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Unveiling ECRAM switching mechanisms
using variable temperature Hall
measurements for accelerated AI
computation

Hyunjeong Kwak 1, Junyoung Choi1, Seungmin Han1, Eun Ho Kim 1,
Chaeyoun Kim 2, Paul Solomon3, Junyong Lee 1, Doyoon Kim1,
Byungha Shin 2, Donghwa Lee 1, Oki Gunawan 3 & Seyoung Kim 1

Electrochemical random-access memory devices are promising for analog
cross-point array-based artificial intelligence accelerators due to their high
stability and programmability. However, understanding their switching
mechanism is challenging due to complex multilayer structures and the high
resistivity of oxidematerials. Here,we fabricatemulti-terminalHall-bar devices
and conduct alternating current magnetic parallel dipole line Hall measure-
ments to extract transport parameters. Through variable-temperature Hall
measurements, we determine the oxygen donor level at approximately 0.1 eV
in tungsten oxide and reveal that conductance potentiation even at low tem-
peratures results from increased mobility and carrier density. This behavior is
linked to reversible electronic and atomic structure changes, supported by
density functional theory calculations. Our findings enhance the under-
standing of electrochemical random-access memory switching mechanisms
and provide insights for improving high-performance, energy-efficient artifi-
cial intelligence computation in analog hardware.

Deep neural network technology, commonly known as deep learning,
has achieved a series of breakthroughs in AI capabilities1,2. These
models progressively improve their ability to solve complex problems
by learning from data3. Further propelled by advances in algorithms,
improved hardware platforms, and extensive datasets, AI now facil-
itates a range of functions including automation, content generation,
and predictive maintenance across numerous sectors4. As the demand
for computational power surges to support the expanding scope of AI
applications, both specialized and conventional hardware develop-
ments are advancing to manage the billions of parameters and simple
but data-intensive and repetitive computations required. In response
to these growing demands, analog AI computation architectures using

cross-point arrays of non-volatile memory (NVM) devices have been
proposed, promising significant increases in processing speeds and
energy efficiency, thereby reducing time and energy costs5.

Analog AI computation involves physically executing vector-
matrix multiplication in deep learning by arranging tunable con-
ductive NVM in a cross-point array architecture. This approach
minimizes the need for data transfer betweenmemory and processor
units and performs massively parallel computation in analog,
enabling large computation acceleration while consuming less
energy6. However, realizing this concept demands prioritizing the
selection of appropriate NVM candidates. Furthermore, manipulat-
ing numerical values in the format of analog physical quantities
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poses a challenge. In particular, if the vulnerability to variation and
noise in analog signals remains unresolved, the advantage of analog
AI computation will ultimately be limited to the application working
with limited accuracies such as approximation7,8.

Electrochemical random-access memory (ECRAM) stands as a
promising cross-point element for performing analog AI computation.
With a transistor-like three-terminal structure, ECRAM’s channel con-
ductance can be modulated by applied gate bias which induces ion
migration into or out of the channel material9,10. In contrast to two
terminal counterparts, the device structure with the third terminal
separates the read and write pathways to provide improved controll-
ability and ease for device optimization. Such devices based on the
electrochemical movement of ions offer excellent programmability
and broaden versatility with multilevel, low cycle-to-cycle, and device-
to-device variation. Among various ions considered, oxygen ion-based
ECRAM (O-ECRAM) devices have attracted many researchers due to
their excellent programmability and foundry-friendly material com-
positions. Transition metal oxide materials such as WO3

11,12, Pr1-
xCaxMnO3

13, TiO2
14, and MoO3

15,16 have been considered as channel
layers for O-ECRAM. Recently, various reports have highlighted
ECRAM-based cross-point array architecture17 including in-situ
training18,19, demonstrating excellent switching characteristics20.

Understanding and tracking the changes in materials within a
device is essential. To advance towards a technology specialized in
analog AI computation with high energy efficiency and training cap-
abilities, insight from fundamental studies on atomic and electronic
behavior of materials during the switching process of ECRAM are
necessary to enable appropriate material selection and optimization.
Although numerous studies have investigated how electrochemical
reactions and ion diffusion underlie various switching mechanisms in
resistive random-accessmemory (ReRAM) and othermemory devices,
thesemechanisms are not necessarily identical to those in ECRAM. For
example, filamentary-based processes (e.g., electrochemical metalli-
zation, valence change mechanism, thermochemical mechanism) rely
on localized conduction paths and Joule heating21, whereas ECRAM
exhibits a bulk switching mechanism driven by electrochemical redox
reactions in the channel and electrolyte, along with the electric double
layer (EDL) effect and electrochemical doping22. Nevertheless, the
underlying mechanisms responsible for the switching characteristics
of ECRAM remain to be revealed. This deficiency can be attributed to
three primary factors: the challenge of observing oxygen vacancies or
oxygen ionmigration, the intricatemultilayer structure of ECRAM, and
the intermixing of the conduction and switchingmechanisms resulting
from the separation of read/write pathways. Therefore, advanced
measurement techniques with high-sensitivity is required to shed light
on revealing the switching mechanism in ECRAM.

In this work, we develop ECRAM Hall-bar devices using WO3-x as
the channel material to explore their essential transport properties,
including carrier type, mobility, carrier density, and operational prin-
ciples. Our method, leveraging an AC magnetic parallel dipole line
(PDL) Hall system, overcomes a longstanding measurement barrier
that was previously nearly impossible to address for high-resistance
channels. Specifically, we perform Hall measurements by applying a
time-varying magnetic field and a lock-in technique, which allows for
the detection of weak Hall signals in WO3-x channels, effectively elim-
inating DC background and noise23–25. Furthermore, we conduct the
comparative study on resistive switching in ECRAM devices at low
temperatures, capturing crucial physical parameters through Hall
measurements at various conductance states. By employing first-
principle calculations, we quantitatively analyze the observed physical
properties, providing insights into optimizing ECRAM performance
for use as an analog AI computation accelerator. Building on these
insights, we assess the robust cycle-to-cycle performance of
ECRAM and investigate its potential impact on the training of neural
networks.

Results
Device configuration and switching behavior
The operational principles of ECRAM and a cross-point array-based AI
accelerator chip designed for brain-like efficiency and functionality26

are illustrated in Fig. 1a. This neuromorphic computing system inte-
grates an analog AI accelerator, with the cross-point array centrally
positioned for pivotal computational acceleration. ECRAM’s key
function is its capability to store analog conductance values, which
depends on the ion concentration in the transition metal oxide chan-
nels and perform computations. Specifically, we use WO3-x, where a
reduction in oxygen ions increases the channel conductance—known
as potentiation. Conversely, an increase in oxygen ions decreases
conductivity, a phenomenon referred to as depression.

Hall measurement is a powerful approach for revealing funda-
mental operating mechanisms of ECRAM. To facilitate these mea-
surements, we converted the conventional three-terminal ECRAM
structure into a Hall-bar configuration, as illustrated in Fig. 1b. This
configuration allows to measure longitudinal resistance (Rxx) and
transverse magnetoresistance (Rxy) at finite magnetic fields by flowing
a current through the Hall bar and measure the voltage drop between
the corresponding terminals. The sheet resistance is calculated using
the formula Rs =Rxx ×

W
L , whereW is the width and L the length of the

channel. The channel conductivity is defined as σ= 1
Rsd

, where d is the
film thickness. We fabricate an additional gate terminal to apply a gate
voltage, Vwrite, and monitor change in the Hall signal of the channel
material during switching. The inset of Fig. 1b shows an optical
micrograph of a fabricated ECRAM Hall-bar device with 10 terminals.
The transmission electron microscope (TEM) image in Fig. 1c reveals
the material stack of the device: a WO3-x channel, HfO2 as the elec-
trolyte layer, and W as the gate electrode.

In Fig. 1d, we applied 100 voltage pulses with +4.0 V amplitude
and 0.5 s pulse width for potentiation and 100 voltage pulses with
−4.0 V amplitude and 0.5 s pulse width for depression, and displayed
the conductance as a function of pulse number at Vread = 0.01 V. We
observe the multi-level switching operation and switching window of
the device. As a three-terminal device, ECRAM operates vertically,
allowing ion migration into or out of the channel (write), while the
conductance value can be read horizontally through source and drain
(read). When a positive voltage is applied to a WO3-x channel-based
ECRAM device, oxygen ions penetrate from the channel to the gate,
increasing conductivity. A negative voltage, on the other hand, causes
ion migration to reverse, resulting in a decrease in conductivity.

Channel conduction mechanism
The Hall effect, discovered in 1880, has been an important tool for
assessing semiconductor materials, providing information on carrier
type, mobility and carrier density27. However, accurate Hall measure-
ment was not possible for low mobility and/or high-resistance mate-
rials by conventional DC Hall measurement setup. We overcome this
issue by using two rotating cylindrical DCmagnets as shown in Fig. 2a,
and placing the ECRAM Hall-bar device between the magnets to apply
the strong ACmagnetic field up to 2 T. The Hall signal is enhanced and
stabilized by the reinforced magnetic field, enabling measurements
with samples with low resistivity (Supplementary Fig. 1). Furthermore,
the PDLmeasurement system is configured within a cryostat to enable
Hall measurements at low temperatures. As indicated by the arrows in
Fig. 2a, we conducted Hall measurements at temperatures ranging
from 300K to 50K with 10K intervals to confirm the conduction
mechanism of the WO3-x channel material. For precise temperature
control, we used three temperature sensors to accurately monitor the
sample temperature (Supplementary Fig. 2).

Figure 2a also illustrates the use of Fourier transformation (FT) to
convert the Hall coefficient into a frequency signal, transforming Hall
resistance into a frequency output (Supplementary Fig. 3). The FT
isolates the amplitude associated with the Hall signal, while the power
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spectral density enhances periodic signals, thereby confirming signal
quality. The lock-in amplifier output values, derived through FT (in-
phase and out-of-phase components), help eliminate background
noise and drift, isolating Hall resistance induced by the magnetic field.

To accurately characterize the properties of ECRAM device, we
try to understand the conduction mechanism of the channel material.
WO3-x, which is commonly used as an oxide channel material in ECRAM,
is a transition metal oxide with a wide band gap ranging from 2.6 to
3.0 eV28,29. It is a viable contender for neuromorphic applications because
of its capacity to bridge the gap between metal and semiconductor
states, which is determined by its oxygen content and stability. Hall-bar
device with an active area of 60×20μm2 and a film thickness (d) of
4.5 nm was used in the measurement setup. Using radio frequency (RF)
magnetron sputtering, ohmic contacts were deposited on the protru-
sions of 10× 10μm2 WO3-x thin films. These samples exhibit n-type
characteristics and demonstrate strong temperature dependence.

Figure 2b illustrates that the resistivity of WO3-x decreases as
temperature increases, a behavior typical of semiconductor materi-
als where thermal energy enables more electrons to move to the
conduction band, reducing resistance. The relationship between
resistivity and temperature adheres to the Mott variable range hop-
ping (VRH) model:

JVRH = σ0 exp �T0

T

� �1
4

�E ð1Þ

where σ0 is the electrical conductivity at temperature of T030,31. This
conduction mechanism is indicative of disordered systems with
localized charge carriers, consistent with the properties of the
amorphousWO3-x thin films we studied30. When analyzing the charge
transport mechanism, we considered both small-polaron hopping
(SPH) and VRH. Given the low-temperature range of our experiments
(T < 300K), we selected over SPH due to the lower activation
energies requirements, which better aligns with the observed
switching behavior. VRH, characterized by hopping between loca-
lized states, provided a superior fit to our experimental data,
particularly in the 200–300K range where switching occurs
(Supplementary Fig. 4). Additionally, the carrier mobility, measured
at approximately 50 cm2 V−1s−1, shows minimal variation but tends to
fluctuate more at lower temperatures. This is likely due to changes in
contact resistance at low temperatures, possibly arising from
alterations in metal contact resistance or at the wire bonding area.
Moreover, Hall measurements with independent WO3-x channel
material without the gate stack showed no significant mobility
changes with temperature (Supplementary Fig. 5).

The carrier density decreases sharply with temperature, as shown
in Fig. 2c. This indicates that the material operates in the freeze-out
regime32, where carrier density increases as electrons transition to the
conduction band with increasing temperature. An Arrhenius plot,
relating the change in carrier density with temperature, helped cal-
culate the activation energy (shallow donor level) at about 98.9meV.
This aligns with the reported shallow level of oxygen vacancies inWO3,

Fig. 1 | Analog AI hardware based on ECRAM technology and ECRAM Hall bar
device. a Illustration of ECRAMtechnology forAI computation aiming for brain-like
efficiency and functionality. ECRAM, emulating synaptic devices within the cross-
point array, exhibits resistive switching based on ion migration. b ECRAM Hall-bar
structure and operation methods. The gate stack of ECRAM is made up of three
layers; channel, electrolyte and reservoir. ECRAMhas three terminals, allowing read

operation through source anddrain, andwrite operation throughgate and channel.
The inset OM image depicts 11 terminals, with additional terminals fabricated
between the region adjacent to the gate and the region within the channel for
comparative analysis. c Transmission electron microscope image of the device
cross-section. (Scale bar: 10 nm) d Conductancemodulation in a ECRAM device by
applying 100 potentiation and 100 depression pulses.
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ranging from 0.1 to 0.5 eV33, as confirmed by both experimental and
theoretical studies on WO3.

Switching behavior at room temperature
The switching mechanism of the ECRAM device is articulated through
three steps: (1) ion migration within the electrolyte, (2) ion diffusion
into the channel, and (3) electrochemical reactions34. Upon application
of a gate voltage, oxygen ions (or oxygen vacancies) migrate from the

electrolyte toward the channel, accumulating at the interface before
diffusing into the channel. This migration requires electrons to main-
tain charge neutrality, which are provided by the W 5d orbital, asso-
ciated with the conduction band of n-type WO3-x, thereby increasing
the channel’s conductance. This process results in reversible oxygen
ion (oxygen vacancy) doping through the gate voltage, leading to
analog changes in the conductance of the WO3-x channel. The transfer
curve provides insights into the underlying switching mechanism of

Fig. 2 | ECRAM Hall measurement results at 50K to 300K without resistive
switching. a Illustration of the temperature-dependent PDL Hall measurement
procedurewithout resistive switching (Vg is grounded). Thismeasurement process
is repeated at 10 K intervals while lowering the temperature, ranging from 300K
down to 50 K, to measure carrier type, density, and mobility values. b ECRAM
resistivity (ρ) and carrier mobility (μ) extracted from the measured Rxx and Rxy

value. The temperature dependence of WO3-x resistivity exhibits semiconductor
behavior, while the carrier mobility follows a lognormal distribution and maintains
a value of approximately 50 cm²V−1s−1. c Activation energy extraction through
Arrhenius plot analysis. The carrier density increases as the temperature rises,
indicating a freeze-out regime. The activation energy is estimated to be 98.9meV.
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the device. As gate voltage increases from 0 to a positive gate bias, the
drain current, Id, correspondingly increases,which canbe attributed to
the formation of an EDL and the subsequent doping of the channel
with oxygen vacancies. The EDL effectively modulates the channel
conductance by creating an accumulation of charge carriers at the
electrolyte/channel interface, facilitating the increase in Id. Conversely,
as gate voltage is reduced from +V back to 0, Id diminishes due to the
disappearance of the EDL and the partial migration of oxygen vacan-
cies back to their initial positions. This reversible process is indicative
of the dynamic interaction between the ionic species within the elec-
trolyte and the channel material, which governs the conductance state
of the device35,36. Figure 3a displays the transfer curve (measured at
Vds = 0.1 V), where the counterclockwise hysteresis exhibits the non-
volatile reversible nature of oxygen ion (oxygen vacancy) doping. The
counterclockwise direction of the loop signifies that the device retains
its doped state even after the gate voltage is removed, underscoring
the stability of the switched state. Furthermore, the gradual return of
Id to its original state as the gate voltage is reduced highlights the
controlled and stable nature of ionic migration within the system.
These results demonstrate the reliable and reversible switching of the
ECRAM device through ion modulation, as directly reflected in the
transfer curve, which captures the ion migration inherent in the oxy-
gen vacancy dynamics.

Figure 3b shows the device’s switching behavior with 300 repe-
titive potentiation and depression pulses, each with a pulse width of

500ms. The changes in oxygen content between the on and off states
of the device were confirmed through TEM images (Supplementary
Fig. 6), supporting the switching mechanism. Linearity remains con-
sistently stable over 600 pulses, achieving values of 0.122 during
potentiation and 0.206 during depression, as derived from the beha-
vior model used in the NeuroSim architecture37. As shown in Supple-
mentary Fig. 7, repeating this measurement for 60 cycles yielded near-
perfect linearity throughout, confirming the robustness of the device
switching characteristics.

The endurance of the device over 200,000 pulses is shown in the
graph, depicting the pulse responses for each cycle, as illustrated in
Fig. 3c, d. The test was conducted with +5 V and −1.5 V write voltage,
each 50ms in pulse duration, and the device exhibited consistent
switching behavior throughout the entire pulse sequence. Notably, the
switching performance showed minimal variation, indicating strong
reliability in the device operation. The endurance test results indicate
stable performance up to 221,000 pulses, after which the device
continued to operate but began to exhibit signs of degradation.

Given that changes in state can induce variations in electrical
parameters during Hall measurements, having a device with robust
retention characteristics was critical. Thus, the device was optimized
to ensure enhanced retention performance, maximizing the accuracy
and reliability of Hall results at 300K. The retention characteristics of
the device over a 3-h (10,800 s) period are plotted in Fig. 3e, showing
data for three distinct programming states. Retention time is defined

Fig. 3 | Switching and retentionbehavior at room temperature. aTransfer curve
of theWO3-x ECRAMby sweeping gate voltage from0 to+3 V, then to−3V, andback
to 0V in one cycle to examinememorywindow. b Pulsed conductancemodulation
measurement with 300 up pulses at +1.5 V and 300 down pulses at −0.8 V, using a
pulsewidth of0.5 s. c,d Endurancecharacteristics over 200,000write pulseswith a
pulse width of 50ms, applying +5 V for 100 up pulses and −1.5 V for 100 down
pulses. e The retention characteristics at 300K over a duration of 3 h for four
different states. The retention time, defined as the time required for the

conductance to decrease by up to 2%, shows minimal change over the 3-h period.
f Cycle-to-cycle variations over 20 cycles of 100 up and 100 down pulses on the
same device. Vwrite is +1.5 V for up pulses and −0.8 V for down pulses with a pulse
width of 0.5 s. g Device-to-device variations for devices with the same dimension.
Normalized conductance graph of 10 devices. h Switching speed by applying
consecutive 1000 up and 1000 down pulses. 3μs pulse width is used, and the
linearity is calculated as 2.075 during potentiation (a+) and 0.245 during depres-
sion (a−).
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as the duration required for the conductance to decrease by 2%. At
room temperature, the retention time for the lowest conductance,
when extrapolated, was estimated to exceed 109 seconds (more than
10 years), while minimal variation was observed, making it difficult to
determine a specific retention time.

In Fig. 3f, g, the cycle-to-cycle and device-to-device variations are
analyzed to assess the reliability and uniformity of the ECRAM device
switching behavior in analog AI hardware. The top graph shows the
overlaid results of 20 successive cycles, demonstrating repeatable
conductance modulation with minimal variation between cycles. The
average and standard variation of the conductance values were cal-
culated for each cycle, with the largest standard deviation observed at
pulse number 187, where the average conductance was 7.22μS, and
the standard deviation was 35.9 nS. This consistency across cycles
highlights the stability of the device switching performance. The bot-
tom graph presents the device-to-device variation, where the con-
ductance values of 10 different devices were normalized and
superimposed. After normalization, themean conductancewas0.089,
and the standard deviation, calculated in the section with the largest
difference, was 100.3% of the mean. While some variability between
devices exists, the overall trend remains consistent, indicating that the
device-to-device variation falls within the acceptable limits for reliable
operation in analog AI hardware38.

The retention-optimized device demonstrates a switching speed,
achieving a pulse width of 3μs, as shown in Fig. 3h. The switching
behavior shows both symmetry and linearity, with a linearity value of
2.075 for potentiation and 0.245 for depression, ensuring consistent
performance across multiple states. Additionally, the energy con-
sumption per pulse has been calculated at 9.81 fJ for potentiation and
5.46 fJ for depression, highlighting the energy efficiency. Although the
switching speed is currently limited by the structural constraints of the
Hall-bar configuration, further improvements can be achieved by
reducing ion migration distance and increasing migration speed
through device scaling and material optimization.

Channel modulation mechanism
In this study, we present variable-temperature Hall measurement
results on ECRAM devices with a gate terminal. This approach incor-
porates three principal components: a high-sensitivity Hall measure-
ment with an AC magnetic PDL Hall system, temperature-dependent
measurement capability, and the application of a gate voltage to
monitor the channel conductance modulation. To investigate the
temperature-dependent conductance modulation mechanism, we
conducted measurements as shown in Fig. 4a. Initially, at room tem-
perature, we applied ±2.0 V for 80 pulses each of potentiation and
depression to confirm the device’s resistive switching behavior. These
pulse conditions were chosen to achieve a high on/off ratio for clear
observation of changes in Hall parameters, rather than to maximize
linearity. Previous work has shown that the device maximum con-
ductance can be estimated from its sheet resistance and area39. For the
device used in the Hall measurements, this calculation yielded a
maximum conductance of 43.2 nS. Given the practical limitations of
Hall measurements and the risk of device damage from excessive
voltages, the on-state was defined as any conductance within 10% of
this calculatedmaximum, and pulses of 2 s were applied incrementally
until the on-state was reached. Retention was then evaluated for 300 s
after every 20 pulses to confirm that the Hall measurements could be
carried out consistently, without unintended changes in the on/off
states.

For the off-state Hall measurements, −2.0 V was applied for 80
depression pulses to reduce the device conductance, immediately
followed by a Hall measurement. The device was then driven back to
the on-state by applying +2.0 V for 80 potentiation pulses, after which
another Hall measurement was taken. In all cases, a channel read vol-
tage of 0.1 V was used, determined from post-fabrication I-V

measurements that confirmed the ohmic region. These measurement
sequences were repeated while lowering the temperature in 20K
increments to investigate any temperature-dependent changes in the
ECRAM switching mechanism. In addition, contact resistance was
continuously monitored throughout the Hall measurements (Supple-
mentary Fig. 8) to ensure that it did not affect the observed results.

The switching results according to temperature are depicted in
Fig. 4b. At room temperature, the on/off ratio is approximately 90,
which decreases to 2.54 at 260K and further to 1.31 at 240K. This
confirms the exponential dependence of ECRAM switching behavior
on temperature, an observation detailed in Supplementary Fig. 9.
Furthermore, we examined the retention characteristics of ECRAM at
low temperatures as shown in Fig. 4c. The displayed retention data,
derived not from themeasurements in Fig. 4a but from settings where
the device was programmed to 40 nS and the temperature subse-
quently lowered, show enhanced retention times at reduced tem-
peratures. At 208K (with set stage temperature of 200K), the
programmed value remained stable without any noticeable change
over a 3-h duration (Supplementary Fig. 9).

To elucidate the switching mechanism further, we conducted
sequences 3 and 4 from Fig. 4a, monitoring physical parameters that
change as the device conductancemodulates. We confirmed that gate
current stayed negligibly small, ranging from sub- to tens-of-picoam-
peres, and by about 1000 times lower from the drain current, which
were crucial for accurate measurement and analysis. Figure 4d illus-
trates changes in mobility and carrier density due to switching. From
260K and 300K, conductance increases from the Off state, through
the intermediate (IMD) state, to the On state. Notably, mobility and
carrier density increase by 18.9 and 2.5 times at 300K, respectively.
However, at 280K, the rate of increase slows to 1.4 and 1.7 times.
Furthermore, at 260K, unlike at the higher temperature, as con-
ductance increases, mobility rises to 1.78 times, but carrier density
decreases to 0.66 times. These change at 260K suggests that the
electrochemical mechanism of ECRAM undergoes a shift around this
temperature. The reversal in the behavior of mobility and carrier
density as temperature decreases may be due to temperature-
dependent ion dynamics. In contrast, at higher temperature ion
migration and charge carrier transport becomemore efficient, leading
to greater increases in both mobility and carrier density.

First-principles hybrid functional calculations with HSE06
formalism40 are employed to understand variable-temperature Hall
measurements results. Because amorphous WO3 structure comprises
samebuilding blocks as the crystalline phase41, we usemonoclinicWO3

with P21/n, which is the most common structure in WO3. The unit cell
of monoclinic WO3 is shown in Fig. 5a. Since oxygen vacancy con-
centration increases exponentially with temperature42, we examine
how vacancy concentration affects conductance of WO3 channel.
Previous studies report thatoxygen vacancywith 2+ charge (VO

••) is the
most stable charge state within the bandgap33,42, so we consider only
VO

•• in our system.We determine themost energetically favored site of
VO

•• among three non-equivalent sites (sx, sy, sz), shown in Fig. 5a. The
calculation results show that site sz, inwhichVO

•• is parallel to the z-axis,
has the lowest vacancy formation energy, consistent with previous
study33. In order to investigate the effect of VO

•• on electronic structure
of WO3, we prepare three distinct systems: a pristine vacancy-free
system represented by WO3, low oxygen vacancy system denoted as
WO2.938 (one VO

•• within a 1× 1× 2 supercell), and high oxygen vacancy
system designated as WO2.875 (two VO

•• aligned along z-axis within a
1× 1× 2 supercell) (Supplementary Fig. 10). Our results show that the
bandgap ofWO3 is 2.60 eV, which closely agreeswith the experimental
value of 2.62 eV43. Upon removing oxygens, the bandgap exhibits a
progressive reduction to 2.40 eV in WO2.938 and further decreases to
2.30 eV in WO2.875, as illustrated in Fig. 5b. To further investigate the
relationship between VO

•• and the bandgap, we conduct a comparative
analysis of the band structures for three systems, see Fig. 5c. For
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WO2.938, one VO
•• state (purple line) appears near the conduction band

minimum (CBM). Similarly, two VO
•• states are observed near CBM in

WO2.875. It is obvious that the formation of VO
•• states near CBM yields

the reduction of the bandgap, resulting in a gradual decrease with
vacancy concentration. We further examine the spatial distribution of
the newly generated states and confirm that the defect states are
localized on W atoms near VO

•• (Supplementary Fig. 11). The localiza-
tion of VO

••, in turn, induces a large extent of electrondelocalization. As
this delocalization expands, a large 2D polaron forms, which leads to
high mobility44–46. In conclusion, our calculation results demonstrate
that the observed increase in conductivity with temperature is a result
of the bandgap reduction induced by the formation of VO

•• states
near CBM.

Impact of cycle-to-cycle variation on AI computation
Based on such topotactic changes, ECRAM devices have demon-
strated low cycle-to-cycle variation, as extensively reported in pre-
vious studies19,47. In many memory technologies, local conduction
pathways or morphological changes can introduce variability over
repeated operations48,49; by contrast, the uniformity of ECRAM’s
topotactic transitions help maintain stable performance across
cycles. Within the same device configuration where Hall measure-
ments were taken—specifically, devices with a gate width of 4 μm and
channel length of 25 μm—cycle-to-cycle variation exhibited minimal
deviation, as shown in Supplementary Fig. 12. To assess the impact of
cycle-to-cycle variation on neural network training, we conducted
experiments using a stochastic gradient descent (SGD) algorithm to

train a multi-layer perceptron, simulating pattern recognition accu-
racy with the MNIST dataset. These tests revealed that recognition
accuracy tended to increase as the variation decreased. Our devices
showed a cycle-to-cycle variation of only 1.2%, achieving a test
accuracy of over 97.8% (Supplementary Fig. 12), which is within 0.2%
from the software-level accuracy, 98%. Therefore, the stability of our
device’s operation makes it highly suitable for AI computation
requiring high accuracy.

In summary, we fabricated a multi-terminal ECRAM Hall-bar
device and performed high-sensitivity PDL Hall measurement to elu-
cidate its conduction and switching mechanism. The temperature-
dependent conductance measurement revealed semiconductor
behavior that showed decreased conductance as temperature
decreases, indicative of a Mott VRH relationship. Electron mobility in
the ECRAM channel layer showed little temperature dependence and
remained constant at approximately 50 cm2V−1s−1. Through Arrhenius
plot analysis, we confirmed an activation energy closely matching the
predicted oxygen donor level of WO3-x reported in the literature at
0.1 eV. We observed the switching characteristics of the ECRAM devi-
ces at room temperature and confirmed that specifications such as
linearity, symmetry, endurance and cycle-to-cycle and device-to-
device variation exceeded the requirements for AI computing. We
further evaluated the switching and retention characteristics of
ECRAMat low temperatures, revealing lower conductancemodulation
and longer retention at reduced temperatures. We also monitored
changes in physical parameters during ECRAM switching through
variable-temperature Hall measurements. A key finding was that

Fig. 4 | Variable-temperature ECRAM Hall measurement with resistive switch-
ing. a ECRAMHall measurement setup and sequence at various temperatures with
resistive switching. The retention characterization is checked to ensure stability
during the Hall measurement duration. These measurements were repeated while
decreasing the temperature from 300K to 200K in vacuum. b Switching char-
acteristics of device at various temperatures. Different conductance state was
obtained by write voltage of ± 2.0 V applied to the gate electrode with Vds of 0.1 V.

The switching range sharply decreases as the temperature decreases. c Retention
characteristics at various temperatures improve inversely as the temperature
decreases. d Change of carrier mobility (μ) and carrier density (n) at 260K, 280K
and 300K between on, intermediate and off state. At 280–300K, both carrier
mobility and carrier density increase as the device conductivity increases. The
magnitudeof these changes decreases as the temperature decreases. The state and
the direction of change marked in inset corresponds to the main figure.
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increases in device conductivity were accompanied by rises in both
mobility and carrier density. These observations were corroborated by
density functional theory calculations, which showed that introducing
oxygen vacancies in theWO3-x channel leads to the formation of defect
states just below the CBM. These defect states create shallow donor
levels that enhance carrier density. Additionally, the formation of
oxygen vacancies is linked to structural changes around tungsten
atoms, fostering the development of large polarons which are expec-
ted to boost carrier mobility.

Further distinguishing ECRAM from conventional NVM devices is
its reliance on electrochemical ion transport rather than simply over-
coming intrinsic stochasticity. This characteristic not only enhances
reproducibility and stability in the switching process but also addres-
ses key constraints such as scalability and random fluctuations in
resistive states. Consequently, ECRAM shows significant promise for
improving performance in AI accelerators and other advanced com-
puting architectures.

Our detailed analysis also reveals that oxygen vacancies do more
than mediate resistive switching; they significantly affect conductivity
modulation and long-term retention under conditions. In the amor-
phous tungsten oxide channel, the influence of oxygen vacancies
varies markedly depending on the applied gate voltage, highlighting
the need for more refined modeling. Although our initial approach
assumed that all oxygen vacancies carry a 2+ charge, we acknowledge
that local electronic environments, temperature, and structural factors
can induce different charge states. This variability can strongly impact

carrier density, and we plan to incorporate these considerations into
future work. Such refinements offer a broader perspective on how
material-specific ion dynamics govern device behavior, extending
beyond conventional studies that may overlook the complexities of
amorphous materials.

This deeper understanding of oxygen vacancies substantially aids
in optimizing resistive processing units for AI accelerators, ensuring
our findings constitute more than a reiteration of existing theories.
Notably, our work furnishes the experimental validation of oxygen
donor levels in amorphous tungsten oxide, a point previously pro-
posed yet not empirically verified, thus laying a foundation for further
developments in the field. By advancing comprehension of how oxy-
gen vacancies dictate electron transport properties, our research
stands to guide the design of more reliable and efficient ECRAM
devices.

In conclusion, our study confirmed the topotactic transformation
of our device through comprehensive electronic and atomic structure
analysis, ensuring consistent cycle-to-cycle performance and robust
endurance. This research provides crucial insight into the switching
characteristics needed tomeet AI computation demands. Additionally,
our findings extend the understanding of oxygen vacancies as more
than just drivers of resistive switching but as crucial contributors to
enhancing carrier mobility and density, thus optimizing device per-
formanceunder varyingoperational conditionswhich are critical forAI
applications. Ultimately, the deeper mechanistic understanding
gained from this study is expected to further reduce the technology

Fig. 5 | Conductance modulation mechanism based on DFT calculation. a Unit
cell of the monoclinic WO3. Non-equivalent sites of oxygen are marked as sx, sy, sz.
b Density of states (DOS) plots for WO3 (upper), WO2.938 (middle), WO2.875 (lower).
Theblue dotted line corresponds to the Fermi level (Ef) energy and the blackdotted
line indicates the energy difference (E–Ef) equal to the CBM level. c Electronic band

structures of WO3 (left), WO2.938 (middle), WO2.875 (right). The zero-energy level is
aligned with the highest occupied state. Bands above the CBM and below valence
band maximum (VBM) are represented by yellow and blue lines. The newly gen-
erated state by defects is highlighted in purple.
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gap, accelerating the realization of robust, high-performance ECRAM
solutions for AI computing.

Methods
Device fabrication
The substrate is a silicon wafer with a SiO2 layer thickness of 100nm.
Standard photolithography and RF sputtering were used in device
fabrication. specifically, a channel with dimensions of 20μm in width
and 260 μm in length was patterned between the source and drain
electrodes. This channel was subsequently filled with a 4.5 nm thick
layer of WO3, deposited via RF sputtering using an Ar flow rate of 30
sccm at 5 mTorr pressure. Following this, the W source and drain
electrodes were defined using the same method. Subsequently, HfO2

(28 nm) and W (35 nm) layers were sequentially deposited to form the
gate stack, which partially covered the central region of the channel.

Electrical measurements
Throughout the experiments conducted at ambient air form mea-
surements at 300K, all probes were initially connected to the pads of
the device under test. One probe was connected to the source elec-
trode, another to the drain electrode, and the remaining one to the
gate electrode. For both switching (potentiation and depression) and
retention measurements, all probes were linked to the Keithley 2636B
Source Measurement Unit (SMU). The experimental sequence was
coordinated by an in-house Python package to guarantee accurate
control and effective data collecting. The SMU was used to effectively
ground the source electrodeduringpulsemodulation, and+0.01 Vwas
applied to the drain electrode for Vds.

Preparation of ECRAM Hall samples
Samples for PDL variable-temperature Hall measurements were pre-
pared, which involved patterning the material into a six-terminal Hall
bar structure on an insulating substrate, depositing contacts, and
installing pins. The procedure was as follows. Firstly, the wafer con-
taining ECRAM devices fabricated into six-terminal Hall bar structures
was sliced into pieces smaller than 1× 1 cm2. Next, the sample was
attached to a PCB board, and Pads for Rxx and Rxy, source drain, and
gate electrodes were connected to external pads using wire bonding.
Then, a temperature diode was attached near the sample with varnish,
and pins were soldered.

Variable-temperature Hall measurement
The experiment setup was conducted inside a cryostat for low-
temperaturemeasurements. All measurements were carried out under
vacuum conditions of 1 mTorr or lower. The sample was positioned at
the center between the PDL magnets. The electronic instrumentation
comprised a custom-built PDL motor control box, Keithley 2450 SMU
for applying the voltage source to the sample, Keithley 2001 digital
multimeter (DMM) for voltage measurement, and Keithley 7065 Hall
switchingmatrix card equippedwith high impedance buffer amplifiers
for routing signals between the samples, SMU, and DMM. DC voltage
source mode was utilized with Vds set at 0.1 V. The PDLmaster magnet
was rotated by a stepper motor system, typically operating at a speed
of 0.75 rpm, to generate an AC field. A typicalmagnetic field amplitude
applied to the samplewas approximately0.6T for a PDLmagnet gapof
around 10mm.

Computational details
The Vienna Ab initio Simulation Package (VASP) served as the com-
putational framework for all density functional theory (DFT) calcula-
tions conducted in this study50. Electron-ion interactions were
modeled using the plane-wave projector augmented wave method51.
Exchange-correlation effects were treated within the framework of the
Perdew–Burke–Ernzerhof for solids (PBEsol) functional52. The plane
wave cutoff energy was consistently set to 520 eV across all

calculations. The geometrically optimized lattice parameters of the
monoclinic WO3 are determined to be a = 7.46Å, b = 7.60Å, c = 7.73 Å,
β = 90.2°, closely match experimental parameters, exhibiting a devia-
tion of less than 2%53. The Brillouin zone was sampled using a 4×4×4
Monkhorst-pack k-point grid for unit cell calculations and 4×4×2
Monkhorst-pack k-point grid for (1× 1× 2) supercell calculations. To
ensure accurate results, structural relaxationwasperformeduntil both
energy and forces met convergence criteria, set at 10−6 eV for energy
and 0.01 eVÅ−1 for the forces acting on the atoms. For HSE06 calcula-
tions, atomic coordinates are fixed to the geometrically optimized
positions obtained from PBEsol. We opted for a 28% intermixing of
Hartree-Fock exact exchange, slightly deviating from the default value
of 25%, because it matches well with the experimental value of WO3

band gap.

Simulation details
To assess the impact of cycle-to-cycle variation on neural network
training, we employed linear regression using a SGD algorithm to
simulate pattern recognition accuracy with the MNIST dataset. Sup-
plementary Fig. 12b displays the results of evaluating recognition
accuracy (error rate). The neural network used in the simulation is a
multilayer perceptron, comprising input, first hidden, second hidden,
and output layers with 784, 256, 128, and 10 neurons, respectively. The
784 input neurons represent 28× 28 MNIST image data, while the 10
output neurons represent digits from 0 to 9. Weight updates were
executed with a learning rate of 0.01, a batch size of 1, and 30 epochs.

The evaluation of recognition accuracy revealed ideal synaptic
characteristics, achieving 98.02% accuracy in the ideal scenario (0%
variation). However, as cycle-to-cycle variation increased, accuracy
decreased slightly to 97.8% and 96.13% at 2.5% and 5% variation,
respectively. Accuracy dropped significantly to 88.31% at 7.5% and
70.63% at 10% variation. Notably, ECRAMdemonstratesminimal cycle-
to-cycle variation between 0% and 2.5%, making it a promising candi-
date for AI accelerators with high neural network training accuracy.

Data availability
The source data generated in this study are provided in the Source
Data file. Source data are provided with this paper.

Code availability
Custom codes for data analysis were written in MATLAB and Python
and are available from the corresponding author upon request.
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