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8-bit states in 2D floating-gate memories
using gate-injection mode for large-scale
convolutional neural networks

Yuchen Cai1,2, Jia Yang1,2, Yutang Hou3, Feng Wang 1,2 , Lei Yin 3, Shuhui Li1,
Yanrong Wang4, Tao Yan1, Shan Yan1, Xueying Zhan1,2, Jun He 3 &
Zhenxing Wang 1,2

The fast development of artificial intelligence has called for high-efficiency
neuromorphic computing hardware. While two-dimensional floating-gate
memories show promise, their limited state numbers and stability hinder
practical use. Here, we report gate-injection-mode two-dimensional floating-
gate memories as a candidate for large-scale neural network accelerators.
Through a coplanar device structure design and a bi-pulse state programming
strategy, 8-bit states with intervals larger than three times of the standard
deviations and stability over 10,000 s are achieved at 3 V. The cycling endur-
ance is over 105 and the fabricated 256 devices show a yield of 94.9%. Lever-
aging this, we carry out experimental image convolutions and 38,592 kernels
transplanting on an integrated 9 × 2 array that exhibits results matching well
with simulations. We also show that fix-point neural networks with 8-bit pre-
cision have inference accuracies approaching the ideal values. Our work vali-
dates the potential of gate-injection-mode two-dimensional floating-gate
memories for high-efficiency neuromorphic computing hardware.

Machine learning and artificial intelligence based on neural networks
(NNs) have shown remarkable capabilities across a wide range of
applications, including autonomous driving, weather prediction,
speech recognition, and image understanding1–4. And it has a sub-
stantial demand for accelerators like graphics processing units, which
are well-suited for handling large-scale, parallel multiply-and-
accumulate operations. However, back-and-forth data movement
between the physically separated memory and logic units in the con-
ventional von Neumann architecture and the digital data processing
paradigm imposes significant limitations on the system efficiency5,6.
Consequently, there is a growing interest in high-efficiency neuro-
morphic computing hardware (NCH), particularly for intelligent edge
devices that can process and store data locally and in an analog man-
ner, akin to the human brain7–9.

At the algorithm level, NNs handle weights with infinite preci-
sion, a luxury that NCH cannot afford. To implement NNs at the
edge, it is necessary to train and/or infer within device-level nodes
that have limited numerical precision. Theoretical simulations have
shown that many deep NNs with 8 to 24-bit precision will suffer
almost no accuracy degradation compared to a much higher pre-
cision, owing to stochastic rounding schemes and the large
amounts of parameters they usually contain10–13. On the other hand,
excessively low precision (such as <8-bit) may lead to performance
degradation instead, particularly in small-sized NNs deployed on
edge devices that require high energy efficiency, as each parameter
has a greater impact on their overall performance14. Whether
training a fixed-precision NN directly or downloading and quantiz-
ing a pre-trained NN to achieve a fixed-precision network, devices
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capable of supporting many distinguishable conductance levels are
crucial.

Non-volatile memories, such as floating-gate memories
(FGMs)15–20, resistive switching memories8,21–24, phase change
memories25,26, and ferroelectric memories27–29, have emerged as can-
didates for NCH. Among them, FGMs are especially promising due to
their non-volatile charge-based analog storagemode.When utilized as
artificial synapses, FGMs exhibit learning rates that align well with
those of visual and auditory signals15. Additionally, FGMs offer a large
dynamic range and are compatible with standard complementary
metal-oxide-semiconductor (CMOS) technology. In addition, the
combination of FGMs with emerging two-dimensional (2D) materials
to create 2D FGMs holds great promise for highly integrated NCH30–33.
This is because the atomic thickness of 2D materials offers them
exceptional gate control capability and large storagewindows, and the
van der Waals surface feature facilitates the feasibility of hetero-
integration and compatibility with CMOS processes. Nevertheless, the
high sensitivity of 2D materials to interfacial states and defect-related
instabilities of dielectrics often result in bad long-term stability, poor
endurance, and memory states of fewer than one hundred for 2D
FGMs31,34–38. This poses a significant challenge for NCH based on
2D FGMs.

Here, we report gate-injection-mode (GIM) 2D FGMs with 8-bit
states as candidates for large-scale NCH. Through a coplanar device
structure design, the control gate (CG), floating gate, and channel are

decoupled, and storing charges are programmed and erased from the
CG through the shared tunneling layer. By adopting a bi-pulse state
programming strategy, highly distinguishable (with intervals larger
than three times of the standard deviations) and stable (with retention
times longer than 10,000 s) 8-bit conductance states are achieved at
3 V programming voltage. This high state number as well as the small
operation voltage is better than other types of nonvolatile memories
based on field-effect transistors (FETs), including normal 2D FGMs, Si-
Flash cells, and ferroelectric field-effect transistors (FeFETs). The
devices also show symmetry state programming tendency and good
endurance of over 105 cycles. In addition, fabricated 256 devices
exhibit a 94.9% yield, good uniformity, and repeatability. Leveraging
the above findings, we then carry out experimental image convolu-
tions and project 38,592 convolutional kernel parameters on a 9 × 2
device arraywith resultsmatchingwell with that of simulations. Finally,
we show that fixed-point NNs with 8-bit precision have inference
accuracies approaching the ideal values. Our work demonstrates the
potential of GIM 2D FGMs for high-performance neuromorphic com-
puting accelerators.

Results
8-bit-precision programming
GIM2D FGMswith a device structure shown in Fig. 1a weredesigned to
realize numerous distinguishable conductance levels. Here, mono-
layer/few-layer MoS2, 5-nm Pt, and 8 nm Al2O3 were used as channel,
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Fig. 1 | Programming of the GIM 2D FGM. a Device structure of the GIM 2D FGM.
The inset shows the top view of the structure and the areas of the channel and gate
are denoted as A0 and A4, respectively. MoS2, Pt, and Al2O3 are used as channel, FG,
and tunnelling/blocking layer. b Dual-sweep transfer curve that shows a large
counterclockwise hysteresis loop. It was tested on the device with gate area
A4 = 2.31μm2 and channel width/length of 10.37/1.47μm (as indicated in the OM
image of Fig. 2b). c Two conductance states after programming with −Vtune (deep
colors) and without −Vtune (shallow colors). d, e Schematics and band diagrams of
the programming and tuning process. Detailed energy values can be seen in the
alignment diagram of bands in Supplementary Fig. 2. D drain, S source. f 256 states

with each sampled for 100 s. The states were programmed using the bi-pulse
programming method. g, h The distinguishable neighboring states at different
current levels. g Enlarged current-time sampling plots at the corresponding sites
denoted in (f) (in blue, red and purple, respectively). The corresponding histogram
plots of the sampled currents are shown in (h). σ is the standard deviation and the
fitted curves were attained by fitting with normal distribution function.
i Benchmarks of the GIM 2D FGM in state number and operation voltage. FeFET
ferroelectric field-effect transistor, FGM floating-gate memory. The data are col-
lected from19,29,30,54–73.
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floating gate (FG), and tunnelling/blocking layer. An individual CG
coplanar with the source and drain terminals works as both charge
programming and erasing electrodes. Although approximately 22%
more area may be required compared to a conventional vertical
structure, the coplanar design enables the device to support vertical
integration with fewer layers of materials (as analyzed in Supplemen-
tary Fig. 1). The detailed fabrication processes can be seen in the
Methods section. There are several advantages of this design. First,
unlike the vertically overlapped structure in a traditional FGM, here
channel, FG, and CG are decoupled into two sections: channel-Al2O3-
FG stack andCG-Al2O3-FG stack. Hence, the gate programming voltage
canbe easily regulatedby changing the capacitive coupling ratio that is
proportional to the area ratio between theCGand channel (denoted as
A4/A0 in the inset of Fig. 1a). Second, a state programming strategy
combining two sequential gate voltage pulses with opposite signs can
be adopted to de-trap the unstable charges captured in the dielectrics,
so that highly stable memory states without affecting the channel can
be achieved. Third, the state programming is symmetry because of the
shared charge tunneling and blocking layer, and the same charge
injection and erasing mechanism. These advantages will be discussed
in detail in the following sections.

The gate-injection mode is evidenced by a counterclockwise
hysteresis in the double-sweep transfer curve as shown in Fig. 1b.
Electrons can be injected in or erased from the FG when applying
negative or positive voltages with high enough amplitudes on the gate
terminal. And the stored charges will non-volatilely change the
threshold voltage and the conductance of the MoS2 FET. The large
memorywindow (about 78%of the sweep range) results from the high-
k dielectric layer of Al2O3, the ultra-thin channel of MoS2, and most
importantly, the high tunneling efficiency enabled by the optimized
gate size, which will be further discussed below. Theoretically, the
memory states, i.e., the conductance states of the FGM, should be
stable because of the high energy barrier at the Pt/Al2O3 interface
(~4.7 eV, Supplementary Fig. 2)39–42. Nevertheless, the source-drain
current (IDS) decreases immediately after voltage programming as
seen from the light-colored lines shown in Fig. 1c. This phenomenon is
widely observed in 2D FGMs30,43,44, which is mainly coming from the
unstable trapped charges inside the dielectrics during charge injec-
tion/erasing process that spontaneously de-trap after programming.
And this is the same reason for the well-known bias temperature
instability found in many Si-based transistors45, especially those with
high-kdielectrics like Al2O3 that have a range of widely distributed trap
states near the conduction band46.

To resolve the above problem, a programming method combin-
ing two sequential gate voltage pulses with opposite signs was adop-
ted. Let us use the low-resistance state programming process as an
example to illustrate this strategy (Fig. 1c–e). When a positive pro-
gramming voltage (Vprog) is applied, the energy band of the tunneling
layer Al2O3 can be largely tilted so that a triangle-shaped potential
barrier appears (see the first panel of Fig. 1e). Hence, electrons stored
in the FG can be erased through Fowler-Nordheim tunneling (FNT, see
the first panel of Fig. 1d). The detailed analysis is shown in Supple-
mentary Note 1 and Supplementary Fig. 3. However, some electrons
are captured by the trap sites inside the tunneling layer during this
process (see the second panels of Fig. 1d, e). After Vprog is withdrawn,
the trapped electrons will de-trap into the FGby thermal activation in a
slow relaxation process, which induces IDS to decrease gradually. Note
that, the subthreshold slope (SS) was nearly unchanged during the
relaxation process, implying that the trap states were induced within
the device fabrication process rather than generated by voltage pro-
gramming (Supplementary Fig. 4)38. By applying a negative tuning
pulse (−Vtune) soon after Vprog (see the third panels of Fig. 1d, e), the
relaxation process can be largely accelerated through de-trapping the
trapped electrons into the FG. Nearly all the trapped electrons can be
eliminated after Vtune through optimization (see the fourth panels of

Fig. 1d, e). As a result, more stable programmed states were attained
(stable states in Fig. 1c). The effect of this strategy is obvious and
applicable for the whole conductance range as evidenced by the
comparison of time-dependent transfer curves between with and
without bi-pulse optimizing (Supplementary Fig. 6). Temperature-
dependent state retention properties were further studied using the
Arrhenius equation (Supplementary Figs. 7–9). The largely decreased
storedcharge leakage activation energy after applyingVtune verifies the
detraping effect of the bipolar programming strategy47,48.

Using the above programmingmethod, the GIM2D FGM can have
up to 256 distinguishable states (Fig. 1f and the output curves are
shown in Supplementary Fig. 10, a detailed closed-loop programming
method and corresponding parameters see Supplementary
Figs. 11 and 12), which is equivalent to an 8-bit precision. The densely
distributed states can be recognized from each other with an over-3σ
variation (σ, the standard deviation for a state) between neighboring
states (Fig. 1g, h). That state number is comparable to the advanced
commercial Si-Flash cells and unprecedented among the other pre-
viously reported nonvolatile multibit memories based on FETs,
including normal 2D FGMs and FeFETs (Fig. 1i and Supplementary
Table 1). Note that most of the state numbers from the compared
literature come fromcontinuous voltage programmingmeasurements
or current-voltage curves rather than current-time curves as usedhere,
which means the state stabilities were actually not well studied. By
lowering the state variation to 1σ, even a doubled state number of 512
(9-bit precision) can be achieved (Supplementary Fig. 14). Moreover,
the programming voltage can be decreased to a level of 3 V by opti-
mizing the gate size, which is among the lowest ones according to
literature (Fig. 1i).

Programmability and reliability
To investigate the programmability of the GIM 2D FGMs, we adopted a
device circuit configuration shown in Fig. 2a.Here,Vprogwas appliedon
a selected gate, a small source-drain bias (VDS) of 0.1 V was applied on
the drain terminal while the source was kept grounded, and the two
equivalent capacitors of channel/FG and FG/gate 1 (C0 and C1) were
connected in series. In that configuration, the voltage drop on the
tunneling layer can be calculated by Vtunnel =VprogC0/(C0 +C1). As a
result, the programming efficiency during a single programming
operation is strongly related to the capacitive coupling ratio between
the equivalent lateral configurated capacitors, that is, the ratio Ci/C0

(i = 1, 2, 3, …) in Fig. 2a. To systematically investigate the gate-area-
dependent programmability, we fabricatedGIM2DFGMswith varying-
area multi gates (Fig. 2b, see Supplementary Fig. 15 for the fabrication
process andSupplementaryFig. 16 for detailed geometricparameters).

It’sworth noting that because the gates share the sameoxide layer
and FG, and the capacitor value is calculated by C = εA/(4πkdox), where
ε, A, k, dox are dielectric constant, effective area, electrostatic force
constant and oxide layer thickness, the capacitor ratio Ci/C0 can be
directly calculated by the area ratio Ai/A0 (the area ratio between gate i
and the channel). As demonstrated in Fig. 2c, d, the dual-sweep
transfer curves show anobvious area ratio dependency of thememory
window, with the largest memory window of 10.3 V and the smallest
memorywindowof 0.46 V. This difference is a direct result of the area-
controlled partial voltage on the gate-Al2O3-FG stack. Simulated vol-
tage potential distributions given in Supplementary Fig. 17 show
similar results, validating the above analysis. The device can behave
more like a transistor with a steep switch and a negligible memory
window when the area ratio is very large, such as the case with an area
ratio of 0.457 in Fig. 2c. That kind of device can be implemented as
node selectors or activation function hardware in NNs.

The programming voltage can be decreased while maintaining a
largememorywindow by using a smaller gate area, as shown in Fig. 2e.
This dependency is consistent well with the simulation results (Sup-
plementary Note 2 and Supplementary Fig. 18). The programming
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voltage can be as low as 3 V, showing potential in low-power applica-
tions. In addition, towards realizing the implementation of this device
as the basic unit for NCH, the ability to update the device’s weights
(conductance states) in a small range under the guidance of a back-
propagation algorithm is important for on-chip training processes.
That ability was also proved by the quite symmetric state updating in
positive and negative directions, which is because of the identical
charge injection and erasing mechanism through the coplanar GIM
design (Supplementary Fig. 19).

The device also showed stable programmed states for over
10,000 s while maintaining the largest on-off ratio of over 1 × 108

(Fig. 2f). Given the uniform oxide thickness in the channel and gate
regions, the device’s retention properties exhibit a clear dependence
on the overlap areas between the floating gate and the drain, source,
and gate electrodes (Supplementary Figs. 20–22). To further enhance
the retention property, an additional blocking layer can be introduced
below the source and drain regions to suppress this charge leakage
pathway. And a good endurance performance of 105 cycles was also
observed, which shows the reliability of being utilized for high-
frequency weight update operations for on-chip training (Fig. 2g).

Repeatability of the 8-bit programming ability
We have fabricated 256 devices using a large-scale MoS2 film grown by
chemical vapor deposition (CVD) to study the repeatability of the 8-bit
programming ability (Fig. 3, see Methods for the detailed fabrication
process). The optical microscope (OM) image of the devices is shown
in Fig. 3a, in which a typical area ratio is calculated to be 0.084 (see
Supplementary Fig. 24 for geometric parameters). Of the 256 devices,
about 13 devices were broken, which might be due to the dis-
continuous sites on the large-scale MoS2 film introduced during the

material transfer process, resulting a total yield rate of 94.9% (243 out
of 256 devices). Apart from that, large hysteresis windows and the
evenly distributed 9 programmed states can be observed from the
electrical tests (Fig. 3b, c).

Moreover, we programmed 120 out of 137 devices with a yield of
87.6% into 256 (8-bit) distinct states, ranging from a current level of
1 pA to 100 nA (the original data are shown in Supplementary
Figs. 27–31). The statistics of state current as a function of device
number and state number are presented in Fig. 3d. These 120 devices
exhibit an overall low device-to-device variation of below 4% for the
programmed states (Fig. 3e, f), which can be largely attributed to the
accurate programming method employed and the wide memory win-
dows of the devices.

The 8-bit states, low programming voltage, good stability and
endurance, good repeatability and scalability shown above demon-
strate the potential of GIM 2D FGMs for NCH.

Hardware convolutions based on device arrays
Vector-matrix multiplications are the most important operation in
NNs, like the representation transformation processes between
neighboring layers and kernel filtering processes in convolution layers
for feature extraction. In this section, we fabricated a 9 × 2 array, which
is comparable to other configured arrays for analog computing (see
Supplementary Table 3)29–31,49–53, and carried out hardware convolu-
tions to demonstrate the potential of GIM 2D FGMs for NCH. The
optical image of an array bonded on a chip carrier is shown in Fig. 4a
(see Methods and Supplementary Fig. 32 for the array fabrication
process, see Supplementary Fig. 33 for geometric parameters). A
homemade test system was used to experimentally run the convolu-
tion process as shown in Supplementary Fig. 34. The gate lines were
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corresponding to areas A1, A2, and A3 in (b). dMemory window as a function of the
area ratio Ai/A0 with a linear fitting curve. Inset: the linear scale plot. e Vprog during
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period: 100ms. The programming schematic is shown as the inset. Vtune = 2 V.
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wired out for the programming operation, while the rows and columns
were wired out and connected to every device’s drain and source
terminals respectively. As a 3 × 3 convolution kernel, the first column
stores positive kernel weights and the second column stores negative
kernel weights. That kernel configuration can eliminate possible
parasitic currents (as analyzed in Supplementary Fig. 35) And the
device structure also shows small parasitic capacitances and device-to-
device interferences as thoroughly analyzed in Supplementary Note 3
and Supplementary Figs. 36–39. We adopted a parallel programming
method for weight (conductance states) updating (Fig. 4b), i.e., devi-
ces in a selected row were programmed simultaneously by gate vol-
tages with the common drain terminals grounded. And a row-by-row
validation scheme was used to validate the kernel programmed (Sup-
plementary Fig. 40). Additional discussions on the limitations when
operating the device array can be found in Supplementary Note 4.

Figure 4c uses the convolution operation of image ‘0’ in the
MNIST dataset as an example to illustrate the inference process. The
image pixels were converted into voltages based on greyscale and
grouped into 3 × 3 patches. Then the pixels in each patch were
imported as drain inputs to the array and the output currents on the
source terminals were collected as the convolution results. With dif-
ferent kinds of kernels that were separately programmed onto the
device array (Fig. 4d and Supplementary Fig. 41), the output images
after convolutions show different features (Fig. 4e). The convolution
results of another image from the Fashion MNIST dataset and the
convolution results with large current outputs are also shown in Sup-
plementary Figs. 42 and 43. The experimental output images show

almost the same distributions with that of software-based convolu-
tions (Fig. 4f), demonstrating the array works well as physical kernels
for feature extraction.

Considering the 8-bit states realized on GIM 2D FGFESTs, more
complex kernels can be mapped onto the 9 × 2 array for high-level
feature extractions. Take the convolutional base of the large-scale
convolutional neural network (CNN) VGG16 as an example. It contains
a 5-block convolutional base, with each block containing several con-
volution layers and a pooling layer (Fig. 4g). All the 38,592 kernel
parameters in the first block were mapped onto the 9 × 2 array kernel-
by-kernel, as shown in Fig. 4h. We see the hardware-based kernels’
weights showalmost the same landscapes as the software-based values
(Fig. 4i). A more direct comparison can be seen from the distributions
of conductance and weight values (Fig. 4j, k). The above result implies
the hardware integration capability for vector-matrix multiplication,
and brings us the concept of incorporating GIM 2D FGMs in the whole
body of large-scale NNs to validate the potential of constructing
advanced NCH.

Convolutional neural networks with 8-bit precision
The accuracy of NNs with limited numerical states (fixed-point NNs) is
an important issue for the practical application of NCH. We note that
downloading a pre-trained NN to a local NCH and quantizing the
weights with limited numerical states (quantization after training) is
generally amore energy-efficient approach. Therefore, to demonstrate
the potential of GIM2DFGMsarray for NCH (Fig. 5a), pre-trained large-
scale convolutional neural networks (CNNs) were used for ImageNet
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curves is comparable with previous works (Supplementary Fig. 26)31,75. c Current
maps of the programmed 9 separate states. Sites in blue denote the 13 broken
devices. d 256 programmed states for 120 devices. e device-to-device variation as a
function of state number. f current distributions of selected adjacent states
extracted from (d). Read voltage: 1 V. The programming method and parameters
are the same as those used in Supplementary Figs. 11 and 12.
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dataset recognition (Fig. 5b). Here, the large number of parameters in
theseCNNswerequantized to the 8-bit states of theGIM2DFGMusing
a nearest-rounding method. According to the simulation results with
different bit precisions (the 4-bit, 5-bit, 6-bit, and 7-bit states adopted
are shown in Supplementary Fig. 44), a 8-bit precision is sufficient for
CNNs to achieve high recognition accuracy compared to their
unlimited-precision version (Fig. 5c and Supplementary Fig. 45). It’s
important to note that while 8-bit precision achieves a higher recog-
nition accuracy (89.43%) compared to lower precisions (such as
88.96% for 7-bit) for the smallest MobileNet model, 7-bit precision is
sufficient for the larger Xception model. This suggests that larger
CNNs canoperate effectively with lower bit precision. However, from a
practical perspective, deploying small-sized NNs on edge devices is
typically more energy-efficient. Therefore, the higher 8-bit precision

storage for these small-sized CNNs is crucial for enhancing their
performance.

An alternative approach involves directly training fixed-point NNs
on the NCH with limited states (quantization during training). Even
though this approach consumes much more energy and time com-
pared to quantization after training, which is mainly due to the large-
scale weight updating, it offers greater flexibility by adapting to spe-
cific tasks through weight fine-tuning. Through simulation of quanti-
zationduring training (Fig. 5d),weobserved that the advantageof 8-bit
precision over lower precisions is still very obvious for bothMobileNet
and Xception models. This is further supported by results from a
simpler model for MNIST recognition (Supplementary Fig. 46). How-
ever, an overall accuracy decrease is observed across all fixed preci-
sions compared to quantization after training, likely due to the
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reduced efficiency of the training process caused by inaccurate weight
updates at lower precisions.

Another important point is the choice of rounding scheme. In the
above simulations, a nearest-rounding schemewas adopted. However,
according to previous reports10–13, a stochastic rounding scheme can
enhance NNs performance. To validate this, we have reconducted the
simulations using a stochastic rounding scheme (Supplementary
Fig. 47), and the results showed anobvious accuracy increase for all the
fixed precisions, especially for lower precisions such as 5-bit and 6-bit,
confirming the benefits of stochastic rounding. Combined with the
demonstrated capabilities of vector-matrix multiplication and high
repeatability of 8-bit programming, GIM 2D FGMs show great promise
for system-level-integrated vector-matrix multiplication arrays in NN
accelerators.

Discussion
To sum up, we have designed 2D floating-gate memories working in a
gate-injection mode as potential device units for large-scale NCH. The
CG, floating gate, and channel are decoupled through this design, so
that a bi-pulse state programming strategy could be adopted to realize
8-bit conductance states. This is because the subsequent tuning vol-
tage can promote the de-trapping process of unstable charges cap-
tured by the dielectric defects that have a lower potential barrier. The
states are highly distinguishable with intervals larger than three times
the standard deviations and very stable with retention times longer

than 10,000 s. The devices also show good endurance of over 105

cycles. In addition, because charges are injected and erased from the
CG through the shared Al2O3 layer via FNT, the state programming is
almost symmetry. And through changing the capacitance ratio by
varying the aera of theCG, a 3 Vprogramming voltage canbe achieved.
Moreover, the fabricated 256 devices exhibit a 94.9% yield, good uni-
formity and repeatability. Then, a 9 × 2 device array was fabricated and
experimental image convolutions were carried out with results
matching well with that of software simulations. Leveraging the devi-
ce’s multi-state programming capability, we successfully transferred
38,592 convolutional kernel parameters from a pre-trained VGG16
network to the array. Finally, we studied the image recognition
accuracies of fixed-point NNs containing different levels of precisions.
Notably, nomatter whether NNs designed by downloading pre-trained
networks or directly training networks locally, the inference accuracies
at 8-bit precision could approach the ideal values. Our work validates
the potential of GIM 2D FGMs for high-performance neuromorphic
computing accelerators.

Methods
Device fabrication
A p-doped silicon substrate with 300nm thermal-oxidized SiO2 was
firstly coated with poly(methyl methacrylate) (PMMA) and baked for
2min at 150 °C. After that, the floating gate Pt was patterned and
deposited by electron beam lithography (EBL) and electron beam
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accuracy for CNNs quantized with different precisions after (c) and during (d)

training. The quantization process used the nearest rounding scheme. The num-
bers of parameters are denoted in the brackets following the models’ names (4.3
million of MobileNet, 22.9 million of Xception).
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evaporation, respectively. After a standard lift-off process, a layer of
Al2O3 with 8-nm thickness was deposited on the floating gate by
atomic layer deposition (ALD). The ALDwas processed at 150 °C, using
water and trimethylaluminum as precursors. Then, mechanically
exfoliated MoS2 (purchased from Shanghai Onway Technology Co.,
Ltd.) with Scotch tape was transferred onto the top surface of the
Al2O3/Pt stack by a standardwet-transfermethod, usingpolypropylene
carbonate and polydimethylsiloxane as holders. At last, source, drain
and gate electrodes of Cr/Au (8/80 nm) were patterned and deposited
using EBL and thermal evaporation. To fabricate the 256 devices, a
large-scale few-layer MoS2 was grown by CVD on a 1 × 0.5-cm-sized
sapphire substrate. The CVD-grown material was transferred with
PMMA, patterned through EBL and etched with CF4 and O2 through
reactive ion etching.

Array fabrication
Before the fabrication of the wired 9 × 2 array, the CVD-grown MoS2
was transferred onto a substrate on which the wiring metal patterns
were pre-deposited, following the transfer process illustrated in Sup-
plementary Fig. 48. During the fabrication process, a 25-nm-thick layer
of ALD-depositedHfO2wasused as the insulating layer for the isolation
of the overlapped drain and gate lines in the array. The other array
fabrication steps were the same as the abovementioned device fabri-
cation process.

Electronic measurements
Except for the 9 × 2 array, the electronic performance of the as-
fabricated devices was tested on a probe station (Lakeshore, TTP4)
under a high vacuum condition (<10−6 Torr), which is equipped with
Keysight B1500A semiconductor analyzer system. All tests on the 9 × 2
arraywere conducted on a homemade probe station equipped with an
electrical testing system (National Instruments, cDAQ-9189) under
atmosphere conditions.

Simulation of large-scale CNNs
The adopted large-scale CNNs are pre-trainedmodels loaded from the
Keras platform and they were coded with Python scripts for con-
venient handling of the internal weights. The ImageNet samples
incorporated here for evaluation were all collected from the
ILSVRC2012 validation data set, which contains 50,000 images with
each labelled with its class. Before evaluation, all the pre-trained
weights of CNNs were replaced by the normalized conductance states
with the corresponding bit precisions. During the evaluation process
for each kind of CNN, the 50,000 images were clipped to a certain size
of 224 × 224 and taken as the inputs of the model one by one. The
output scores were translated to the recognized class for every image
and all the correctly recognized images were summed for the calcu-
lation of the evaluated final recognition accuracy on this data set. The
three-layer FCNNwas also constructed on the Keras platform layer-by-
layer. The relu function was used as the activation function, the cross-
entropymethodwas used to calculate the loss function, and a learning
rate of 10−3 was adopted for model training.

Data availability
The data that support the findings of this study are available within the
paper and supplementary information. Source data are provided with
this paper.

Code availability
The codeof neuralnetwork training andevaluationused in this study is
available at https://doi.org/10.7910/DVN/BDVBVC.
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