForever ensembles with emissions uncertainty plus median
climate (EmiUnc, orange for Reference and light blue for ParisForever) vs. ensem-
bles with median emissions plus climate uncertainty (ClimUnc, red for Reference
and blue for ParisForever) vs. ensembles with both emissions and climate

uncertainty (dark blue for Reference and dark red for ParisForever): (a) carbon
dioxide (CO2) concentrations in parts per million (ppm), (b) total radiative forcing
(relative to 1861–1880) in watts per square meter (W per m2), (c) surface air tem-
perature (relative to 1861–1880) in degrees Celsius (C), and (d) precipitation
(relative to 1861–1880) in millimeters (mm) per day.
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socioeconomic factors and Earth system responses, updated estimates
of uncertainty can help inform mitigation and adaptation decisions.
This paper presents a consistent framework for uncertainty quantifi-
cation in a complex coupled human-Earth systems model, which
facilitates a broad exploration of global-change uncertainty and pro-
vides a probabilistic interpretation of both socioeconomic and climate
outcomes. This probabilistic analysis can support a risk management
approach to decisions in response to global climate change.

The Paris Agreement set a goal of limiting global average surface
temperature warming to well below 2 °C, and to attempt to meet a
1.5 °C target. These temperature targets are often translated into
radiative forcing, concentrations, or emissions targets or budgets.
Typically, the relationships between socioeconomic factors, emis-
sions, concentrations, radiative forcing and temperature are expressed
in models without uncertainty. Here we account for uncertainty in
those relationships, exploring the degree to which a given emissions

trajectory can be expected to meet a proposed climate target. The
application illustrates that, if a certain temperature target is to bemet,
emissions constraints will need to be adjusted over time as uncertainty
in the climate system is further resolved.

Our results show that a climate policy emissions cap lowers the
upper tail of the temperature change more than the median. For
example, comparing Paris2C to the Reference, the median tempera-
ture is reduced by 1.6 °C (from 3.5 °C to 1.9 °C) and the 95th percentile
is reduced by 2 °C (from 4.3 °C to 2.3 °C), illustrating the value of cli-
mate policy in lowering the chances of high temperature outcomes.
We also show that Earth system and socioeconomic uncertainties have
a less than additive impact on the range of outcomes in terms of mean
absolute deviation and other metrics of dispersion, as uncertainties
can offset one another to varying degrees depending on the outcome
of interest. Earth system uncertainties dominate end-of-century tem-
perature uncertainty while human system uncertainties dominate

Fig. 7 | Mean absolute deviation (MAD) of climate-only uncertainty (ClimUnc,
blue) and emissions-only uncertainty (EmiUnc, orange) distributions relative
to full uncertainty (both climate and emissions uncertainty) distribution
over time. For the Reference ensemble for: (a) carbon dioxide (CO2) concentra-
tions, (b) total radiative forcing (relative to 1861–1880), (c) temperature (relative to

1861–1880), and (d) precipitation. Ratios are calculated as: MAD for ClimUnc dis-
tribution divided by MAD for the full distribution with both climate and emissions
uncertainty and MAD for EmiUnc distribution divided by MAD for the full
distribution.

Table 2 | Summary of mean absolute deviation (MAD) for the ensembles

Reference ParisForever

All ClimUnc EmiUnc Sum of ClimUnc &
EmiUnc

All ClimUnc EmiUnc Sum of ClimUnc &
EmiUnc

CO2 Concentrations 38.83 21.84 29.81 51.65 26.46 18.94 16.52 35.47

Total Radiative Forcing 0.39 0.15 0.34 0.49 0.34 0.15 0.29 0.44

Temperature 0.36 0.32 0.14 0.47 0.32 0.29 0.12 0.40

Precipitation 0.030 0.028 0.008 0.036 0.026 0.025 0.006 0.031

MAD for distributions with full uncertainty (both climate and emissions uncertainty) is less than the sum of MAD for ClimUnc and EmiUnc distributions, meaning socioeconomic and climate
uncertainties are not simply additive.
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radiative forcing uncertainty, reflecting the uncertainty in translating
radiative forcing to temperature. We further find that, even under a
stringent climate policy designed to meet 1.5 °C, the global economy
continues to grow, but that burden sharing issues remain as policy
costs vary across regions, with greater uncertainty generally occurring
in low- to middle-income economies. In terms of the future energy
system, there are many patterns of energy and technology develop-
ment consistent with long-term environmental pathways, and the
distributions provide information for assessing risks of investing in
different technologies. In particular, renewable energy sources are
expected to expand substantially regardless of the level of future
policy and across a broad range of socioeconomic futures.

This uncertainty quantification approach can also guide future
research and model development efforts. It can identify the key
components and assumptions in models, and the uncertainties of
greatest importance or least understanding, thus highlighting areas
that warrant the most attention. Further research should consider the
implications of including additional abatement options (e.g. for agri-
culture, industry and residential sectors, negative emissions technol-
ogies and electrification pathways), alternative regional emissions
allocations, and climate and other environmental feedbacks on the
economic system. Importantly, further research is needed to better
resolve the low-probability tails of distributions, including assessment
of potentially unmodeled processes that could lead to extreme out-
comes. Combining probabilistic and deep uncertainty methods to
better understand low-risk, high-consequence outcomes and their
implications for decision-making is an important area of future work.

Further, this approach can guide future scenario development.
Whereas standardized scenarios constrain the uncertainty space
explored, this probabilistic ensemble approach can give a more com-
prehensive view of uncertainty. Scenarios (and sensitivity tests) can be
developed that connect to the distributions of inputs and/or outputs.
The ensemble results can also be utilized with scenario discovery
techniques19,20 to identify conditions consistent with outcomes of
interest (e.g., salient tipping points, large socio-environmental
inequities or particular energy or economic outcomes). This
approach can also provide insights into how multiple uncertainties
interact and the relative human vs. Earth system contributions to
uncertainty in climate-related outcomes.

Methods
Model
Coupled human-Earth systemsmodels allow for consideration of both
socio-economic and climate uncertainties. Here we use the MIT Inte-
grated Global System Model (IGSM) framework, which links the

Economic Projection and Policy Analysis (EPPA) model to the MIT
Earth SystemModel (MESM). EPPA is a recursive-dynamicmulti-sector,
multi-region computable general equilibrium (CGE) model of the
world economy69–71 (see Supplementary Fig. 12). It is designed to
develop projections of economic growth, energy transitions and
anthropogenic emissions of greenhouse gas and air pollutants. The
model projects economic variables (GDP, energy use, sectoral output,
consumption, prices, etc.) and emissions of long-lived greenhouse
gases (CO2, CH4, N2O, HFCs, PFCs and SF6) and short-lived air pollu-
tants (CO, volatile organic compounds (VOCs), NOx, SO2, NH3, and
black carbon and organic carbon aerosols) from combustion of
carbon-based fuels, industrial processes, waste handling, agricultural
activities and land use change. MESM is an Earth system model of
intermediate complexity, modeling the Earth’s physical, chemical and
biological systems to project environmental conditions that result
from human activity72. MESM is able to project the full spectrum of
climate-relevant conditions across the Earth system, including atmo-
spheric concentrations of greenhouse gases and aerosols, tempera-
ture, precipitation, ice and snowextent, sea level andocean acidity and
temperature among many other variables. By linking these two mod-
els, the IGSM also allows for the development of emissions pathways
consistent with different 21st century temperature outcomes.

Monte Carlo simulation
Following earlier approaches33,34 we employ Monte Carlo uncertainty
analysis. The basic steps are: (1) identify uncertain input parameters
and develop probability distributions for each, (2) sample from these
distributions to construct multiple sets of parameter values, and (3)
generate large ensembles of model runs using the sampled parameter
values. The distribution of model outcomes from the ensemble of
simulations for a particular scenario provides estimates of future
states and their uncertainty, conditional on the model structure, the
distributions of the uncertain input parameters, and the assumed
scenario attributes. Figure 8 depicts this approach for representing
uncertainty in a coupled human-Earth systems model (the MIT IGSM),
creating probabilistic, internally consistent, integrated socio-
economic and climate projections. In this particular study, climatic
and other environmental feedbacks on the economic system that
would result from changes in the Earth system are not included. That
remains an important goal for future studies.

Probability distributions for socioeconomic input parameters19

and for Earth system input parameters41,44,45 weredeveloped.Our focus
on parametric uncertainty does not account for structural uncertainty
in the models, such as equations defining objective functions, con-
sumer preferences or the form of production functions. A summary of

Fig. 8 | Approach for representing uncertainty in a coupled human-Earth systems model (The Massachusetts Institute of Technology (MIT) Integrated Global
System Model (IGSM)). Approach used to create probabilistic, internally consistent, integrated socio-economic and climate projections.
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the probability distributions for all uncertain parameters, both socio-
economic and Earth system, is provided in Supplementary Methods 1.

Estimated distributions for socioeconomic parameters were
based on statistical estimates using historical data where possible (e.g.
GDP growth, autonomous energy efficiency improvement, rate of
technology penetration), published estimates of uncertainty (e.g.
population, fossil resource availability), literature results and expert
judgment (e.g. future technology costs, elasticities of substitution,
urban pollutant initial inventories and trends, capital vintaging).
Probability distributions are constructed for each socio-economic
parameter, some by region or sector, creating a total of over 150 dis-
tributions. For a subset of related parameters, correlation structures
are also imposed, and enforced in the parameter samples, based on
observed correlation where possible, but often based on expert
judgment.

Uncertain Earth system parameters were estimated using an
optimalfingerprint approach41,44,45. Thismethoduses historical data on
surface climate, ocean heat content, and concentrations of
greenhouse-relevant gases and aerosols to estimate a joint distribution
of parameters representing climate sensitivity, ocean heat uptake and
aerosol radiative forcing. These estimates are based on observations
through 2010, whereas previous estimates73 used data only up to 1995.
We also account for uncertainty in the carbon uptake by the ocean and
terrestrial ecosystems72.

To reduce computational requirements when conducting Monte
Carlo analysis with the relatively complex IGSM, we employ Latin
Hypercube sampling (LHS)46,47. LHS divides the distribution for each
variable into equal probability segments. The mid-point values for
each segment of each variable are chosen randomly, without repla-
cement. Each random selection across all input variables creates one
ensemble member. The process generates an ensemble size equal to
the number of probability segments. This sampling strategy assures
that every equally-likely segment of the distribution, including seg-
ments in the distribution tails, is sampled exactly once. Because our
models are computationally expensive to run, we use 400-member
ensembles, shown to adequately approximate the limiting distribution
when using LHS, whereas pure random sampling often requires
thousands or tens of thousands of samples to achieve similar
accuracy34. The LHS takes in the correlation matrices that were
developed for subsets of socio-economic parameters and captures the
correlation among climate parameters by drawing from their joint
distribution.

The same set of 400 samples is used for a reference scenario and a
set of climate policy scenarios. Pairwise comparisons of results are
made across scenarios with identical input values for each ensemble
member pair, with the only difference between the two being the
introduction of a policy constraint. This procedure is designed to
enable estimation of policy costs (the difference between simulated
macroeconomic outcomes in a policy case and that in the reference
case) for each ensemble member.

Scenarios
Climate policy is treated as a choice variable (or deep uncertainty) in
our framework, explored through a set of ensemble scenarios, rather
than attempting to assign a subjective probability distribution to pol-
icy measures. The ensemble scenarios include a reference case, a case
extrapolating Nationally Determined Contributions (NDC) targets of
the Paris Agreement, and policy cases that achieve long-term tem-
perature stabilization targets of 2 °C and 1.5 °C implemented as a cap-
and-trade policy fixing the emissions path over time. (See Supple-
mentary Table 1). Morris et al.19 explore the same set of scenarios
(labeled by their median temperature outcomes), focusing on tech-
nology and socio-economic outcomes. The different scenarios are
achieved by implementing different limits on emissions; all other

assumptions and sampled input values are the same across scenarios.
The Reference case does not include the mitigation pledges made by
the countries in their submissions under the Paris Agreement, but it
does include policies targeting an expansion of renewables in power
generation consistent with IEA48 and those policies remain in place in
all scenarios. Climate and energy policies have also been responsible
for reducing the costs of low-carbon technologies and otherwise
shaping energy consumption patterns through building standards and
codes, appliance and vehicle efficiency and other policies. While not
explicitly represented, the effects of these efforts are reflected in lower
renewable technology costs and a slowing rate of emissions growth
over the last decade.

The ParisForever scenario assumes theNDCs submitted under the
Paris Agreement are met by all countries by 2030 and retained
thereafter74,75. For countries with absolute NDC targets (e.g. emission
reductions relative to a historic year), we have implemented those as
emissions caps that are retained through the horizonof the simulation,
keeping emissions flat after 2030. Countries with NDC targets that are
relative to business-as-usual (BAU) emissions, or are in terms of
emissions intensity, retain those targets through the horizon of the
simulation, but since BAU emissions andGDP vary, the targets result in
varying emissions for those regions (and the world total) across
ensemble members.

The Paris2C and Paris1.5 C scenarios are designed to achieve the
long-term temperature stabilization targets of the Paris Agreement.
The Paris Agreement has the long-term goal of “holding the increase in
the global average temperature towell below 2 °C above pre-industrial
levels and pursuing efforts to limit the temperature increase to 1.5 °C
above pre-industrial levels76.” We use the period 1861–1880 to deter-
mine preindustrial temperature.We interpret “well below” as targeting
an emissions level so that the globalmean surface temperature is likely
to remain below 2 °C. In IPCC terminology, “likely” is quantified as a 2/3
(66%) chance of occurring77. We interpret the 1.5 °C aim as the median
result, achieving it with a 50% probability. For both temperature-target
scenarios, we assume all countries meet their NDCs by 2030, after
which a global emissions price designed to achieve the long-term
target is applied to all greenhouse gases, sectors and regions. Under
median values of socio-economic parameters in the EPPA model and
our estimates of climate uncertainty, the global emissions trajectories
result in a 66%probability of remaining below2 °C (Paris2C) abovepre-
industrial levels or a 50% probability of remaining below 1.5 °C (Par-
is1.5C) above pre-industrial levels. The resulting regional emissions
trajectories are then implemented in all ensemble members as emis-
sions caps with trading among sectors, regions and greenhouse gases
to ensure that the temperature targets are met in all cases. The emis-
sions caps are binding upper limits on emissions, and assure that the
global emissions path determined under median values of socio-
economic inputs are also met when those inputs are uncertain. Under
the emissions caps with median parameter settings, there is no emis-
sions trading among regions, as themarginal cost of abatement across
regions is already equalized. However, trading will occur as socio-
economic uncertainty within the ensembles is sampled.

There are many alternative emissions trajectories that could also
achieve the same outcomes (66% chance of 2 °C or 50% chance of
1.5 °C). For the particular pathways used here, we first found an initial
GHG emissions price that, when beginning in 2035 and rising at 4% per
year under median values of socio-economic parameters, would
achieve the temperature target with the specified probability given the
uncertainty in our climate parameters. Such an optimized global
emissions price policy tends to have a dramatic reduction in emissions
in early years of the policy. For the Paris2C scenario, we smoothed the
global emissions trajectory in early years, while maintaining the same
cumulative GHG budget consistent with the temperature target, and
then implemented that path as an emissions cap, requiring each
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ensemblemember to achieve the sameglobal emissions trajectory. For
the Paris1.5 C scenario, there is not room in the GHGbudget to smooth
the early years of the emissions trajectory without employing negative
emissions in later years, which we do not include. So, for Paris1.5 C, the
emissions path resulting from the global emissions price policy is
directly implemented as an emissions cap for the ensemble.

In reality, countries may not meet their emissions targets with
certainty. Nevertheless, we represent these emissions targets as being
achievedwith certainty. An interesting exercise could be to conduct an
assessment asking experts for their judgmentof the rangeof emissions
paths that countries may achieve over the century. Such an approach
would quantify the uncertainty in policy rather than treating it as a
choice variable.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from this study is available in a publicly available data repository:
Morris, J., et al. Quantifying Both Socioeconomic and Climate Uncer-
tainty in Coupled Human-Earth Systems Analysis [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.1162285978.

Code availability
A publicly available version of the Economic Projection and Policy
Analysis (EPPA) model is available at: https://globalchange.mit.edu/
research/research-tools/human-system-model/download. The version
of the model applied here includes an updated and expanded repre-
sentation of technology options, as well as updates to read in samples
from input files. The model is written in GAMS (General Algebraic
Model System software, https://www.gams.com). The underlying base
year model data is from the Global Trade Analysis Project (GTAP),
Version 8 (https://www.gtap.agecon.purdue.edu/databases/default.
asp). For the Monte Carlo Analysis, socioeconomic parameter sam-
ples are drawn from the distributions using @Risk software (https://
www.palisade.com/risk/) and the ensembles of model runs are per-
formed on the MIT computing cluster. A publicly available version of
the MIT Earth System Model (MESM) is available at: https://
globalchange.mit.edu/media/mesm-software-license-form.
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