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Deep reinforcement learning can promote
sustainable human behaviour in a common-
pool resource problem

Raphael Koster 1,6 , Miruna Pîslar1,6 , Andrea Tacchetti1, Jan Balaguer1,
Leqi Liu1,2, Romuald Elie1, Oliver P. Hauser 3, Karl Tuyls1, Matt Botvinick 1,4 &
Christopher Summerfield 5

A canonical social dilemma arises when resources are allocated to people, who
can either reciprocate with interest or keep the proceeds. The right resource
allocation mechanisms can encourage levels of reciprocation that sustain the
commons. Here, in an iterated multiplayer trust game, we use deep reinfor-
cement learning (RL) to design a social planner that promotes sustainable
contributions from human participants. We first trained neural networks to
behave like human players, creating a stimulated economy that allows us to
study the dynamics of receipt and reciprocation. We use RL to train a
mechanism to maximise aggregate return to players. The RL mechanism dis-
covers a redistributive policy that leads to a large but alsomore equal surplus.
The mechanism outperforms baseline mechanisms by conditioning its gen-
erosity on available resources and temporarily sanctioning defectors. Exam-
ining the RL policy allows us to develop a similar but explainable mechanism
that is more popular among players.

A healthy economy is sustained by trust among economic actors1–3. For
example, a buyer comes to trust that a supplier’s goods are of expected
quality4,5; an employer trusts that employees will provide adequate
work6,7; and the state trusts its citizens to meet minimum standards of
civic responsibility8. A canonical trust problem arises when resources
are drawn down from a common pool and allocated to a group, who
may then choose to replenish the pool with interest9. The search for
mechanisms that encourage sustainable reciprocation in this class of
common pool resource (CPR) problem has been a central concern in
the social sciences10,11. Unfortunately, mechanism designers must
overcome a classic social dilemma: when resources are offered, each
recipient can choose to reciprocate (for the commongood) or selfishly
keep the proceeds without giving anything back (for individual bene-
fit). In repeated settings, selfish recipients will maximize their own
payoff in the short run, but it is in the collective long-term interest to
ensure thatobligations aremet, in order to sustain future allocation12,13.
For example, if company founders fail to repay a government start-up

loan, the government may be left with fewer resources to inject into
the future economy; likewise, if employees shirk, a business may fail,
leaving them unemployed. The same dynamic governs sustainable
stewardship of shared resources, such as a financial endowment, har-
vestable stocks like forests or fisheries, or the global environment.

Since the pioneering work of Elinor Ostrom, solutions to this
problem have emphasised the ways that people can self-organise to
sustainably manage a shared resource9. In laboratory settings, these
solutions have been studied by equipping players with auxiliary signals
or actions that allow them to communicate, influence each other or
self-organise, which can increase voluntary contributions towards a
public good. For example, in multiplayer games, cheap talk14,15 and
onymity16 sustain reciprocation, and participants will often opt-in to
games with mechanisms that allow players to ostracise uncooperative
group members at personal expense or that permit sanctioning
schemes to punish free riders17,18. Cooperation tends to increase when
players can vote for exclusion of free riders19, observe who is
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trustworthy20, or enter into contracts that enforce minimum recipro-
cation levels21,22. Whilst insightful, this work leaves unaddressed the
starker question of how resources canbe allocatedby a principal agent
(or social planner) in ways that incentivise trust, when forms of insti-
tutional self-organisation that permit mutual sanctioning, voting, or
contracting among recipients are unavailable. This is a potentially
daunting problem, because the study of CPR games has typically
shown that without such institutional coordination mechanisms, pri-
vate contributions are unstable and prone to collapse. Here, we asked
whether there exist top-down resource allocation mechanisms that
can lead to a sustainable, inclusive economy, for example by
encouraging recipients to reciprocate because they consider alloca-
tion to be beneficial, fair and transparent. This is a fundamental pro-
blem with widespread implications for the provisioning of public
goods, and theories of optimal taxation, remuneration, and welfare.

Themain innovation thatwebring to tackle this problem is theuse
of new tools from AI research. Deep neural networks are powerful
function approximators, allowing them to learn intricate policies that
dependon a complex sequence of past events. Here, we askedwhether
a deepnetwork could learn todynamically allocate resources to human
recipients in ways that encouraged them to sustain the common pool.
A natural methodological toolkit for designing a resource allocation
mechanism is deep reinforcement learning (RL), in which neural net-
works can be optimised to take actions that maximise a scalar quantity
(an objective function or ‘reward’)23. Here, we define this objective as
the funds which human players take home from the game, aggregated
over rounds and individuals, so that games sustained for longer yield
higher rewards. In other words, the RL agent’s objective is to achieve
high social welfare for the group across all rounds of the game.

In applying tools fromAI research to study resource allocation, we
are building upon earlier work, in which we used deep RL to maximise
reported human preferences (votes) over a resource allocation policy
in a linear public goods game24,25. This previous work made several
simplifying assumptions that our new approach solves. First, pre-
viously the RL agent maximised votes, whereas our agent maximises
actual long-term welfare of the group. Second, rather than use a pool
of fixed size, now the pool size varies as assets are drawn down and
replenished, and so the agent has to learn a policy that depends on the
past history of contribution and the current level of resources (indeed,
we shall see that the latter is a critical factor in the solution it dis-
covers). To meet this challenge, we use a deep RL system that is
equippedwith amemory network allowing it to condition its policy on
the history of the current game (rather than treating each round of
exchange as if it were independent from every other).

To evaluate our RL model, we first chose a space of simple
mechanisms, drawn froma continuumalongwhich allocations depend
to varying degrees on the level of reciprocation made by each player.
These baseline mechanisms expose why the problem is theoretically
interesting. At one extreme, the social planner could offer equal
resources to recipients irrespective of their past reciprocation. How-
ever, this “equal” policy incentivises free riding, as self-interested
recipients can rely on others to carry the burden of reciprocation
without jeopardising their own relative future receipt26,27. Thus, some
argue that unconditional welfare—or a universal basic income—from
the state discourages citizens from seeking work28. At the other
extreme, a social planner could offer recipients investments that are
proportional to their past reciprocation, so that self-interested agents
are encouraged to reciprocate in expectation of future receipt29.
However, this “proportional” policy means that trustees receiving less
will have reduced capacity to reciprocate, further diminishing their
subsequent allocation – and thus locking them into a cycle of ever-
diminishing resources. For example, cutting unemployment benefits
may itself create circumstances unfavourable to reemployment30, such
as long-term ill-health31, leading to workers being permanently exclu-
ded from the labour market.

In this work, our approach to identifying a sustainable allocation
policy draws on ideas from game theory and cognitive science as well
as AI research. We first collect data from a large group of humans
playing a multiplayer trust game. Using machine learning techniques,
we build an accurate simulation of human behaviour in the game,
populatedby neural networks thatbehave likehumanplayers.We then
use RL to train an artificial agent to allocate resources to simulated
people in a way that should maximise sustainable exchange. We then
test the mechanism with real human participants. Surprisingly, the RL
social planner identifies a resource allocation mechanism that suc-
cessfully promotes sustainable behaviour amongpeople, evenwithout
endogenous mechanisms that allows them to communicate or self-
organise. We then investigate the properties of this mechanism, and
build a simple, explainable heuristic that can recreate it, which we find
to be equally successful at promoting sustainable behaviour.

Results
We devised an infinitely repeated multiplayer trust game, based
around the challenge of sustaining a common pool resource. The
social planner is assumed to be an individual or institution that decides
who gets what by allocating monetary resources to p human
recipients32,33. The allocation mechanism can either be designed by
human hand or discovered by a reinforcement learning (RL) agent. On
each round t of the game, each recipient i is allocated an endowment
ei, t from a common pool with resources Rt (so that

P
iei, t ≤Rt) and

freely chooses to make a reciprocation 0 ≤ ci, t ≤ ei, t back to the pool,
with the remaining surplus si, t = ei, t � ci, t retained for private con-
sumption. The mechanism determines the level of resources that is
allocated to each player, including no allocation. The pool is initialised
to its maximum value R0 and updated on each round so that
Rt = minðR0 ,Rt�1 +ΔRtÞ with ΔRt = �P

iei, t + ð1 + rÞ
P

ic where r is a
growth factor. Imposing a maximum value on the pool reflects the
assumption that in many settings (e.g. ecosystems, certain business
models) resources cannot grow beyond a fixed carrying capacity. This
abrupt nonlinearity can also reflect that individual business models,
technologies or satiated markets can reach maximums of growth. The
game continues for an unknown number of rounds (at which point any
surplus funds in the pool are lost) or until the pool is fully depleted.
The agent objective was to discover an allocation mechanism that
maximises the aggregate surplus over rounds and players

P
i

P
tsi, t .

For all games described here, we used p=4, R0 = 200, and r =0:4. We
provide an illustration of the game in Fig. 1A, and an overall roadmap
for our research project in Fig. 1B.

In Exp.1, we recruited an initial cohort of 640 participants (160
groups of 4 participants) who played the game online over 40 rounds
(this number of rounds was a priori unknown to players; in our follow-
up experiment below, we introduce a continuation probability to fur-
ther reduce end-game effects). After the game, players received bonus
payments proportional to their average surplus over a randomly and
uniformly chosen number of rounds (n≤40; this rule, which was
clearly explained to participants, discourages strategic responding
based on when the episode will end). Of these groups, 120 played the
game under pre-determined allocation mechanisms (hand-designed
by the researcher). These were drawn from a space of baseline
mechanisms that computed the allocation to player i≠j on round t (for
t>1; allocation was always equal on the initial round t0) as a weighted
sum of a proportional and equal allocation policy, controlled by a
mixing parameter w:

ei, t =w � Rt

p
+ 1�wð Þ � Rt �

ci, t�1P
jcj, t�1

ð1Þ

In Exp. 1, 40 groups each played under baseline allocation
mechanisms defined by w=0 (proportional), w=0:5 (mixed) and w= 1
(equal). Note thatw = 1 in the equation above (i.e. all players receive an
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equal share from the social planner) creates the largest incentives for
free riding. In Fig. 1C we show dynamics for the pool (top panels) and
eachplayer (lower panels) for anexample game (with virtual players) in
equal and proportional baseline conditions (left and middle panels).
Equal allocation most often leads to a rapid collapse in reciprocation
and thus in pool size, similar to that seen in linear public goods games
(Fig. 1C, left), where the pool dwindles to zero and no further alloca-
tions can be made (so all players are “excluded”). Under proportional
allocation (where any player that gives zero will receive no future
allocations) we typically observe a pattern whereby several of the
players are excluded early. For example, in the game shown in Fig. 1C
(middle panel) three players drop out early in the game, leaving Player
4 to sustain the pool. Thus, as expected, proportional mechanisms
create inequities when players fall into poverty traps, which leaves just

a single individual in the economy – removing the need for mutual
trust, and highlighting the uncomfortable maxim that under such a
scheme “the monopolist is the conservationist’s best friend”34.

Statistically, we observed that games played under the equal
baseline led to lower surplus than other conditions (equal <mixed,
z = 4.58, p < 0.001; equal <proportional, z = 5.28, p <0.001; all two-
tailed Wilcoxon rank sum tests at the group level unless otherwise
specified), whereas games played under the proportional baseline led
to higher Gini coefficient (the inequality of total player surplus by the
end of the game) than other conditions (proportional >mixed,
z = 5.89, p <0.001; proportional > equal, z = 4.76, p < 0.001). In Fig. 2A
(right panel) we show aggregate surplus and Gini coefficient for each
mechanism in the games played with human participants in Exp.1. The
equal (blue dots) andmixed (purple dots) conditions yield low surplus

Fig. 1 | Illustration of the game. A Two rounds (denoted t) are illustrated (col-
umns). In each, amechanism allocates resources (blueflowers) fromapoolof sizeR
to p=4 players, who each choose a quantity to reciprocate, with any remainder
going to surplus (gold coins). For example, in the schematic, in round t the first
player (left) receives 2 flowers, and reciprocates 1, generating a surplus of r =0:4
(amount due to growth factor shown in grey). The pool size is depleted by the
allocation and replenished by the reciprocations. Note that players who receive no
resources cannot reciprocate (e.g. centre left player on round t) (B) Illustration of
our approach. First, (1) we collected data fromhuman participants under a range of
mechanisms defined by different values ofw, and used imitation learning to create
clones that behaved like people. Then (2) we used these clones to train the RL
agent, and (3) conducted Exp.1, in which we compared the RL agent to baselines.
Next, (4) we analysed the RL agent policy, and constructed a heuristic

approximation that was more explainable (the ‘interpolation baseline’), which (5)
we tested on behavioural clones, and (6) compared to the RL agent (and propor-
tionalmechanism) in Exp. 2. Finally, (7)we used all of the data so far to retrain a new
version of the RL agent, and (8) compared it to the interpolation baseline in Exp. 3.
C Example games (using behavioural clones). The game starts with R0 = 200. Left:
offers (full lines) and reciprocations (dashed lines) to four players (lower panels)
over 40 trials (x-axis) in an example game with the equal baseline. The grey shaded
area indicates where each player receives an offer of zero. The top panel shows the
size of the pool (blue) and the total per-trial surplus (red). The middle and right
panels show example games under the proportional baseline and the RL agent,
respectively. Note that in the example proportional baseline game, three players
fall into poverty traps, leaving a single player to contribute, and increasing
inequality.
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and low Gini (~0.1; because surplus is uniformly low), whereas pro-
portional (red dots) has a higher surplus but incurs a much higher Gini
of just under ~0.4.Whenwe computed the fraction of games that were
sustained to the final (40th) round, we found that 60% of proportional
games were sustained with at least one player, but none with all four
players; by contrast, in mixed or equal conditions, where games were
either sustained by everyone or not at all, 30% and 5% of games fin-
ished with all four players still active. Thus, our baseline mechanisms
were not successful at encouraging sustained reciprocation from
human players.

The final 40 groups of humans in Exp.1 played the game in the RL
agent condition, where allocation decisions weremade by anAImodel
that hadbeen trained tomaximise recipient surplus. To train the agent,
we first collected several hundred games inwhich a different sampleof
humans played under a range of policies (baseline mechanisms with
randomly sampled w). We then used imitation learning to create vir-
tual players, which were recurrent neural networks, and whose beha-
viour was optimised to be as similar as possible to that exhibited by
humans in the training cohort.We then combineddeeppolicygradient
methods (25) with graph neural networks (26) to train an agent to take

on the role of social planner, optimising it to maximise the aggregate
surplus over virtual players (see Materials and Methods for a full
description of this pipeline, and Fig. 1C right panel for example games
under the trained RL agent).

The mean surplus and Gini coefficients from simulated games
(with virtual players) involving the RL agent are shown as the green
dots in Fig. 2A (left panel), along with the corresponding empirical
observations from real humans in Exp.1 (right panel). Strikingly, in
Exp.1 the RL agent generated a surplus that was ~150% greater than the
highest baseline (proportional) anddid this under amuch lowerGini of
just over ~0.2 (Fig. 2A, green dot). Over games, the RL agent generated
a higher surplus than the other conditions (RL agent > proportional,
z = 3.25, p = 0.001; RL agent > mixed, z = 4.38, p <0.001; RL agent >
equal, z = 6.31, p <0.001), and it also had a lower Gini coefficient than
the proportional baseline (RL agent <proportional, z = 2.78, p <0.01)
but not than the equal or mixed conditions (Gini is lowest after a
collapse in welfare, because nobody gets anything; RL agent > mixed,
z = 6.29, p <0.001; RL agent > equal, z = 4.19, p < 0.001). Overall, 65% of
all games played under the RL agent were sustained to the end with at
least one player, and 55% of these were with all four players. We

Fig. 2 | Results of first trained mechanism against baselines. A The surplus and
Gini coefficient generated from games played under three baseline mechanisms
(blue, purple and red) and the RL agent (green), for virtual players (left panel) and
humanparticipants (right panel) in Exp. 1. Each small dot is a game; the larger dot is
the mean over games. B Correspondences between predicted outcomes (from
virtual players, shading) and observed outcomes in Exp.1 (dots) for each baseline
mechanism and the RL agent. Shown separately for games that were sustained to
the end by at least one player (colours) and those where the pool was exhausted
prematurely (grey).C The average Gini coefficient of the offer made to players as a
functionof thepool size, for individual trials (grey dots) andgames (coloureddots),

both for behavioural clones (upper panels) and humandata in Exp.1 (lower panels).
D Exclusions occur when a player receives nothing for one or more consecutive
rounds. Here, we plot the duration of exclusions against the trial on which they are
initiated (dots). Points on thediagonal indicate that theplayerwasnever reincluded
(exclusion lasts until trial 40). The superimposed coloured histograms show the
count of exclusions for eachdurationbin (ofwidth 2).Note that unlikebaselines the
RL agent excludes frequently, but for short durations. E The offer made by each
mechanism to each player as a function of the lagged contribution of that player
over adjacent trials. Dots are individual coefficients; black line is the median.
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additionally generated two further indices of economic inclusivity: the
average number of active players across the game (those receiving a
nonzerooffer) and the average trial onwhich thepoolwasdepleted (or
the maximum number of rounds [40], whichever was lower). The RL
agent sustained the pool for longer than the equal (z = 5.83, p < 0.001)
andmixed (z = 2.37, p <0.05) but not proportional baseline; however it
maintained more active players than both the equal (z = 4.45,
p <0.001) and proportional (z = 3.16, p < 0.01), but not mixed,
baselines.

Our RL agent performed well with new participants because our
simulated virtual players performed almost exactly like real human
playersof the game. This ismost clearly visible in Fig. 2Bwhereweplot,
for Exp.1, the joint distribution of surplus, Gini coefficient, and the two
inclusivitymeasures (active players andmeandepletion trial). Thedots
in each plot show the data from Exp. 1 and the shaded area shows the
distribution of data generated using behavioural clones: without
exception, the overlap is striking (see also Fig. S1). This means that we
have created a model of how people play the game that successfully
generalises across different game variants, and could in theory be used
to evaluate the likely success of any new mechanism.

The agent thus found a way to encourage humans to reciprocate
collectively, producing a sustainable surplus without compromising
equality. Of note, examining the relationship between surplus and Gini
in Fig. 2B, we can see that for the proportional baseline, these are
positively correlated both for games that are sustained to the end
(r =0.69, p < 0.001) and those that are not (r =0.89, p < 0.001),
meaning that surplus is always generated at the expense of equality;
similar positive correlations were observed formixed conditions when
games endedprematurely (r =0.54,p < 0.01). By contrast, under theRL
agent mechanism, surplus is positively correlated with Gini for those
games that end prematurely (r = 0.81, p =0.001), but negatively cor-
related for those games that are sustained to trial 40 (r = -0.5,
p <0.008). Thus, under the mechanism discovered by the agent,
games with higher surplus were more egalitarian, which is striking
because the agent was not trained to maximise equality. In fact,
simulations using virtual players predicted that games played under
the agent mechanism would last an average of 271 ± 251 rounds,
compared to 32 ± 28 and 105 ± 102 for the equal and proportional
baselines respectively (Fig. S2).

What was the agent learning to do? Our baseline mechanisms do
not condition allocations on the pool size, whereas our agent (which
receives pool size as an input) could use this knowledge to flexibly
scale its generosity to available resources. To test this, in Fig. 2C we
plotted the Gini coefficient of the offer as a function of pool size for
individual trials (grey dots) and the average over games (orange dots)
for each of the mechanisms, both for virtual players (top panels) and
human participants in Exp. 1 (bottom panels). As can be seen, whereas
proportional offers were typically highly unequal, the RL agent tended
to distribute more equally when resources were more abundant. A
more direct test of the agent’s policy is provided in a controlled
experiment using virtual players, wherewemeasure how its behaviour
changed in response to spurious information about the level of
resources in the pool. As implied by Fig. 2C, this analysis revealed that
the agent was more punitive when the pool was low, but made more
generous offers and distributed resources more equally as the com-
mon pool grew (Fig. S3). This behaviour is reminiscent of Kuznets
theory, which proposes a curve describing how nations becomemore
egalitarian as their economy develops35.

One salient aspect of the proportional baseline is that a recipro-
cation of zero (defection) always leads to a player being permanently
excluded (because they become instantly stuck in a poverty trap – in
essence, the proportional mechanism adopts a strategy akin to Grim-
trigger36), whereas under an equal baseline, individual defections go
unsanctioned (until the pool is exhausted). By contrast, the agent
seemed to learn to temporarily exclude defecting recipients, typically

withholding offers for ~1-5 rounds but then making a more generous
offer on the “re-inclusion” step, presumably to coax players back into
the game (Fig. 2D). Themean of exclusion durations per gamediffered
significantly between the RL agent and other baselines (RL agent
<proportional, z = 10.32, p < 0.001; RL agent <mixed, z = 7.87, p < 0.001;
RL agent <equal, z = 11.54, p <0.001). The overall pattern is reminiscent
of the successful ‘tit-for-two-tats’ or ‘generous tit-for-tat’ strategy in
iterated prisoner’s dilemma, whereby the agent is prone to punish but
quick to forgive37–39. Another interesting way of visualising each
mechanism is to plot the relationship between the offer on trial t and
the reciprocation that players offered over adjacent trials (lagged from
t � 4 to t +4 steps). For example, for the proportionalmechanism, the
offer is entirely given by the player’s reciprocation on the previous trial
(Fig. 2E, right panels), and the same is true to amore graded extent for
mixed and equal baselines. However, for the RL agent, the peak is at
t =0, implying that the offer predicts the reciprocation rather than the
other way around. Thus, the agent seems to learn to coax the player
into reciprocating with generous offers rather than the player influ-
encing the agent’s behaviour.

Although we can scrutinise it in this way, the RL agent’s policy
remains hard to understand or explain. A more general contribution
would be to distil these intuitions about the successful policy into a
simpler explainablemechanismwhose policy approximates that of our
deep RL agent, but which could be explained to players. Based on our
explorations of the agent policy, we thus devised an interpolating
baseline that approximates the RL agent allocation mechanism, in
which equality of allocation depends on the size of the common pool.
This model was similar to other baselines, with the exception that the
mixing parameter w was allowed to vary with pool size. Using our
virtual players, we tried out a family of interpolation functions that
map frompool size tow (via a function of the formw= ðR=200Þk where
log kð Þ 2 ½�5, � 4:9 . . . 5�) and picked that whichmaximises surplus for
virtual players. Examining the outcomes of these interpolation base-
lines, we learned that the key feature for (predicted) success was that
the pool had to be allowed to grow quite large beforemore egalitarian
redistribution was permitted, because otherwise “reincluded” players
received small or negligible allocations which did not allow them to
properly participate in the economy (see Fig. S4 and Fig. S5 for more
details). Thus, the most successful interpolating baseline had a high
exponent, such that it was roughly proportional unless the pool was
almost full (Fig. 3A).

To test the efficiency of this new baseline with real participants,
we then ran a new experiment (Exp. 2) using three groups of human
players: (1) a proportional baseline, and (2) the interpolating baseline,
and (3) the deep RL agent. To maximise transparency, we provided
participants with clear explanations about how the baseline mechan-
isms would behave (see Methods). Simulations involving our virtual
players predicted that the interpolating mechanism would perform
very well, and probably indistinguishably from our RL agent. This is
indeed what we found (Fig. 3B). The RL agent and the interpolating
baseline both generated higher surplus than the proportional baseline
(z = 2.9, p < 0.01 and z = 2.52, p < 0.01 respectively) but did not differ
from each other. Both mechanisms also maintained more active
players than the proportional baseline (z = 3.45, p =0.001 and z = 2.88,
p <0.01 respectively). The interpolating baseline in fact had lower Gini
coefficient than both the proportional baseline (z = 4.17, p <0.001) and
the RL agent (z = 3.67, p < 0.001), indicating that it offered an excellent
compromise between prosperity and equality. When we examined the
Gini of themechanismoffer as a functionof pool size, it was difficult to
differentiate between the interpolating baseline and RL agent, as
anticipated based on our virtual player simulations (Fig. 3C). More-
over, whilst the lagged regressions showed a subtly different pattern,
the distribution of exclusion durations of the interpolating baseline
showa similar left-skewas theRL agent (Fig. 3E). Once again, the virtual
players allowed us to make accurate predictions about the outcomes
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with human players, even though they had not been trained on any
data involving the interpolating baseline.

Next, we capitalised on the large andvaried humandatasetwehad
collected during these evaluations (comprising 453 additional groups)
and used it to train new virtual players which, unlike our initial ver-
sions, had experienced high-performingmechanisms including the RL
agent and interpolating baseline. We used these virtual players to train
a new RL agent (M2) and pitted this new agent against our baselines in
a final head-to-head Exp. 3. Because we anticipated that the RL agent
and interpolatingbaselinewouldbewellmatched,we recruiteddouble
the number of participants (80 groups permechanism).We found that
indeed, this new RL agent did achieve higher surplus than the inter-
polating baseline (z = 2.35, p <0.05) but that once again this came at
the expense of equality, with the interpolating baseline generating an
overall lower Gini coefficient for player surplus (z = 5.64, p <0.001) as
roughly predicted by the virtual players (Fig. 4A; see also Fig. S6). In
further simulations, we explored this trade-off between surplus and
Gini inmoredetail (Fig. S7) aswell as the variousmechanisms’ ability to
shape players towards the optimal reciprocation ratio of
1=ð1 + rÞ (Fig. S8).

We also explored the subjectively reported preferences of human
players for each of the mechanisms we deployed in Exp. 2 and Exp 3.
Surprisingly, although the RL agent generated large surplus overall,
human players unequivocally preferred the interpolating agent. It was
judged tobe fairer,moreunderstandable, andmoreprone toencourage
cooperation, and players were clear that theywould prefer to play again
with this mechanism; see Fig. 4 (and Fig. S9 for results from Exp. 2).

One final concern is that our results may be due to the relative
inexperience of participants with the mechanisms, which they
experience over just 40 successive rounds of allocation and recipro-
cation. A related issue iswhether the resultsweobtainedmaybedue to
the incentive structure we imposed, where all games lasted 40 rounds
(but rewards only accrued from a subset of these). To address these
potential issues, we conducted a new experiment (Exp 4, Fig. 4C), in
which a new cohort of players (n = 80 groups of four) played the game
with the M2 agent (or the proportional baseline with additional
instructions) for three successive games in a row. Each game lasted a
minimumof rounds and then endedwith a probability of0.2 after each
additional round (leading to an average of 27.5 ± 4.5 trials per game).
Participants who played with the mechanism M2 generated a larger
surplus in game 1 (z = 2.22 p =0.026), game 2 (z = 4.99 p <0.001) and
game 3 (z = 6.08 p <0.001), relative to a proportional baseline with
augmented instructions. Of note, the surplus obtained grew under M2
from game 1 to 3 (z = 2.84 p = 0.005), but decreased for the baseline
proportional mechanism (z = 2.41 p =0.016). In other words, as parti-
cipants become better acquainted with the mechanism, it becomes
more effective in promoting sustainable exchange.

Discussion
This work makes three contributions. Firstly, we show that it is
possible to accurately model the complex temporal dynamics of
human multiplayer exchange using simple neural network models.
The resulting simulation offered a remarkably accurate ‘sandbox
economy’ that we could use to successfully predict the

Fig. 3 | Results of first trained mechanisms against novel, interpretable
mechanism. A The family of exponential functions that determine w as a function
of pool size (grey lines) and the one that produced the highest surplus with virtual
players (yellow line; ðR=200Þ22). B The surplus and Gini coefficient generated from
games played under two baseline mechanisms (proportional, red; interpolating,

yellow) and the RL agent (green), for virtual players (left panel) and human parti-
cipants (right panel) in Exp. 2. Each small dot is a game; the larger dot is the mean
over games. C Same as Fig. 2C but for Proportional, Interpolating and RL agents.
D Same as Fig. 2E. E Same as Fig. 2D.
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consequences of various resource allocation schemes on surplus,
equality and economic inclusion.

Secondly, using this sandbox, we show that deep RL mechanism
can be used to discover a resource allocation policy which – when
evaluated on new, unseen groups of human players – successfully to
promote sustainable exchange, in terms of the highest levels of return
to recipients (surplus), equity (Gini) and inclusion (proportion of
included players). It achieves this even in the absence of endogenous
mechanisms that allowplayers to communicate or self-organise, and in
a qualitatively different way from baseline mechanisms based on
unrestricted welfare (equal offers) or strictly conditional cooperation
(proportional offers) or mixtures of the two. Unlike these baselines,
the agent learns a mechanism that generates a positive relationship
between prosperity and equality, so that games generating higher
surplus are also characterised by a lower Gini coefficient. The success
of this mechanism seems to hinge on four main factors. First, the
mechanism has a generalised tendency to implement a more egali-
tarian allocation policy when resources are more abundant. Secondly,
it tends to exclude free riders when resources are scarce. Thirdly, it is
more likely to give to those who are prone to replenish the pool.
Fourth, it offers brief, reversible penalties for defection that avoid
creating poverty traps. This dynamic shifting of the mechanism
between a more efficiency-focused versus egalitarian policy may offer
a way to overcome previously documented, opposing preferences of
elite policymakers and average citizens, respectively40. In a different
game without a common pool, this mixture of progressive redis-
tribution and sanction is also the recipe that encourages participants
to vote for the mechanism24.

Lastly, we show that a heuristic mechanism that is designed to
mimic these features of the RL agent policy elicited similar levels of
sustainable cooperation from humans. This demonstrates that the key
feature of a successful allocation mechanism is indeed the way that
equality of offer varies with the available resources (we chose tomimic

this mapping with a power law function, but we recognise that this is
not the only viable function that could be used to successfully capture
this relationship). This “interpolation” baseline achieved comparable
(Exp.2) or only slightly lower (Exp.3) surplus, with higher equality and
greater approval from human participants on a range of indicators.
Thus, the mechanism was explainable to participants, and indeed
human players judged it to be easier to understand. Like the RL agent,
the interpolation agent was more prone to exclude defectors when
resources are scant, so that the pool builds rapidly on the back of
strongly reciprocating players. However, once the pool is replenished,
the agent re-introduces excluded players, which has the effect of
bringing average reciprocation close to optimal. This dynamic of
inequality resembles that proposed to occur intrinsically during eco-
nomic development at the level of nation states35. The fact that we can
learn from RL models to build explainable, heuristic approximations
opens a path for machine learning to help solve social and economic
problems by informing, rather than replacing, human policymakers.

Themachine learning architecture and pipeline used to tackle the
problem is very general. The model of human behaviour makes no
assumptions about the structure of the game, its inputs and outputs or
what humans should aim to maximize. The mechanism, being equip-
ped with the ability to retain memories within an episode, is similarly
flexible. While we varied different factors of the game (e.g. Fig. S2
explores longer games), the pipeline itself should be amenable to yet
more radical changes in the game structure (e.g. games more focused
on risk or coordination) or input space (e.g. equipping the agents with
convolutional neural networks should enable the processing of video
games from pixels). An exciting challenge would be to find real world
applications in which both initial data is available and in which
exploring interventions via a mechanism is safe (e.g. designing auc-
tions, recommendation algorithms, managing queues in an amuse-
ment park, setting incentives for contributions in virtual
communities). The inclusion of memory to accommodate rich

Fig. 4 | Results of second trainedmechanism. A The surplus and Gini coefficient
generated from games played under the interpolating baseline (yellow) and the RL
agentM2 (light green), for virtual players (left panel) and humanparticipants (right
panel) in Exp. 3. Each small dot is a game; the larger dot is the mean over games.

B Average reported preference for the interpolating (yellow) and RL agent M2
(green) agents on a number of dimensions. C Same as A; Results from human
participants in Exp. 4., in which groups of players play three consecutive games.

Article https://doi.org/10.1038/s41467-025-58043-7

Nature Communications |         (2025) 16:2824 7

www.nature.com/naturecommunications


dynamics within long episodes is a key technical advance over ref
(ref. 23). Retaining activations over the whole episodemakes the setup
more compatiblewith amuchmoregeneral class of games, rather than
a narrow set of stylized strategic games.

In closing, we note some limitations of this work. Our participant
cohort was drawn exclusively from the UK and USA. We do not know
whether our results generalise beyond this demographic; moreover,
we did not collect more fine-grained demographic data, so we do not
knowhowwhether ourmechanismmayworkmore effectively for (say)
groups that differ bygender, age, or other relevant variables. Secondly,
we note that the game employed here is somewhat different from the
classic CPR problem, in that rather than drawing down freely from the
common pool, players decide what to keep or reciprocate from a pre-
set allocation, decided by the mechanism designer. This follows the
logic of an iterated trust game (onewayof thinking of this innovation is
that the mechanism designer can set quotas on extraction). This for-
mulation highlights the temporal dynamics within an episode in which
players need to build a relationship over time, and motivates the
implementation of a mechanism that can retain activations within an
episode. Finally, whilst the mechanism discovered by deep RL is suc-
cessful in the stylised game we employed here, this does not provide
guarantees that similar principles would play out in more complex,
naturalistic environments.

Methods
Materials and methods
Human task and interface
Participants. All participants were recruited from the crowdsourcing
website Prolific Academic (https://prolific.co) and gave informed
consent to participate. The study was approved by HuBREC (Human
Behavioural Research Ethics Committee), which is a research ethics
committee run within Google Deepmind but staffed/chaired by aca-
demics from outside the company. The final dataset contains 4952
participants. Participants joined groups of 4 via a lobby system and
were allocated to games on a first come, first served basis. The entire
experiment lasted ~15–35min. We collected no demographic data. No
statisticalmethodwas used to predetermine sample size. Nodatawere
excluded from the analyses (except games with incomplete data, i.e.
players dropping out).

Gamedynamics summary. The gamewas amulti-player adaptation of
an iterated trust-game with a persistent common pool resource. The
resource pool was initialised at 200 units. The games lasted for 40
timesteps. Each timestep beganwith each of the four players receiving
an endowment from the mechanism and deciding how much to reci-
procate. Whatever amount was reciprocated was multiplied with 1.4
and added back to the pool. The pool had amaximumof 200 units and
could not recover if it fell to zero. Whatever was not reciprocated was
the surplus of the player on that timestep. Themechanism rewardwas
the sum of all players’ surplus over all 40 trials. In the cover story,
participants were told the resource unit is ‘flowers’, in a field of flowers
(the pool) that is controlled by a manager (mechanism).

Instructions. Participants (human players) began the task with
instructions and a tutorial. The instructions informed them that they
would beplaying an “investment game”where they could earn “points”
depending on both their “own decisions, and the decisions of others”.
Participants were instructed that they would “receive a base payment
for completing the task as well as a bonus depending on the number of
points they earned”. Instructions contained screenshots of the inter-
face participants would be using. Following these, participants played
a tutorial round of the investment game lasting 3 timesteps. Data from
the tutorial rounds were not included in the analysis and did not count
towards participant bonus.

Participants did not know the precise number of time steps in
eachepisode (although theydidexpect the experiment to lastbetween
25 and 45min in total). To discourage participants from planning with
a specific time horizon in mind they were explicitly told that they
would be paid in proportion to their surplus between trial 1 and a
randomly chosen trial of the game. The implications of this rando-
mised termination condition were further emphasised with the fol-
lowing sentence: “This means that you should continuously play as if
the game could end at any time. Because of this, be aware that the
further you are into the game, the less likely you are to actually be paid
the money earned late in the game”. Participants’ total compensation
averaged around 15 £ an hour.

Interface. The interface is shown in Fig. S12. The units in the resource
pool were denoted in flowers and the mechanism called a “manager”.
Players viewed a table which showed the allocations from the
mechanism to each player, including themselves. They then adjusted a
slider to indicatewhich proportion of their endowment theywanted to
reciprocate. The reciprocation decision is framed as being in units of
“coins” (one flower turns into one coin). The fact that the reciprocation
will grow by 40% to replenish the pool is highlighted in the interface.
Players can increment their reciprocation in integers, which means
that if they receive an endowment of below 1 they are obliged to pay
themselves the entire amount and reciprocate 0. Players have
90 seconds to respond and are replaced by a uniformly random
responding bot if they time out twice (on the first timeout their
response was recorded to whatever the contribution slider was set).
Note that games in which any player dropped out were not used for
training or analysis (this affected about 10% of games). Each player saw
themselves displayed as ‘You’ (i.e. player 1).

At the end of each round, an overview screen appears that sum-
marises the change in the pool, the offers made, and each player’s
reciprocation. The screen also displays the running total number of
coins that each player did not reciprocate so far in the game. In addi-
tion, the overview screen shows the total bonus earned by the players
in pounds (£), with a conversion ratio of 1 game point to 0.008 £.

For experiments 2, 3 and4, instructions also gaveplayers awritten
explanation of the strategy of the manager (i.e., the mechanism that
was controlling the resource pool).

For the Proportional Baseline the explanation read: “Themanager
will offer flowers proportional to the last re-investment. For example, if
half of the total reinvestment last round was done by you, you get half
of the flowers this round. If a player is the only one who re-invested,
they will get all the flowers next round. Generally, the more you re-
invest the more you get offered, but it is always relative to other
players.”

For the Interpolating Baseline the explanation read: “Themanager
will adjust its policy to the flower field size. When there are a lot of
flowers in the field, the manager will tend to give flowers to everyone,
nomatter howmuchor little they reinvested. If there are few flowers in
the field, the manager will tend to give more flowers to those players
who re-invested the most on the last trial (relative to other players.)”

For the RL agents the message was intentionally less informative
and just focused on the goal of the manager: “The manager you will
playwith, has the following strategy: Themanager aims toofferflowers
in such a way that all players make the maximum amount of money
possible over the course of the experiment.”

In experiments 2 and 3, participants were asked to complete a
questionnaire to indicate their attitude towards the manager they had
just played with (see below).

In experiment 4 the game setup was altered in 3 ways.
First, players played 3 games in a row (staying within the same

group). They were always informed when a new game started and the
pool reset to the maximum.
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Second, the implementation and instructions for how long games
were simplified. Players were told that each game has a minimum
length of 25 rounds and after that an 20% chance to end the game.
Players were paid for the whole duration of the episode, but the epi-
sodes had variable lengths.

Third, for the proportional baseline players got an expanded
instruction that clearly explains what behaviour is sustainable in the
task: “You can choose howmuch to keep from the offer and howmuch
to re-invest from the offer to the flower field in order to sustain it. If
everyone keeps 29% of each offer, then the flower field can be sus-
tained indefinitely (because the re-investment grows). However, if one
player takes >29%, this player maymake more money than the others.
However, if all of the players take >29%, then theflowerfieldwill shrink.
In short, each player individually can be better off taking >29%, but for
the flower field to be sustained the group as a whole has to act
sustainably.“

Mechanisms
The mechanisms that managed the resource pool were either deep
reinforcement learning agents or simple baselines. Details of how they
were constructed are described below.

To generate the initial training data (prior to experiment 1), we
collected data in which humans played under two baselines. The first
baseline allocated the pool randomly between players. The second
baseline was defined by the mixing parameter w (see Eq.1), which was
sampled randomly on each game, providing a spread from equal to
proportional behaviour. The baselines left a residual fraction of funds
in the pool, determined by an additional parameter. This data (303
games) was then used to train an initial piloting agent M0 with which
234 games were collected. This data collection exercise (537 games of
four players total) was otherwise identical to that reported above. The
resulting data were used for imitation learning, to generate the virtual
players used in both experiment 1 and experiment 2.

Human datasets
Below, we provided details of the datasets that are reported in themain
text. In all cases, we continued data collection until we had at least 40
games per group (80 in experiment 3).We then excluded excess games
to ensure balanced numbers of groups across conditions.

Train Set experiment 1. This comprised 537 games of both random
and baselinemechanisms, as well as an early prototype of the RL agent
(see above). Used to create BCs BC1 that were used to create
Mechanism M1 (and M1’ without memory). These were evaluated in
experiment 1 and 2.

Eval Set experiment 1. This comprised 40 games each of 3 baselines
(Equal, Mixed and Proportional) and 2 Agents (M1 and M1’). We col-
lected 213 games in total. Note that the 13 excess games are due to the
fact that during data collection the mechanism is randomly allocated
to participants, and therefore data collection per condition can over-
shoot the target. In this case we only analyse the first 40 games gath-
ered in each condition but use all collected data for later training.

Eval set experiment 2. This comprised 40 games each of 2 Baselines
(Proportional, Interpolating Power 22) and the agent M1. Here people
were instructed about what the mechanism aims to achieve and its
strategy. We collected 143 games in total.

Train set experiment 3. This comprised all aforementioned data, plus
some additional exploratory evaluations we did before experiment 1
(that initially discovered the strength of M1) for a total of 990 games.
These were used to Create the BC2 group that then were used to train
Mechanism M2.

Eval set experiment 3. This comprised 80 games each of Mechanism
M2 and Interpolating Power 22 baseline (with instructions). We col-
lected 163 games in total.

Eval set experiment 4. This comprised 40 sets of 3 games (played by
the same players consecutively) each of Mechanism M2 and Propor-
tional baseline (with expanded instructions).

This data is available at https://github.com/deepmind/
sustainable_behavior/.

Data analysis and figures
For Fig. 2A, we plot (1) the mean of the aggregate surplus and (2) the
coefficient of the aggregate surplus obtained in each game (data
points represent games). The surplus of each game is aggregated
across players and trials (i.e., the amount theywereoffered anddid not
recontribute). The Gini coefficient is calculated on the aggregate sur-
plus each player has achieved across all trials. We use the Wilcoxon
rank-sum tests to compare the surplus and Gini coefficient values
achieved in each experiment (with group being the unit of replication).

Fig. 2B overlays dots (games with humans) over contours (games
generated by BCs displayed via a kernel density estimate with a
threshold of 0.01, 8 levels for the distribution (depleted or sustained
games)withmore data points, and the number of levels for the smaller
distribution scaled proportionally). We distinguish games in which the
pool was sustained (>1 on the last trial) or depleted. We analyze the
surplus and Gini coefficient, alongside ‘trial of pool depletion’ and
‘active players’ in the sameway. The trial of pool depletion is the trial in
which the pool drops below 1. The active players variable is the mean
over trials of howmany players received an offer of 1 or greater in each
round. We also calculate Pearson correlations between surplus and
Gini coefficient, separately for sustained and depleted games.

Fig. 2C plots for each trial (and means across trials per game) the
pool size at that trial and the Gini coefficient calculated over the offer
the mechanism gave to players on that trial.

Fig. 2D plots trials in which a player that on the previous timestep
received an endowment of 1 or higher, got an offer of <1, i.e., an
‘exclusion’. These events are plotted on the axes of which trial in the
exclusion occurred and how long the exclusion lasted. Dots on the
diagonal indicate exclusions that last to the end of the episode (trial of
exclusion and length of exclusion add up to the length of the episode).

Fig. 2E shows regression weights (trials are data points) and their
median (over all trials) calculated per trial, describing the relationship
of the offer made by mechanism in dependence to the players reci-
procation (considering past and futurebehaviour of the players,minus
to plus four trials). For example, for the proportional baseline the only
weight of notable size is the -1 weight, which indicates that the current
offer is proportional to the reciprocation on the previous trial (which is
exactly the behaviour this mechanism implements).

All plots and statistics were reproduced for experiment 1, 2 and 3
in the same way. Note that python code that produces the plots and
statistics is available at https://github.com/google-deepmind/
sustainable_behavior/.

Questionnaires
At the endof the experiment, participantswere asked to rate their level
of agreement with a series of 8 statements (in the order below) on a
5-point scale.
1. The manager’s policy was fair.
2. The manager’s policy encouraged ME to contribute.
3. The manager’s policy encouraged OTHERS to contribute.
4. The manager’s policy was easy to understand.
5. I can think of a policy that would have been better for everyone.
6. I am satisfied with the money I made from the game.
7. If I played again I would like to play with this manager again.
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8. This manager encouraged me to contribute in a way that was
beneficial to others.

We compare the average (across participants) the agreement
ratings with a rank-sum test. To control for multiple comparisons, we
submitted all p-values (per experiment) to FDR correction.

Behavioural cloning datasets
For analysis of the behavioural clones, we unroll 40 or 512 episodes of
BC1. Note that BC1 is an ensemble of 4 BCs that were sampled with
replacement during training (see section “Training virtual players
(BC1)” below), but for analysis or evaluation purposes we do not
sample them. Instead, each of the 4 BCs is in a fixed slot and all epi-
sodes contain all 4 BCs. Note that for experiment 3 we unroll 4 BC2s.

Training pipeline for the RL Agent (M1)
Our training pipeline for the RL Agent (M1) consisted of five main
steps: (1) developing initial baseline mechanisms based on the eco-
nomic literature; (2) collecting data from humanplayers playing under
the baseline mechanisms identified; (3) training virtual human players
using supervised learning to imitate the recorded human trajectories;
(4) training an agent with a deep RL method to maximise cumulative
surplus when interacting with virtual players; and (5) evaluating the RL
agent by deploying it with new human participants, along with com-
parison baselines.

Baselinemechanisms. As outlined in themain text, our initial baseline
mechanisms were hand coded. The offers of these mechanisms were
determined at each round t by taking a weighted sum of the propor-
tional and equal allocation policies, with the weight controlled by a
mixing parameter w. This was calculated according to the formula
in Eq. 1.

For initial data collection only, we also varied another parameter
which controlled the fraction of the pool that remained unallocated
(varying from leaving 0% to 40%of the pool unallocated). However, we
observed that the highest-performingmechanisms always allocated all
of the pool, so in subsequent data collection, we dropped this
parameter.

As part of the initial set of baselines, we also included a random
mechanism that drew at each round t five random proportions from a
Dirichlet distribution with concentration 1. These proportions were
multiplied by the current pool size to obtain the random offers to be
made to each player and the amount to be kept in the pool.

Initial data collection. As mentioned above, our data collection pro-
cess involved human participants playing under various mechanisms,
during which we record all observations and actions taken by players
when exposed to the game’s dynamics. This included the state of the
pool, mechanism offers, and the actions and observations of other
players. Our initial dataset, Train Set 1, was produced during the first
phase of data collection and includes 537 games. Among these games,
36 were generated with participants playing with a random mechan-
ism, 303 were played using hand-coded baselines with varying mixing
parameters w, and 234 were played under a prototype neural
mechanism (M0).

Training virtual players (BC1). Based onTrain Set 1, we trained virtual
human players via behaviour cloning41, an imitation learning technique
that involves training virtual players or “clones” to mimic human
gameplay.

A virtual human player is a deep neural network that emulates the
behaviour of a single player. This means that we use the observations
of a single participant to predict their action at each timestep (sincewe
have four players, we obtain four times as many reciprocation actions
as rounds in an episode). To account for the inherent noise in human

data, we employed a probabilistic neural network to model the beha-
viour of the player. Specifically, wemodel their action predictions as a
categorical uniform distribution, which is explained in further
detail below.

The neural network’s inputs match the observations of the real
humanplayers. Thenetwork takes in: theoffersmadeby themechanism
to each player in the current round, ei, t (represented by four real
numbers), the contributions made by all players in the previous round
ci, t�1 (other four real numbers), and the current size of the pool Rt (one
real number), resulting in a 9-dimensional input. All inputs were nor-
malised by being divided by 200, which denotes the maximum size of
the common pool. The output of the network is a single number
representing the prediction of the focal player’s contribution for the
next round, ĉi, t . The virtual player network architecture comprises a
memory core, namely Gated Recurrent Units (GRU)42, surrounded by
several fully connected (FC) layers (see Table S1 for details). The first 2
fully connected layers encode the input into an initial neural repre-
sentation, which is then passed to the memory layer. The fact that
recurrent neural networks are part of the architecture of the virtual
players means that they can potentially learn to keep track of the past
and use the game history to make their predictions about what to
contribute this round. The final 2 FC layers make a set of non-linear
projections, followed by a final linear projection onto a N-dimensional
space, representing N bins of a categorical distribution. These bins split
the space of continuous numbers form0 to the offer ei, t received by the
focal player this round. A softmax function applied to these N logits to
discreetly determine the most likely bin, call it max_bin =
argmax(softmax(logits)). Then, we sample uniformly from the con-
tinuous interval [max_bin, max_bin+1) to determine the proportion of
theoffer received that the focal playerwould reciprocate this round, ĉi, t .
Please refer to Fig. S15, which illustrates a schematic representation of
the architecture employed for modelling virtual players.

The virtual player network was trained using back-propagation
through time to minimise the cross-entropy loss between predicted
and actual contributions. During training, we usedmini batches of size
256 and employed Adam optimization with an annealing learning rate
that started at 0.0005 and decayed exponentially by 0.05 every
1000 steps until reaching 0.000005. No regularisation was applied.
Themodel was trained for 700,000update steps, andwe selected four
checkpoints with high surplus in simulationswith hand-coded baseline
mechanisms and low surplus when playing with the random baseline
mechanism. The ensemble of these four BCs is what we call the
BC1 group.

All hyper-parameters and architectural details are presented in
Table S1. In Fig. S11, we show side-by-side comparisons of human and
behavioural cloned data.

Training the RL agent (M1). Our aim was to create an allocation
mechanism that could distribute resources in a way that maximised
surplus. To achieve this, we designed a virtual environment with the
game dynamics presented in the main paper. We replaced the human
participants with four virtual players that we had trained using the
methodsdescribed above.Usingdeep reinforcement learning (RL) and
by letting the agent interact with virtual players, we trained the
mechanism (or RL agent) to maximise the aggregate player surplus.
After convergence, we use it to play games with humans (or virtual
players) for a custom number of rounds.

We modelled the RL agent as a deep neural network and
employed an architecture based on Graph Neural Networks (GNNs)43.
Using GNNs ensured two desirable properties under our game design:
(1) a uniformopeningmove,meaning that themechanismwouldmake
equal offers on the first timestep, and (2) equivariance to permutation
in the ordering of participants.

The RL agent took in a 9-dimensional input, consisting of the
agent’s endowments from the previous round (4 real numbers), the
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contributions it received from the other players in the previous round
(another 4 real numbers), and the current size of the pool (1 number).
To ensure consistency across inputs, all values were normalised by
dividing them by the maximum attainable value (which is 200). The
mechanism network produced a 5-dimensional output, which was
passed through a softmax function to ensure that the values were
positive and summed to 1. These values, when multiplied by the pool
size, determined the endowments to be offered to each player in the
next round and the amount of the pool that should be retained.

The network architecture of the RL agent was based on GNNs. We
arranged the observations into a fully connected directed graph
ðu,V , EÞ where each player was represented as a vertex vk 2 V with
three attributes: its past endowment, its past contribution, and the
current pool, all normalised. Directed edges esr connecting vs and vr
had empty initial attributes, and the input global attribute vectoruwas
filled in by the pool. Computations in Graph Networks start by
updating the edge attributes, followed by the node attributes and
finally global attributes. In particular, directed edge attributes were
updated with a function φe of the input edge attribute, the sender and
receiver vertex attributes, and the global attributes vector:
es, r0 = φeðesr , vs, vr ,uÞ; vertex attributes were updated as a functionφv

of the input vertex attributes, the sum of all updated edge attributes
that connect into vr and the global attributes vector:
v0r = φvð

P
se0s, r , vr ,uÞ; finally, the global attributes vector was updated

with a function of the input global attributes, and the sum of all
updated edges and vertices: ur0 = φu

P
s, res, r 0

P
kv

0
k ,u. We note that the

same functions φe, φv are used to update all edges and nodes in a
graph, and that both the input and output of Graph Networks are
directed graphs, so these modules can be used in sequence.

The mechanism’s policy network consisted of two sequential
GNNs. In the first GNN, we implemented all ofφe,φv andφu as distinct
non-linear fully connected layers with 32 output sizes and ReLU acti-
vation functions. The output of this GNN was then passed to the sec-
ond GNN, where we implemented φe as a non-linear fully connected
layerwith 32 output size;φv as amemory layer (GatedRecurrentUnits)
with 16 hidden sizes, followed by a non-linear layer with 32 output size,
finally followed by a linear layer with a single output unit; and φu as a
non-linear fully connected layer with 32, followed by a linear layer with
a single output unit. We then concatenated the node outputs (one per
player) with the global output (one) and normalised the concatenation
(total size of 5) using a softmax function. This yielded the redistribu-
tionweights,which sum to 1.Whenmultipliedby the current size of the
pool, they determine the absolute values of the endowments to be
offered to eachplayer, and the amount to be kept in thepool. Note that
themodel is deterministic, so that given the same inputs, it will always
produce the same outputs.

The diagram below illustrates the architecture of the network
used to model virtual players with behaviour cloning.

We trained the described policy network of this mechanism gra-
dient descent to maximise the cumulative player surplus. Specifically,
the training objective was max

PT =40
t =0

PN =4
i= 1 ðei, t � ci, tÞ.

During the RL agent training, we only used virtual players to roll
out episodes. No human data was utilised to predict true player con-
tributions, meaning that there was no teacher forcing involved in the
mechanism training process. The mechanism was trained on the BC1
group,which is composed of the four virtual players trainedduring the
previous step. We sampled from BC1 with replacement at the begin-
ning of each episode. Note that the offers seen by the virtual players
were generated by the mechanism policies, which may lie outside of
thehumandata, thus requiring the virtual players to generalise beyond
the training dataset.

To optimise our model, we used Adam optimization with an
annealing learning rate starting at 0.001 and decaying by 0.05 every
1000 steps until it reached 0.00001. We trained our model using mini
batches of size 256 and did not apply any regularisation. The model

was trained for 500,000 update steps, and we saved a checkpoint
every 50,000 steps. We evaluated the performance of the frozen
models in simulations with virtual players and selected the checkpoint
with the highest surplus as our finalmodel, whichwe refer to asM1. All
hyper-parameters and architectural details are presented in Table S2.

We also trained another RL Agent via the same process as M1 but
with a slight difference in its network architecture. Specifically, its sec-
ond GNNwas identical to the first one, lacking Gated Recurrent Units in
the node computations and using only fully connected layers (i.e. it is
purely feedforwardandhasno recurrency).We refer to this agent asM1’.
In order to save space, wedonot report data from this agent in themain
text (it performed similarly to M1 but was slightly less effective).

Prior to the development of M1, we created a set of prototypical
RL agents referred to as M0. During our initial pilot human data
experiments, some participants played under the M0 mechanisms.
The data collected using M0, along with the data collected using the
baselinemechanisms,was incorporated into the Train Set 1. As a result,
the trained set of BC1 includes trajectories obtained under these pre-
liminary agents, M0. The prototypical mechanisms had simple net-
work architectures consisting of either fully connected layers only or
fully connected layers coupled with a lightweight GRU or LSTM
memory core. At this stage, we did not engage in hyper-parameter
finetuning or strategic performance selection. As previously men-
tioned, we later discovered that a GNN-based architecture was crucial
for a strong mechanism policy. Note that the prototypical archi-
tectures of M0 did not include any GNNs.

Evaluation
Our evaluation method involves deploying the RL agent trained in our
experiments with new human participants, alongside comparison
baselines. In Exp. 1, the comparison baselines consist of three varia-
tions of the weighted baseline described in the main text: the Pro-
portional Baseline (w=0), the Equal Baseline (w= 1), and the Mixed
Baseline (w=0:5). For more details, see section on Eval Set Exp 1.

For subsequent experiments, we drawon the insights gained from
our in-depth analysis of the previously trained mechanism, RL Agent
(M1), and introduce an additional baseline, the Interpolating Baseline.
The offers of this baseline are determined by a power-law function of
the normalised pool size, namely ðR=200Þk , where we empirically
determined that k =22 is the power coefficient that maximises player
surplus when interacting with virtual players. For more details, see
section on Eval Set Exp 2.

Training pipeline for RL Agent (M2)
The final step of the RL Agent (M1), which involved evaluating it under
various baselines, yielded new data that allowed us to iteratively refine
both the virtual players and the mechanism by repeating the steps
outlined above. Please refer to the Figs. S14 and S17 for an illustration
of this process.

Training virtual players (BC2)
We used the same network architecture and training procedure as for
BC1, but made some adjustments to account for the increased dataset
size. Specifically, we employed larger networks, larger batch sizes, and
a lower learning rate (see Table S1 for details). We selected the top 8
virtual players from differently seeded runs and at different check-
points to form what we call the BC2 group.

Training the RL agent (M2)
We kept the same network architecture and training process as in M1,
except for two adjustments. First, wemodified thememory unit size to
accommodate a wider range of potential human behaviours. Second,
during mechanism training, we adjusted the number of behaviour
clones to sample fromduring group formation to four, drawn from the
BC2 group of eight virtual players trained in the previous step (see
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Table S2 for details). These changes were necessary to accommodate
the wider range of potential human behaviours and to effectively
capture the increased variability and richness of the data. We selected
themechanismwith the highest surplus under virtual players and refer
to it as M2.

Evaluation with new human participants
Once we completed the training of M2, we proceeded to evaluate its
performance using a fresh group of human participants. Further
details can be found in the Eval Set Exp 3 section.

Implementation details
Our entire codebase was implemented in JAX. The policy distribution
of the BC was implemented using distrax CategoricalUniformwhich is
open-sourced, and that allows computing the gradient of the dis-
tribution parameters from the samples (publicly available at https://
github.com/deepmind/distrax/blob/master/distrax/_src/distributions/
categorical_uniform.py). We utilised the Jraph library (https://github.
com/deepmind/jraph) to implement the graph neural networks, and
the Haiku library for all other neural networks. We leveraged pandas,
matplotlib, and seaborn for data analysis and visualisation. We saved
checkpoints of the behaviour clones and mechanism parameters
approximately every 50,000 training steps. We typically noticed that
over-parameterizing our networks and training them for longer
resulted in improved performance (similar to the double-descent
effect44). All our experiments were conducted on a single NVIDIA Tesla
P100 GPU Accelerator and completed within 24 h.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This data is available at https://github.com/google-deepmind/
sustainable_behavior/.

Code availability
Code to reproduce all figures and statistics is available at https://
github.com/google-deepmind/sustainable_behavior/.
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