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Understanding how species respond to climate change can facilitate species
conservation and crop breeding. Current prediction frameworks about popu-
lation vulnerability focused on predicting range shifts or local adaptation but
ignored genetic load, which is also crucial for adaptation. By analyzing 1115
globally distributed Arabidopsis thaliana natural accessions, we find that effec-
tive population size (N,) is the major contributor of genetic load variation, both
along genome and among populations, and can explain 74-94% genetic load
variation in natural populations. Intriguingly, N, affects genetic load by changing
both effectiveness of purifying selection and GC biased gene conversion
strength. In particular, by incorporating genetic load, genetic offset and species
distribution models (SDM), we predict that, the populations at species’ range
edge are generally at higher risk. The populations at the eastern range perform
poorer in all aspects, southern range have higher genetic offset and lower SDM
suitability, while northern range have higher genetic load. Among the diverse
natural populations, the Yangtze River basin population is the most vulnerable
population under future climate change. Overall, here we deciphered the driving
forces of genetic load in A. thaliana, and incorporated SDM, local adaptation
and genetic load to predict the fate of populations under future climate change.

Climate change deeply shapes the geographic range of diverse species,
reduces biodiversity, and affects the survival of numerous species.
Understanding how species respond to climate change promotes
species conservation and crop breeding.

Species distribution models (SDM) has been widely used to pre-
dict species range shift over time. However, SDM ignores evolutionary
process. The evolutionary potential, namely, genetic diversity, affects
the adaptation ability of natural populations to climate change’.
Mutation facilitates the ability of species’ response to future climate
change, but at the same time, could accumulate deleterious mutations

and thus reduce fitness, which is called genetic load*. Accordingly, we
can combine two strategies to study how species respond to climate
change based on population genomics. One is to screen adaptive
mutations, which is well-known and could speed up adaptation®™®,
The other strategy is to evaluate genetic load (deleterious mutations)
in the natural populations, in which high genetic load reduces fitness
and adaptation potential®.

Many studies have revealed the genetic basis of local
adaptation®, built the relationship of adaptive mutations and present
climatic factors, and predicted the responses to future climate change
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based on the relationship'®™2. Accordingly, one strategy of species
conservation is to preserve functional genetic diversity associated with
fitness”. However, adaptive mutations alone cannot determine the
evolutionary fate of a population®*. At genomic level, beneficial
mutations are rare, and most mutations are neutral or deleterious®”.
The accumulation of deleterious mutations would reduce individual
fitness, and accordingly, the potential for a population to respond to
climate change would reduce if it had high genetic load**. Therefore,
study of genetic load could benefit the prediction of species’ response
to climate change and species’ resilience>”. Nevertheless, most studies
only focused on one aspect and ignored the other. Therefore, incor-
porating genetic load and other factors to predict climate change
vulnerability is crucial for species conservation and crop breeding.
Knowing the driving forces of genetic load facilitates the assess-
ment of population loss and species resilience. The accumulation of
genetic load depends on selection coefficient, dominance coefficient
and counts of deleterious mutations’. Given that selection coefficient
and dominance coefficient estimation were still challenging, most
studies focused on forces affecting deleterious allele counts. Deleter-
ious allele counts was shaped by mutation, recombination, selection,
genetic drift and GC biased gene conversion (gBGC)®". Effective
population size (N,) was demonstrated to affect genetic load via
changing the effectiveness of selection relative to genetic drift®™.
Demographic history that reduces N,, such as bottleneck effect? > or
founder effect”, range expansion®, introgression from low N,
population®®, mating system transition (from outcrossing to selfing)”’
and polyploidization®®, would induce relaxed purifying selection and
increasing genetic load. gBGC mimic the effect of selection, lead to the
fixation of G/C alleles, regardless of their fitness effect, thus possibly
increasing the genetic load'®***°. Recombination affects genetic load
via two ways. On the one hand, Hill-Robertson effect would lead to the
accumulation of deleterious mutations in low-recombination
regions. On the other hand, stronger gBGC strength in high
recombination regions would increase genetic load**’. However, the
relative contribution of each factor in a single species is not clear.
Arabidopsis thaliana have a human commensal non-relict group
spreading beyond its native range and become naturalized worldwide,
and several relict groups, which reflects its success as a colonizing
species* ¢, It is generally interesting to reveal the mystery of its strong
adaptation ability. The genetic basis of local adaptation has been
explored in A. thaliana®® and used to predict the fate of different
populations in response to future climate change™". In our study, we
shifted our focus to genetic load to explore its variation and deter-
minants along the genome and among diverse populations. We then
integrated these findings with genetic offset and SDM to predict the
vulnerability of different A. thaliana populations to climate change.
Overall, our study highlights the driving forces of genetic load, and
reveals how range shifts, adaptation and maladaptation jointly shaped
the evolutionary fate of populations in response to climate change.

Results

Identification and characterization of deleterious mutations in
natural populations

To study the genetic load of A. thaliana populations, we leveraged 1114
globally distributed non-reference natural accessions that had pub-
lished resequencing data®*"*, After SNP calling and quality control,
we identified 8,678,999 homologous SNP sites with missing rate less
than 10%. Using Arabidopsis lyrata and Capsella rubella as outgroups,
we retained 2,958,899 SNP sites with determined ancestral and derived
state for further analysis.

Because genetic load is hard to study based on fitness, here we
measured with deleterious mutations derived from genomic sequen-
ces. We focused on SNPs in coding regions, and generated three
datasets from the SNP datasets (Fig. 1A). The neutral datasets (fourfold
degenerate sites) were used as control. Protein sequence

conservation-based approaches were used to predict deleterious
mutations from missense SNPs. For missense SNPs, we either grouped
into tolerated missense SNPs (tnSNPs) and deleterious missense SNPs
(dnSNPs) based on the prediction of PROVEAN or SIFT, or predicted
the deleteriousness score of each SNP using LIST-S2, of which high
score indicated high deleteriousness (Fig. 1A). Loss-of-function muta-
tions (LoF), including stop-gain and splice site mutation, were included
as the most deleterious SNP datasets (Fig. 1A).

Consistent with the effects of purifying selection acting on dele-
terious mutations, the derived allele frequency (DAF) distribution
suggested that LoF mutations and dnSNPs were more skewed toward
low-frequency than neutral sites and tnSNPs, and the most deleterious
LoF mutations had the rarest DAF (Fig. 1B). Similarly, the deleterious-
ness score of missense mutations were negatively correlated with
DAF (Fig. 1C).

To reveal the age of deleterious mutations, we estimated their age
using GEVA*, which could date variants based on the sequence
divergence surrounding the variants. Due to the effect of purifying
selection, deleterious mutations were eliminated quickly and were
much younger than neutral sites and tnSNPs (Fig. 1D), which was
consistent with that found in humans*>*, In addition, the most dele-
terious LoF mutations were much younger than dnSNPs (Fig. 1D), and
the deleteriousness score of missense mutations were negatively cor-
related with the age (Fig. 1E).

The mutation spectrum (base composition) suggested that dele-
terious mutations had higher proportion of strong (G/C; indicating the
three hydrogen bonds between bases) to weak (A/T; denoting the two
hydrogen bonds between bases) alleles than weak to strong alleles,
especially for the most deleterious LoF mutations (Fig. 1F). Similarly,
missense mutations with higher deleteriousness score tended to be
strong to weak (S > W) alleles rather than weak to strong (W > S) alleles
(Fig. 1G). Given the mutation spectrum of de novo mutation in A.
thaliana mutation accumulation (MA) lines is biased towards A/T
alleles***, the enrichment of deleterious mutations in S > W mutations
could be resulted from their relatively young age. While the enrich-
ment of W >S mutations in neutral sites and tnSNPs probably reflect
the effect of gBGC, which tend to fix G/C alleles and thus the older
mutations would accumulate W > S alleles. gBGC is expected to cause a
right-shifted site frequency spectrum of W>S mutations®. Accord-
ingly, we observed an excess of high-frequency W>S mutations
(Supplementary Fig. 1A), indicating the impact of gBGC. In addition,
high-recombination regions were enriched with W>S mutations
(Supplementary Fig. 1B), which probably result from gBGC or purging
of deleterious mutations in high-recombination regions. Although
gBGC was assumed to be weak or absent in selfing species, it was
directly observed or reported in A. thaliana in previous studies®****’,

To explore the relationship between genome sequence derived
genetic load proxy (the derived allele counts of deleterious mutations)
and fitness consequences, we used published fruit number phenotype,
which is cultivated and measured in greenhouse, and is a proxy for
lifetime fitness in annual species*®. There was a generally negative
correlation between genetic load proxy and fruit number (Fig. 1H),
even after implementing a control for population structure
(p=0.00471 for LIST-S2 and p=0.01 for LoF mutations, Supplemen-
tary Table 1). While the correlation between derived allele counts of
neutral sites or tnSNPs and fruit number were not significant (Fig. 1H).
Overall, we identified a deleterious mutation dataset and bridged the
gap between sequence based genetic load proxy and fitness con-
sequences, which was rarely demonstrated in previous studies of
deleterious mutations in natural populations’.

Determinants of genetic load variation along the genome

Although genetic load was much more extensively studied across
populations, the variation, determinants and their relative contribu-
tion of genetic load along different genomic regions is largely

Nature Communications | (2025)16:2752


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58021-z

Accession 1 .
— tnSNPs/dNSNPs deleteriousness varnt [ O
score S ded 5 O
c i \’é( ’;’&” @@Q' 5"\%\ A‘??Q\ \)("\0\
Provean/SIFT | LIST-S2 kel S ©
£ 050 Q %
s O.
&
“ missense mutations LoF mutations a 025
CDS CDS 0 [l d
— Intron 0.2 0.4 0.6 0.8 1.0
Accession 1115 DAF
0.08 g 1.00 = 10
' p=-0.13,p<2.2e-16 k= 5 p=-0.14,p < 2.2e-16
2 075 b
0.06 5 == LoF = LoF 3 75
o provean.d sift.d S
%: 0.04 2 0:20 m=  provean.t sift.t f”
" kS| 4-fold 4-fold 5 50
S 0.25 x
0.02 € °
3 2 25
© ol = < <
0 2 3 4 5 6
0 025 050 075 100 1 e 1 e g0 E 1 10 107 10 0 025 050 075 1.00
Score Age (generations) Age (generations) Score
LoF _ - Mutation type 08 S>w = W>$ W>W/S>S
sitd { [N N W cT o | |p=083,p<22e16 %|| p=-065p<22e16 || p=-038, p <2.2e-16
B calow B
S poveanc | NN go
N W Jwwss 8 .
A>C]W>S & ~
provean- | | 02| ®
+od | I
QDAL QO DO PO DSOS
0 025 050 075 1.00 LR TFENES TN
Fraction Score
H p=-0.022,p=072 p=-0.067,p=028 | p=-0.0063,p=0.92 | p=-0.24,p=7.5e-05 | p=-0.28 p=34e-06; p=-0.36p=1.3e-09|p=-0.26, p=16e-05
i m | " ]
2 L4} 11t } |
3 ®
: + ‘ [ [ | . ‘ s ® !
2 4 %4 ®
®
g L | I
4-fold provean.t sift.t provean.d sift.d LIST-S2 LoF
Derived allele counts

Fig. 1| Identification and characterization of deleterious mutations. A Neutral
and deleterious mutation datasets generated in this study. B The site frequency
spectrum (SFS) of neutral and deleterious mutations. DAF, derived allele frequency.
4-fold, fourfold degenerate sites; provean.t, tolerated missense SNPs (tnSNPs) pre-
dicted by PROVEAN; provean.d, deleterious missense SNPs (dnSNPs) predicted by
PROVEAN; sift.t, tnSNPs predicted by SIFT; sift.d, dnSNPs predicted by SIFT. C The
Spearman’s correlation (two-sided) between deleteriousness score of missense
mutations and derived allele frequency (DAF). Missense mutations were binned into
1000 equal sized bins according to their deleteriousness scores. D Age distribution
of neutral and deleterious mutations. E The Spearman’s correlation between dele-
teriousness score of missense mutations and mutation age. Missense mutations
were binned into 1000 equal sized bins according to their deleteriousness scores.
F Mutation spectrum of neutral and deleterious mutations. G The Spearman’s

correlation (two-sided) between deleteriousness score of missense mutations and
mutation spectrum. S > W, strong (G/C) to weak (A/T) mutations; W > S, weak to
strong mutations; W > W/S-S, weak to weak or strong to strong mutations. Missense
mutations were binned into 1000 equal sized bins according to their deleterious-
ness scores. H The Spearman’s correlation (two-sided) between genetic load proxy
and fitness related traits (fruit number). Genetic load proxy was calculated as the
derived allele counts of dnSNPs or sum of deleteriousness score at individual level,
as suggested by previous study®. Derived allele counts of neutral SNPs and tnSNPs
were used as control. Derived allele counts increased from left to right, and fruit
number increased from bottom to top. Accessions were binned into ten equal sized
bins according to their derived allele count. n =26 accessions for each bin, the last
bin has 28 accessions. Error bars indicate mean +/-95% confidence intervals. Source
data are provided as a Source Data file.

unknown. In addition, parameters such as mutation rate and recom-
bination rate were available at different genomic regions but not dif-
ferent populations. To study the determinants and their relative
contribution to genetic load variation along genome, we split A.
thaliana genome into multiple non-overlapping 50 kb windows, and

estimated genetic load in each window. We scaled the derived allele
count of deleterious mutations with that of fourfold degenerate sites,
and used it as genetic load proxy, to exclude the confounding effects
of linked selection, which makes the unscaled counts reflects poly-
morphisms rather than genetic load***.
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Fig. 2 | Determinants of genetic load variation along the genome. A Spearman’s
correlation (two-sided) between 15 and genetic load proxies. T, the nucleotide
diversity at fourfold degenerate sites, used as the proxy of effective population size.
B Spearman’s correlation (two-sided) between recombination rate and genetic load
proxies. C Spearman’s correlation (two-sided) between mutation rate and genetic
load proxies. D Spearman’s correlation (two-sided) between W >S/S>W and
genetic load proxies. W>S/S > W, ratio of derived allele frequency (DAF) of weak
(A/T) to strong(G/C) (WS) alleles to the strong to weak (SW) alleles. E Variable

importance of each predictor variable. Scaled permutation based variable impor-
tance from random forest model was used as the importance value. provean.d,
deleterious missense SNPs (dnSNPs) predicted by PROVEAN; sift.d, dnSNPs pre-
dicted by SIFT; LIST-S2, missense mutations with deleteriousness score from LIST-
S2. LoF, loss-of-function mutations. Error bars represent mean +/- 95% confidence
intervals. Each predictor was grouped into 20 equal-sized bins (n =100 windows for
each bin, the last bin has 86 windows) in ascending order. Source data are provided
as a Source Data file.

The potential evolutionary forces that shape the genetic load
variation include mutation, recombination, selection, genetic drift and
gBGC™®"”. Accordingly, mutation rate and recombination rate esti-
mated from de novo mutations and crossover map could measure the
strength of mutation and recombination**!, N, measured with four-
fold degenerate sites diversity (1ts) could reflect the effectiveness of
purifying selection®, and the ratio of DAF of W > S mutations to that of
S>W mutations (W>S/S>W) represent gBGC strength®®. We esti-
mated these four parameters in each window, and used as predictor
variables to evaluate their impact on genetic load. To this end, we
used 1,986 windows with all predictors and genetic load proxies
available.

s was negatively correlated with genetic load, except for LoF
mutations (Fig. 2A), suggesting low selection efficiency in low-diversity
region. N, varies along genome, and depends on recombination rate
and density of selected sites®>. Accordingly, recombination rate was
positively correlated with 1y and negatively correlated with genetic
load (Supplementary Fig. 1C and Fig. 2B). Recombination reduces
genetic load via Hill-Robertson effect, but at the same time increases
genetic load via gBGC**%, The negative correlation between recom-
bination rate and genetic load (except for LoF mutation) indicated that
recombination affects genetic load mainly via Hill-Robertson effect
rather than gBGC in A. thaliana. Similarly, several previous studies
on other plants also found the negative correlation between
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recombination rate and genetic load**™°. In contrast to the intuition
that high-mutation region would accumulate more mutations,
regardless of fitness effects, we found that mutation rate was nega-
tively correlated with genetic load (Fig. 2C). Given the positive rela-
tionship between mutation and recombination (Supplementary
Fig. 1D), it probably results from the purging of deleterious mutations
in high recombination regions.

In terms of the effect of gBGC, W>S/S >W was positively corre-
lated with genetic load (Fig. 2D), similar to the reported deleterious
mutation accumulation in high W>S/S>W regions®. However, we
found that W>S/S>W was higher in low-recombination rather than
high-recombination regions as usually expected (Supplementary
Fig. 1E). We also estimated gBGC strength using relative rate of fixation
of W > S substitutions compared to W > W substitutions, as previously
reported”’, and also found that it was higher in low-recombination
regions (Supplementary Fig. 1F). Accordingly, GC content was higher in
low-recombination regions (Supplementary Fig. 1G), and the reason
remains unclear.

Based on the non-linear relationship between most predictor
variables and genetic load, we fitted a random forest regression model
on genetic load proxy, and evaluated the relative contribution of each
predictor variable based on the permutation based variable impor-
tance. W>S/S>W was not included in the model, considering its
unresolved relationship with recombination. The random forest model
suggested that 1t was the most important contributor, and the second
is recombination rate, while mutation rate has the least importance
(Fig. 2E). Taken together, genomic regions with low T and low
recombination rate would accumulate much more deleterious
mutations.

Determinants of genetic load variation among populations

To determine forces shaping genetic load variation among popula-
tions, we only consider N, and gBGC, because it was difficult to esti-
mate mutation rate and recombination rate variation among
populations only based on population polymorphism data”*%, The
impact of N, on genetic load variation has been extensively studied
under different demographical scenarios in diverse organisms” . In A.
thaliana, a human commensal non-relict group originated near Bal-
kans has experienced post-glacial range expansion and thus is a great
model to study the effect of N, on genetic load variation®**°. We mainly
focused on the east-west expansion across Eurasia, and excluded
North America population, which was introduced recently and
admixture among introduced lineages increased haplotype diversity
and reduced genetic load®°.

The population history estimation using SMC++ suggested that
populations at the expansion front, such as Yangtze River basin
population (Yangtze), North Sweden population (N. Sweden) and
Northwestern China and Central Asia population (NW. China & C. Asia)
have undergone severe bottleneck effects and have smaller N, com-
pared to their origin population Balkans (Supplementary Fig. 2A).
Consistently, the nucleotide diversity at fourfold degenerate sites (Tts),
which could reflect long-term N, coincided with the population his-
tory estimation (Supplementary Fig. 2B). Therefore, s was used as the
N, proxy in further analysis.

Using derived allele count of deleterious mutations as genetic
load proxy, as suggested by a previous study®?, both deleterious mis-
sense mutations and LoF mutations accumulated with elevated dis-
tance to the putative origin of non-relict expansion®, and the most
distant Yangtze River basin population accumulated the highest
genetic load (Fig. 3A). Previous studies based on small sets of acces-
sions also found that marginal populations accumulated more dele-
terious mutations®®. 1001 Genomes Project also found that
populations in Sweden and Central Asia have more nonsynonymous
mutations and LoF mutations®. Because genetic load estimates prob-
ably differs using different load proxies”®, to validate the robustness

of our results to different load proxies, we also used two other load
proxies, ratio of derived allele count of deleterious mutations to that of
neutral sites and Ra . Ra/s measures the relative derived allele counts
of dnSNPs that occur more often in the expanded populations than
that in Balkans®. The results suggested that our conclusion was robust
(Supplementary Fig. 2C, D).

Because the origin of non-relict populations was putative based
on polymorphism®, here we predicted the origin of non-relict popu-
lations based on expansion load, by maximizing the pattern in Fig. 3A.
Briefly, genetic load increases with range expansion, and areas with
high positive correlation between expansion distance and genetic load
are more likely to be the origin. The results suggested that Balkans is
the most likely origin for non-relict expansion (Fig. 3B), similar to the
prediction based on polymorphism®.

In terms of the impact of N, on genetic load, s was negatively
correlated with genetic load, and could explain 74-94% genetic load
variation among populations, depending on deleterious mutation
types (Fig. 3C). Since Yangtze River basin population appears as an
outlier, we removed it to see if the correlation is still present. The
results suggested that the correlation between 1s and genetic load is
robust, although to a lesser extent (Supplementary Fig. 2E). Con-
sistently, previous study based on 80 accessions also found that N,
greatly affected deleterious mutation accumulation®. Populations at
the expansion front, which also have the smallest N,, such as Yangtze
River basin population, N. Sweden population and NW. China & C. Asia
population, accumulated the highest genetic load (Fig. 3C). Con-
sistently, fixed load was higher in populations with more severer bot-
tlenecks (Supplementary Fig. 3), indicating the less efficient purifying
selection and the stronger genetic drift in these populations.

To explore the impact of gBGC on genetic load, we split genetic
load into three types (W>S, S>W and W>W/S>S) based on base
composition, and only the first two could be affected by gBGC. As a
directional force, the strength of gBGC was counteracted by random
drift. Therefore, N, was expected to affect gBGC strength, which has
been reported in human and mammals®*®, Consistently, we found the
fraction of W > S load was positively correlated with 1, S > W load was
negatively correlated with 1, while that of W>W/S>S load was not
correlated with 1t (Supplementary Fig. 4A-C). In addition, W >S/S>W
was positively correlated with s (the correlation is robust to Yangtze
outlier, Supplementary Fig. 4D), indicating that larger populations
would have stronger gBGC strength (Fig. 3D). To explore if N, con-
tributes to gBGC load variation across A. thaliana populations, we used
the ratio of W>S load to S >W load as gBGC load, and found that 1
was positively correlated with gBGC load (Fig. 3E), and the correlation
is robust to Yangtze outlier (Supplementary Fig. 4E), suggesting that
larger populations accumulated higher gBGC load. Taken together, N,
contributes to genetic load variation via regulating both the effec-
tiveness of purifying selection and gBGC strength. Nevertheless, the
purging of deleterious mutations by purifying selection overwhelms
the fixation of deleterious mutations by gBGC in populations with large
N, in terms of the overall negative correlation between 1y and
genetic load.

Incorporating genetic load to predict climate change
vulnerability
To predict the fate of different A. thaliana populations under future
climate change, we incorporated SDM, genetic offset and genetic load.
SDM ignores evolutionary process, genetic offset is a measure of
maladaptation based on adaptive alleles. However, the fate of a species
depends on more than just adaptive alleles. Populations with same
genetic offset might differ in genetic load®. By integrating the three
factors, we could capture the complexities of evolutionary process and
more precisely evaluate the climate change vulnerability.

To estimate the change of habitat, using MaxEnt implemented
with ENMeval, we modeled present distribution of A. thaliana and
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Fig. 3 | Determinants of genetic load variation across populations. A Spatial
regression between genetic load and distance to putative origin. The regression
model was built with the “spaMM” (4.4.16) package of R*. The shaded area was 95%
confidence intervals around predictions while controlling for spatial effects.

B Prediction of the origin of non-relict populations based on genetic load. Red
denotes areas with top 1% correlation. Black star is the most likely origin. Color scale
represents Spearman’s rank correlation (two-sided) between distance to each tes-
ted putative origin and genetic load. Red dots represent the non-relict accessions
used in this study. C Pearson’s correlation (two sided) between genetic load and 1.

T, the nucleotide diversity at fourfold degenerate sites, used as the proxy of
effective population size (N,). D Pearson’s correlation (two sided) between GC
biased gene conversion (gBGC) strength and 1, gBGC strength (W >S/S > W) was
calculated as the derived allele frequency of W >S mutations to that of S>W
mutations. Tt used as the proxies of N.. E Pearson’s correlation (two sided) between
the ratio of weak to strong (W >S) load to strong to weak (S > W) load and .
provean.d, deleterious missense SNPs (dnSNPs) predicted by PROVEAN; sift.d,
dnSNPs predicted by SIFT; LIST-S2, missense mutations with deleteriousness score
from LIST-S2. Source data are provided as a Source Data file.

projected into future based on future climate (2040-2060 and
2080-2100) under SSP245 emissions scenario, which is a realistic
future scenario that aligns with the current global policies and the level
of emission reduction efforts®. According to present distribution of A.
thaliana, a suitability threshold 0.25 match the distribution of most
accessions (Supplementary Fig. 5A), as suggested by a previous
study®’. Consistent with previous studies®“%, the modeling and pro-
jection suggested that future habitat suitability would become worse
for southern region, while northern region would get much better
(Fig. 4A and Supplementary Fig. 5B).

To incorporate local adaptation into prediction framework, we
identified climate associated adaptive SNPs, built the correlations
between allele frequency of adaptive SNPs and 19 bioclimatic variables
using gradient forest, and projected allele frequency into future based
on future climate (2040-2060 and 2080-2100) under SSP245 emis-
sions scenario. The allele frequency shift between future and present,
we termed genetic offset, varied along space and time, with southern
range, especially the eastern range reached higher genetic offset,
indicating higher vulnerability in these regions (Fig. 4B and Supple-
mentary Fig. 5C).
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Fig. 4 | Incorporating genetic load to predict climate change vulnerability in
2040-2060 under SSP245 emission scenarios. A Habitat suitability change
(future-present) between future and present. Suitability was projected from species
distribution models (SDM). B Genetic offset based on 2040-2060 SSP245 projec-
tions. We only showed regions with present suitability greater than 0.25, as the
threshold matches the distribution of most accessions. C Genetic load projected
with the spatial regression of genetic load and distance to putative origin. Genetic
load was calculated using deleterious mutations predicted by PROVEAN, and

normalized with the genetic load of putative origin. D Climate change vulnerability
based on SDM. Vulnerability decreases from gl to q4. E Climate change vulner-
ability based on genetic offset. Vulnerability decreases from ql to q4. F Climate
change vulnerability based on genetic load. Vulnerability decreases from gl to g4.
G Incorporating SDM, genetic offset and genetic load to predict the fate of different
populations. We added the rank of each factor, low rank value indicates high risk,
while high rank value indicates low risk. H Vulnerability of nine non-relict popula-
tions based on the integration of SDM, genetic offset and genetic load.

It is challenging to predict future genetic load based on climate
change, because genetic load accumulates over many generations,
while climate shifts in a few generations. Therefore, we only incorpo-
rate current genetic load to assess the vulnerability of different
populations. Based on the spatial regression between distance to
putative origin and genetic load (Fig. 3A), we projected genetic load on
the map. We also utilized Kriging interpolation method to predict load

across the landscape, which allow greater flexibility to account for
some of the variability in load estimated. The projection indicated that
the eastern range accumulated much higher genetic load, regardless of
the deleterious mutation types and projection methods used (Fig. 4C
and Supplementary Fig. 5D-G). Consequently, for the following ana-
lysis, we used only deleterious mutations predicted by PROVEAN to
project genetic load based on spatial regression.
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To integrate SDM, genetic offset and genetic load into a predic-
tion framework, we made a sensitivity analysis, by setting different
thresholds of SDM suitability, genetic offset and genetic load. We only
retained regions with present suitability greater than 0.25 to set dif-
ferent thresholds. For each factor, we used quartiles as the threshold,
and divided each map into four vulnerability regions. The vulnerability
map suggested that southern Spain, Central Asia and eastern range
have higher vulnerability in terms of SDM (Fig. 4D and Supplementary
Fig. 6A). Southern and eastern range have higher vulnerability in terms
of genetic offset (Fig. 4E and Supplementary Fig. 6B). Northern and
eastern range have higher vulnerability in terms of genetic
load (Fig. 4F).

Taking these three factors together, we sequentially added the
vulnerability rank, and predicted that the eastern range was the most
vulnerable region, and populations at the range edge are more vul-
nerable to climate change (Fig. 4G and Supplementary Fig. 6C). In
terms of the nine non-relict populations, Yangtze and NW. China & C.
Asia population are the most vulnerable populations, Balkans and
Spain are the second, N. Sweden and W. Europe are the third, while C.
Europe, S. Sweden and Germany are the least concerned populations
(Fig. 4H and Supplementary Fig. 6D).

Discussion

Climate change threatens biodiversity. Understanding how species
respond to climate change paves the way to species conservation and
crop breeding. In this study, we incorporated SDM, local adaptation
and genetic load to predict the fate of different A. thaliana populations
in response to climate change. In particular, we comprehensively dis-
sected the driving forces of genetic load variation, both along different
genomic regions and among populations, and integrated genetic load
to predict the fate of different populations. Our study showed that the
integration of SDM, local adaptation and genetic load, instead of only
local adaptation or SDM, could add valuable insight on predicting the
fate of natural populations, which will be important for the crop
breeding and species conservation.

It is common to estimate genetic load via counting deleterious
mutations, but there is a gap between sequence derived load proxy
and fitness consequence’®’, although the negative correlation has
been observed between deleterious mutation number and fitness
related traits in crops’® 7% Here we filled this gap by observing the
significant negative correlation between load proxy and fruit number.
Nevertheless, it remains unclear how much fraction of the fitness
variation could be ascribed to genetic load. Some of the variation in
fitness could also be related to environment adapted alleles and their
match or mismatch to the greenhouse environment. In addition, we
only focused on coding SNPs, noncoding SNPs and structural varia-
tions could also contribute substantially to total genetic load and
phenotypic variation*®’>”, Therefore, future study incorporating all
these variants are appreciated to improve our understanding of the
role of genetic load in fitness and species conservation.

To decipher the driving forces of genetic load, we considered
population genetic processes affecting genetic load and their relative
contribution both along different genomic regions and among differ-
ent populations, while most studies focused on only one or two of
these processes and paid much attention to population level variation.
At different genomic region level, we measured the relative contribu-
tion of each process and found that N, was the major contributor. At
population level, N, could explain 74-94% genetic load variation
among populations, depending on the deleterious mutation types.
Previous studies conducted within species and among species also
highlighted the important role of N, on genetic load***>7*, Particu-
larly, we found that the impact of N, on genetic load not only depends
on the effectiveness of purifying selection, but also gBGC strength,
which was in contrast to the traditional view that N, affected genetic
load only via effectiveness of purifying selection. Therefore, large

populations purge drift load and meanwhile accumulate gBGC load,
but purging was much stronger than accumulating. The positive cor-
relation between N, and gBGC strength was also reported in human
and mammals®*®, However, the correlation between N, and gBGC
strength was not always monotonous in other species”.

Genetic load accumulated with the increased distance to putative
origin, similar to the study in human®. Utilizing the relation between
distance and genetic load, we speculated the origin of non-relict
populations, which is similar to that predicted with population
polymorphisms®*. Accordingly, we projected genetic load across the
map based on distance to origin, and leveraged this information to
predict population loss, based on the assumption that populations
with higher genetic load have less potential to respond to climate
change. Due to the contrast between long-term accumulation of
genetic load and rapid shift of climate, predicting future genetic load
based on climate change is still a challenge. Although the distance to
niche centroid has been utilized to predict genetic load’, it is just a
gross approximation.

Incorporating SDM, local adaptation and genetic load could pro-
vide comprehensive insights on predicting the climate change vul-
nerability of A. thaliana populations. Focusing on only one of them,
one would be biased in making conservation strategies™. In our
study, predictions based solely on SDM or genetic offset might suggest
that the N. Sweden population is safe, but when genetic load is con-
sidered, it may indicate an increased risk for this population. Never-
theless, except for SDM, local adaptation and genetic load, other
factors, such as gene flow of adaptive or maladaptive alleles, the dis-
persal potential of populations, could also affect the response ability of
populations to climate change®.

More importantly, systematic integration of all these factors is still
a challenge. A previous study introduced the FOLDS model, which
could integrate multiple factors and apply empirical thresholds to
different factors®. Nevertheless, empirical thresholds were still much
ambiguous, and determining the weight of each process is difficult.
Here we assigned risk levels for each factor based on quartiles, and
summed them to assess the relative risk of each population. Although
in its early stages, it can be readily used in conservation and manage-
ment, with the flexibility to incorporate additional processes. Future
study systematically integrated all these factors would enable more
precise prediction of the evolutionary fate of populations. Overall, our
study highlighted the importance of integration of SDM, local adap-
tation and genetic load on species conservation and crop breeding.

Methods

Datasets and population structure

The whole genome resequencing data of 1,114 globally distributed A.
thaliana non-reference accessions were retrieved from previous
studies®**., The 1114 non-reference accessions were composed of
one relict group and ten non-relict populations*.

Paired end reads of the 1114 non-reference accession were first
aligned to the reference genome using BWA (0.6.2)’°. Following
alignment, the “rmdup” function of Samtools (0.1.18)”” was employed
to eliminate duplicate reads resulting from library preparation or
sequencing. SNPs were called using Genome Analysis Toolkit (GATK
2.5)’%. Additional filtering of raw SNPs was conducted using the “Var-
iantFiltration”, applying criteria such as quality score (Q) > 30, map-
ping quality (MQ) =20, quality-by-depth ratio (QD) > 10,
ReadPosRankSum > -8.0, depth coverage (DP) > 3, strand bias prob-
ability (FS) < 10.0, and having no more than three SNPs within a 10 bp
window. Only homozygous SNPs with missing rate less than 10% were
used for further analysis. Allele state of each SNP site was determined
based on the whole genome alignment of Col-O (TAIR10) to Arabi-
dopsis lyrata (MN47, v1)’® and Capsella rubella (MTE, v1)*° using LASTZ
(1.04.00)*. Ancestral alleles were defined as those that matched in
both A. lyrata and C. rubella, while derived alleles were those where A.
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lyrata and C. rubella had identical states, but A. thaliana did not
match them.

Deleterious mutation identification

SNPs were annotated with SnpEff(v4.3t)®2. PROVEAN (1.1.5)%, SIFT 4G**
and LIST-S2 (1.10)® were used to predict deleterious missense SNPs.
For each SNP site, the derived allele was submitted for prediction. NCBI
nonredundant protein database®, Uniref90*” and UniProt TrEMBL/
SwissProt were used as the reference database of PROVEAN, SIFT 4G
and LIST-S2, respectively, as recommended by these softwares. In
PROVEAN prediction, missense SNPs with score < -2.5 were defined as
deleterious SNPs (dnSNPs), while SNPs with score >-2.5 were defined
as tolerated SNPs (tnSNPs). In SIFT 4G prediction, missense SNPs with
score <0.05 were defined as deleterious SNPs (dnSNPs), while SNPs
with score >0.05 were defined as tolerated SNPs (tnSNPs). In LIST-S2
prediction, the score ranges from O to 1, higher score indicates higher
deleteriousness. Loss of function (LoF) mutations (including stop-gain

and splice site mutation) were obtained from our previous study*.

SNP age estimation

For each non-singleton SNP site with determined ancestral state and
passed our quality and missing rate control, GEVA (vlbeta)** was used
to estimate age distribution. Although in human, a species level para-
meter of N, and mutation rate was used*, different populations have
varied N, and mutation rate. In A. thaliana, N, and mutation rate were
estimated to be about 300,000 and 7e-9 per site per generation in
previous studies®***,

To test the impact of parameter setting on robustness of age
estimation, we randomly selected 1000 SNP sites from the genome,
and estimated their age with gradient N, (from 100,000 to 500,000)
and mutation rate (from 5e-9 to 9e-9) setting that fluctuating around
the species level parameter. When we evaluated the impact of N,
mutation rate was set as 7e-9, and for the impact of mutation rate, N,
was set as 300,000. The evaluation suggested that age estimation was
robust to parameter setting, based on their high correlation under
different parameter setting (Supplementary Fig. 7). Therefore, we used
the species level parameter “--Ne 300000” and “--mut 7e-9” to estimate
SNP age. The mean of the composite posterior distribution under joint
model was used as the age estimates for a given SNP site.

Genetic load proxy calculation

For population level comparison, three genetic load proxies were
calculated, derived allele count of deleterious mutations, ratio of
derived allele count of deleterious mutations to that of neutral sites
and R, (a relative measure of dnSNPs frequency enhancement). For
PROVEAN and SIFT 4G predictions, derived allele count was calculated
as the derived allele count of dnSNPs. For LIST-S2 predictions, derived
allele count was calculated as the sum of deleteriousness scores. Ra/p
was calculated as previously described® between the putative origin
Balkans and other non-relict populations to measure the relative
derived allele counts of dnSNPs that occur more often in the expanded
populations than in Balkans.

Random forest modeling for determinants of genetic load var-
iation along the genome
For comparison along different genomic regions, the reference gen-
ome was divided into non-overlapping 50 kb windows, and genetic
load proxy was calculated in each window. The ratio of derived allele
counts of deleterious mutations to that of fourfold degenerate sites,
instead of derived allele count of deleterious mutations, was used as
genetic load proxy, considering the varied strength of linked selection
along genome.

Mutation rate in each window was calculated from the de novo
mutations from 107 mutation accumulation lines**. Recombination
rate at each window was estimated from a crossover map in 17 F,

populations derived from 18 A. thaliana lines.. N, of each window was
calculated as the nucleotide diversity of fourfold degenerate sites
(T,)*2. The strength of GC-biased gene conversion (gBGC) in each
window was measured with the ratio of derived allele frequency of
weak-to-strong (W >S) mutations to that of strong-to-weak (S >W)
mutations (W >S/S >W), as previously suggested™.

To analyze the impact of four predictors (mutation rate, recom-
bination rate, Tty and W >S/S > W) on genetic load, 1986 windows with
all these parameters were used. Each predictor was ranked and split
into 20 equal sized bins, and Spearman’s rank correlation test was
performed to test the relationship between these predictors and
genetic load proxy.

Random forest model implemented with R package “caret”
(6.0.94) (method = “ranger”) was fitted on genetic load proxies of each
window to explore the relative contribution of mutation rate, recom-
bination rate, and T, to genetic load variation along the genome®, A
fivefold cross-validation procedure was used to evaluate the accuracy
of model, by using 70% of the datasets as training data, and the
remained 30% as testing data. The scaled permutation based variable
importance for each predictor was obtained from the random forest
model “varlmp” function and used to measure their contribution.

Population history and N, estimation

SMC++(v1.15.4)*° was used to estimate the historical population size in
each population. As A. thaliana is a selfing species, for each population,
20 pseudo-diploid genotypes were generated by randomly selecting
40 individuals. Mutation rate was set to 7e-9 based on previous
studies***, and the timepoints was set to “100 100000”. Composite
likelihood was formed by create five distinct datasets, by varying the
identity of the distinguished individual and treating the remaining
samples as “undistinguished”.

Predicting the origin of non-relict expansion based on
expansion load

A map with 10 arc-minutes geographic resolution was downloaded
from worldclim v2, and the range was limited to 20 W to 160 E, and O
to 69 N, based on the distribution of non-relicts. Each coordinate on
the map was assumed to be the origin, and distances from the
putative origin to non-relict accessions were calculated with ‘rdis-
t.earth’ function in the “fields” (14.1) package of R. The Spearman’s rank
correlation between distance and genetic load was calculated for each
putative origin, and plotted on the map. The top 1% region with the
highest correlation was defined as the putative origin area, and coor-
dinates with the highest correlation was assigned as the most likely
origin.

Species distribution modeling

To model the species distribution of A. thaliana, occurrence data from
Global Biodiversity Information Facility (GBIF) and accessions used in
this study were used. The occurrence data was further thinned to one
sample per 50 km using the “poThin” function of “RSpatial” (0.3.0)
package of R to reduce sampling bias.

19 bioclimate variables of present and future (2040-2060 and
2080-2100 under SSP245 emissions scenario) were downloaded from
worldclim v2. To achieve a balance between reducing multicollinearity
and retaining meaningful variability, we selected Bio3, Bio6, Bio7, Bio8,
BiolO, Biol5, Biol6 and Biol7 for modeling. These variables were
chosen based on their relatively low correlation (Pearson’s correlation
coefficients among variables <0.75) and hypothesized importance, as
previously described®””. MaxEnt was used to model species
distribution®®. “ENMeval” (0.3.1) package of R” was used to optimize
parameters of MaxEnt, using “randomkfold” for cross validation.
Model with the lowest Akaike information criterion (AIC) value was
used to build and project species distribution under present and future
climate.
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Genetic offset calculation

“pcadapt” (4.3.3) package®, latent factor mixed models (LFMM) model
from “LEA” (2.8.0) package’ and omegaplus (3.0.3)** were used to
scan adaptive SNPs (SNPs with top 5% score), respectively. SNPs
identified as adaptive SNPs by all software were regarded as the
adaptive SNP datasets. Random SNP datasets was generated by ran-
domly sampling the same number of SNPs as the adaptive SNP data-
sets. The correlation between allele frequency and 19 bioclimate
variables from worldclim v2 was built, and genetic offset, the Euclidean
distance between present and future values, in future climate
(2040-2060 and 2080-2100) under SSP245 emission scenarios was
projected with the “gradientForest” (0.1.32) package®™.

Statistical analyses
All statistical analyses were performed in R.

Data availability

The whole genome sequencing data used in this study are retrieved
from the following database under these accession codes, NCBI
SRP056687 (https://www.ncbi.nlm.nih.gov), ENA PRJEB19780 (https://
www.ebi.ac.uk/ena/browser/home),  NCBI SRP062811, GSA:
CRA008569 (https://ngdc.cncb.ac.cn/gsa). Source data are provided
as a Source Data file. Source data are provided with this paper.

Code availability
All code for analysis is available at https://github.com/juanj64/
Genetic-load.
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