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Integrative single-cell metabolomics and
phenotypic profiling reveals metabolic
heterogeneity of cellular oxidation and
senescence
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% Check for updates Emerging evidence has unveiled heterogeneity in phenotypic and tran-

scriptional alterations at the single-cell level during oxidative stress and
senescence. Despite the pivotal roles of cellular metabolism, a comprehen-
sive elucidation of metabolomic heterogeneity in cells and its connection
with cellular oxidative and senescent status remains elusive. By integrating
single-cell live imaging with mass spectrometry (SCLIMS), we establish a
cross-modality technique capturing both metabolome and oxidative level in
individual cells. The SCLIMS demonstrates substantial metabolomic het-
erogeneity among cells with diverse oxidative levels. Furthermore, the
single-cell metabolome predicted heterogeneous states of cells. Remark-
ably, the pre-existing metabolomic heterogeneity determines the divergent
cellular fate upon oxidative insult. Supplementation of key metabolites
screened by SCLIMS resulted in a reduction in cellular oxidative levels and an
extension of C. elegans lifespan. Altogether, SCLIMS represents a potent tool
for integrative metabolomics and phenotypic profiling at the single-cell
level, offering innovative approaches to investigate metabolic heterogeneity
in cellular processes.

With the advancements in single-cell analysis techniques, the hetero-
geneity of single-cell genetics, proteomics, and metabolomics has
captivated the attention of scientists for decades. The phenotypic and
transcriptional heterogeneity of individual cells has been extensively
elucidated in diverse biological processes, encompassing develop-
ment, cancer, and aging. For instance, through the lens of single-cell

transcriptomic studies, developmental trajectories are meticulously
unraveled, unveiling the exquisite tapestry of single-cell heterogeneity
and sub-populations during embryonic development’. The genetic
and epigenetic heterogeneity exhibited by cancer cells® poses sig-
nificant challenges in the field of cancer therapy®. Delving into the
single-cell heterogeneity of these cells illuminates promising avenues
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for therapeutic targets and strategies®®. It has been reported that
geriatric organs are mosaics of cells with varying ages, thereby high-
lighting the remarkable heterogeneity exhibited by individual cells
during the process of aging’. Another study uncovers the hetero-
geneity of transcriptional landscape in aged ovaries where genes
undergo specific changes during aging that are exclusive to different
oocyte subtypes®. In essence, comprehending cellular heterogeneity is
paramount in unraveling the intricate cellular mechanisms that
underlie biological processes, including development, aging, and
diseases.

A groundbreaking advancement in single-cell research lies in the
seamless integration of multiple features or functions within indivi-
dual cells, known as cross-modality analysis. This includes integrat-
ing single-cell omics with cellular function or phenotype, resulting in
a truly remarkable and sophisticated approach”. For instance, with
the Patch-seq technique, single-cell transcriptome and electric
activities are combined, linking transcriptome to cellular function™.
In a study investigating the exocytosis and excretion function of
pancreatic [-cells in diabetes, the Patch-seq technology was
employed to establish a connection between -cell functionality, as
represented by electrical activities, and gene expression profiles.
This innovative approach successfully identified genes that are clo-
sely associated with B-cell dysfunction'. Another study on extra-
cellular vesicles (EV) links lipidomics and proteomic with EV
membrane function and crosstalk of discrete tissues in different
stages of COVID-19 infection'. The integrative analysis of metabo-
lism and transcriptome reveals a rare subpopulation of hyperactive
T cells and subtypes of monocyte which links to disease severity in
COVID-19, suggesting an association between multi-omics and
immune cell functionality”. The combination of single-cell RNAseq
and fluorescence-activated cell sorting (FACS) illustrates the relation
between gene expression and stem cell function represented by
specific surface markers, discovering key molecules associated with
self-renewal in stem cells'. Thus, the cross-modality analysis enables
a more comprehensive view of single-cell omics and a deeper
understanding of cellular function, shedding light on mechanisms
underlying complicated biological processes.

Metabolism serves as both a reflection and regulator of cellular
function®. Currently, most metabolomics research remains confined
to homogenate-level analysis involving the preparation of samples
using bulk tissue or cell suspension. Consequently, the enigmatic
metabolic heterogeneity exhibited by cells during biological processes
and the underlying mechanisms at the single-cell level remain shrou-
ded in ambiguity. Recently, our laboratory and others have pioneered
the development of cutting-edge single-cell mass spectrometry tech-
niques, enabling us to unveil the intricate metabolic heterogeneity at
an unprecedented resolution®®, These new techniques mainly
focused on the interpretation of the metabolome without the pheno-
type of single cells, omitting cross-modality features important for the
better understanding of cellular metabolism and function. However,
the integration of metabolic heterogeneity with phenotypic hetero-
geneity, such as distinct levels of oxidative or senescent states within
individual cells, remains a formidable technical challenge.

In the present study, we employ a combination of single-cell
mass spectrometry (SCMS) and live-cell imaging techniques to
simultaneously capture the metabolomic features and cellular iden-
tities of individual cells, thereby establishing a link between the
metabolome and cellular status at a single-cell resolution. By utilizing
this approach, we design our study using a cellular model of oxida-
tive stress-induced senescence, establishing the correlation between
single-cell metabolome and their oxidative or senescent status. This
technique unlocks possibilities in the realm of cross-modality ana-
lysis, integrating single-cell metabolome with fluorescent labeling
techniques, thereby paving the way for innovative discoveries at the
single-cell level.

Results

Integration of live-cell imaging and single-cell mass
spectrometry

To simultaneously capture the metabolome and phenotypic features
of a single cell, we combined single-cell live imaging with mass
spectrometry technique”’® (SCLIMS) and setup a cross-modality
analysis platform. We employed a cellular oxidative stress (OS)
model?* which can be readily induced and labeled with dichlor-
odihydrofluorescein diacetate (DCFDA), a widely utilized live-cell
probe for the detection of cellular OS***, Briefly, HEK293T cells
were incubated with H,0, in culture medium at a final concentration
of 80 uM for 1h, and the medium was then replaced by fresh med-
ium. The cells were allowed to recover for 48 h prior to subsequent
testing. Cellular viability remained uncompromised in the model and
was deemed suitable for SCMS analysis (Supplementary Fig. 1a). The
0S level was evaluated through DCFDA staining®**° (Supplementary
Fig. 1b, c). Initially, the cells were incubated with DCFDA for a dura-
tion of 25 min and then imaged using a microscope. Subsequently,
cellular sampling was performed via patch clamp technique utilizing
micro-pipettes, followed by SCMS analysis. Finally, the fluorescent
intensity was calculated and paired with metabolomic features in
single cells, yielding a pairwise dataset of metabolome and oxidative
levels (Fig. 1a).

In m/z ranging from 67 to 1000, a total of more than 500 ion
signals, with signal-to-noise ratio greater than 3 (refs. 27,28) and
detected at a frequency greater than 20% in all single cells were used
in subsequent analysis. Among these signals, 162 matched annota-
tions in the HMDB database through MS spectra. The annotated
metabolites underwent further scrutiny via MS/MS, resulting in
confirmation of 83 metabolites that were subsequently employed for
pathway enrichment analysis (Supplementary Data File 1). Fluor-
escent intensities of sampled cells were calculated and matched to
every single cell. The heatmap illustrated the metabolite abundance
and corresponding DCFDA intensity in single cells, showing the
gradual alteration of metabolism as DCFDA intensity differs (Fig. 1b).
A variety of metabolites, exhibiting diverse changes in response
to DCFDA intensification, including glutathione (GSH), phospho-
creatine, hypotaurine and adenosine triphosphate (ATP), were
unearthed, suggesting a profound impact of OS on cellular
metabolism.

To rule out the possibility that DCFDA incubation may disturb
cellular metabolism, we analyzed the metabolome of the cells treated
with or without DCFDA by using analysis methods including Principal
component analysis (PCA), uniform manifold approximation and
projection (UMAP), and t-distributed stochastic neighbor embedding
(t-SNE). As a result, no significant difference in cellular metabolome
between DCFDA incubated and non-incubated cells was observed
(Fig. 1c-e). Consistently, the abundance of 31 common metabolites
including GSH, ATP, adenosine diphosphate (ADP), glutamate, glu-
tamine, creatine, oxidized glutathione (GSSG), phosphorylcholine,
and phosphoserine were almost identical in DCFDA incubated and
non-incubated cells (Supplementary Fig. 1d). We further performed a
correlation analysis of metabolites in both DCFDA incubated and
non-incubated cells, revealing the similarity in the correlations
among metabolites. As shown in the heatmap, the correlation coef-
ficients between metabolites remain virtually indistinguishable in
both DCFDA incubated and non-incubated cells (Fig. 1f), suggesting
that the metabolic landscape was not significantly altered by DCFDA
incubation. For instance, the correlation and conversion of meta-
bolites in the classical glutamine-glutamate-GABA metabolic path-
way remained unaffected by the incubation of DCFDA, as evidenced
by a robust association between glutamate and GABA, as well as
between glutamine and glutamate, observed in both DCFDA-
incubated and non-incubated cells. The difference of correlation
coefficients (r) between non-incubated and DCFDA incubated cells
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was calculated and visually represented using a heatmap (Supple-
mentary Fig. le), illustrating minimal divergence in the correlations
of metabolites within the non-incubated and DCFDA incubated cells.
Altogether, the cross-modality analysis platform successfully inte-
grated single-cell metabolome and cellular phenotype with high
stability and reliability, while preserving cellular viability and
metabolism.

The SCLIMS reveals correlation between cellular metabolism
and oxidative levels

The Multi-modal properties of SCLIMS facilitate its capacity to explore
the link between cellular metabolism and their OS levels, by means of
conducting correlation analysis between single-cell metabolomics
data and DCFDA intensity in each cell (Fig. 2a). The metabolomics data
was confirmed with no obvious batch effect by PCA and HCA
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Fig. 1| The cross-modality analysis platform integrating single-cell metabo-
lome and cellular phenotype. a A workflow and experimental setup of the cross-
modality analysis. Cells were first labeled with DCFDA and photographed with a
fluorescent microscope, followed by sampling and single-cell MS analysis. The
oxidative levels were reflected by DCFDA fluorescent intensity and the metabolic
information was acquired by SCMS. b Heatmap showing relative abundance of
representative metabolites corresponding to single-cell DCFDA intensity. DCFDA
intensity was indicated by color: dark green, relative high intensity; light green,
relative low intensity. Metabolite abundance was represented by color: red, relative

high abundance; blue, relative low abundance. c-e PCA score plot (c), UMAP ana-
lysis (d), and tSNE analysis (e) showing no significant difference in metabolome of
DCFDA incubated (n =257, pink) and non-incubated cells (n =325, blue).

f Correlation heatmap illustrating Pearson’s correlation coefficient (r) between
metabolites in non-incubated (left, n=325) and DCFDA incubated (right, n=257)
cells. Glutamate was correlated with GABA and glutamine (inset). Two-sided Pear-
son’s correlation analysis was performed. P values were not adjusted. For (c-e),
Source data are provided as Source Data files.

(Supplementary Fig. 2a, b). For each cell, the DCFDA intensity and the
abundance of metabolites were concomitantly collected. Then the
correlation between DCFDA intensity and metabolite abundance was
analyzed, with the calculation of Pearson’s r coefficient to assess the
strength of the correlation. For example, the intracellular GSH abun-
dance exhibited an inverse correlation with the DCFDA intensity in the
cells (Fig. 2a). The consistency with previous studies, which highlight
the pivotal role of GSH as a crucial metabolite in maintaining redox
balance**°, further confirms our method’s reliability.

Among the whole metabolome, we observed a total of 254
metabolites significantly correlated with OS level (P<0.05). The
majority (61.4%) of the metabolites correlated with OS level (P< 0.05)
exhibited an inverse correlation, which is nearly double the number of
metabolites that showed a positive correlation with cellular OS. This
suggests that the downregulation of multiple metabolites may serve as
a crucial hallmark of OS (Fig. 2b). For instance, the abundance of key
metabolites associated with energy metabolism, such as ATP (Fig. 2c)
and phosphocreatine (Fig. 2d), exhibited a progressive decline as OS
level increased. The linear downregulation was also observed in other
high energy compounds such as uridine triphosphate (UTP) and gua-
nosine triphosphate (GTP) (Fig. 2e, f). The abundance of hypotaurine
(Hypt), which generates NADH as a by-product upon conversion to
taurine® and plays crucial roles in redox homeostasis and DNA
protection®’, gradually declines during OS (Fig. 2g). The energy
metabolism is composed of numerous metabolites and is detrimen-
tally affected by OS*. Single-cell energy charge, a metabolic parameter
used to assess cellular energy supply by measuring ATP, ADP and
adenosine monophosphate (AMP) levels, reflects the energy home-
ostasis within a cell**. The inverse correlation observed between the
single-cell energy charge and the cellular OS level (Fig. 2h) indeed
suggests an association between OS and dysfunctionality in energy
metabolism.

By performing the metabolite set enrichment analysis (MSEA)*
using the metabolites inversely correlated with OS level, we found a
variety of metabolic pathways related to different biological processes
were disturbed in OS (Fig. 2i), such as the mitochondrial and energy
metabolism including “Mitochondrial Electron Transport Chain” and
“Citric Acid Cycle”, and the redox metabolism including “Glutathione
Metabolism Pathway”. These findings were in consistence with pre-
vious reports observing the disruption of glutathione metabolism?***
and energy metabolism® during OS. Lipid metabolism has been
reported to be altered in OS***°. This was also verified by our finding of
the downregulated pathways such as “Phosphatidylethanolamine
Biosynthesis”, “Phosphatidylcholine Biosynthesis”, and “Sphingolipid
metabolism”. The downregulation of purine and pyrimidine metabolic
pathways revealed by the SCLIMS was also supported by previous
studies reporting a depletion of purine and pyrimidine nucleotide
during OS*°. The SCLIMS also revealed an interference of vitamin
metabolic pathways including “Thiamine Metabolism Pathway” and
“Riboflavin Metabolism Pathway” during OS, which is in line with pre-
vious studies illustrating the crucial role of thiamine and riboflavin in
regulating OS**% The consistency of these discoveries by SCLIMS and
previous reports again suggests the reliability of the technique.

The SCLIMS additionally detected numerous previously undi-
sclosed metabolic alterations during OS. For instance, pathways

related to amino acids metabolism such as “glutamate metabolism”,
“alanine metabolism”, “arginine and proline metabolism” were all dis-
turbed in the cells with OS. Moreover, pathways related to sugar and
derivatives metabolism such as “Amino sugar metabolism”, “Fructose
and mannose degradation”, “Lactose synthesis”, “Lactose degrada-
tion”, and “Nucleotide sugars metabolism” were also discovered to be
downregulated in OS. Other pathways like “threonine and
2-oxobutanoate degradation” were also found to be disturbed in OS
(Fig. 2i). The discoveries made by SCLIMS have shed light on the
pivotal role of metabolism in cellular oxidative stress, unveiling a
diverse array of metabolic pathways that undergo significant altera-
tions (P < 0.05). These findings indicate that the mechanisms govern-
ing protein synthesis and degradation, glycosylation reactions, and
energy metabolism may undergo drastic transformations under OS.

The SCLIMS technique was also employed for multi-modal ana-
lysis in MEFs. Firstly, the metabolomics data were validated for the
absence of any noticeable batch effect through PCA and HCA (Sup-
plementary Fig. 2¢, d). In MEFs, the key metabolites found to be
inversely correlated with OS levels in HEK cells, including GSH, O-PE,
CTP, ATP, UTP, Hypt, GTP, and PCr, were similarly observed to exhibit
reverse correlation with single-cell OS levels (Supplementary Fig. 3a).
Additionally, MSEA analysis was conducted using these metabolites
exhibiting inverse correlation with OS levels to unravel the metabolic
pathways involved in oxidative stress of MEFs. Similar to the results of
HEK cells, a variety of metabolic pathways were enriched (Supple-
mentary Fig. 3b). For example, “Pyruvate metabolism”, “Citric acid
cycle”, “Beta oxidation of very long chain fatty acids”, and “Mito-
chondrial electron transport chain”, in mitochondria and energy
metabolism were also involved in the OS of MEFs. Lipid metabolism,
including “Phosphatidylcholine Biosynthesis”, “Phosphatidylethanola-
mine Biosynthesis”, “Sphingolipid metabolism”, were altered during
OS in MEFs as well. The downregulation of purine and pyrimidine
metabolic pathways were also discovered in MEFs under OS. Similar to
the interruption of vitamin metabolism in HEK cells under OS, “Pan-
tothenate and CoA Biosynthesis”, “Thiamine Metabolism Pathway”
were also discovered to be downregulated in OS-stressed MEFs. The
outcomes in other pathways also exhibited a resemblance to those
observed in HEK cells. These results confirmed the robustness of the
multi-modal analysis of SCLIMS across diverse cellular phenotypes.

Taken together, revealing a profound interplay, the SCLIMS-based
cross-modality analysis has unveiled strong connections between
single-cell metabolism and OS, thereby highlighting the paramount
importance of integrating metabolome and cellular phenotype for
comprehensive insights across different cell types.

Cell types identified by the SCLIMS exhibit divergent OS levels
Cluster analysis was conducted using k-medoids algorithm*** based
on the single-cell metabolome acquired from the SCLIMS. As a result,
cells were clustered into six subtypes (C1-C6) with distinct metabolic
features according to their metabolome profiles, highlighting the
diversity of metabolic characteristics within these cells (Fig. 3a).
Notably, the six subtypes of cells displayed distinct levels of OS as
indicated by varying DCFDA intensities (Fig. 3b). We then performed a
pseudotime analysis using single-cell metabolomics data and gener-
ated a trajectory of the six subtypes. The trajectory originated from
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Fig. 3 | Subtype-specific metabolic signatures and dynamic change of meta-
bolome revealed by cross-modality analysis. a UMAP visualization of six cel-
lular subtypes based on the single-cell metabolome. Each point represents a
single cell, color represents different subtypes. n =55, 34, 14, 41, 29, and 17 for
Cl1, C2, C3, C4, C5, and Cé6 respectively. b Average OS levels (indicated by the
normalized DCFDA fluorescence intensity) of the six metabolic subpopula-
tions. n=55, 34, 14, 41, 29, and 17 for C1, C2, C3, C4, C5, and Cé, respectively.
F(5,184) =5.880, P=4.57e-5 in One-way ANOVA (labeled in the plot). Data was
normalized to values of the respective control (Cluster C1). Data is presented
as mean + s.e.m. Color represents different subtypes and each dot represents
a cell. ¢ Single-cell trajectory of pseudotime analysis showing temporal pro-
gression of cell subtypes originating from C1 and gradually transitioning

towards C2/3, C4, and C5/6. Each subtype is represented by a distinct color.
For (a-c), Blue: C1; yellow: C2; purple: C3; green: C4; brown: C5; red: Cé6.

d Heatmap of characteristic metabolites and their corresponding relative
intensities in each subtype. Color indicates z scores of metabolite abundance.
Red: relatively high abundance; blue: relatively low abundance.

e Representative metabolic pathways significantly (P <0.05) enriched in
Cluster C1 and Cé6 through the MSEA analysis. Only metabolites with MS/MS
confirmation were included in the analysis. Dot size represents enrichment
ratio, while dot color indicates significance (-log;o P value) of the enrichment.
Red: relatively high significance; blue: relatively low significance. P values were
not adjusted. For (a-c), Source data are provided as Source Data files. Data
was collected from at least three biological replicates.

subtype Cl, which exhibited the lowest level of OS, and gradually
progressed towards other subtypes. Notably, three distinct branches
were observed that led to C2/3 (representing a low oxidative level), C4
(representing a medium oxidative level), and C5/6 (representing a high
oxidative level), respectively (Fig. 3c). These findings suggest a
metabolism-guided stepwise progression of cellular OS.

We subsequently conducted a more detailed analysis of the six
metabolic subtypes by utilizing a Wilcox rank sum test to compare
metabolite abundance between each cluster and other clusters. Each
subtype was characterized with specific metabolic markers as shown in
the heatmap (Fig. 3d). For instance, cells of Cluster Cl1 exhibited
enrichment of energy rich phosphate compounds such as ATP, GTP,
UTP, phosphocreatine along with antioxidants including GSH; cells of
Cluster C2 were enriched with dimethyldithiophosphate and pyr-
ophosphate; cells of Cluster C3 showed an abundance of catechola-
mine derivatives such as homovanillic acid and sugar derivatives such
as deoxyribose 5-phosphate; cells of Cluster C4 were enriched with
intermediates of nucleotide metabolism such as guanine monopho-
sphate (GMP), along with acetylated compounds such as
N-acetylneuraminic acid and UDP-N-acetylglucosamine; cells of Clus-
ter C5 were enriched with amino acids such as proline, threonine,
asparagine, alanine and taurine, along with glucose and ribitol;

Nucleotide monophosphates, including AMP, cytidine monopho-
sphate (CMP), and uridine monophosphate (UMP), as well as inter-
mediates in the glycolysis pathway (i.e. glyceraldehyde 3-phosphate
and fructose 1,6-bisphosphate), were found to be enriched in cells
belonging to Cluster Cé6.

Next, we conducted a comparison of the metabolome at the
single-cell level between Cluster C6 (with the most oxidative level) and
Cluster C1 (with the least oxidative level). A total of 148 metabolites
were downregulated and only 64 metabolites were upregulated from
Cl1 cells to Cé6 cells (Supplementary Fig. 4a). To investigate the altera-
tion of the metabolic process in cellular OS, we performed the MSEA
analysis of the characteristic metabolites enriched in Cl1 and Cé6 cells
(Fig. 3e), and other clusters of cells (Supplementary Fig. 5). Specifically,
pathways related to lipid metabolism such as “Phosphatidylethanola-
mine Biosynthesis”, “Phosphatidylcholine Biosynthesis”, “Sphingolipid
Metabolism”, and “Phosphatidylinositol Phosphate Metabolism” were
less enriched or completely depleted in C6 cells, consistent with pre-
vious reports®**°, The pathways associated with mitochondrial func-
tion and redox balance, such as “Citric Acid Cycle”, “Nicotinate and
nicotinamide metabolism” and “Glutathione metabolism” were also
found to be depleted or less enriched in cells of C6, thus confirming
previous reports on the disruption of glutathione metabolism®*” and
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energy metabolism® under OS. The pathways related to metabolism of
sulfinic acids and organosulfonic acids, such as hypotaurine and
taurine metabolism, were depleted in C6 cells. This was supported by
studies illustrating the antioxidant effect of these metabolites***°. In
addition, the glycine and serine metabolism exhibited greater enrich-
ment in C6 cells, which may be a compensatory response of cells under
OS as glycine and serine metabolism are reported to attenuate OS in C.
elegans”’. The nucleotide metabolism pathways, such as “Purine
metabolism” and “Pyrimidine metabolism”, were depleted in C6 cells.
The metabolism of vitamins, including “Pantothenate and CoA meta-
bolism”, “Thiamine metabolism”, and “Folate metabolism”, exhibited
reduced enrichment or depletion in C6 cells. The alteration of
nucleotide and vitamin metabolism in OS were well described by
previous researches'®*2, Other pathways such as “Plasmalogen
Synthesis” was enriched exclusively in the cells of Cé6 (Fig. 3e). Plas-
malogen synthesis is reported to enhance the resistance to OS in E.
Coli.*8, which could be served as a protective response in cells under
OS. Together, the convergence of these consistent findings between
the SCLIMS and the existing literature further substantiates the
dependability and steadfastness of this technique.

Moreover, the SCLIMS has also unearthed previously unreported
perturbed pathways during OS. For instance, several metabolic path-
ways, such as “Fructose and mannose degradation”, “Amino sugar
metabolism”, “Nucleotide sugars metabolism” along with amino acids
metabolism including “alanine metabolism”, “glutamate metabolism”,
and “arginine and proline metabolism”, were identified to be impli-
cated in OS, which has not been elucidated in previous studies.
Another finding gleaned from the SCLIMS is the transition from the
“Malate-Aspartate Shuttle” pathway to the “Glycerol Phosphate Shut-
tle” pathway, observed between C1 and C6, implying a reduced effi-
ciency in ATP generation during OS.

The metabolic heterogeneity of MEFs under OS was meticulously
investigated using SCLIMS, revealing a parallel to HEK293T cells where
six distinct subtypes (M1-M6) with specific metabolic characteristics
were identified (Supplementary Fig. 6a). These subtypes in MEFs also
exhibited varying levels of OS (Supplementary Fig. 6b). Furthermore,
pseudotime analysis utilizing single-cell metabolic features unveiled a
trajectory of the six subtypes originating from M1 (with the lowest level
of OS) and progressing towards M3 (with moderate OS), followed by
M35 and finally converging at M4/6 (with higher levels of OS) (Supple-
mentary Fig. 6¢). Notably, a metabolism-guided progression of cellular
oxidative stress was similarly observed in MEFs.

The metabolite abundance was also analyzed between each clus-
ter and other clusters, revealing subtype-specific metabolic markers
(Supplementary Fig. 6d). In comparison to HEK293T cells, MEFs
exhibited strikingly similar metabolic characteristics. Similar to Cl1 in
HEK293T cells, M1 in MEFs shared crucial metabolites such as Hypt,
PCr, O-PE, ATP, GTP, UTP, and GSH. Both C1 and M1 displayed the
lowest level of OS. A comparison of the metabolites in M6 (with the
highest OS level) and M1 (with the lowest OS level) yielded a result akin
to that observed in HEK293T cells. A total of 195 metabolites were
downregulated, while 134 metabolites were upregulated from M1 to
M6 (Supplementary Fig. 4b). The metabolic pathways enriched in M1
and M6 were also analyzed using MSEA and compared (Supplementary
Fig. 6e). Consistent with the findings in C1 and C6 of HEK293T cells,
common lipid metabolic pathways such as “Phosphatidylethanolamine
Biosynthesis”, “Phosphatidylcholine Biosynthesis”, and “Sphingolipid
Metabolism” exhibited depletion in M6 MEFs characterized by the
highest level of OS. Additionally, key pathways involved in mitochon-
drial function and redox balance, namely “Citric Acid Cycle” and
“Glutathione metabolism”, were also found to be depleted in M6 MEFs.
Furthermore, several other pathways including “taurine and hypo-
taurine metabolism”, “alanine metabolism”, “glutamate metabolism”,
and “arginine and proline metabolism” were identified as being
implicated specifically in the OS subtype of MEFs at stage Mé6.

Similarly, nucleotide metabolism pathways including “Purine meta-
bolism” and “Pyrimidine metabolism” showed depletion or less sig-
nificant enrichment in the same group of cells. Moreover, there was a
depletion observed in the vitamin-related metabolic processes such as
“Pantothenate and CoA metabolism”, “Thiamine metabolism”, and
“Folate metabolism” within the context of OS progression among
these specific type of cells. The obtained results exhibited consistency
with those observed in HEK293T cells, as well as previous studies that
have dissected cellular OS metabolism mentioned above. Conse-
quently, SCLIMS has been demonstrated to possess robustness in
analyzing metabolic alterations at the single-cell level.

Taken collectively, the SCLIMS not only validate metabolic chan-
ges observed in previous studies but also unveil metabolic modifica-
tions associated with OS and metabolic heterogeneity within
individual cells. These findings emphasize the reliability and uni-
versality of this technique, establishing it as a powerful tool for com-
prehensive analysis at the single-cell level.

The SCLIMS reveals capability of the single-cell metabolome in
predicting cellular OS status
Although the metabolic alterations and heterogeneity of cells under OS
were explored in detail, the strength of the link between metabolism and
cellular phenotype is not fully established. Machine learning is utilized to
ascertain whether the metabolic profile of individual cells can accurately
predict heterogeneous subtypes with distinct OS levels. We employed
discriminant analysis algorithms to train classification models using
single-cell metabolic features aiming to distinguish the 6 subtypes with
specific OS levels identified in the above-mentioned clustering analysis
(Fig. 4a). The data was randomly divided into independent training and
testing datasets, with 2/3 of the original data composing the former and
1/3 of it composing the latter. Both datasets included all m/z signals
meeting our criteria (S/N>3 and detected in greater than 20% single
cells) and no variable selection is performed before the model was
trained. The model was trained on the training dataset to acquire the
ability to classify metabolic subtypes based on full features of the single-
cell metabolome, and its performance was assessed using the testing
dataset. The performance of the model was evaluated using receiver
operating characteristic (ROC) curve and confusion matrix. In multi-
classification, the ROC curve had an average area under curve (AUC) of
0.98 (Fig. 4b). In cluster prediction, the model achieved an accuracy
ranging from 77.8% to 100% (Fig. 4c). These results demonstrate that the
single-cell metabolic profiles can directly predict metabolic subtypes.

The classification model is capable of predicting metabolic sub-
types rather than precise levels of OS. We further trained a regression
model***° based on neuronal network algorithms (Fig. 4d), which may
enable direct prediction of single-cell OS levels utilizing metabolic
features. Similarly, the data was independently and randomly divided
into training and testing datasets, with 2/3 of the original data com-
prising the former and 1/3 comprising the latter. All m/z signals
meeting our criteria (S/N >3 and detected in greater than 20% single
cells) were included in building the regression model without variable
selection. The model was trained on the training dataset to predict
single-cell OS levels, as manifested by DCFDA intensity, based on
single-cell metabolic features. The performance of the model was
evaluated with the testing dataset, and the predicted values were
plotted against real values (Fig. 4e). The correlation coefficient (r) was
0.88, indicating a good predictive power of the model. Furthermore,
the metabolic profile of single-cells was further validated in MEFs,
demonstrating a high predictive power with an AUC of 0.99 and an
average accuracy of 88.42% in the classification model (Supplementary
Fig. 7a, b). Additionally, there was a significant correlation between
predicted and true OS levels (r= 0.6, P< 0.0001) as shown in the cor-
relation analysis (Supplementary Fig. 7c).

Thus, through the implementation of SCLIMS technique and its
multi-modal integration, we have successfully demonstrated a link
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between single-cell metabolome and cellular OS states in two different
cell types for the very first time, suggesting the potential role of
metabolome in determining cellular phenotype.

The SCLIMS unveils the causal relationship between metabolic
heterogeneity and OS status

Although there appears to be a strong correlation between the het-
erogeneity of OS levels and metabolic heterogeneity, the causal rela-
tionship between them remains unclear. We wonder if the baseline

metabolic profile determines the phenotypic or metabolic hetero-
geneity of cells after they are induced to OS. We define the cells prior
to OS induction with hydrogen peroxide as “initial cells”, representing
the baseline state of both metabolism and phenotype. With SCLIMS,
we analyzed the heterogeneity of the OS levels and the single-cell
metabolome in the initial cells untreated with H,0,. We surprisingly
found that while there was minimal heterogeneity in cellular OS levels
among the initial cells (Fig. 5a and Supplementary Table 1), there
existed heterogeneity in their single-cell metabolome (Fig. 5b, c).
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Fig. 4 | Machine learning-guided prediction of OS levels based on single-cell
metabolome. a Flowchart of classification analysis with machine learning. The
training and testing dataset were randomly assigned according to a ratio of 2:1. The
model was trained and built with the training dataset with 5-fold cross validation.
The testing dataset was held out and used for the evaluation of model accuracy
independently. The performance of the model was evaluated with ROC curve and
confusion matrix. b ROC curve of model testing. AUC for each cluster was deter-
mined separately by the classification model. Higher AUC value indicates a better
performance of the model in predicting the clusters. The average AUC represented
an overall performance of the model. The color represents classification of a certain
subtype. Blue: C1; yellow: C2; purple: C3; brown: C4; green: C5; red: Cé6. ¢ Confusion
matrix of model testing, illustrating the distribution of errors in multi-class

prediction. The average accuracy was used to evaluate the overall performance of
the model. The color depth indicates the proportion of correct (blue) and incorrect
(red) predictions, as displayed in the bar chart. d Flowchart of building a regression
model with machine learning. The training and testing datasets were randomly
assigned according to a ratio of 2:1. The model was trained and built with the
training dataset with 5-fold cross validation. The testing dataset was held out and
used for the evaluation of the model independently. e The correlation of real values
and values predicted by the regression model (n = 61). Dash line represents the
perfect fit (predicted values = real values). The model performance was evaluated
by the correlation coefficient (r) and P value (P). Two-sided Pearson’s correlation
analysis was performed. P=1.45e-20. P value was not adjusted. For b and e, Source
data are provided as Source Data files. AUC area under curve.

Specifically, the k-medoids clustering analysis revealed two major
metabolic subtypes (Cluster-l and Cluster-lI) in the initial cells based on
their metabolomics features (Fig. 5b). Through machine learning, the
single-cell metabolome can directly predict the subtype of a cell,
providing further evidence for the robust heterogeneity of metabolism
in the initial cells (Supplementary Fig. 8a, b). To investigate metabolic
properties of the two subtypes of initial cells, we performed a differ-
ential analysis by comparing metabolite abundance between Cluster-I
and Cluster-Il cells. A series of characteristic metabolites, such as
hypotaurine, GSH, ATP, UTP, O-phosphoethanolamine, and GSSG,
distinguishing the two subtypes were discovered (Fig. 5¢).

Interestingly, despite no initial cells being subjected to OS sti-
mulation, the metabolic disparity between the two cell subtypes in
these initial cells already demonstrated a consistent pattern with the
metabolic variation observed in cells with varying levels of OS. Speci-
fically, the metabolomic similarity between single cells was determined
by calculating the statistical distance of their metabolomic data. The
initial cells (from Cluster-1 and Cluster-Il) were paired with each cell
under OS (from C1-C6), and subsequently, the distance was computed
based on the metabolite abundance in the two cells. A larger value of
statistical distance indicates a lower degree of similarity®. The heatmap
visualization (Fig. 5d) was generated based on the reciprocal value of
statistical distance, which represents the level of similarity among
single cells. From a metabolomic perspective, cells in Cluster-Il exhibit
greater similarity to cells with higher levels of OS (i.e., C2-4), while cells
in Cluster-l are more similar to cells with lower levels of OS (i.e., C1)
(Fig. 5d). The abundance of GSH, ATP and hypotaurine were 82%, 42%,
and 87% lower in cells of Cluster-ll (Fig. Se, f and Supplementary
Fig. 8c), which was in line with the above-mentioned downregulation
of GSH, ATP, and hypotaurine discovered in cells with high OS levels
(Supplementary Fig. 4). Metabolic pathways including “Glutathione
metabolism”, “Phosphatidylcholine Biosynthesis”, “Phosphatidyletha-
nolamine Biosynthesis”, “Sphingolipid Metabolism”, “Pyrimidine
Metabolism”, “Purine Metabolism”, “Thiamine Metabolism”, “Pan-
tothenate and CoA Biosynthesis”, and “Taurine and Hypotaurine
Metabolism” were enriched with marker metabolites in cells of Cluster-
I (Supplementary Fig. 8d). Notably, these pathways were all down-
regulated in cells with high OS levels (i.e., cells in C6) when compared
to cells with low OS levels (i.e., cells in C1) (Fig. 3e).

A remarkable demonstration of the metabolic heterogeneity
exhibited by initial cells is exemplified by GSH. The UMAP map vividly
depicted the remarkable disparity in GSH abundance among individual
cells of Cluster-l and Cluster-ll (Fig. 5e). We further constructed
metabolic networks based by leveraging the correlation among
metabolites. The correlations between metabolites exhibited altera-
tions in cells belonging to Cluster-1and Cluster-Il, indicating a subtype-
specific metabolic profile. For instance, the intracellular level of GSH
was strongly correlated with 15 other metabolites in Cluster-1, whereas
only 5 metabolites displayed a correlation (r>0.8, P<0.05) with GSH
in Cluster-Il (Fig. 5g), indicating a notable divergence in the GSH-
centered network between the two cell subtypes. The DyNet algorithm
was employed to calculate the rewiring score™ for each metabolite in

Cluster-I and Cluster-Il networks, which quantifies modifications in a
specific metabolite’s correlation with other metabolites between the
two clusters. Notably, the identification of GSH as the most rewired
metabolite (Fig. Sh) highlights its pivotal role in connecting with other
metabolites within the metabolome.

The metabolic heterogeneity in initial MEFs was also investigated.
Notably, MEFs were classified into two distinct subtypes (Cluster-1 and
Cluster-2) exhibiting metabolic characteristics akin to the two clusters
observed in initial HEK293T cells (Cluster-1 and Cluster-II) (Supple-
mentary Fig. 9a, b). The detailed metabolic properties of Cluster-1and
Cluster-2 initial MEFs were further studied. Several key metabolites,
including Hypt, GSH, O-PE, and ATP exhibited enrichment in Cluster-1
within the initial MEFs, aligning with the characteristic metabolites in
Cluster-l within the initial HEK293T cells. The Pathways including
“Glutathione metabolism”, “Phosphatidylcholine  Biosynthesis”,
“Phosphatidylethanolamine Biosynthesis”, “Sphingolipid Metabolism”,
“Pyrimidine Metabolism”, “Purine Metabolism”, “Thiamine Metabo-
lism”, “Pantothenate and CoA Biosynthesis”, and “Taurine and Hypo-
taurine Metabolism” were enriched with marker metabolites in
Cluster-1 cells (Supplementary Fig. 10c), which was consistent with
the pathways enriched in Cluster-I in HEK293T cells (Supplementary
Fig. 8d). These pathways were also depleted or less enriched in MEFs
with the highest OS levels (Cluster-M6). Machine learning analysis of
the single-cell metabolome of initial MEFs confirmed the robust het-
erogeneity in cellular metabolism (Supplementary Fig. 10a, b). We next
calculated the metabolic similarity between Cluster-1 and Cluster-2
initial MEFs in the absence of OS with the M1-M6 MEFs under OS
conditions. Similarly, Cluster-1 initial MEFs exhibited a higher degree
of similarity to MEFs with lower levels of OS, such as M1, M2, and part
of M3 (Supplementary Fig. 9¢c). On the other hand, Cluster-2 initial
MEFs showed a greater resemblance to MEFs with higher levels of OS
including M4, M5, and Mé6 (Supplementary Fig. 9c). These findings
were consistent with the results observed in HEK293T cells.

Next, the role of GSH in distinguishing the metabolic landscape
of Cluster-1and Cluster-2 was confirmed in the initial MEFs. As shown
in Supplementary Fig. 9d, e, Cluster-1 exhibited higher levels of GSH
abundance, which could potentially serve as a discriminative factor
between the two clusters. Metabolic networks were constructed for
both Cluster-1 and Cluster-2 based on metabolite correlations (Sup-
plementary Fig. 9f). Similar to the networks observed in HEK293T-
cells for Cluster-I and Cluster-Il, it was found that compared to
Cluster-2, Cluster-1 displayed a more intricate network connectivity
among metabolites, indicating a subtype-specific metabolic profile
within the initial MEFs. Furthermore, the key role of GSH in governing
metabolism and correlation between metabolites, as well as its ability
to distinguish between the two subtypes of initial MEFs, were also
elucidated. These findings align with the observed role of GSH in
initial HEK293T cells. Moreover, the divergence in the GSH-centered
network between these two cell subtypes was confirmed in initial
MEFs. By employing the DyNet algorithm to compare the two
metabolic networks, GSH emerged as the fourth-highest rewired
metabolite (Supplementary Fig. 9g). These results underscored both

Nature Communications | (2025)16:2740


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57992-3

a Initial cells P <0.0001 b
- Oxidative stressed cells  gq — 8- Ml Cluster-ll
4 .
3 = o _Oo0
0.06 BE10 71 e *° o,
> ] FE 8 PO
2 58 ° R
S zk 4 6 °° Y
8 0.041 8 2 a
z 0 < Lo o
= i = .
% D 54 °
_8 L]
& 0.027 8
4
1 ® Cluster-|
Cluster-II
0.00 T T 7 v T T T J 3 T T T T v y
0O 05 1 15 2 25 3 35 4 6 8 10 12 14 16 18
z scored DCFDA intensity UMAP1
d cl idati e f
uster of oxidative stressed cells
c1 c2 c3 _c4  C5 Cs Cluster-I Cluster-| 31 ___P<0.0001
_ - High
z ‘s 2 ’
2 > S € .
0o 2 S c
o] 8 43 1}
8 £ N EZ ’
ol n
£ R g 3 .
£ K5 o S (O] .
— ° < © s
53 ¢ = 28 ?
32 2 F Y
] 3 < 11
30 Low = £
(] 7] o
o z
-0
0

Cluster-I Cluster-Il

[trere,

h
| | GSH
Cluster-| Cluster-II o “/
o) °
°
o 8
Q
3
"}‘q"(‘\ g 67
"“*”’@9‘.}«' E
AN 8 4
[
z
>
o 24
@ GSH @ GSH-correlated metabolites 00

() Metabolites without GSH correlation —— Correlation

Fig. 5| Metabolic heterogeneity in initial cells. a Distribution and box plot (inset)
of DCFDA intensity in initial cells and cells under OS. Data in distribution plot was z
scored. Variance was indicated by IQR and MAD values in Supplementary Table 1.
W=58627, P<2.2e-16 in unpaired two-tailed Wilcox rank sum test. The data pre-
sented in the inset was normalized to the values of initial cells. Box plots extend
from 25th to 75th percentiles; central lines represent medians; whiskers extend
over 1.5 times the interquartile range (IQR, the distance from 25th to 75th per-
centile); dots represent outliers. For single-cell DCFDA intensity, a total of 1740
initial cells (blue) and 960 oxidative stressed cells (gray) from 3 independent
experiments were analyzed. b UMAP visualization of metabolic subtypes in initial
cells. Green: cells of Cluster-I (n = 43). Purple: cells of Cluster-II (n = 183). ¢ Heatmap
of potential metabolic markers in Cluster-I and Cluster-Il. The data was z score
scaled. The color represents relative abundance of metabolites. Yellow: relatively
high abundance; green: relatively low abundance. Each row represents a metabolite
and each column represents a cell. The representative metabolites are labeled on
the left and the clusters are labeled on the top. ATP: adenosine triphosphate; GSH:
glutathione; GSSG: oxidized glutathione; Hypt: hypotaurine; O-PE: O-phos-
phoethanolamine; UTP: uridine triphosphate. d A heatmap illustrating the meta-
bolic similarity between subtypes of initial cells (Cluster-I/ll) and subtypes of
oxidative stressed cells (C1 to C6). Each row represents an initial cell (subtypes are
labeled on the left) and each column represents an oxidative stressed cell (subtypes
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are labeled on the top). The heatmap was plotted with similarity (1/distance) and
the data was z score scaled. The distance between cells was calculated based on
single-cell metabolome. The color represented the relative similarity: red, relative
high similarity; blue, relative low similarity. Cells of Cluster-I is more similar to the
cells with lower OS levels (cells of C1 and part of C2). e Enrichment of GSH in cells of
Cluster-I visualized on the UMAP plot. Each dot represents a cell, the color of the
dots represents the relative GSH abundance. Red: relatively high abundance; blue:
relatively low abundance. Data was z score scaled. f Quantification of GSH abun-
dance in Cluster-1 (n =43, green) and Cluster-II (n =183, purple). Data was normal-
ized to values in Cluster-l. Data is represented as mean + s.e.m. Data were collected
from at least three biological replicates. W=7843, P=5.85e-43 in unpaired two-
tailed Wilcox rank sum test. g The correlation of every two metabolites were cal-
culated (reflected as Pearson’s r) and the network was constructed based on the
correlation data for initial cells belonging to Cluster-I (left) and Cluster-II (right)
subtypes. In the network, each node represents a metabolite while an edge con-
necting two nodes indicates their correlation. The big green dot denotes GSH and
the small blue dots denote GSH correlated metabolites. Blank-colored dots indicate
metabolites without any correlation to GSH. h Rewiring score calculated with
DyNet algorithm. Metabolites with higher scores were more rewired in topology in
the correlation network of initial cells. For (a, b, e, f), Source data are provided as
Source Data files. GSH: glutathione.

the generality and reliability of the SCLIMS technique while demon-
strating its applicability across diverse cell types.

In summary, utilizing the SCLIMS technique has revealed that
while there was no obvious heterogeneity in initial cells at the OS level,

the metabolome exhibited a high degree of heterogeneity. Interest-
ingly, this metabolic diversity in initial cells mirrored that observed in
cells with varying OS levels, suggesting that it may be the root cause of
heterogeneous OS levels within cells.
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The metabolic heterogeneity of cells determines their senes-
cence fate under OS

A common fate of cellular OS is the oxidative stress-induced pre-
mature senescence, which is a crucial type of cellular senescence? "%,
Subsequently, our objective was to identify a live-cell probe capable of
distinguishing between the cells belonging to the two distinct meta-
bolic subtypes, enabling us to further investigate their respective cel-
lular fates in OS-induced senescence. The disparity in GSH levels
between the two metabolic subtypes (Fig. 5e) prompted us to explore
the potential of utilizing intracellular GSH levels as a means to distin-
guish between these two cell subtypes.

The initial cells exhibiting high/low (ranging from 5% to 50%) GSH
levels were selected and mapped onto the UMAP projection alongside
the remaining initial cells, followed by calculating the proportion of
accurate matches between cells with high/low GSH levels and Cluster-1/
Il (Fig. 6a). The fraction of correct matches exhibited a drastic decline
when the selection included more than 15% of cells with top/bottom
GSH levels (Fig. 6b-g), suggesting that only cells within the range of
5%-15% accurately represented the metabolome of Cluster-I and Clus-
ter-ll, respectively, and potentially reflected resistance to OS and
sensitivity to OS. To ensure stability, we carefully selected cells with
the highest and lowest 5% GSH levels for further analysis, designating
them as “initial cells exhibiting a metabolome resembling that of OS-
resistant cells (C1)” (MROR cells) and “initial cells exhibiting a meta-
bolome resembling that of OS-sensitive cells (C6)” (MROS cells).

To isolate the MROR and MROS cells, we employed a live-cell GSH
fluorescent dye (monochlorobimane, mCIB)* and fluorescence acti-
vated cell sorting (FACS). The MROR cells (Top 5% fluorescent inten-
sity) and the MROS cells (Bottom 5% fluorescent intensity) were
collected by the FACS according to their mCIB fluorescent intensity
(Fig. 6h and Supplementary Figs. 11, 12). The DCFDA intensity (Fig. 6i, j)
had only 3% difference between MROR and MROS cells. However,
following OS induction, the MROS cells exhibited 2.7-fold higher of
DCFDA intensity compared to their MROR counterparts (Fig. 6i, j),
indicating an elevated state of OS. Furthermore, SA-B-Gal staining
confirmed the sensitivity of MROS cells in OS-induced senescence
(Fig. 6k, I). Thus, the data from the SCLIMS suggest that the metabolic
features of an initial cell may dictate its destiny under OS and OS-
induced senescence.

The key metabolites identified by SCLIMS mitigate OS and cel-
lular senescence

The aforementioned results suggest that the downregulation of critical
metabolites, identified by the SCLIMS, may be a contributor to OS,
indicating the potential for reversing OS and OS-induced senescence
through targeted metabolite supplementation. To explore this possi-
bility, we opted to conduct an experiment using three key metabolites:
hypotaurine, phosphocreatine, and O-phosphoethanolamine, which
all showed similar characteristics such as declining in OS (Fig. 2b),
distributing heterogeneously across metabolic subtypes (C1-6)
(Fig. 3d), and serving as metabolic markers distinguishing the initial
cells with different fates (Fig. 5c).

Treatment of cells with the three metabolites resulted in an
average of 67% reduction in OS levels, as evidenced by a decrease in
DCFDA intensity within the cells (Fig. 7a, b). OS is a common inducer of
senescence’*** and also plays a vital role in natural aging®. We
therefore explored the effects of these key metabolites on OS-induced
senescence. The SA-B-Gal staining showed that hypotaurine, phos-
phocreatine and O-phosphoethanolamine considerably decreased the
cellular senescence (Fig. 7c, d and Supplementary Fig. 13a-c). The
staining intensity exhibited an average of 48% reduction in key
metabolite-treated cells compared with vehicle-treated OS cells. The
growth arrest of cells, a marker for cellular senescence®*’, was also
rescued by these metabolites (Fig. 7e, f and Supplementary Fig. 13d-f).
The mitochondrial membrane potential (MMP), which is compromised

in cellular OS***, was recovered by targeted supplement of key
metabolites (Fig. 7g, h). Furthermore, the examination of the three key
metabolites on MEFs under OS yielded analogous outcomes, thereby
indicating the generalized applicability of these key metabolites across
diverse cell types (Supplementary Fig. 14). Collectively, these findings
imply that the SCLIMS-identified metabolites exert a protective effect
by reducing the OS level and alleviating senescence.

Treatment of key metabolites regulated the metabolome of
single cells

To investigate the precise alterations in the metabolome of individual
cells upon treatment with key metabolites, we conducted metabolic
analysis on cells from five groups: Non-OS, vehicle-treated OS, Hypt-
treated OS, PCr-treated OS, and O-PE-treated OS. Subsequently, we
examined the distinct metabolic characteristics exhibited by these cell
populations (Supplementary Fig. 15a). Notably, cells treated with key
metabolites were positioned between non-OS and vehicle-treated OS
cells, indicating an intermediary metabolic state between the two
groups. In consistency, cells treated with key metabolites exhibited
intermediate intensity in DCFDA and SA-B-Gal staining along with
intermediate growth rate when compared to non-OS and OS cells
(Fig. 7a—f). This suggests that the treatment of metabolites may have
partially restored the disrupted metabolism in oxidative stressed cells
and further alleviated cellular oxidative stress and senescence. To
quantify the similarity between the metabolome of metabolite-treated
cells and non-OS/OS cells, we calculated the paired distance between
these cell types. Interestingly, compared to non-OS and OS cells, the
cells treated with key metabolites exhibited a smaller distance to non-
OS cells (Supplementary Fig. 15b). These findings indicate that treat-
ment with key metabolites modulated the metabolome of OS cells
towards a state similar to that of non-OS cells.

Next, the detailed alteration of metabolome in OS and metabolite-
treated cells was further studied. By conducting a comparative analysis
of metabolites in non-OS cells and those treated with OS, we identified
a series of downregulated metabolites under OS conditions,
which were subsequently restored upon treatment with key metabo-
lites (Supplementary Fig. 15¢). For instance, some key metabolites
downregulated in OS, such as hypotaurine, phosphocreatine, O-
phosphoethanolamine, GSH, ATP (Figs. 2b, 3d), were recovered under
the treatment of  hypotaurine,  phosphocreatine,  and
O-phosphoethanolamine (Supplementary Fig. 15c). The metabolic
pathways involved in the recovery of the metabolome were dissected
through MSEA analysis using the recovered metabolites under treat-
ment (Supplementary Fig. 15d). A subset of these metabolic pathways
overlapped with those downregulated in OS. Specifically, the “Citric
acid cycle” in mitochondrial metabolism; “Phosphatidylethanolamine
Biosynthesis,” “Phosphatidylcholine Biosynthesis,” and “Sphingolipid
Metabolism” in lipid metabolism; “Aspartate metabolism” and “Gluta-
mate metabolism” in amino acid metabolism; “Pyrimidine metabolism”
and “Purine metabolism” in nucleotide metabolism; and “Amino sugar
metabolism,” “Galactose metabolism,” and “Nucleotide sugars meta-
bolism” in sugar and derivatives metabolism were all enriched with
recovered metabolites and overlapped with pathways downregulated
in OS. Consistently, OS cells treated with key metabolites exhibited
lower levels of OS, reduced SA-B-Gal intensity, and improved mito-
chondrial function (Fig. 7 and Supplementary Fig. 14).

The collective findings suggest that the modulation of crucial
metabolites governs the cellular metabolome under OS, leading to the
restoration of a multitude of metabolites. Treatment with these pivotal
metabolites induces a metabolic state resembling that of non-OS cells,
thereby highlighting their significant role in regulating OS and senes-
cence pathways. Consequently, it can be inferred that specific key
metabolites exert control over the cellular metabolome. The observed
extensive heterogeneity and metabolic disparities in OS cells may stem
from variations in the abundance levels of these essential metabolites.
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The SCLIMS-identified protective metabolites promote healthy

aging and extend lifespan

The effect of key metabolites treatment across two different cell types
confirmed the regulatory role of metabolism in OS and senescence,
leading to the question whether key metabolites further regulate ani-
mal aging. To explore the regulatory effects of metabolism on animals,
we introduced the C. elegans aging model®*' to investigate the impact

of the key metabolit

es (hypotaurine, phosphocreatine, and O-phos-

phoethanolamine) on the process of natural aging (Fig. 8a). A serial of
concentrations of the three metabolites were added into the Nema-
tode Growth Medium (NGM) at the age of L4 and throughout the
lifespan of the worms. The OS level, lifespan and healthspan of the
worms were then evaluated. Strikingly, the supplement of hypotaur-
ine, phosphocreatine and O-phosphoethanolamine at various doses
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Fig. 6 | Role of intracellular metabolic features in determining the cellular fate
in OS and OS induced senescence. a A flowchart showing the process of the
analysis. The initial cells were clustered based on their metabolomic features with
unsupervised clustering, revealing Cluster-I (blue palette) and Cluster-II (red pal-
ette). Then cells with top (blue strip) and bottom (red strip) 5%-50% GSH levels were
projected to the UMAP scatter plot. The correct matches were defined as cells with
top 5%-50% GSH levels to Cluster-1 (blue dots), and cells with bottom 5-50% GSH
levels to Cluster-II (red dots). Incorrect matches were labeled as green dots. Finally,
the fraction of correct matches was calculated. b—f, The visualization of projection
of cells with top/bottom 5% (b), 15% (c), 25% (d), 35% (e), and 50% (f) GSH levels into
Cluster-I and Cluster-Il. Correct matches were labeled as blue (cells with top 5-50%
GSH levels vs Cluster-I) and red (cells with bottom 5%-50% GSH levels vs Cluster-II)
dots. Incorrect matches were labeled as green dots. Cells with intermediate GSH
levels were labeled as gray dots. g Quantification of fraction of accurate matches
between cells with top/bottom 5%-50% GSH levels and Cluster-I and Cluster-II. Blue:
correct matches; green: incorrect matches. h, Experimental setup of FACS

separation of MROR and MROS cells and gating of the FACS: cells with top 5%
(MROR, blue) and bottom 5% (MROS, red) GSH intensity were collected according
to their fluorescent intensity. i, j Representative images (i) and quantification (j) of
DCFDA staining of MROR and MROS cells before and after OS induction. F(1,
8)=7.405, P=0.0262 in two-way ANOVA. k, | Representative images (k) and
quantification (I) of SA-B-Gal staining of MROR and MROS cells before and after
induction of OS-induced senescence. F(1, 8) =9.177, P=0.0163 in two-way ANOVA.
Scale bar, 50 pm. P values in two-way ANOVA with Turkey’s multiple comparisons
were labeled in the plot. n=3 for each group. All P values were reported as multi-
plicity adjusted P values for multiple comparisons. Data was normalized to the
values of MROR group in control cells. Data is presented as mean + s.e.m. For (j, I),
Source data are provided as Source Data files. Blue: MROR cells; red: MROS cells.
0S: oxidative stress. MROR cells: initial cells exhibiting a metabolome resembling
that of OS-resistant cells. MROS cells: initial cells exhibiting a metabolome resem-
bling that of OS-sensitive cells.

caused a remarkable extension in the lifespan of C. elegans by
approximately 33%-50% (Fig. 8b and Supplementary Fig. 16a).

The OS level of the aged C. elegans were assessed by dihy-
droethidium (DHE) staining®. The findings unveiled a remarkable
elevation in OS levels among aged worms, as indicated by the intensity
of DHE. However, this surge in OS was mitigated upon supplementa-
tion with the three metabolites in C. elegans (Fig. 8c, d). The intensity
of DHE was reduced by an average of 16% in metabolite treated worms.

It has been reported that the mobility of worms is drastically
compromised in aging as a sign of deterioration of health®’. We next
examined the locomotion of worms treated with and without these
metabolites from the L4 stage onwards. Aged nematodes (Day 9) were
subjected to the “thrashing” assay, wherein their swimming move-
ments were observed to assess their physical mobility®’. The elderly
worms exhibited a 43% decline in their thrashing rate, which was
effectively ameliorated by the administration of hypotaurine, phos-
phocreatine and O-phosphoethanolamine (Fig. 8e, f and Supplemen-
tary Fig. 16b).

Another indication of the deterioration in health of aged C. ele-
gans is the reduction in their speed of movement®. The worms at
three different ages were analyzed and a progressively decline in
free moving speed was indeed observed (Fig. 8g, h). The supple-
mentation of the three metabolites from L4 improved the free
moving speed of the aged worms (Fig. 8h and Supplementary
Fig. 16¢, d). Free moving speed of metabolite-treated worms was
1.4-1.8 fold higher compared with vehicle-treated worms at Day 9,
and 1.1-1.2 fold higher at Day 5.

Thus, the key metabolites identified by SCLIMS, including hypo-
taurine, phosphocreatine, and O-phosphoethanolamine, possess
remarkable potential to prolong lifespan and foster graceful aging in C.
elegans by effectively preventing cellular OS and senescence.

Discussion

Emerging evidence indicates a diversity of cellular subtypes in
senescence”®*>%, cancer®®, diabetes®®**’, and inflammatory diseases’®,
suggesting that there is vast heterogeneity among cells in various
biological processes. However, previous studies on cellular metabo-
lism have predominantly been performed at the homogenate level,
potentially disregarding the metabolic heterogeneity and intricate
metabolic changes of individual cells. Due to the challenges in
obtaining metabolomic information from individual live cells, deter-
mining metabolic heterogeneity in single cells has proven to be a
formidable task. The SCMS technique we have previously established
excels at unraveling the metabolome at a single-cell resolution’"s,
However, it encounters challenges when it comes to correlating the
single-cell metabolome with cellular function and phenotype.
Recently, the integrative analysis across multiple modalities brought
new insights into cellular heterogeneity and elucidated the underlying

mechanisms governing biological processes’’""*, thereby illustrating
the crucial role of cross-modality analysis. In this study, we established
an approach called SCLIMS by combining SCMS and live-cell imaging
to the metabolome of individual cells with their cellular OS status,
thereby enabling a cross-modality analysis of both metabolomics
profiles and cellular phenotypes at single-cell resolution. This tech-
nology provides some notable contributions. Firstly, with SCLIMS we
unveiled distinct metabolic signatures among the six subtypes of cells
under OS, each with specific oxidative levels. The detailed single-cell
metabolic profile of OS has been dissected, revealing the deterioration
of metabolic processes associated with redox balance, energy meta-
bolism, lipid metabolism and mitochondrial function. The SCLIMS has
not only confirmed various alterations in metabolism under OS as
reported in previous studies, but also unveiled discoveries of meta-
bolic changes, including modifications in amino acid metabolism and
the transition from the “Malate-Aspartate Shuttle” to the more
sophisticated “Glycerol Phosphate Shuttle”. Secondly, the utilization of
machine learning analysis on the single-cell metabolome substantiates
the predictive capacity of individual metabolic characteristics
regarding cellular heterogeneity and phenotype. Thirdly, the SCLIMS
has led to the discovery that the ultimate destiny of cells following OS
induction is determined by their initial heterogeneity in metabolomics.
Lastly, the key metabolites identified by SCLIMS exhibit protective
effects against OS, cellular senescence, and natural aging. Overall, the
SCLIMS technique sheds lights into the study of metabolic changes in
OS and therapeutic interventions in aging.

In the present study, the SCLIMS shows that the heterogenous
states of cells can be predicted directly with their intracellular meta-
bolome, showing a tight link between metabolic features and cellular
phenotype. In addition, a more remarkable discovery revealed by the
SCLIMS is that the destiny of cells under OS can be determined by their
initial metabolomics status. This technology has verified that GSH is
strongly correlated with many metabolites in the metabolome and
may play a key role in cell fate determination, as evidenced by the fact
that GSH-rich cells exhibit greater resistance to OS. However, it should
be noted that such resistance is not solely attributed to GSH; rather,
our SCLIMS analysis reveals elevated levels of other key metabolites
such as hypotaurine, and O-phosphoethanolamine in cells exhibiting
enhanced oxidative resistance. Indeed, the anti-oxidant effect of these
metabolites has been further confirmed in the aged C. elegans. In
essence, the GSH-cored metabolome serves as the determinant of cell
phenotype and fate in OS. Among the top 15 rewired metabolites, GSH
is well correlated with the other 13 metabolites including glutamate,
creatine, glutamine, taurine, threonine, N-acetyl-aspartic acid, aspartic
acid, asparagine, UDP-N-acetylglucosamine, proline, GABA, cystathio-
nine, and glucose. These metabolites participate amino acids meta-
bolism as well as carbohydrate metabolism, which were compromised
in cells with higher OS levels (Fig. 3e). Other studies reported the
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Fig. 7 | Effects of key metabolites on OS and induced senescence.

a, b Representative images (a) and quantification (b) of DCFDA staining of control
cells and oxidative stressed cells with indicated treatments. n=>5 for each group.
Scale bar, 50 um. F(4, 20) =5.991, P=0.0024 in One-way ANOVA. P values in one-
way ANOVA with multiple comparison were labeled in the plot. Data was normal-
ized to values of control group. ¢, d Representative images (c) and quantification
(d) of SA-B-Gal staining of control and oxidative stressed cells with indicated
treatments. n=9, 9, 3, 3, and 3 for Control, Vehicle treated, Hypt treated, PCr
treated, and O-PE treated group respectively. Scale bar, 50 pm. F(4, 22) =17.29,
P=5.50e-9 in One-way ANOVA. P values in one-way ANOVA with multiple com-
parison were labeled in the plot. Data were normalized to values of control group.
e, fRepresentative images (e) and growth curve (f) of control and oxidative stressed
cells with indicated treatments at indicated time points. Growth curve was plotted
with at least 15 random fields from 3 independent biological replicates for each
group at each indicated time point. Scale bar, 50 um. F(4, 520) =41.26, P<2.2e-16
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in two-way ANOVA. P values in two-way ANOVA with Turkey’s HSD comparison
were labeled in the plot. Each group was compared with vehicle-treated oxidative
stressed cells. Data were normalized to values of control group at O h.
g, h Representative images (g) and quantification (h) of TMRE staining of control
and oxidative stressed cells with indicated treatments.n=9, 9, 5, 5, and 4 for
Control, Vehicle treated, Hypt treated, PCr treated, and O-PE treated group
respectively. Scale bar, 50 pm. F(4, 27) =26.12, P= 6.14e-9 in one-way ANOVA. P
values in one-way ANOVA with multiple comparison were labeled in the plot. Data
was normalized to values of control group. All data are presented as mean + s.e.m.
OS: oxidative stressed cells; Hypt: hypotaurine (1 mM); PCr: phosphocreatine
(0.5 mM); O-PE: O-phosphoethanolamine (40 puM). All P values were reported as
multiplicity adjusted P values for multiple comparisons. For (b, d, f, h), Source data
are provided as Source Data files. Blue: control; red: OS+vehicle; green: OS+Hypt;
purple: OS+PCr; yellow: OS + O-PE.

effects of these top-rewired metabolites in aging and senescence as
well. For example, taurine was reported to decline in aging and sup-
plement of taurine increases healthspan and lifespan in various
species”. Taurine protected telomerase and mitochondrial function,
along with decreasing inflammation and DNA damage. Creatine was
reported to promote healthy aging by attenuating inflammation and

preventing bone mineral loss’®. Creatine improved neuronal function
by antioxidant effect and exhibited therapeutic effect against age-
related diseases including Alzheimer’s disease, Parkinson’s disease,
and heart failure”’. The level of threonine, aspartic acid, and proline
were reported to be positively correlated with lifespan of yeasts’.
Glutamine promotes autophagy via AMPKa lactylation and suppresses
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senescence’’. N-acetyl-aspartic acid was reported to decline in aging
and was related to brain atrophy®. Asparagine prevented stem cell
aging by regulating the autophagy-lysosome pathway®. The under-
lying mechanism behind the notable disparity in metabolic char-
acteristics among initial cells remains elusive and necessitates
further investigations. However, a possible explanation is that it could
be a result of the asymmetric division of cytoplasm during cell
division® %, Another possibility may be attributed to differences in
cellular contact, micro-environmental development, or potential
transport of certain metabolites between neighboring cells that has
gone undetected®. However, from a metabolic view, abundance of
key metabolites determined the metabolomic profile of cells and
recovered the disrupted metabolic pathways and the metabolome
under OS along with reducing the OS and senescent level (Fig. 7 and

Days after adulthood

Supplementary Figs. 14, 15), suggesting the role of key metabolites in
determining the metabolic and phenotypic heterogeneity.

The SCLIMS-identified key metabolites provides opportunities in
senescence and aging intervention. The OS-induced senescence is one
of the important models of cellular senescence**** and play crucial
role in various diseases®”**. The supplementation of the key metabo-
lites, including hypotaurine, phosphocreatine, and O-phosphoetha-
nolamine, can effectively mitigate the cellular OS and the OS-induced
senescence. Moreover, these metabolites also prevent OS, prolong
lifespan, promote healthy aging and delay the decline in mobility
during aging in C. elegans. Combining the clues from the literature, we
posit that these metabolites may regulate cellular OS and senescence
through multiple mechanisms. For instance, hypotaurine serves as a
hydrogen donor for NAD" during its conversion into taurine, thereby
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Fig. 8 | Metabolic intervention extends lifespan and promotes healthy aging in
C. elegans. a A flowchart of experimental setup of lifespan and healthspan assay of
C. elegans. b Lifespan of C. elegans treated with vehicle (n =221), 0.4 mM hypo-
taurine (Hypt) (n=320), 0.2 mM phosphocreatine (PCr) (n=225) and 0.1 mM
0O-Phosphoethanolamine (O-PE) (n=387). P values in two-tailed log rank test
compared with vehicle-treated worms were labeled in the plot, P<2.2e-16 for all
comparisons indicated in (b). ¢, d Representative images (c) and quantification (d)
of DHE staining of L4 (young adult) (n =14) and Day-9 (aged) worms with indicated
treatments (n =21, 23, 19, and 24 for vehicle, Hypt, PCr, and O-PE treated worms
respectively). Scale bar, 200 pm. F(4, 96) = 65.74, P<2.2e-16 in One-way ANOVA. P
values in One-way ANOVA with multiple comparison were labeled in the plot. P
values were reported as multiplicity adjusted P values for multiple comparisons.
Data was normalized to values of vehicle treated group at Day 9. Data is presented
as mean * s.e.m. e, f Representative images (e) and quantification (f) of L4 (n=12)
and aged C. elegans thrashing under treatment of vehicle (n=19), 0.4 mM hypo-
taurine (Hypt) (n=28), 0.2 mM phosphocreatine (PCr) (n=23) and 0.1 mM
O-Phosphoethanolamine (O-PE) (n =13). Arrows indicate immobilized worms. Scale
bar, 1 mm. F(4,90) =27.58, P=6.00e-15 in One-way ANOVA. P values in One-way
ANOVA with multiple comparison were labeled in the plot. P values were reported

as multiplicity adjusted P values for multiple comparisons. g, h Representative
traces (g) and quantification (h) of free moving C. elegans. The traces showed the
track of free moving worms in 1 min. At day 1, data of tracks was derived from 294,
368, 317, and 391 worms for vehicle, Hypt treated, PCr treated, and O-PE treated
group, respectively. At day 5, data of tracks was derived from 184, 284, 175, and 305
worms for vehicle, Hypt treated, PCr treated, and O-PE treated group, respectively.
At day 9, data of tracks was derived from 176, 309, 316, and 153 worms for vehicle,
Hypt treated, PCr treated, and O-PE treated group, respectively. Scale bar, 1 mm.
F(3,26296) =73.15, P=4.17e-47 in Two-way ANOVA. P values in Two-way ANOVA
with Turkey’s HSD comparison (vehicle vs O-PE, Hypt, and PCr, respectively) were
labeled in the plot. P values were reported as multiplicity adjusted P values for
multiple comparisons. Data were collected from 3 independent biological repli-
cates. For (b, d, f, h), Source data are provided as Source Data files. For (b and h),
blue: Vehicle treated worms; green: Hypt treated worms; purple: PCr treated
worms; yellow: O-PE treated worms. For d and f, gray: L4 worms; red: vehicle
treated aged worms; green: Hypt treated aged worms; purple: PCr treated worms;
yellow: O-PE treated aged worms. Hypt: 0.4 mM hypotaurine; PCr: 0.2 mM phos-
phocreatine; O-PE: 0.1 mM O-Phosphoethanolamine.

generating NADH as a by-product®. This process effectively restores
redox balance in the presence of OS. Phosphocreatine serves as a
direct catalyst for the conversion of ADP into ATP*’, functioning as a
quintessential cellular energy reservoir that possesses the inherent
capability to reinstate equilibrium in  energy levels.
O-phosphoethanolamine has been reported to mitigate mitochondrial
dysfunction®® and effectively restore membrane, as it serves as the
fundamental precursor of membrane lipids”. Therefore, these meta-
bolites may potentially impede senescence by modulating various
cellular processes, including energy metabolism, mitochondrial func-
tion, and lipid metabolism. The deficiency of such metabolites may
render cells more susceptible to senescence-inducing factors, such as
OS. Furthermore, a more paramount consequence of the metabolic
intervention lies in its ability to prolong healthspan, which assumes a
relatively pivotal role in the realm of aging research when compared to
lifespan®**2. The decline of physical function is a common occurrence
in both the early and late stages of aging, and bestowing longevity
upon frailty offers minimal advantage to the individual®. Therefore,
screening for potential metabolites from our SCLIMS database pre-
sents an opportunity for promoting health benefits during the aging
process.

The current study has certain limitations that we would like to
address, along with potential solutions for future studies. Firstly, the
identification of metabolites at the single-cell level poses a significant
challenge due to the complexity of MS/MS analysis. Acquiring MS/MS
spectra for hundreds of m/z in the metabolome is indeed arduous.
However, there are promising avenues to enhance metabolite identi-
fication efficacy. For instance, ion mobility mass spectrometry can
potentially differentiate metabolites sharing identical m/z values by
considering collision cross section’ ¢, Additionally, optimizing scan
speed and extending sampling duration can facilitate acquiring com-
prehensive MS/MS spectra from single cells”. Secondly, the SCLIMS
utilized in this current study was meticulously designed to incorporate
cultured cells and cellular models of OS. The versatility of SCLIMS
extends to tissue-embedded cells, as they can also be effectively
labeled with fluorescence markers. However, the potential application
of SCLIMS in tissue-embedded cells remains an intriguing area for
future exploration and investigation. Thirdly, one must acknowledge
the challenges associated with analyzing fixed cells when employing
the SCLIMS technique. Nevertheless, by enabling analysis of fixed cells,
a myriad of phenotypic features such as SA-B-Gal staining, immuno-
fluorescence analysis, and immunohistochemistry can be seamlessly
integrated into the cell metabolome profiling process.

In summary, this study presents a cross-modality analysis inte-
grating single-cell metabolomic profile and cellular phenotype
enhancing our understanding of cell heterogeneity and subtype-

specific metabolic signatures in a cellular model of OS. Most impor-
tantly, the cross-modality platform and analysis described in this study
provide a way in single-cell research. The single-cell metabolome and
the cellular phenotype such as OS status are directly linked and inte-
grated. The heterogeneous states are explained with single-cell meta-
bolome and metabolic pathways. Significantly, the insights into the
metabolic regulation governing OS, cellular senescence, and natural
aging serves as a valuable resource for future investigations into
interventions targeting oxidative damage, aging and senescence.
Furthermore, this cutting-edge platform possesses the remarkable
capability to integrate single-cell metabolomics profiling with a diverse
array of cellular phenotypes assessed by live-cell labeling. For instance,
(1) The SCLIMS can be combined with live-cell mitochondrial probes
such as probes for mitochondrial membrane potential (i.e. TMRE
probe) and mitochondrial morphology (i.e. Mito-Tracker). This
enables the study of the interaction between mitochondrial function
and the metabolome at single-cell level; (2) The SCLIMS can be inte-
grated with calcium imaging® which labels neuronal activities and
enables the performance of multi-modal analysis of heterogeneity in
metabolome and neuronal functions; (3) The SCLIMS can be utilized to
investigate the correlation between cellular metabolome and cell cycle
by incorporating dynamic live-cell fluorescent probes for real-time
monitoring of cell division and proliferation®. Thus, with any techni-
que labeling live cells with fluorescent, this cross-modality platform
will become a feasible way for integrative analysis and a powerful tool
for the discovery of secrets in single cells.

Methods

Chemicals

NaCl, KCl, CaCl,, MgCl,, HEPES, NaOH, sucrose, NH;HCO3, Na,HPO,,
KH,PO,, K,HPO,, MgSO4 cholesterol, hypotaurine, and
O-phosphoethanolamine were purchased from Sigma-Aldrich. Phos-
phate buffer saline was purchased from Sangon Biotech. Dulbecco’s
Modified Eagle’s medium (DMEM) was purchased from HyClone. Fetal
bovine serum and trypsin-EDTA (0.25%) were purchased from Gibco.
Trypan blue, penicillin and streptomycin were purchased from
Biosharp. Hydrogen peroxide was purchased from Sinopharm. Phos-
phocreatine was purchased from Aladdin. The Senescence-Associated
B-Galactosidase kit and Mitochondrial membrane potential assay kit
were purchased from Beyotime. A cellular ROS assay kit and dihy-
droethidium (DHE) were purchased from Abcam. Live-cell GSH probe
(mCIB) was purchased from MedChemExpress.

Cell culture
HEK293T cell line were originally obtained from ATCC (CRL-3216). The
cell line was authenticated by ATCC with STR profiling. Primary MEFs
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were a kind gift from Professor Chunlei Cang in University of Science
and Technology of China. All cells were cultured in Dulbecco’s Mod-
ified Eagle’s medium (DMEM) (HyClone), supplemented with 10% fetal
bovine serum (FBS, Gibco) and 100 U/ml penicillin 100 pg/ml strep-
tomycin (Biosharp) at a temperature of 37 °C, with 5% CO, in a humi-
dified atmosphere. The culture medium was refreshed every 2-3 days,
and the cells were subcultured every 3-5 days when they reached
approximately 80% confluency.

C. elegans strain and maintenance

The Caenorhabditis elegans (C. elegans) were cultured and maintained
on Nematode Growth Medium (NGM) seeded with E. Coli OP50 at
20 °C. N2 (wild isolate) strain was used in all C. elegans experiments.
Plates were maintained by transferring the worms every 3 days. For
DHE staining and thrashing analysis, worms at L4 and at Day 9 after L4
were used. For lifespan analysis, the survival of worms was observed
throughout the whole lifespan. For activity analysis, worms at Day 1,
Day 5 and Day 9 after L4 were used.

Oxidative stress model

Cells were seeded and allowed to grow overnight. Subsequently, they
were treated with hydrogen peroxide at a final concentration of 80 pM
for HEK293T cells and 240 pM for MEFs in the culture medium for 1 h,
followed by replacement with fresh medium. Finally, the cells were
cultured for an additional 48 h to establish an oxidative stress model.

Treatment of cells with metabolites

Cells were seeded and allowed to grow overnight. Subsequently, the
cells were treated with hydrogen peroxide at a final concentration of
80 uM for HEK293T cells and 240 pM for MEFs in culture medium for
1h. After that, the medium was replaced with fresh medium sup-
plemented with specific metabolites at indicated concentrations.
The cells were then cultured for an additional 48 h before further
assays.

Metabolite treatment and life span assay of C. elegans

Life span assays of C. elegans were conducted at a temperature of
20°C. Metabolite treatment was administered by adding specific
metabolites at the indicated concentrations to NGM plates, which were
then incubated overnight prior to use. Following bleaching, age-
synchronized eggs were washed with M9 buffer and subsequently
placed on NGM plates. Late L4 larvae or young adult worms were
subsequently transferred to NGM plates that had been seeded with
heat-inactivated OP50 E. coli and supplemented with 0.1 mg/ml of 5-
FUDR, as well as the indicated treatment of metabolites. Approxi-
mately 100 worms were placed on each plate, which was then
inspected and scored every one to two days. The worms were moved
to fresh plates every one to two days in order to ensure the efficacy of
the drugs and metabolites. Worms that exhibited no response to
mechanical stimulation were considered deceased. Worms displaying
a “protruding vulva”, those that were lost, or had burrowed into the
medium were censored. Statistical analysis was conducted using the
MATLAB function “logrank” (www.mathworks.com/matlabcentral/
fileexchange/22317), and P values were calculated.

Behavioral analysis of C. elegans
The ‘thrashing’ assay was employed to assess the locomotion of C.
elegans. On Day 9 post-adulthood, worms subjected to specific treat-
ments were transferred to M9 buffer and allowed to acclimate for 1 min
before body bends were quantified using a dissecting microscope.
The physical function of C. elegans was assessed by monitoring
the locomotion of the worms on NGM plates. On Day 1, Day 5, and Day
9 post-adulthood, freely moving worms subjected to specific treat-
ments were recorded using a digital camera and analyzed in ImageJ
(version 1.54 g, https://imagej.nih.gov/ij/) with the ‘wrMTrck’ plugin as

per manual instructions. The traveling speed was then calculated using
the plugin.

Cell viability assay

Cell viability assay was performed according to the manufacturer’s
manual. Cells were dissociated using trypsin-EDTA (0.25%) (Gibco) for
1min at 37°C, followed by termination of the dissociation process
through the addition of an equal volume of DMEM supplemented with
10% fetal bovine serum. Cells were suspended, centrifuged, and then
resuspended with PBS. Subsequently, they were stained with trypan
blue (Biosharp) at a final concentration of 0.04%. The cells were then
enumerated under a microscope; the stained cells were designated as
non-viable. Cell viability was determined by calculating the ratio of
unstained cells to the total number of both stained and unstained cells.

SA-B-Gal assay

The experimental procedure was performed in accordance with the
protocols provided by the SA-B-Gal assay kit (Beyotime, China). Briefly,
cells were washed with phosphate-buffered saline (PBS) and fixed with
fixing reagents at room temperature for 15min. After three washes
with PBS for 3 min each, staining solution was prepared according to
the manufacturer’s instructions prior to use. Cells were stained over-
night at 37 °C, and images of five randomly selected fields were cap-
tured using a bright field setting for subsequent analysis.

Oxidative stress assay
To evaluate the extent of cellular oxidative stress, a live-cell probe
DCFDA was prepared according to the manufacturer’s protocol
(Abcam). Subsequently, live cells were incubated with a 10 uyM DCFDA
solution for 25min at 37 °C and 5% CO,, followed by PBS washing.
Images were promptly captured using a fluorescent microscope
(Leica), and five random fields were selected for analysis in each dish.
To assess the level of oxidative stress in C. elegans, worms were
exposed to a final concentration of 3 uM DHE (Dihydroethidium) in M9
buffer at 20 °C for 30 min, followed by washing with M9 buffer. Sub-
sequently, the worms were transferred onto glass slides and imaged
using a fluorescent microscope (Leica).

Mitochondrial membrane potential assay

TMRE was utilized to assess the mitochondrial membrane potential
(MMP) of viable cells in accordance with the manufacturer’s instruc-
tions. Briefly, cells were incubated with 1X TMRE (Beyotime) in serum-
free DMEM for 15 min at 37 °C. Subsequently, the cells were rinsed with
warm serum-free DMEM and immediately imaged using a fluorescent
microscope (Leica, version 4.6.2 build: 410). Images of five randomly
selected fields were captured for analysis.

Analysis of SA-B-Gal intensity

The SA-B-Gal-stained area in images of random fields was extracted
using the ‘IHC toolbox’ plugin in Image], resulting in a new image of the
stained area. The color images of the extracted SA-3-Gal stained area
were then converted to 8-bit grayscale and calibrated within ImageJ
(version 1.54g). Finally, the gray value (integrated density) of the
stained area was calculated using ImageJ. The intensity of SA-3-Gal was
quantified by calculating the gray value (integrated density) of the
stained area normalized to the total cell area in each image.

Analysis of fluorescence intensity

For random field images, color images of cells stained with fluorescent
live-cell probes (DCFDA and TMRE) were imported into ImageJ soft-
ware. The images were then converted to 8-bit grayscale and calibrated
before being thresholded. The fluorescence intensity was calculated as
the mean gray value of cells in the field by measuring the integrated
density of fluorescent positive area divided by the fluorescent positive
area. For single cells, the image was converted to an 8-bit grayscale
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image and calibrated. Fluorescent intensity was analyzed using ROI
manager in ImageJ, which allowed for analysis of individual cells
through selection. The mean gray value for each cell was calculated by
dividing the integrated density of a cell by its area.

For C. elegans, the level of oxidative stress (indicated by DHE
fluorescence) was quantified using ImageJ software. The color images
were converted to 8-bit grayscale and calibrated prior to thresholding.
The gray value (integrated density) of fluorescent positive areas in
individual worms was then calculated and normalized by the
corresponding area.

The workflow and experimental setting of SCLIMS

The SCLIMS platform comprises two primary components: live-cell
imaging and single-cell MS. Cells were initially stained with a 10 pM
DCFDA solution for 25min at 37°C and 5% CO,, followed by PBS
washing. Subsequently, the cells were captured using a fluorescent
microscope to record their spatial distribution. The acquired images
were subsequently subjected to analysis, enabling the calculation of
oxidative stress levels in individual cells.

The cells were then transferred to the single-cell patch clamp
platform and incubated in a bath solution containing 140 mM NaCl,
5mM KCl, 2 mM CaCl,, 1 mM MgCl, and 10 mM HEPES (pH adjusted to
7.4 with NaOH; ~320 mosmol with sucrose) and approached by a
borosilicate glass pipette filled with pipette solution (88 mM
NH4HCO3) using a micromanipulator. The cells were selected based on
the fluorescent images acquired in the preceding step. The cells were
patched with a high-quality seal (>1 GQ) and the cell membrane was
disrupted by rapid application of negative pressure. Mild negative
pressure was then applied to the pipette to obtain cytoplasmic che-
mical constituents, which were subsequently analyzed using mass
spectrometry after removal of the pipette from the bath solution.

Following the extraction of cellular cytoplasmic constituents,
the capillary was connected to a MS system as described below. An
AC voltage of 4 kV amplitude and approximately 500 Hz frequency
was applied externally to the spray capillary micropipette, while
maintaining a distance of approximately 5 mm between the tip of
the spray micropipette and the orifice of the MS instrument. High-
resolution mass measurements were analyzed using a Q Exactive
Plus MS instrument (Thermo Fisher Scientific, San Jose, CA, USA).
nanokESI source and Orbitrap mass analyzer were used. The main
experimental parameters were established as follows: capillary
temperature at 275 °C, S-lens radio frequency (RF) level set to 50%,
mass resolution of 70,000, maximum injection time of 10 ms, AGC
target of le6, and microscan rate of 1. Negative ion mode was
employed throughout all experiments. Data was acquired under
full scan mode. For MS/MS, collision energy was set to hcd = 30.
Data was collected with Thermo Scientific Exactive Tune software
(version 2.9.0.2926). The MS data were then processed. Data of
each single cell was paired with oxidative stress levels based on the
fluorescent images.

Single-cell mass spectrometry data processing

The spectral data of individual cells were initially stored in separate
files by the instrument. Subsequently, all files were converted into
mzML format using ProteoWizard (version 3.0.9870). The XCMS
package (version version 3.9.1) in R statistical environment was utilized
to process all single-cell MS data, encompassing peak calling, peak
alignment, and quality control. A signal-to-noise (S/N) filter of 3 was
applied to the m/z signal, and metabolic signals were identified as
those with a frequency exceeding 20% across all tested cells. The data
was organized into a matrix, where metabolites were represented by
rows and cells were represented by columns. All intensities were nor-
malized to the total ion current (TIC) ratio. Metabolites were anno-
tated by comparing observed m/z values with theoretical values in the
Human Metabolome Database v5.0 (www.hmdb.ca), and m/z

annotations were assigned if errors fell within 10 ppm. To ensure the
precision of the annotations, metabolites underwent further identifi-
cation employing MS/MS. For metabolites involved in treating OS cells
and worms including hypotaurine, phosphocreatine, and O-phos-
phoethanolamine, their confirmation relied on matching MS/MS
spectra between cells and standards (Supplementary Fig. 17). Other
metabolites were identified by comparing MS/MS spectra between
bulk cellular samples and the HMDB database. Batch effects of
experiments were assessed through PCA and HCA analysis in the R
statistical environment.

Flow cytometry

The cells were seeded and cultured until they achieved a confluency of
70-80%. Following a single wash with 1 mL of phosphate-buffered sal-
ine (PBS), the cells were dissociated using 0.25% trypsin solution
containing EDTA, after which the reaction was halted by supplement-
ing DMEM with FBS at a concentration of 10%. Subsequently, the cell
suspension was collected in tubes measuring approximately 1.5mL
capacity and subjected to centrifugation at a speed of 600 x g for 5 min
before being resuspended in PBS containing mCIB at a final con-
centration of 40 pM. The resuspended cells were then incubated at a
temperature of precisely maintained at or around 37 °C for 20 min.
Subsequently, the cells were washed and resuspended in PBS supple-
mented with 1% FBS. After filtration through a 40 pm cell strainer and
transfer to clean tubes, all samples were vortexed for 5s to ensure
complete dissociation into single-cell suspension prior to flow cyto-
metry analysis. Flow cytometric analysis was performed using a BD
FACSAria Il instrument (BD Biosciences), with initial gating based on
FSC-A versus SSC-A parameters followed by measurement of whole-
cell fluorescence. Unstained cells were utilized as a blank control to
establish baseline correction. Finally, cells stained with mCIB exhibit-
ing the top and bottom 5% fluorescent intensity were isolated and
collected independently for subsequent analysis. The FACS data was
then analyzed and visualized using the ‘fca_readfcs’ function and the
‘Flow cytometry GUI for MATLAB’ plugin in MATLAB (version 2022b)
(www.mathworks.com/matlabcentral/fileexchange/9608-fca_readfcs
and www.mathworks.com/matlabcentral/fileexchange/38080-flow-
cytometry-gui-for-matlab).

Identification of marker metabolites

Wilcoxon rank-sum tests were used to compare metabolites in cells
belonging to one cluster with those of all other cells, based on the
results obtained from unsupervised clustering analysis. lons exhibiting
P<0.05 and fold change (FC) > 1.5 were identified as marker metabo-
lites for the specific cluster, which were subsequently z score scaled
and visualized using MATLAB'’s ‘heatmap’ function. The z score scales
the data for each ion and is calculated as follows:

x—X
S

z= D

where z represents z score, X represents a sample raw data, X repre-
sents the population mean, and S represents the population standard
deviation.

Identification of metabolic subtypes

The metabolic data matrix was imported into the MATLAB workspace,
where it underwent z score scaling and unsupervised clustering
using the k-medoids algorithm. The resulting clusters were visualized
with Uniform Manifold Approximation and Projection (UMAP)
via a MATLAB plugin (https://www.mathworks.com/matlabcentral/
fileexchange/71902). The data was dimensionally reduced to two
dimensions and subsequently visualized using the ‘gscatter’ function
in MATLAB (version 2022b), revealing distinct metabolic subtypes of
cells within a bi-dimensional space.
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Pseudotime analysis and single-cell trajectory construction

The metabolite data matrix was initially filtered based on the correla-
tion with oxidative stress level (indicated by DCFDA intensity). Meta-
bolites exhibiting a correlation coefficient (r) greater than 0.2 or less
than -0.2 and P<0.05 in correlation analysis were selected for pseu-
dotime analysis. The refined data matrix was then imported into
Monocle (version 2.16.0) in R statistical environment, followed by
dimensional reduction using the ‘DDRTree’ algorithm according to the
documentation of Monocle (https://cole-trapnell-lab.github.io/
monocle-release/). Finally, the ‘plot_cell_trajectory’ function was uti-
lized to visualize the trajectory.

Supervised machine learning and model evaluation

Supervised machine learning was conducted using MATLAB (version
2022b). The data matrix was randomly divided into a training dataset
and a testing dataset at a ratio of 2:1. The testing dataset was exclu-
sively used for evaluating the trained model and not exposed to the
training phase. The training of both the classification and regression
models was conducted without any feature selection, and all m/z sig-
nals that met our criteria (S§/N>3 and detected in greater than 20%
single cells) were included in both the training and testing datasets. To
train classification models, ensemble algorithm (function ‘fitcensem-
ble’), discriminant analysis algorithm (function ‘fitcdiscr’) and neural
network algorithm (function ‘fitcnet’) were employed as specified. The
model underwent 5-fold cross-validation during training, with Baye-
sian optimization employed to optimize hyperparameters and mini-
mize cross-validation loss (error). Parameters ‘Method’,
‘NumLearningCycles’, ‘MinLeafSize’, and ‘LearnRate’ were auto-
matically optimized in the ensemble algorithm, while parameters
‘Delta’ and ‘Gamma’ were automatically optimized in the discriminant
analysis algorithm. Parameters such as ‘Activations’, ‘Lambda’, ‘Layer-
Sizes’, and ‘Standardize’ were automatically optimized for neural net-
work algorithm. For the training of regression models, we utilized the
neural network algorithm (function ‘fitrnet’). The data underwent a
“log2” or “In” transformation and was trained using 5-fold cross-vali-
dation and Bayesian optimization. Parameters such as ‘Activations’,
‘Lambda’, ‘LayerSizes’, and ‘Standardize’ were automatically
optimized.

After training the model with the training dataset, the testing
dataset was utilized to evaluate the performance of the classification
models through receiver operating characteristic (ROC) curve and
confusion matrix analysis. For multiclass problem, ‘one versus rest’
strategy was used which transformed the problem into a two-
classification task. The predicted vs real scatter plot and the Pear-
son’s r and P value were used to evaluate the performance of the
regression model.

Evaluation of metabolic similarity

The ‘pdist’ function in MATLAB (version 2022b) was utilized to com-
pute the statistical distance based on the cellular metabolome, where a
larger distance indicated a lower degree of similarity between two
cells. Similarity was calculated as the reciprocal of distance. The
heatmap was generated by plotting the reciprocal of the distance as a
measure of similarity, with higher values indicating greater likelihood
of shared metabolomic features between cells. We quantified the
pairwise distances between cells in the initial and OS groups based on
their metabolite abundance as variables. Spearman distance functions
were employed.

Spearman distance function:

where d, represents the distance between two cells (s and ?); ry; is the
rank of x; taken over Xy, X3;,...Xmj; s and rr are the coordinate-wise rank
vectors of x; and x, as an example, rs=(ry, rs,... Fsa); Fs= 237 ri]
and 7, = 13", r,[i]. n represents the number of variables.

Hamming distance was used in the comparison of metabolome of
Hypt, PCr, O-PE treated OS cells with Non-OS and vehicle treated
OS cells.

Hamming distance function:

#
dg = (xS’ ¢x")> 3)

n

where d;, represents the distance between two cells (s and ©); xg
represents the variable j of the first cell s, x,; represents the variable j of
the second cell ¢; n represents the number of variables. The function
calculates the fraction of different variables in all variables (n) of the
two cells.

Metabolite set enrichment analysis

Metabolite set enrichment analysis (MSEA) was performed using
MetaboAnalyst (v6.0), an online metabolomics analysis tool (www.
metaboanalyst.ca). The annotation of metabolites, including meta-
bolic markers in clusters and those correlated with the oxidative stress
level of single cells, was compiled into a list and uploaded to the
website. Only metabolites identified with MS/MS confirmation was
used in the MSEA. The algorithm processed the data and obtained
enriched pathways, while also calculating two important parameters:
Enrichment Ratio and P value. Enrichment Ratio indicates the degree
of enrichment, while P value represents its significance. Pathways with
a P value less than 0.05 were deemed significant. The results were
downloaded from the website and visualized using MATLAB’s ‘bub-
blechart’ function.

Construction of metabolic networks and rewiring analysis

The annotated metabolite data was analyzed using the ‘corr’ function
in MATLAB (version 2022b), resulting in a matrix of correlation coef-
ficients (r). This matrix was then reorganized into three columns:
metabolite-1, metabolite-2, and their respective correlation coefficient
values. The reorganized matrix was imported into Cytoscape (version
3.10.1) to construct metabolic networks based on the correlations
between metabolites. In analysis of Cluster-l and Cluster-Il in initial
cells, metabolite pairs with P>0.05 or |r|<0.8 were excluded. In the
network, nodes represent metabolites, and edges represent correla-
tions. The networks of correlation were visualized using Cytoscape. By
utilizing the DyNet algorithm to compare two different networks,
changes in relationships with other metabolites for each individual
metabolite were analyzed. Metabolite rewiring scores were calculated
using the DyNet algorithm and then visualized through stem plot with
MATLAB’s ‘stem’ function.

Statistical analysis

The statistical analysis was conducted using Microsoft Excel
(Microsoft), R statistical environment, MATLAB 2022b (Mathworks),
and GraphPad Prism (version 8). The Wilcox rank sum test was
employed to determine the significance of two-grouped data, while
one-way ANOVA or two-way ANOVA were utilized for multi-group or
multi-factor data, respectively. Distribution analysis (using the
“Rayleigh” probability density function) and calculation of inter-
quartile range (IQR) and median absolute deviation (MAD) were
performed using MATLAB R2022b (MathWorks). Sample size was not
predetermined by statistical methods in this study, but rather based
on previous experience. The number of samples (n) is indicated in
the figures or figure legends.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The metabolomic data generated in this study have been deposited in
the MassIVE database under accession code MSV000097134. The
metabolomic data are available under restricted access for the reason
that the data is under further research and investigations, access can
be obtained by sending a request explaining the aim and use of the
data to the corresponding author via email. Source data are provided
with this paper.

Code availability

The custom codes in this study are upload to GitHub (https://github.
com/BGGDT/SCLIMS). Codes are involved in further development of
analytic methods in single-cell metabolomics. Therefore, the codes are
under restricted access. The codes can be provided by the corre-
sponding author upon requests explaining the aims and the use of
the codes.

References

1.  Cheng, S. et al. Single-Cell RNA-seq reveals cellular heterogeneity
of pluripotency transition and X chromosome dynamics during
early mouse development. Cell Rep. 26, 2593-2607.e2593 (2019).

2. Cao, J. et al. The single-cell transcriptional landscape of mamma-
lian organogenesis. Nature 566, 496-502 (2019).

3. Magese, J. A,, Piskounova, E. & Morrison, S. J. Cancer stem cells:
impact, heterogeneity, and uncertainty. Cancer Cell 21,

283-296 (2012).

4. El-Sayes, N., Vito, A. & Mossman, K. Tumor heterogeneity: a great
barrier in the age of cancer immunotherapy. Cancers (Basel) 13,
806 (2021).

5. Olbrecht, S. et al. High-grade serous tubo-ovarian cancer refined
with single-cell RNA sequencing: specific cell subtypes influence
survival and determine molecular subtype classification. Genome
Med. 13, 111 (2021).

6. Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recur-
ring programs of cellular heterogeneity. Nat. Genet. 52, 1208-1218
(2020).

7. Arrojo, E. D. R. et al. Age mosaicism across multiple scales in adult
tissues. Cell Metab. 30, 343-351.e343 (2019).

8. Wang, S. et al. Single-cell transcriptomic atlas of primate ovarian
aging. Cell 180, 585-600.e519 (2020).

9. Stoeckius, M. et al. Simultaneous epitope and transcriptome mea-
surement in single cells. Nat. Methods 14, 865-868 (2017).

10. Peterson, V. M. et al. Multiplexed quantification of proteins and
transcripts in single cells. Nat. Biotechnol. 35, 936-939 (2017).

11.  Camunas-Soler, J. et al. Patch-Seq links single-cell transcriptomes
to human islet dysfunction in diabetes. Cell Metab. 31,
1017-1031.e1014 (2020).

12. Lam, S. M. et al. A multi-omics investigation of the composition and
function of extracellular vesicles along the temporal trajectory of
COVID-19. Nat. Metab. 3, 909-922 (2021).

13. Lee, J. W. et al. Integrated analysis of plasma and single immune
cells uncovers metabolic changes in individuals with COVID-19.
Nat. Biotechnol. 40, 110-120 (2022).

14. Wilson, N. K. et al. Combined single-cell functional and gene
expression analysis resolves heterogeneity within stem cell popu-
lations. Cell Stem Cell 16, 712-724 (2015).

15. Ghosh-Choudhary, S., Liu, J. & Finkel, T. Metabolic regulation of cell
fate and function. Trends Cell Biol. 30, 201-212 (2020).

16. Lombard-Banek, C. et al. In vivo subcellular mass spectrometry
enables proteo-metabolomic single-cell systems biology in a

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

chordate embryo developing to a normally behaving tadpole (X.
laevis)*. Angew. Chem. Int Ed. 60, 12852-12858 (2021).

Zhu, H. et al. Single-neuron identification of chemical constituents,
physiological changes, and metabolism using mass spectrometry.
Proc. Natl Acad. Sci. USA 114, 2586-2591 (2017).

Zhu, H. et al. Moderate UV exposure enhances learning and mem-
ory by promoting a novel glutamate biosynthetic pathway in the
brain. Cell 173, 1716-1727.e1717 (2018).

Chang, X. et al. Methylated metabolites of chicoric acid ameliorate
hydrogen peroxide (H(2)O(2))-induced oxidative stress in HepG2
cells. J. Agr. Food Chem. 69, 2179-2189 (2021).

Bian, Y. Y. et al. Ferulic acid renders protection to HEK293 cells
against oxidative damage and apoptosis induced by hydrogen
peroxide. Vitr. Cell Dev. 51, 722-729 (2015).

Aguayo-Mazzucato, C. et al. Acceleration of beta cell aging deter-
mines diabetes and senolysis improves disease outcomes. Cell
Metab. 30, 129-142.e124 (2019).

Chen, Q. & Ames, B. N. Senescence-like growth arrest induced by
hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl
Acad. Sci. USA 91, 4130-4134 (1994).

Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA
damage response in ageing and stress-induced senescence. Nat.
Commun. 3, 708 (2012).

Jiang, D. et al. Post-GWAS functional analysis identifies CUX1 as a
regulator of p16(INK4a) and cellular senescence. Nat. Aging 2,
140-154 (2022).

Aranda, A. et al. Dichloro-dihydro-fluorescein diacetate (DCFH-DA)
assay: a quantitative method for oxidative stress assessment of
nanoparticle-treated cells. Toxicol. Vitr. 27, 954-963 (2013).
McLennan, H. R. & Degli Esposti, M. The contribution of mitochon-
drial respiratory complexes to the production of reactive oxygen
species. J. Bioenerg. Biomembr. 32, 153-162 (2000).

Aerts, J. T. et al. Patch clamp electrophysiology and capillary
electrophoresis-mass spectrometry metabolomics for single cell
characterization. Anal. Chem. 86, 3203-3208 (2014).

Yao, H. et al. Label-free mass cytometry for unveiling cellular
metabolic heterogeneity. Anal. Chem. 91, 9777-9783 (2019).
Chakravarthi, S., Jessop, C. E. & Bulleid, N. J. The role of glutathione
in disulphide bond formation and endoplasmic-reticulum-
generated oxidative stress. EMBO Rep. 7, 271-275 (2006).

Ma, B., Guo, S., Nishina, Y. & Bianco, A. Reaction between
graphene oxide and intracellular glutathione affects cell via-
bility and proliferation. ACS Appl Mater. Interfaces 13,
3528-3535 (2021).

Schomburg, D. & Schomburg, I. in Springer Handbook of Enzymes:
Class 1 - Oxidoreductases IX EC 1.6-1.8 (eds Schomburg, D. &
Schomburg, 1.) (Springer, 2005).

Messina, S. A. & Dawson, R. Jr Attenuation of oxidative damage to
DNA by taurine and taurine analogs. Adv. Exp. Med Biol. 483,
355-367 (2000).

Dilberger, B. et al. Mitochondrial oxidative stress impairs energy
metabolism and reduces stress resistance and longevity of C. ele-
gans. Oxid. Med. Cell Longev. 2019, 6840540 (2019).

Kalucka, J. et al. Quiescent endothelial cells upregulate fatty acid
beta-oxidation for vasculoprotection via redox homeostasis. Cell
Metab. 28, 881-894.e813 (2018).

Xia, J. & Wishart, D. S. MSEA: a web-based tool to identify biologi-
cally meaningful patterns in quantitative metabolomic data.
Nucleic Acids Res. 38, W71-W77 (2010).

Liu, R. M. & Gaston Pravia, K. A. Oxidative stress and glutathione in
TGF-beta-mediated fibrogenesis. Free Radic. Biol. Med. 48,

1-15 (2010).

Mytilineou, C., Kramer, B. C. & Yabut, J. A. Glutathione depletion
and oxidative stress. Parkinsonism Relat. Disord. 8, 385-387 (2002).

Nature Communications | (2025)16:2740

20


https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000097134
https://github.com/BGGDT/SCLIMS
https://github.com/BGGDT/SCLIMS
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57992-3

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Chen, Z. et al. Oxidative stress and lipid dysregulation in lipid dro-
plets: a connection to chronic kidney disease revealed in human
kidney cells. Antioxid. (Basel) 11, 1387 (2022).

Hu, C. et al. Oxidative stress-induced aberrant lipid metabolism is
an important causal factor for dysfunction of immunocytes from
patients with systemic lupus erythematosus. Free Radic. Biol. Med.
163, 210-219 (2021).

Janero, D. R., Hreniuk, D. & Sharif, H. M. Hydrogen peroxide-induced
oxidative stress to the mammalian heart-muscle cell (cardiomyo-
cyte): nonperoxidative purine and pyrimidine nucleotide depletion.
J. Cell Physiol. 155, 494-504 (1993).

Liu, D., Ke, Z. & Luo, J. Thiamine deficiency and neurodegeneration:
the interplay among oxidative stress, endoplasmic reticulum stress,
and autophagy. Mol. Neurobiol. 54, 5440-5448 (2017).

Ashoori, M. & Saedisomeolia, A. Riboflavin (vitamin B(2)) and oxi-
dative stress: a review. Br. J. Nutr. 111, 1985-1991 (2014).

Li, L. et al. Selecting representative samples from complex biolo-
gical datasets using K-medoids clustering. Front. Genet. 13,
954024 (2022).

Park, H. S. & Jun, C. H. A simple and fast algorithm for K-medoids
clustering. Expert Syst. Appl. 36, 3336-3341 (2009).

Aruoma, O. I., Halliwell, B., Hoey, B. M. & Butler, J. The antioxidant
action of taurine, hypotaurine and their metabolic precursors. Bio-
chem. J. 256, 251-255 (1988).

Baliou, S. et al. Protective role of taurine against oxidative stress
(Review). Mol. Med. Rep. 24, 605 (2021).

Diez, V., Traikov, S., Schmeisser, K., Adhikari, A. K. D. & Kurzchalia, T.
V. Glycolate combats massive oxidative stress by restoring redox
potential in Caenorhabditis elegans. Commun. Biol. 4, 151 (2021).
Zhang, F. et al. Characterization and heterologous expression of
plasmalogen synthase MeHAD from Megasphaera elsdenii. Bio-
chim. Biophys. Acta Mol. Cell Biol. Lipids 1868, 159358 (2023).
Leist, A. K. et al. Mapping of machine learning approaches for
description, prediction, and causal inference in the social and
health sciences. Sci. Adv. 8, eabk1942 (2022).

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning repre-
sentations by back-propagating errors. Nature 323, 533-536 (1986).
Goenawan, |. H., Bryan, K. & Lynn, D. J. DyNet: visualization and
analysis of dynamic molecular interaction networks. Bioinformatics
32, 2713-2715 (2016).

Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O.
Cellular senescence: the good, the bad and the unknown. Nat. Rev.
Nephrol. 18, 611-627 (2022).

Cao, J. Y. et al. A genome-wide haploid genetic screen identifies
regulators of glutathione abundance and ferroptosis sensitivity.
Cell Rep. 26, 1544-1556.e1548 (2019).

Toussaint, O., Medrano, E. E. & von Zglinicki, T. Cellular and mole-
cular mechanisms of stress-induced premature senescence (SIPS)
of human diploid fibroblasts and melanocytes. Exp. Gerontol. 35,
927-945 (2000).

Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cel-
lular senescence. Trends Cell Biol. 28, 436-453 (2018).

Martin, G. M., Austad, S. N. & Johnson, T. E. Genetic analysis of
ageing: role of oxidative damage and environmental stresses. Nat.
Genet. 13, 25-34 (1996).

Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senes-
cence. Nat. Rev. Cancer 15, 397-408 (2015).

Chinopoulos, C., Tretter, L. & Adam-Vizi, V. Depolarization of in situ
mitochondria due to hydrogen peroxide-induced oxidative stress in
nerve terminals: inhibition of alpha-ketoglutarate dehydrogenase.
J. Neurochem. 73, 220-228 (1999).

Fang, X., Zhang, X. & Li, H. Oxidative stress and mitochondrial
membrane potential are involved in the cytotoxicity of per-
fluorododecanoic acid to neurons. Toxicol. Ind. Health 36,
892-897 (2020).

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Friedman, D. B. & Johnson, T. E. A mutation in the age-1 gene in
Caenorhabditis elegans lengthens life and reduces hermaphrodite
fertility. Genetics 118, 75-86 (1988).

Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C.
elegans mutant that lives twice as long as wild type. Nature 366,
461-464 (1993).

Liu, D., Zeng, X., Li, L. & Ou, Z. L. Carnitine promotes recovery from
oxidative stress and extends lifespan in C. elegans. Aging (Albany
NY) 13, 813-830 (2020).

Janssens, G. E. et al. Transcriptomics-based screening identifies
pharmacological inhibition of Hsp90 as a means to defer aging. Cell
Rep. 27, 467-480.e466 (2019).

Hsu, A. L., Feng, Z., Hsieh, M. Y. & Xu, X. Z. Identification by machine
vision of the rate of motor activity decline as a lifespan predictor in
C. elegans. Neurobiol. Aging 30, 1498-1503 (2009).
Hernandez-Segura, A. et al. Unmasking transcriptional hetero-
geneity in senescent cells. Curr. Biol. 27, 2652-2660.e2654 (2017).
Cohn, R. L., Gasek, N. S., Kuchel, G. A. & Xu, M. The heterogeneity of
cellular senescence: insights at the single-cell level. Trends Cell
Biol. 33, 9-17 (2023).

Doha, Z. O. et al. MYC deregulation and PTEN loss model tumor and
stromal heterogeneity of aggressive triple-negative breast cancer.
Nat. Commun. 14, 5665 (2023).

Aguayo-Mazzucato, C. et al. Beta cell aging markers have hetero-
geneous distribution and are induced by insulin resistance. Cell
Metab. 25, 898-910.e895 (2017).

Weng, C. et al. Single cell multiomic analysis reveals diabetes-
associated beta-cell heterogeneity driven by HNF1A. Nat. Commun.
14, 5400 (2023).

Garrido-Trigo, A. et al. Macrophage and neutrophil heterogeneity at
single-cell spatial resolution in human inflammatory bowel disease.
Nat. Commun. 14, 4506 (2023).

Wu, C. Y. et al. Integrative single-cell analysis of allele-specific copy
number alterations and chromatin accessibility in cancer. Nat.
Biotechnol. 39, 1259-1269 (2021).

Lake, B. B. et al. Integrative single-cell analysis of transcriptional and
epigenetic states in the human adult brain. Nat. Biotechnol. 36,
70-80 (2018).

Vicari, M. et al. Spatial multimodal analysis of transcriptomes and
metabolomes in tissues. Nat. Biotechnol. 42, 1046-1050 (2024).
Chen, S. et al. Integration of spatial and single-cell data across
modalities with weakly linked features. Nat. Biotechnol. 42,
1096-1106 (2024).

Singh, P. et al. Taurine deficiency as a driver of aging. Science 380,
eabn9257 (2023).

Candow, D. G. et al. Effectiveness of creatine supplementation on
aging muscle and bone: focus on falls prevention and inflamma-
tion. J. Clin. Med 8, 488 (2019).

Smith, R. N., Agharkar, A. S. & Gonzales, E. B. A review of creatine
supplementation in age-related diseases: more than a supplement
for athletes. FIOOORes 3, 222 (2014).

Yoshida, R. et al. Metabolomics-based systematic prediction of
yeast lifespan and its application for semi-rational screening of
ageing-related mutants. Aging Cell 9, 616-625 (2010).

Zhang, Y. et al. Glutamine suppresses senescence and promotes
autophagy through glycolysis inhibition-mediated AMPKalpha lac-
tylation in intervertebral disc degeneration. Commun. Biol. 7,

325 (2024).

Kirov, I. I. et al. Global brain volume and N-acetyl-aspartate decline
over seven decades of normal aging. Neurobiol. Aging 98,
42-51(2021).

Luo, T. et al. Asparagine prevents intestinal stem cell aging via the
autophagy-lysosomal pathway. Aging Cell e14423 (2024).

Huh, D. & Paulsson, J. Random partitioning of molecules at cell
division. Proc. Natl Acad. Sci. USA 108, 15004-15009 (2011).

Nature Communications | (2025)16:2740

2


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57992-3

83. Knoblich, J. A. Asymmetric cell division: recent developments and
their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11,
849-860 (2010).

84. Sunchu, B. & Cabernard, C. Principles and mechanisms of asym-
metric cell division. Development 147, dev167650 (2020).

85. Griffin, E. E. Cytoplasmic localization and asymmetric division in the
early embryo of Caenorhabditis elegans. Wires Dev. Biol. 4,
267-282 (2015).

86. Correia-Melo, C. et al. Cell-cell metabolite exchange creates a pro-
survival metabolic environment that extends lifespan. Cell 186,
63-79 e21 (2023).

87. Martinez-Cue, C. & Rueda, N. Cellular senescence in neurodegen-
erative diseases. Front. Cell Neurosci. 14, 16 (2020).

88. Martini, H. et al. Selective cardiomyocyte oxidative stress leads to
bystander senescence of cardiac stromal cells. Int J. Mol. Sci. 22,
2245 (2021).

89. Guimaraes-Ferreira, L. Role of the phosphocreatine system on
energetic homeostasis in skeletal and cardiac muscles. Einstein
(Sao Paulo) 12, 126-131 (2014).

90. Fontana, D. et al. ETNK1 mutations induce a mutator phenotype that
can be reverted with phosphoethanolamine. Nat. Commun. 11,
5938 (2020).

91. El-Bacha, T.& Torres, A. G. in Encyclopedia of Food and Health (eds
Caballero, B., Finglas, P. M. & Toldra, F) (Academic Press, 2016).

92. Zenin, A. et al. Identification of 12 genetic loci associated with
human healthspan. Commun. Biol. 2, 41 (2019).

93. Partridge, L., Fuentealba, M. & Kennedy, B. K. The quest to slow
ageing through drug discovery. Nat. Rev. Drug Discov. 19,
513-532 (2020).

94. Zhou, Z. et al. lon mobility collision cross-section atlas for known
and unknown metabolite annotation in untargeted metabolomics.
Nat. Commun. 1, 4334 (2020).

95. Bouwmeester, R. et al. Predicting ion mobility collision cross sec-
tions and assessing prediction variation by combining conventional
and data driven modeling. Talanta 274, 125970 (2024).

96. Baker, E. S. et al. METLIN-CCS: an ion mobility spectrometry colli-
sion cross section database. Nat. Methods 20, 1836-1837 (2023).

97. Habe, T. T. et al. Ultrahigh-throughput ESI-MS: sampling pushed to
six samples per second by acoustic ejection mass spectrometry.
Anal. Chem. 92, 12242-12249 (2020).

98. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron
73, 862-885 (2012).

99. Eastman, A. E. et al. Resolving cell cycle speed in one snapshot with
a live-cell fluorescent reporter. Cell Rep. 31, 107804 (2020).

Acknowledgements

The authors thank Professor Quan Wen (University of Science and
Technology of China) for providing the N2 C. elegans strain. We thank
Professor Chunlei Cang (University of Science and Technology of China)
for providing MEFs. This study was supported by National Key R&D
Program of China (2021YFA0804900, 2020YFA0112203), National Nat-
ural Science Foundation of China (Grants 32225020, 32430045,
92049304, 32121002 to W.X., 32322033, 32471080, 21974130 and
91849116 to H.Z.), the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant XDB39050000 to W.X.), Key Research
Program of Frontier Science (CAS, Grant No. ZDBS-LY-SM0O02 to W.X.),
CAS Interdisciplinary Innovation Team (JCTD-2018-20 to W.X.), the
Youth Innovation Promotion Association CAS, the Fundamental
Research Funds for the Central Universities, USTC Research Funds of the
Double First-Class Initiative (YD9100002001 to W.X. and

YD9100002005 to H.Z.), Research Funds of Center for Advanced
Interdisciplinary Science and Biomedicine of IHM (QYZD20230011 to
W.X.), CAS Project for Young Scientists in Basic Research (YSBR-013 to
W.X.), Anhui Provincial Major Science and Technology Project (Grant
202303a07020005 to W.X.), University Synergy Innovation Program of
Anhui Province (Grant number GXXT-2022-033 to H.Z.).

Author contributions

W.X. initialized, designed, and supervised the study with the assistance
of H.Z. Z.W. conducted single-cell sampling, cellular and C. elegans
experiments. S. G. conducted single-cell sampling of MEFs. Z.W. and
H.Z. conducted SCMS analysis. Z.W. analyzed the metabolomic data.
M.Y., T.L., and W. L. processed the raw metabolomic data. M.Y. con-
ducted the pseudotime analysis. Z.W. performed the experiments of
cellular senescence rescue of metabolites with the assistance of W.Q. Q.
C. assisted in culture of MEFs. X. C. assisted in the selection and design
of GSH probe. Q. Z. assisted in the analysis related to mitochondria and
C. elegans. Z. J. assisted in the analysis related to cellular senescence.
Z.W. wrote the manuscript. W.X. and H.Z. led the discussion, reviewed
and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-57992-3.

Correspondence and requests for materials should be addressed to
Hongying Zhu or Wei Xiong.

Peer review information Nature Communications thanks Christopher
Anderton, Kiryl Piatkevich and Zhiwei Zhou for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Nature Communications | (2025)16:2740


https://doi.org/10.1038/s41467-025-57992-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Integrative single-cell metabolomics and phenotypic profiling reveals metabolic heterogeneity of cellular oxidation and senescence
	Results
	Integration of live-cell imaging and single-cell mass spectrometry
	The SCLIMS reveals correlation between cellular metabolism and oxidative levels
	Cell types identified by the SCLIMS exhibit divergent OS levels
	The SCLIMS reveals capability of the single-cell metabolome in predicting cellular OS status
	The SCLIMS unveils the causal relationship between metabolic heterogeneity and OS status
	The metabolic heterogeneity of cells determines their senescence fate under OS
	The key metabolites identified by SCLIMS mitigate OS and cellular senescence
	Treatment of key metabolites regulated the metabolome of single cells
	The SCLIMS-identified protective metabolites promote healthy aging and extend lifespan

	Discussion
	Methods
	Chemicals
	Cell culture
	C. elegans strain and maintenance
	Oxidative stress model
	Treatment of cells with metabolites
	Metabolite treatment and life span assay of C. elegans
	Behavioral analysis of C. elegans
	Cell viability assay
	SA-β-Gal assay
	Oxidative stress assay
	Mitochondrial membrane potential assay
	Analysis of SA-β-Gal intensity
	Analysis of fluorescence intensity
	The workflow and experimental setting of SCLIMS
	Single-cell mass spectrometry data processing
	Flow cytometry
	Identification of marker metabolites
	Identification of metabolic subtypes
	Pseudotime analysis and single-cell trajectory construction
	Supervised machine learning and model evaluation
	Evaluation of metabolic similarity
	Metabolite set enrichment analysis
	Construction of metabolic networks and rewiring analysis
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




