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Stereopy: modeling comparative and
spatiotemporal cellular heterogeneity via
multi-sample spatial transcriptomics

Shuangsang Fang 1,2,12, Mengyang Xu 2,3,12, Lei Cao1,2,12, Xiaobin Liu3,12,
Marija Bezulj2,12, Liwei Tan2,12, Zhiyuan Yuan 4,12, Yao Li 3, Tianyi Xia1,2,
Longyu Guo2, Vladimir Kovacevic 2, Junhou Hui2, Lidong Guo 3,5, Chao Liu 2,
Mengnan Cheng2,6, Li’ang Lin2, Zhenbin Wen2, Bojana Josic2, Nikola Milicevic2,
Ping Qiu2, Qin Lu2, Yumei Li2, Leying Wang2, Luni Hu1,2, Chao Zhang 2,
Qiang Kang2, Fengzhen Chen2, Ziqing Deng1, Junhua Li 2,7,8, Mei Li 2,
ShengkangLi 2, Yi Zhao 9,13 ,Guangyi Fan 2,3,13 , YongZhang 2,10,11,13 ,
Ao Chen 2,13 , Yuxiang Li 2,10,11,13 & Xun Xu 10,13

Understanding complex biological systems requires tracing cellular dynamic
changes across conditions, time, and space. However, integrating multi-sample
data in a unified way to explore cellular heterogeneity remains challenging.
Here, we present Stereopy, a flexible framework for modeling and dissecting
comparative and spatiotemporal patterns in multi-sample spatial tran-
scriptomics with interactive data visualization. To optimize this framework, we
devise a universal container, a scope controller, and an integrative transformer
tailored for multi-sample multimodal data storage, management, and proces-
sing. Stereopy showcases three representative applications: investigating spe-
cificcell communities andgenes responsible forpathological changes, detecting
spatiotemporal gene patterns by considering spatial and temporal features, and
inferring three-dimensional niche-based cell-gene interaction network that
bridges intercellular communications and intracellular regulations. Stereopy
serves as both a comprehensive bioinformatics toolbox and an extensible fra-
mework that empowers researchers with enhanced data interpretation abilities
and new perspectives for mining multi-sample spatial transcriptomics data.

Cells are not static. They achieve functions and form the complex
architecture of multicellularity through dynamic and orderly pro-
cesses, such as cellular proliferation, differentiation, and maturation,
which involve spatial interactions with the microenvironment

consisting of external stimuli and neighboring cells. However, under-
standing the mechanisms that govern cellular processes in disease,
development, and homeostasis remains an open question in scientific
investigations. Such investigations often require the simultaneous
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analysis of datasets comprising multiple samples to track the specifi-
city and variation of cells and genes across different conditions, time
points, and spatial dimensions1,2. The advent of high-resolution spa-
tially resolved transcriptomics (SRT) technologies, such as Stereo-seq3,
Slide-seq4, MERFISH5, SeqFish6, STARmap7, and Xenium8, holds the
potential to generate large-scale multi-sample datasets. These pro-
gresses underscore the demand for more advanced analytical
approaches that enable the exploration of molecular alterations and
characteristics in various contexts-be it conditional, temporal, or
spatial9. These contexts span a wide spectrum of applications, from
tracking disease progression10,11, monitoring temporal cellular
development12, to dissecting the intricacies of spatial organogenesis3,13.

Pioneering analysis frameworks, such as Squidpy14, Giotto15,
Scanpy16, Seurat17, and scvi-tools18, have been widely employed for the
analysis of spatial or single-cell omics data, enabling temporally and/or
spatially resolved studies. However, they were primarily designed for
single-sample analysis19.When it comes tomulti-sample analyses, there is
a need for tailored data containers that can efficiently organize, provide
flexibility, and scale with the data. Existing data containers like AnnData
(used in Scanpy16), SeuratObject (used in Seurat17), GiottoObject (used in
Giotto15), and MuData (used in Muon20) have inherently limitations in
managingmultiple samples efficiently. Additionally, currentmethods21–23

lack the advanced capabilities required for comprehensivemulti-sample
analysis. As the data cost keeps decreasing and tissue complexity grows,
efficient methods for storing, integrating, and visualizing multi-sample
omics data across various dimensions are urgently needed.

Developing a multi-sample analysis framework presents several
complex challenges, including the establishment of a standardized
framework for analysismodules and visualization functions, thedesign
of scalable data representation for managing multi-sample data, and
the provision of integrative solutions for diverse tasks. In response to
these challenges, we propose Stereopy, a comprehensive toolkit that
offers a complete set of extensible tools for managing, analyzing, and
visualizing multi-sample spatial omics data. To facilitate the manage-
ment of multiple samples in a unified and convenient manner, Ste-
reopy incorporates flexible cross-sample storage of input data and
results and prioritizes the accessibility and traceability of outcomes.
Furthermore, a flexible framework is designed to enable data extrac-
tion and analysis on specific samples, effectively manage dependen-
cies between different steps, and facilitate the transformation of
single-sample results into integrative results.

The comprehensive analysis solutions provided by Stereopy
improve the utilization of multi-sample information when applied to
different datasets (Supplementary Note 1). In comparative studies,
Stereopy enables the comparison of disturbed or disease samples with
control samples, analyzes the diversity at both global and local levels in
the spatial context, and identifies changes in functional mechanisms
resulting from stress responses or disease perturbations. The multi-
sample cell community detection (CCD) algorithm introduced in Ste-
reopy detects variations at the cell community level in comparative
samples (Supplementary Note 2.1). For temporal studies, it explores
variations in cell types and gene expression over time, and captures the
molecular dynamics of organismal developmentwith spatial resolution.
Theproposed spatially resolved temporal genepattern inference (TGPI)
algorithm in Stereopy enhances the detection of spatiotemporal gene
patterns by simultaneously considering spatial and temporal features
(Supplementary Note 2.2). In three-dimensional (3D) integrative stu-
dies, Stereopy provides the NicheReg3D tool for reconstructing the cell
niche and investigating the effect of intercellular signaling on intracel-
lular regulation within spatial constraints, thus proposing an improved
model on themolecularmechanisms of organogenesis (Supplementary
Note 2.3). Moreover, Stereopy offers flexible data visualization techni-
ques for both two-dimensional (2D) and 3D datasets, allowing
researchers to explore complicated comparative and spatiotemporal
changes in genes and cells, and accurately model underlying biological

processes across different dimensions. Stereopy can be accessed at
https://github.com/STOmics/Stereopy. Its documentation and exten-
sive tutorials are available at https://stereopy.readthedocs.io/en/latest.

Results
Overview of stereopy
Stereopy provides a comprehensive and robust solution for multi-
sample analysis, comprising three main components: a scalable fra-
mework, analysis modules, and visualization tools (Fig. 1a). The fra-
mework is designed to facilitate datamanagement through a universal
container for storing multimodal data, a controller for selecting and
analyzing specific subsets of interest, and a transformer for integrating
data. Stereopy also offers well-organized modules and key algorithms
tailored for three fundamental scenarios ofmulti-sample spatial omics
data analysis: comparative, spatiotemporal, and 3D integrative ana-
lyses (Supplementary Note 1). These analytical capabilities include the
identification of specific cell communities and functional modules in
comparative datasets (Fig. 1b (i) and Supplementary Note 1.1), the
detection of temporal variable genes and gene patterns in time-series
datasets (Fig. 1b (ii) and Supplementary Note 1.2), and the inference of
complete signaling paths from cell-cell communication to gene reg-
ulation networks in 3D datasets (Fig. 1b (iii) and Supplementary
Note 1.3). Stereopy’s key algorithms for each data type are highlighted:
1) the cell community detection algorithm, which enables the dis-
covery of common or specific communities between case-control
samples, enhancing comparative analysis capability (Fig. 1c (i) and
Supplementary Note 2.1); 2) the spatially resolved temporal gene
pattern identification method, which delves into specific gene mod-
ules related to temporal developmentwithin spatial constraints (Fig. 1c
(ii) and Supplementary Note 2.2); and 3) the 3D regulation mechanism
inference, which uncovers comprehensive gene regulation models by
mining extracellular ligand-receptor interactions, intracellular regula-
tion networks, and signaling pathways across the entire 3D tissue level
(Fig. 1c (iii) and Supplementary Note 2.3). Furthermore, Stereopy
provides 2D and 3D interactive visualization capabilities for spatial
omics data24, which allow researchers to generate high-quality data
explorations and facilitate user-defined browsing. By providing such
unique features, Stereopy proves to be an invaluable tool for
researchers in the analysis and interpretation of multi-sample SRT
data, with powerful functionalities that enable researchers to gain a
deeper understanding of biological processes and mechanisms.

Stereopy develops an efficient multi-sample data analysis
framework
Stereopy has developed an efficient multi-sample data analysis frame-
work that includes the MsData (multi-sample data) container, MSS
(multi-sample scope) controller, andmulti-sample analysis transformer.
The MsData container extends the AnnData format to incorporate
additional features applicable to multiple samples while preserving
single-sample dependencies (Fig. 2a). This allows users to access the
entire dataset and individual samples through a single handler, facil-
itating flexible analysis across multiple samples (Supplementary Figs. 1,
2). The MSS controller manages result storage, tracks analysis depen-
dencies, and visualizes outcomes (Fig. 2b). By adjusting scope para-
meters in each MsData function, users can associate meta-information
and results with corresponding samples for subsequent association
analysis. Stereopy’s multi-sample transformer supports customized
analysis of multi-sample datasets with diverse demands (Fig. 2c), pro-
viding functions to integrate single-sample results into themulti-sample
context or reversibly split multi-sample data for single-sample analysis.
These transformations are particularly useful for modules such as
clustering and annotation, which may involve manual curations or cal-
culation comparisons using different algorithms. The framework facil-
itates parallel or integrative analysis across multiple samples (Fig. 2d
and Supplementary fig. 3a), enabling comprehensivemulti-sample joint
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analyses and interactive visualization of multi-sample data (Fig. 2e and
Supplementary Fig. 3b, c). In addition, Stereopy is a powerful tool for
single-sample spatial omics data analysis by sharing several key func-
tions and modules (Fig. 2f and Supplementary Fig. 3).

Stereopy accelerates multi-sample analysis through algorithmic
and parallel computing approaches. By implementing parallel analysis
for dependent functions including preprocessing, cell clustering, and
annotation, Stereopy reduces the overall processing time. Notably,
Stereopy’s common SRT analysis modules outperform existing tools
suchasGiotto, Scanpy, and Seurat in termsof processing time for both
parallel and integrative analysis across different numbers of samples
(Fig. 2g). Meanwhile, Stereopy leverages GPU acceleration to enhance

the performance of time-consuming but necessary functions such as
dimensionality reduction, neighborhood searching, Leiden25 /
Louvain26 clustering, and SingleR annotation27 (re-implemented in
Python as a part of Stereopy). The GPU-accelerated functions
demonstrate a substantial improvement in execution time compared
to their CPU counterparts (Fig. 2h).

Stereopy unveils cell and gene diversity in comparative analysis
Comparing samples that are disturbed or affected by disease with
control samples allows researchers to understand changes in func-
tional mechanisms at both local and global levels. Stereopy incorpo-
rates cell-level and gene-level modules, supported by our in-house

Knowledge
Database

Fig. 1 | Overview of stereopy. a Stereopy provides solutions for multi-sample
analysis, including a multi-sample data container and framework, multi-sample
data modules, and multi-sample interactive visualization. b Stereopy offers key
analysis modules for three main multi-sample data analysis scenarios: (i) Com-
parative studies: Stereopy provides functions at both the cell level and gene level to
infer the global and local similarity and diversity for comparative SRT datasets.
DEGs: Differentially expressed genes. (ii) Temporal studies: Stereopy offers tem-
poral trajectory analysis and spatially resolved temporal gene pattern analysis to
phase the temporal variable datasets. (iii) 3D integrative studies: Stereopy enables

3D data reconstruction and 3D signaling path identification to explore regulation
mechanisms. c Stereopy contributes key algorithms for the three analysis scenar-
ios: (i) CCD algorithm detects cell communities in single/multi-sample datasets,
with a focus on finding common and specific communities. (ii) TGPI algorithm
identifies temporal variable gene patterns with spatial restriction, enabling the
discovery of gene patterns related to development or temporal variation. (iii)
NicheReg3D algorithm investigates inter- and intracellular regulation mechanisms
from the 3D aspect. Source data are provided as a Source Data file.
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algorithms, to identify and analyze global and local diversities in
comparative samples (Supplementary Note 1.1). The cell-level analysis
focuses on exploring cell diversity in terms of cell type, cell co-
occurrence, and cell community via multi-sample comparisons. To
enhance the detection of cell communities, we have developed the
multi-sample CCD algorithm (Supplementary Fig. 4, Supplementary
Note 2.1 and Methods). At the gene level, Stereopy investigates the
gene diversity within specific cell types and communities (Fig. 3a), and
introduces the concept of constant (remain unaffected by dis-
turbances) and conditional markers (respond to disturbances and
contribute to functional changes).

Stereopy-CCD demonstrates superior performance compared to
other existing methods such as Giotto15, SpaGCN28, GraphST23, BASS22,
and PRECAST21 in both single-sample scenarios (e.g., whole mouse
embryo brain) and multi-sample scenarios (e.g., continuous mouse
brain and mouse kidney) (Supplementary Fig. 5-7, Supplementary
Tables 1, 2, and Methods). Meanwhile, Stereopy-CCD performs com-
parably to BANKSY29 in terms of accuracy but with the added benefits
of lower time and memory consumption. In the analysis of the whole
mouse embryo brain dataset, Stereopy-CCD is capable of identifying
cell communities or domains that align with existing knowledge
(Supplementary Fig. 5). In continuous adult mouse brain, Stereopy-
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CCD detects common cell communities across three 2D slices (Sup-
plementary Fig. 6). Furthermore, in our analysis of mouse kidney
samples,which include adiabetic sample (UMODKI-homozygous gene
UMOD-C125R knock-in mice with monogenic disorder) and a WT
sample30, the Stereopy-CCD algorithm identifies a central community
present in both samples (Supplementary Fig. 7). The central commu-
nity closely corresponds to the region annotated as medulla in a

previous study conducted by Marshall et al.30 (Fig. 3d and Supple-
mentary Fig. 7).

To assess the efficacy of Stereopy in detecting global diversity, we
applied it to comparative mouse kidney datasets30. Specifically, we
analyzed a pair of Slide-seq v2 samples: wild-type (WT) and diabetic
(ob/ob geneticmodel of early diabetic kidney disease) (Supplementary
Fig. 8). Using the co-occurrence calculations developed in Stereopy,
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we confirmed Marshall’s previous findings30 regarding the co-
occurrence of Podocytes with GC cells (Fig. 3b). Moreover, our ana-
lysis inferred a higher co-occurrence of these cell types in the ob/ob
sample compared to the WT sample. Importantly, Stereopy demon-
strated a greater significance in detecting the co-occurrence of
Podocytes with GCs when compared to Squidpy’s co-occurrence
algorithm14 (Supplementary Fig. 9). Subsequently, gene modules were
identified in both samples, revealing the co-expression of Nphs2 (a
Podocyte marker) and Ccn2 (a Podocyte injury marker) in the WT and
ob/ob samples (Fig. 3c). Additionally, local autocorrelation analysis
indicated a stronger correlation between Nphs2 and Ccn2 in ob/ob
sample (Fig. 3c). The analysis of differentially expressed genes (DEGs)
provided evidence of Ccn2’s higher rank among Podocytes markers
(Supplementary Fig. 10).

To assess the capability of Stereopy indetecting localdiversity, we
conducted additional analysis on the cell communities identified in the
mouse kidney samples usingCCD. These communities were annotated
according to their anatomical structures, including kidney cortex,
medulla, the boundary of cortex and medulla, pelvis, and immune
region (Fig. 3d). As mentioned earlier, the medullary region identified
by Stereopy-CCD closely aligns with the region annotated in the study
conducted byMarshall et al., in which themarker genes of each region
are discernible (Fig. 3d, Supplementary Figs. 7 and 11). The medulla
community exhibited similar proportions of thick ascending limb
(TAL), endothelial cells (EC), and other immune cell types, despite
variations in the distribution of cell types (Supplementary Fig. 12). The
UMOD KI sample showed increased percentages of fibroblast and
macrophages in the medulla compared to WT sample (Fig. 3f and
Supplementary Fig. 12), consistent with Marshall’s findings30. To ana-
lyze markers of both tissues and cell types, we calculated DEGs and
enriched gene ontology (GO) terms specifically for themedulla and its
constituent cell types, such as TAL, EC, and other immune cell types
(Fig. 3e). The marker genes exhibited greater significance, and the
enriched GO terms in the renal medulla were highly relevant to renal
function, including sodium ion transport, potassium ion transmem-
brane transport, and chloride ion homeostasis. This highlights the
functional relevance of the tissue compared to individual cell types.
Our findings confirm that examining the gene divergence of cell
communities provides deep insights into tissue function. To compre-
hensively assess the response of different regions to the UMOD KI
disturbance, we analyzed the number of conditional markers. Our
analysis revealed a significant increase in the number of top DEGs in
the medulla region compared to other regions, indicating a greater
diversity of cell types (Supplementary Fig. 13). These results suggest
that studying the overall differences in cell communities and condi-
tional markers may yield more meaningful biological discoveries than
focusing solely on individual cell types. Specifically, we consistently
observed a marker related to renal function, including sodium,
potassium, and chloride ion homeostasis, in the renal medulla of both
healthy and disease samples. However, the UMODKI sample exhibited
conditional markers involved in renal function damage, such as

response to nutrient level, wound healing, and response to extra-
cellular stimulus (Fig. 3g and Supplementary Table 3). Notably, Spp1
emerged as a significant conditional marker (Fig. 3h), which has been
identified as the top hub gene associated with kidney stones31. Further
analysis revealed that the risk of renal stones persistedwhen both Spp1
and Umod had variants, indicating the importance of these two genes
in the development of kidney disease32. Another conditional marker,
Apoe, has been reported to be associated with glomerular disorders
due to its central role in lipoprotein metabolism. The increased
abundance of macrophages in the UMOD KI sample is consistent with
the hyperactivity of macrophages involved in Apoe-related glomerular
disorders33.

Our study demonstrates that Stereopy provides a systematic
analysis of cell-level and gene-level similarity and diversity between
case and control samples, yielding results of high biological sig-
nificance. The application of the Stereopy-CCD algorithm and the
identification of conditional markers contribute to our understanding
of tissue structure and function in comparative analyses.

Stereopy identifies spatiotemporal variation in time-series
analysis
The growth anddevelopment of organisms involve complex biological
processes characterizedby variations in cell types andgene expression
over time. These temporal variation capture the dynamic molecular
changes occurring during development. To investigate temporal var-
iations in time-series datasets, Stereopy emphasizes detecting
dynamic changes in both the spatial and temporal dimensions (Sup-
plementary Note 1.2). In terms of cell type changes, Stereopy adopts a
manifold partitions-based method34 to preserve the global topology
and infer the trajectory of cell types across different samples, which
provides a visual representation of cell trajectories and changes in cell
numbers across different time points (Supplementary Note 3). Mean-
while, Stereopy proposes a spatially resolved TGPI method for iden-
tifying genes with similar temporal expression changes, including
continuously up- or downregulated genes, as well as other complex
patterns observed in real time and pseudotime (Fig. 4a and Supple-
mentary Note 2.2).

The false positive risk score (FPR score), which we have intro-
duced in Stereopy-TGPI, is a metric used to detect continuously up-
and down-regulated genes by merging p-values. To assess the effec-
tiveness of the FPR score, we conducted an evaluation using mouse
embryo forebrain datasets. These datasets consist of three distinct cell
types and were collected at 7, 5, and 3 time points, respectively. The
results demonstrate that FPR score is a stable and reliable approach for
identifying genuine up- and down-regulated genes with continuous
changes in gene expression across multiple time points (Supplemen-
tary Figs. 14–16 and Methods). Stereopy-TGPI serves as a valuable tool
not only for identifying temporal gene up- and downregulation but
also for elucidating intricate temporal or pseudotime expression pat-
terns. It simultaneously considers the consistency of gene expression
in both temporal and spatial aspects (Supplementary Figs. 17, 18 and

Fig. 3 | Stereopy facilitates comparative analysis of spatial transcriptomeswith
multiple samples. a Graphical abstract showcasing Stereopy’s capabilities for
comparative multi-sample analysis. Stereopy offers functions for analyzing cell
constitution diversity, co-occurrence, and cell communities at the cell level, as well
as differential expression gene, spatial gene modules, and constant/conditional
markers at the gene level. b Co-occurrence result for a BTBR kidney sample. Left:
spatial map of WT and ob/ob kidney samples. Middle: line plot showing co-
occurrence of podocyte cells with other cell types. Right: spatial map confirming
the co-occurrence of podocytewithGCs andMCs. Upper and lower parts represent
WT and ob/ob samples, respectively. c Left column: spatial gene modules corre-
sponding to podocyte location. Right column: local autocorrelation of corre-
sponding gene module. Upper and lower parts represent WT and ob/ob samples,
respectively. d Spatial map showing cell type annotation, tissue domain identified

by Stereopy-CCD algorithm, and medulla defined by Marshall et al. for WT and
UMOD KI kidney samples. Left, middle and right parts represent cell type annota-
tion, tissue domain annotation, andmedulla definedbyMarshall et al., respectively.
Upper and lower represent WT and UMOD KI samples, respectively. e Left: differ-
entially expressed genes for medulla in WT sample and its composing cell types
such as EC, TAL, and other immune cells. Right: GO enrichment analysis for these
cell types. f Cell type constitution and proportion for medulla. g Constant and
conditional marker for medulla in WT and UMOD KI samples. Left shows the
heatmap of constant and conditional markers. Conditional markers are genes with
high expressiononly under certain conditions. Right showsGOenrichment analysis
for each group of genes. UMODKI conditionalmarkers (orange) are enriched in GO
terms related towound healing and other processes.h Spatial heatmapof Spp1 and
Apoe in WT and UMOD KI samples. Source data are provided as a Source Data file.
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Methods). In comparison to Mfuzz35, Stereopy-TGPI’s identification
wasmore correlated to real and pseudotime tendencies and capable of
enriching significant GO terms relevant to neuron development in the
time-series whole mouse brain (Supplementary Fig. 19 and Methods).

We further investigated the trajectory and temporal gene pattern
of Stereo-seq mouse embryos across eight time-point samples, ran-
ging from E9.5 to E16.53. We inferred the trajectory of the integrative

dataset from eight time points and visualized the cell type develop-
ment using a treeplot (Fig. 4b, c). Next, theflexibility of Stereopy’s data
container enabled manual clustering and annotation of the brains in
each sample independently (Fig. 4d, Supplementary Fig. 20a). Pseu-
dotime analysis34 confirmed a gradual increase in pseudotime, with
higher pseudotime values in the forebrain region indicating later
development (Fig. 4d, Supplementary Fig. 20b). Additionally, we
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provided statistics on the cell number of each cell type across eight
time points and inferred the cell trajectory (Fig. 4e, f and Supple-
mentary Fig. 20c).

Our focus then shifted to the temporal gene pattern in the fore-
brain trajectory series, encompassing the forebrain progenitor, cor-
tical hem, dorsal forebrain, forebrain intermediate progenitor, and
forebrain cortical glutamatergic stages. By utilizing Stereopy-TGPI to
calculate gene up- and downregulation, we identified Foxg1 as the top-
ranked temporal upregulated gene. This key transcription factor (TF)
showed gradual upregulation along the forebrain trajectory, con-
sistent with its known role in regulating forebrain development36

(Fig. 4f–h and Supplementary Fig. 21). Conversely, Hes5, a gradually
downregulated gene, exhibited high expression in embryonic neural
precursor cells and played a crucial role in negatively regulating neural
and oligodendrocyte differentiation37. We also employed Stereopy-
TGPI to identify cell-type-specific expression patterns along the fore-
brain trajectory. Among these patterns, we observed a distinctive gene
pattern characterized by an upregulation trend prior to the cortical
hem stage, followedby continuousdownregulation. In this dataset, the
cortical hem was exclusively present before E14.5, which aligned with
previous research indicating the emergence of Cajal-Retzius neurons,
the constituent cell type of the cortical hem, during early develop-
mental stages32. To explore the functions of the cortical hem and the
key factors contributing to its disappearance, we examined temporal
gene patterns related to time points where the cortical hem con-
sistently occurred in the forebrain. We observed a distinct temporal
gene pattern, with peak expression levels during the developmental
stages from E11.5 to E14.5, coinciding with the presence of the cortical
hem, followed by a noticeable decrease thereafter (Fig. 4i). By inter-
secting genes from the cell-type-trajectory gene pattern and the tem-
poral gene pattern, we identified Tead1 as a key TF that exhibited high
expression in the cortical hem and low expression after its dis-
appearance (Fig. 4j). Tead TFs have been previously implicated in
regulating cortical development33. Leveraging the interactive visuali-
zation capabilities of Stereopy,weperformedgene regulatorynetwork
(GRN) analysis on the forebrain of each sample (Supplementary
Fig. 22). Our investigation revealed a notable decrease in the number
of genes regulated by Tead1, from 338 at E12.5 to 7 at E13.5 (Fig. 4k).
Furthermore, we found that the enriched GO terms at E11.5 and E12.5
were similar and primarily associated with forebrain development.
However, at E13.5, the enriched GO terms were more related to neu-
roblast proliferation and forebrain neuron generation. For example,
Tcf4, a target gene (TG) regulatedbyTead1 fromE11.5 to E13.5, controls
the positioning of cortical projection neurons38. Interestingly, by E14.5,
GO terms were no longer related to neurons or the brain (Fig. 4l). This
observation coincided with the appearance of forebrain cortical glu-
tamatergic cells, suggesting that Tead1 and cortical hem had com-
pleted their neurogenesis function by this stage.

Stereopy offers comprehensive solutions for temporal multi-
sample analysis, with a particular emphasis on temporal gene patterns.

TGPI, a key feature of Stereopy, enables the detection of temporal
gene patterns within time-series datasets, revolutionizing our under-
standing of temporal dynamics in biological systems.

Stereopy reveals niche-mediated regulations in 3D analysis
In multicellular organisms, cells and tissues are organized within a 3D
structure, leading to complex cellular interactions that cannot be
adequately captured in 2D culture39. Conventional analytical approa-
ches are confined to 2D methodologies, resulting in the loss of crucial
interaction information along the z-axis. Stereopy’s NicheReg3D
pipeline addresses this limitation by precisely characterizing the cel-
lular constitution of 3D niches and facilitating the exploration of
intercellular and intracellular interactions (Supplementary Note 1.3). It
combines data preprocessing, 3D alignment and reconstruction, 3D
cellular niche confinement, cell-niche communication, ligand-receptor
(L-R)-TF-TG pathway inference, and intracellular TF-centered reg-
ulatory network prediction (see Methods). The core algorithms
underpinning 3D joint analysis and theunderlying 3D regulationmodel
are elucidated in Fig. 5a. We applied NicheReg3D to the well-studied
system of the mouse cortical region, which was sequenced using the
BARseq technique, a high-throughput in situ sequencing method40.
Our results demonstrated that 3D niches, composed of accurately
defined cells from diverse cell types after 3D reconstruction of con-
secutive 2D slices, outperformed 2D niche composition analysis of
individual slice. This improved analysis of 3D niches benefited down-
stream analyses, such as the predictive identification of cortical areas
(Supplementary Fig. 23).

In the 3D context, cellular heterogeneity is not only governed by
the intracellular GRN but also influenced by the extracellular micro-
environment, collaboratively accomplishing various biological
tasks41,42. However, current computationalmethods formodeling both
interactions simultaneously are insufficient43. Our approach provides
unique insights into the intracellular regulation mediated by bio-
chemical signals of intercellular crosstalk in multiple dimensions in a
3D spatial multiple-sample setting. To showcase its effectiveness in
exploring niche-mediated regulations, we applied the Stereopy-
NicheReg3D pipeline to analyze the cardiac development of a mouse
embryo sequenced by Stereo-seq3. We extracted 59 10-μm-thick 2D
serial cryosections at a distance of 10μm, covering the entire mouse
embryonic heart. For the SRT data of 90,411 high-quality segmented
cells with 30,254 genes inferred from subcellular spots, we performed
unsupervised clustering analysis for each sample and identified six
cardiac cell clusters (Supplementary Fig. 24 and Supplementary
Table 4). The 3D reconstructed model provided a multi-hierarchical
transcriptomic architecture, ranging from organ meshes, cell types
and clusters, spatially variable genes, spatially specific regulons, and
niche-specific L-R pairs (Fig. 5b).

Based on the reconstructed 3D murine heart data, our investiga-
tion focused on the development of ventricular cardiomyocytes
(VCMs) and their interaction with the cardiac niche, which is known to

Fig. 4 | Stereopy enables temporal analysis of spatial transcriptomes with
multiple samples. a Graphical abstract depicting the pipeline for time series
analysis. b Spatial trajectory visualization of mouse embryo multi-sample tran-
scriptomes from E9.5 to E16.5. c Tree plot indicating the development of mouse
embryo ectoderm. The x-axis represents time point, the dot size represents the cell
number, and the red arrow indicates the PAGA trajectory. dManual annotation and
pseudotime assignment for time-series mouse brain samples. e Development tree
for cell types in the time series. The x-axis represents time point, and the height of
Sankey represents the cell number of a certain cell type at a particular time point.
f PAGA graph for mouse brain trajectory inference. Red arrow points at the cell
types selected for downstream analysis. g Up and downregulated genes for the
mouse forebrain trajectory and GO enrichment analysis. The cell numbers for each
cell type are 3972, 524, 2827, 2838, 3629, respectively. The box extends from the
first quartile (Q1) to the third quartile (Q3) and the line inside represents the

median. Thewhiskers extend from the box to the farthest data point lyingwithin 1.5
times the inter-quartile range from thebox. Flierpoints are thosebeyond the endof
the whiskers. h F-score among time points and correlation with pseudotime of the
top 1000 gene for each cluster using Stereopy-TGPI (blue) and Mfuzz (yellow)
methods. i A temporal gene pattern identified by Stereopy-TGPI for mouse fore-
brain trajectory. j A temporal gene pattern identified by Stereopy-TGPI for mouse
forebrain time series datasets. The upper and lower edges of the error band
represent Q1 and Q3 of the gene expression levels of the gene group in i and j,
respectively. k Gene expression of Tead1 in each cell type at each time point.
l Spatial heatmap for AUC scores of Tead1(+) regulons and corresponding GO
terms.m Time-series gene network for Tead1. The radial line represents a group of
genes, and thepoints on it indicate the timepointswhen these genes are expressed.
The point size indicates the gene number. Source data are provided as a Source
Data file.
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play a significant role in cardiogenesis44. The VCM niche encompassed
five other cell types: approximately 28% atrial cardiomyocytes (ACMs),
27% blood cells, 23% endocardial cells (ECs), 13% epicardial cells (EPs),
and 9% fibro-mesenchymal cells (FMs) (Fig. 5c). Interestingly, within a
25-μm physical distance in 3D, we observed that VCMs were the pri-
mary recipients of signals from surrounding cells (Fig. 5d). This con-
tradicted the conventional understanding that communication

activities were specific to whole cell clusters45 (Fig. 5e), underscoring
the essentiality of 3D niche pruning. Our computational analysis pre-
dicted a significantmolecular interaction between the ligand Vcan and
its receptor Itgb1 in FM-VCM cells (communication score = 0.293,
p =0.00), with moderate presence in other niches (Fig. 5f). This
observation aligns with previous studies that have emphasized the
critical role of Vcan in the extracellular matrix for supporting and
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remodeling VCMs46,47. Moreover, we found that the four distinct niche
compositions, apart from ACMs, collectively influenced VCM gene
expression through the same sets of L-R pairs (Vim-Cd44, Calm1-Ryr2,
Igf2-Igf2r…), many of which have been implicated in the regulation of
CM proliferation, migration, and differentiation48,49 (Supplementary
Figs. 25, 26). In comparison to other state-of-the-art cell-cell commu-
nication (CCC) tools, including single-cell CellPhoneDB45 and spatially
resolved NICHES50 (Supplementary Table 5), Stereopy achieved the
most complete identification of specific L-R pairs that covered nearly
all those derived by other tools, thanks to its precise niche extraction
(Supplementary Fig. 27). Themajority of these L-R pairs are involved in
mammalian cardiac growth and development (Supplementary
Table 6). Additionally, our analysis revealed that VCM also exerted a
reverse influence on the cell state or function of the cell micro-
environment through another set of L-R pairs (Fig. 5g).

In addition, we inferred the specifically expressed GRNs on VCM
cells within the niches (Fig. 5h, Supplementary Fig. 28 and Supple-
mentary Table 7). Through enrichment analysis, we identified a set of
candidate core TFs and their corresponding regulons, suggesting their
potential susceptibility to cell-niche communications and warranting
further inspection of their regulatory effects. We then established
deductive signaling paths to connect intercellular signaling activities
from niche cells and intracellularly influenced TFs. To simplify the
complex network,we retained connections between receptors andTFs
involving a maximum of two intermediate genes (Fig. 5h). Among
them,Cd44 emerged as theprimary recipient of extracellular signaling,
stimulated by specific ligands (Col1a1, Col4a1/2, Vcan) or collectively
expressed from different niches (Fn1, Vim). This signaling pathway
could up- or downregulate various TFs such as Tcf4. Previous studies
have elucidated the ability of Cd44 to activate the canonical Wnt/β-
catenin signaling pathway, impacting the expression of Tcf4 and
downstream genes51, thereby exerting temporal and spatial control
over heart maturation52. Igf2-Igf2r also collectively regulated VCM
proliferation and differentiation by activating PI3K/Akt pathways, as
previously reported53,54. Moreover, the shared Calm1/3-Cacna1c family
displayed potential regulation of Mef2c/d expression, which has been
linked to excitation-contraction coupling in VCM function through
calmodulin-dependent signaling pathways55,56. Our framework addi-
tionally facilitated the investigation of detailed GRNs for each user-
defined receptor in the same cell. For instance, Fig. 5i depicted theGRN
of the Itgb1 receptor as a directed graph, encompassing various
modes, including directed acyclic (such as Srebf2 and Tcf3) and bidir-
ected acyclic (such as Pdlim5 and Mllt10). Importantly, the inferred
GRN, extended to downstream TGs, highlights the potential for dif-
ferent intercellular communication to collectively regulate the same
set of genes (Fig. 5j and Supplementary Fig. 29). For example, the Itgb1-
related CCC might modulate both Pdlim5 and Mllt10 through Ilk-
related pathways. GO enrichment analysis using Metascape57(https://
metascape.org/). indicated that their shared TGs jointly managed
cardiac muscle development and contraction (Fig. 5k), corroborating

prior findings58,59. In comparison to other tools connecting the outside
and inside of cells, such as NicheNet60, Stereopy-NicheReg3D provides
a more definitive and comprehensive network for inferring how cell-
niche-specific L-R pairs regulate intracellular regulon activities related
to specific cellular functions.

Through our 3D joint analysis pipeline, we have demonstrated how
spatially informed extracellular signaling at the niche influences intra-
cellular gene regulation in the cell of interest, surpassing the limitations
of 2D data analysis (Supplementary Figs. 30, 31). The integration of CCC
and GRN could improve the accuracy of context-specific L-R-TF-TG
predictions concerning morphological phenotypical changes. As such,
we have derived an improved model of 3D regulation implicating VCM
development in cardiacmaturation andphysiology (Fig. 5l).Duringheart
development, VCMsconstitute a fundamental elementofheart function,
while EC, EP, FM, and blood cells are key components of the micro-
environment promoting CM maturation. The niche components col-
lectively or specifically transmit signals through shared or distinct L-R
pairs, which further promote or inhibit specific TFs inside VCM cells
through specific signaling pathways. These TFs ultimately influence the
expression of downstream TFs and TGs, jointly demonstrating the cel-
lular functional state and subtype.

Therefore, Stereopy-NicheReg3D is expected to be a valuable tool
with an interactive visualization browser in the 3D space (Supple-
mentary Fig. 32 and Supplementary Movie 1) for better dissecting the
functional consequences of spatially informed inter-intracellular reg-
ulation networks, thereby facilitating the prediction of cellular func-
tion, state, and corresponding phenotype.

Discussion
Interpreting similarities, differences, and developmental changes
across multiple samples is non-trivial to unravel complex biological
regulatory mechanisms in multi-sample spatial omics datasets. In this
study, we introduce Stereopy, a comprehensive toolkit for managing,
analyzing, and visualizingmulti-sample data to address this problem. It
features essential components such as the MsData container, MSS
controller, and a multi-sample transformer, effectively mitigating the
challenges encountered in jointly analyzing multi-sample data. Ste-
reopy also provides a wide array of analysis solutions and algorithms
tailored specifically for comparative, temporal, and 3D integrative
analysis in multi-sample endeavors.

Firstly, we employed Stereopy to validate the co-occurrence of
Podocytes with GCs in comparative kidney datasets, identifying Spp1
as a potentially significant UMOD KI conditional marker. The applica-
tion of the Stereopy-CCD algorithm proved its efficacy in detecting
important cell communities across multiple samples, thereby
expanding the scope of diversity analysis in comparative studies.
Subsequently, we harnessed the capabilities of Stereopy to delve into
temporal mouse embryonic brain datasets, highlighting the function
of Tead1 and the cortical hem in forebrain cortical development. This
investigation provided valuable insights into the dynamics of mouse

Fig. 5 | Stereopy integrates spatialmulti-sampledata and reveals 3D regulatory
mechanisms related to cardiac development. a Stereopy-NicheReg3D workflow.
This approach focuses on identifying regulatory networks that are responsive to
cell-niche interactions in a spatial manner, through extracting the cellular niche in
3D and connecting intracellular regulations with intercellular communications
(highlighted in green). b Stereopy-NicheReg3D illustrating multi-hierarchically
transcriptomic architecture, ranging from heart organmeshes, heart cell types and
clusters, spatially variable genes (Myl2), spatially specific regulons (Mef2c(+)), and
niche-specific L-R pairs (Igf2-Igf2r) from left to right. c Spatial distribution of VCM’s
niche compositions including neighboring ACM, blood, EC, EP, and FM cells in the
boundary. d Circos plot showing bidirected cell-cell interactions in five niches. The
width of an arrow correlates with the number of significant L-R pairs. e Heatmap
showing the CCC intensities without niche restriction, different from (d).
f, g Bubble plots demonstrating cell-type-specific L-R pairs: f niches to VCM. g VCM

to niches. Circle color indicates the communication score of each L-R pair, while
circle size indicates its p-value of permutation test. h Sankey plot connecting
intercellular L-R interactions from sender niche cells to receiver VCM cells to VCM
intracellular downstream TFs via deductive signaling pathways. Bandwidth indi-
cates the mean expression of the two genes at both ends. i Regulatory network
showing inferred intracellular signaling paths from receptor Itgb1 to downstream
TFs. j Shared and specific TGs in Pdlim5(+) and Mllt10(+) regulons showing the 3D
co-regulation function. kGO enrichment analysis indicating the collective function
of shared targets of regulons (shared, Pdlim5(+), and Mllt10(+) from left to right).
l The 3D regulationmodel of extracellular signaling to intracellular gene regulatory
network. The protein structure of RBPMS (PDB code: 5CYJ) was downloaded from
Protein Data Bank and rendered in PyMOL. Source data are provided as a Source
Data file.
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forebrain development. The Stereopy-TGPI algorithm demonstrated
its ability to accurately infer temporal gene patterns by integrating
spatial information, thereby revealing potential gene patterns and key
TF genes related to forebrain development. Finally, we leveraged
Stereopy to explore 3D multi-sample datasets, specifically investigat-
ing the developing VCM in a mouse embryonic cardiac dataset.
Through this analysis, we identified an Itgb1-stimulated co-regulation
network, illuminating the complicated inter- and intracellular reg-
ulatory mechanisms in the 3D niche-based microenvironment. The
Stereopy-NicheReg3D pipeline demonstrated its superiority in identi-
fying more comprehensive cell-type-specific LR pairs and signaling
paths compared to existing tools.

Stereopy represents a comprehensive and robust solution that
surpasses simply providing functionalities and algorithms for analyz-
ing complex spatial omics datasets. Its advanced features, including
batch effect evaluation and removal for multiple samples, as well as
multi-sample joint analysis functions such as 3D slice registration, 3D
data trajectory inference and visualization, amplify the utility of Ste-
reopy in the field. Moreover, Stereopy incorporates numerous data
analysis functions, including well-known functions adapted from R
code such as scTransform and SingleR. It also supports diverse data
types, including GEF and GEM files generated by Stereo-seq, as well as
the commonly usedh5adfile format, enabling the analysis of data from
different platforms. It is worth noting that Stereopy can analyze SRT
datasets as long as they provide both spatial information and gene
expression at the same resolution. However, some algorithmsbundled
within Stereopy perform optimally with high-resolution datasets,
rendering them more suitable for high-resolution SRT platforms.

Stereopy has effectively tackled key challenges in multi-sample
spatial omics analysis, including data management, analysis module
planning, algorithm development, and interactive visualization of 2D/
3D data. Nonetheless, there are still opportunities for further
improvement to enhance and enrich multi-sample data analysis by
accommodating emerging modalities, addressing evolving analysis
demands, and integrating additional omics to support scientific
research. It is imperative to leverage spatial and feature information,
particularly in spatiotemporal datasets (referred to as 4D datasets), to
unlock insightful biological discoveries. Stereopy is committed to
expanding its repertoire of analysis functions and extending its
application domains to diverse areas, including clinical and immune
research. The support for multimodal analysis and multi-omics data-
sets should be prioritized as they provide a wealth of biological
information and represent the future of spatial omics technologies.

Despite the prevalence of research involving multiple samples, the
research community dedicated to multi-sample analysis remains rela-
tively underdeveloped. This deficiency can be attributed to the absence
of a standardized framework that integrates various analysis tools and
elucidates the canonical forms ofmulti-samplemulti-omics analysis. The
integration of algorithms and tools into a unified framework poses for-
midable obstacles for the joint analysis of multiple samples, compelling
researchers to either forego the valuable insights or invest substantial
time in searching for appropriate tools. Stereopy emerges as a founda-
tion for building a vibrant multi-sample omics community and pro-
moting the establishment of canonical forms for data analysis. By
introducing the developer mode, Stereopy further encourages con-
tributions from the bioinformatics community, fostering collaborative
efforts. With unwavering dedication, Stereopy strives to furnish
researchers with a user-friendly toolkit and robust analysis modules.

Methods
Comparison of Stereopy, Scanpy, Seurat, and Giotto toolkits for
general single-cell analyses
Various toolkits have provided multiple functions for single-cell or spa-
tial transcriptomic analyses. Among these, Scanpy, a Python package,
and Seurat4, an R package, have gained widespread popularity. Giotto2,

another R package, is specifically designed for ST. This comparison aims
to comprehensively evaluate the time consumption performance of
Stereopy, Scanpy, Seurat, andGiotto toolkits, focusing ongeneral single-
cell analysis and spatial transcriptomic analysis, which includes essential
steps such as pre-processing, principal components analysis (PCA),
UniformManifold Approximation and Projection (UMAP), cell neighbor
finding, Louvain clustering, Leiden clustering, and gene marker identifi-
cation. To assess performance on multiple samples, Stereo-seq mouse
embryodatasets ranging fromE9.5 to E14.5were utilized. Since Stereopy
is the only toolkit capable of analyzingmulti-sample data, the remaining
toolkits were evaluated by merging the multi-sample data into a single
dataset. To ensure fairness in the comparison, all hyperparameters were
held constant. Pre-processing involved testing three steps: normal-
ization, log1p transformation, and scaling. PCA was performed by
retaining the top 30 principal components (PCs) without considering
highly variable genes. Cell neighbor analysis was conducted based on
PCA results using the top 20 PCs and identifying the 10 nearest neigh-
bors. Louvain and Leiden clustering algorithmswere employed, with the
default resolution set to 1. Genemarker identification involved testingon
pre-annotation clustering results and utilizing a t-test based on an all-
versus-rest approach. All toolkits were tested on a Linux machine with a
64-core CPU and 512 GiB of RAM.

Cell co-occurrence detection algorithm
To explore changes in cell neighborhood, we developed a global co-
occurrence method (Supplementary Fig. 8) to reflect spatial distribu-
tion relationships between cell types or clusters. The presented co-
occurrence method is composed of three essential steps: 1) Calcula-
tion of cell-to-cell spatial distance, 2) Construction of a spatial graph,
and 3) Counting of cell-type contacts. In the first step, we calculate a
cell-cell pairwise spatial distance matrix based on the Euclidean dis-
tancemetric. Secondly, we construct a cell neighborhood graph using
the distance matrix as the adjacency matrix. To ensure the graph
captures meaningful spatial relationships, we only retain edges within
a defineddistance range bounded by aminimal distance threshold and
maximal distance threshold. These thresholds can be manually selec-
ted basedon the specific context of the analysis. After constructing the
cell neighborhood graph, we calculate the probability that cell type A
has an edge with cell type B. This probability represents the co-
occurrence probability of cell type A with cell type B. The following
equations explain this process in more detail. Wemark cells belonging
to the cell type A CA½1,N� andM cells belonging to CB½1,M� as follows,
of which M,N refer to:

CAi 2 CA1,CA2, . . . ,CAN

� �

CBi 2 CB1,CB2, . . . ,CBM

� � ð1Þ

Cell counts of cell type A are given by the number of A cells that
are located around cell type B from the minimum distance to the
maximum distance:

countðA,B, min distance, max distanceÞ=C ð2Þ

The co-occurrence of A with B is defined as the probability of the
cell type B appearing around each cell of the cell type A, PðAjBÞ at
distance from min distance to max distance:

Co� occurence A,Bð Þ=P B, j,Að Þ=C=N ð3Þ

Notably, the co-occurrenceof Awith Bmaynot be equal to the co-
occurrence of B with A, which equals e/n and e/m respectively in our
method. This asymmetry in our co-occurrence arises from the fact that
the spatial distribution of a cell type includes another cell type and is
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more universally distributed. For example, ECs are universally dis-
tributed inmouse kidney whichmeansmost other cells are connected
to ECswhile not every EC is connected to other cell types. Owing to the
asymmetry of our co-occurrence method, we can also detect the
wideness of spatial distribution for cell types. Additionally, we created
the co-occurrence result integration method for multiple samples
based on the weighted mean of the group, where weights equal to the
17 cell counts ratio in multi-sample data

Co� occurrenceðA,BÞgroup

=
XS

i = 1

NiPS
i= 1Ni

*Co� occurrence A,Bð Þi
 !

i 2 1, 2, . . . Sð Þ
ð4Þ

The grouped co-occurrence is equal to the result of merged
multiple samples calculated per sample since all samples originate
from the same tissue.

On the other hand, we use the difference to indicate the co-
occurrence between two samples or two groups.

Co� occurrenceðA,BÞdif f erential =Co� occurrence A,Bð Þ1
�Co� occurrence A,Bð Þ2

ð5Þ

The differential co-occurrence value ranges from −1 to 1, where
the positive value represents improvement of co-occurrence, and vice
versa. To be noticed, the differential co-occurrence can also be cal-
culated between two groups.

Benchmarking of co-occurrence algorithm
To compare the performance of cell type co-occurrence of Stereopy
with Squidpy, we tested on mouse kidney WT and BTBR samples30.
Since there is no ground truth for cell co-occurrence. We compared
the results with previously reported findings. The co-occurrence is
calculated based on the cell spatial neighborhood and the distance
traverse from0 to 180 in steps size of 30, unit same as the resolution of
slide-seq V2 technology which is 10μm (Supplementary Fig. 9a). For
Stereopy, we use co-occurrence function with default parameters
while for Squidpy we use co_occurrence with parameters spa-
tial_key = spatial, interval = np.array([0,30,60,90,120,150,180]) and
n_splits = 1. As a result, Stereopy shows a more obvious co-occurrence
of podocytes and GC cells than Squidpy, which is consistent with
Marshall’s findings30. In addition, with the help of grouped and dif-
ferential co-occurrence among multi-sample analysis, Stereopy is
capable of finding the similarities and diversities of cell type co-
occurrence among multiple samples. Compared to the significant
decrease in co-occurrence of GC, MC with itself in Squidpy, Stereopy
can exhibitmore significant changes betweenmultiple articles, such as
the reduction of co-occurrence between PCT_ 1 and PCT_2 (Supple-
mentary Figs. 9c, 33).

Cell community detection (CCD) algorithm
The functionality of a tissue is tightly coupledwith the cell populations
inhabiting it. The neighborhood of each cell impacts its gene expres-
sion patterns15. Here, we define a cell community as a spatial tissue area
that exhibits a consistent distribution of cell types across all of its parts
or regions. Therefore, detecting cell communities is of paramount
importance to understanding the structure and function of the tissue.
The main idea behind defining functional tissue domains (commu-
nities) can be narrowed to detecting tissue areas with the same cell
mixture (percentages of cell types).

Toaddress this,wedeveloped theCellCommunityDetection (CCD)
algorithm. For each cell-spot csu, v, k , with spatial coordinates u, vð Þ, in
slice k, k = 1::K , CCD obtains a cell community label lu, v, k , lu, v, k 2
l1, l2, . . . , lM (Supplementary Fig. 4). Then, it performs spatial convolu-
tion of cells using cell-type aggregating kernels cd, s with a specific size d

and sliding step s, d, s
� � 2 d0, s0

� �
, d1, s1
� �

, . . . , dW , sW
� �� �

. The
inclusion of multiple kernel support empowers CCD to extract both
larger uniform cell communities and narrower border communities,
which hold significant value in biological comparative studies. The ker-
nels traverse the tissue, systematically scanning each window wi,d, s,k

and calculating the cumulative presence ofNdistinct cell typeswithin its
receptive field, creating feature vectors fvi,d, s,k of cell-type percentages
ð p1,p2, . . . ,pN

� �Þ:
fvi,d, s,k = cd, s*wi,d, s,k = p1,p2, . . . ,pN

� � ð6Þ

Where i represent the number of each sliding window when the
kernels traverse the tissue.

Feature vectors obtained from all kernel windows across all K
slices are then fed to a clustering algorithm CA such as Leiden25,
Spectral61, or Hierarchical62 to obtain community labels li,d, s, k :

CA fvi,d, s,k

� �! li,d, s, k , li,d, s, k 2 l1, l2, . . . , lM ð7Þ

The number of desired communities M can be predefined as a
parameter (Spectral or Hierarchical clustering) or by setting the
resolution of clustering (Leiden). It is worth emphasizing that in the
case of multiple slices, the CCD analyzes all window data of all slices
together,making the community resultsmore robust, eliminating slice
constraints, and facilitating meaningful slice comparisons. Further-
more, it enables the detection of distinct communities between slices,
contributing a valuable feature to the analysis.

After obtaining window community labels li,d, s, k , the community
label lu, v, k of cell-spot csu, v, k is derived by majority voting (MV), using
community labels of all windows covering the cell-spot:

lu, v, k =MV 8li,d, s, k ,where csu, v, k 2 wi,d, s, k

� �
, lu, v, k 2 l1, l2, . . . , lM ð8Þ

While cell co-occurrence calculates the probability of cell type B
appearing around each cell of cell type A in the entire sample, cell
community calculates the distribution of cell types within a sliding
window.

Determining optimal window size. The kernel cd, s parameters, win-
dow size d and sliding step s are optional. In cases where no specific
pair of values is provided, an iterative process is employed to deter-
mine the optimal window size. During the first iteration, the initial
window size is derived by dividing the smaller spatial range of u and v
by 100 and rounding the result to the nearest even number. Subse-
quently, the average number of cells covered bywindows of this size is
computed. If the calculated average falls below 30, the window size is
increased by 10%; conversely, if it exceeds 50, the window size is
decreasedby 10%.The step is repeated until the averagenumber of cell
spots of all windows falls within the desired range30,48. The sliding step
is then set to half of the determined window size.

Spatially aware cell type filtering. Some cell types widely present in
all spatial areas of the tissue can form irrelevant and false cell com-
munities with any other cell type, leading to potentially misleading
findings. Additionally, these false communities have the potential to
substitute more significant and relevant communities. To mitigate
these false detections, we incorporated an automatic cell type removal
mechanism into the CCD algorithm. This addition enables the identi-
fication and elimination of cell types that are uniformly or randomly
present in all parts of the tissue (for example, Erythrocytes in mouse
embryo brain). The spatial distribution of each cell type in the tissue
can be evaluated by measuring the level of cell dispersion, con-
nectedness and grouping. Cell-spots in ST tissue slices are spatially
sparse and require special preprocessing for assessing their spatial
organization. For each cell type n, n 2 1::N½ � we create a binary image
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Bn with values 1 in all u, vð Þ positions of cells of type n, otherwise 0 The
obtained binary image is then downsampled with the rate r, while all
cell pixels are kept in their rounded positions. The rate r is provided by
the user or calculated as a half of the minimal kernel size used. Two
spatial metrics are calculated: entropy and scatteredness60,61. Entropy
provides insight into the frequency of cell appearance in the tissue p010 ,

entropyn = � sum p010 � log p010
� �� � ð9Þ

with higher values implying the ratio of cell and non-cell pixels
closer to 1. The scatteredness measure quantifies the degree of scat-
tered or isolated regions in a binary image, which provides insight into
the spatial dispersion and grouping of cells. It is calculated as the ratio
of the number of connected components (objects) in the image to the
total number of non-zero pixels. CCD supports setting the threshold
values for these metrics to exclude from processing the cell types that
are randomly or evenly spread throughout the tissue. Removing cell
types with high entropy and scatteredness improves clustering and
provides more robust cell communities.

Information-aware window filtering. The robustness and quality of
CCD depend on the quality of clustering. To ensure stable clustering,
feature vectors should contain a significant amount of information,
that is, each evaluated window should consist of an adequate number
of cell-spots. CCD gathers data on total cell numbers per window, for
each kernel size d, and supports setting a threshold value for the
minimum cell-spot number for the window’s feature vector to be
included in the clustering process. By default, the threshold is set to
the value of�2σ of thewindowcell number distribution. Cell-spots are
marked with the label of unknown if there are no cell community-
labeled windows that overlap them

if 8li,d, s, k =unknown,wherecsu, v, k 2 wi,d, s, k¼)lu, v, k =unknown

ð10Þ
Selective exclusion of tissue areas with sparse cell populations

prior to clusteringmitigates the formation of numerous small clusters,
thereby enhancing the robustness of the clustering process.Moreover,
if pertinent information is deemed essential from these excluded
regions, they can be subject to processing using larger kernels,
enabling comprehensive analysis when warranted.

Benchmarking of cell community detection algorithm
To assess the stability and reliability of Stereopy’s CCD, we conducted
a comparison with existing algorithms for domain detection on three
samples: single sample Stereo-seq mouse embryo whole brain3, Slide-
seq V2 UMOD KI kidney comparative samples30, and Stereo-seq multi-
sample adult mouse brain63 (Supplementary Note 2.1). For a single
sample, we included Giotto’s Spatial Domain Identification (GSDI)15,
SpaGCN28 and GraphST23for comparison. In addition, for the multi-
sample analysis, we included PRECAST21, BASS22 and BANKSY29 (Sup-
plementary Note 2.2). Giotto and SpaGCN only support single-sample
processing, creating results that require cluster matching to support
further analysis. GraphST, BASS, PRECAST and BANKSY are all able to
process multiple slices simultaneously. CCD can process a single
sample as well as multiple samples simultaneously. SpaGCN was run
with the default parameters (resolution = 1.5). Giotto’s SDI required
adjustment of gene expression and cell locationdata to a defined input
format. Data was normalized with normalizeGiotto using scale-
factor = 6000. Then, the functions createSpatialNetwork, binSpect,
and initHMRF_V2 were processed with k = 16 for the brain sample, and
k = 7 for the kidney sample. Annotation was extracted with the
doHMRF_V2 function and visualized independently. GraphST is run
with default parameters to obtain a 64-dimensional representation of
cells. Then, Louvain is applied to cluster each sample by adjusting the

resolution until a similar number of clusters as CCD is achieved. Seurat
objects for each slice were created for both BASS and PRECAST, and
default values were used for all parameters, together with the desired
number of clusters. To enhance the relevance of the results for domain
detection, the BANKSY algorithm was executed with a key parameter,
lambda, set to 0.8. This parameter value was chosen to optimize the
performance of the algorithm in identifying relevant domains. Addi-
tionally, the parameter num_clusters was set to the desired number of
clusters, allowing for the specific identification of distinct domains
within the dataset. CCD formouse embryowhole brain samplewas ran
with win_sizes = 150, sliding_steps = 50, cluster_algo = spectral and
n_clusters = 16, while for multi-sample adult dataset parameters were
winsizes = 200, sliding_steps = 50, cluster_algo = agglomerative (Hier-
archical) and n_clusters = 16. All parameters were chosen to provide,
on average, 30–40 cells per window, while keeping the communities
smooth and coherent.

Evaluation metrics
We utilized two metrics to evaluate the performance of various algo-
rithms in generating results: Scatter and Density BetWeen clusters (S-
Dbw)64 and SD validity index56. S-Dbw considers both cluster separa-
tion and cluster cohesion. It measures how well-separated clusters are
from each other (good separation) while also considering how tightly
the data points are grouped within each cluster (good cohesion). SD
validity index combines themeasures of average cluster scattering and
total separation between clusters. These dual considerations make
S-Dbw and SD more comprehensive metrics for this purpose than the
silhouette score that measures how similar each data point in one
cluster is to the data points in the neighboring clusters. Additionally,
clear boundaries for these spatial domains are crucial to analyze cell
type proportions and spatial distributions within each domain. Thus,
we used Moran’s I to evaluate the spatial auto-correlation of all spatial
domain methods. The total benchmark result can be found in Sup-
plementary Table 1, CCDprovides lower S-DbwandSD scores aswell as
higher Moran’s I than other algorithms, confirming better cluster
cohesion and grouping. Meanwhile, we compared the execution time
and memory consumption of GSDI, SpaGCN, GraphST, PRECAST,
BASS, and CCD (Supplementary Table 2). The execution time of the
CCD is faster compared to the GSDI and SpaGCN, demonstrating a
speedup of at least 90 and 35 times, respectively. The peak memory
consumption is affected by the dimensions of the input file, rendering
CCD more efficient due to its independence from gene expression
matrices.

Comparison on mouse embryo brain sample, and region analysis.
The mouse embryo brain (Supplementary Fig. 19a), a structurally well-
explored sample, was used for comparison of spatial domain detection
methods, and further analysis of the biological significance of CCD
communities. Supplementary Fig. 5b provides a comparison of spatial
regions obtained by Stereopy’s CCD, Giotto’s SDI, SpaGCN, and
GraphST, with the numbers of domains fixed. SpaGCN fails to provide
domain integrity. Both GSDI and CCD detect layers in the dorsal pal-
lium, as well as the thalamus. However, CCD provides smoother and
more coherent regions (Supplementary Table 1), with the detection of
severalmore separate communities. The cell communities detected by
Stereopy’s CCD are composed of multiple neighboring cell types and
correspond to functional tissue domains. To evaluate the CCD’s ability
to infer biological function and structure, we analyzed separate
regions and their correspondence with known functional and anato-
mical regions. Supplementary Fig. 5c, d displays the region and com-
posure of two communities which show significant spatial matching
with Hotspot9 gene modules, and anatomical regions from Allen brain
map10. The orange community represents a cell type-homogenous
region, with 70% of dopaminergic neurons (Die GNeu) and 23% of
midbrain glutamatergic neuroblasts (Mb Glu Neu) as main
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components, where other cell types appear in abundancies less than
4%. Although these cells can be found in other areas of the tissue
(Supplementary Fig. 5c, second column), this region is defined by the
specific mixture of cell types, that is, a specific tissue domain. This
community is spatiallymatchedwith theHotspot genemodule, aswell
as with the anatomical region of dorsal tier of thalamus (Supplemen-
tary Fig. 5c, columns three and four). The brown community is het-
erogeneous and contains, on average, 30% forebrain GABAergic
neuron cells (Fb Glu NeuB), 29% cortical intermediate progenitor cells
(Corti prog), 13% of cortical or hippocampal glutamatergic neuron
cells (CortiHippo Glu Neu) and 10% of cortical glutamatergic neuron
cells (Corti Glu Neu) (Supplementary Fig. 5d, first and second column).
This region is shown to coincide with the gene module obtained by
Hotspot, and when comparing with Allen brain atlas annotation, it
corresponds to the mantle zone of dorsal pallium (Supplementary
Fig. 5d, third and fourth column). These results confirm the ability of
CCD to extract biological information.

Comparison on multi-sample adult mouse brain sample. Three
samples were processed separately by GSDI, GraphST, and SpaGCN,
while BASS, PRECAST, and CCD employed their multi-sample
approach (Supplementary Fig. 6b). SpaGCN manages to obtain ana-
tomical regions with clear borders but provides an unstable number of
domains for consecutive samples while using the same parameters
(Supplementary Fig. 6b). When comparing per sample, domains
obtained by GSDI, PRECAST, BASS, GraphST, and CCD are similar by
constitution. However, multi-sample processing provides more
coherent (Supplementary Table 1) and anatomically matching results
with higher reliability of inter-sample domain matching. Selected
samples have similar cell type shares (Supplementary Fig. 6c). Thus,
the consistency of CCD’s communities throughout samples is con-
firmed with stable tissue-share communities in all samples (Supple-
mentary Fig. 6d) together with lowest S-Dbw and SD scores
(Supplementary Table 1). Execution of 3 slices of adult mouse brain
CCD finishes in 214 s while consuming 25,716 MB. It costs less in terms
of execution time and memory compared to other tools (Supple-
mentary Table 2).

Comparison on UMOD KI/WT sample. CCD, BASS, and PRECAST
provide joint analysis of bothUMODKI andWT samples, while Giotto’s
SDI, GraphST, and SpaGCN perform on each sample separately (Sup-
plementary Fig. 7c). We compared the results generated by these
algorithms, especially the medulla region according to the annotation
obtained from the Marshall et al. paper. CCD provides domains of
higher integrity and robustness compared to BASS, PRECAST, GSDI,
and SpaGCN, especially in themedulla region on which CCD identified
almost the same region with the annotation from the original paper.
GSDI, BASS, PRECAST, and SpaGCN detected more than one region
and even mixed regions in the medulla area, while CCD and GraphST
detected regions consistent with Marshall et al. paper. To further
demonstrate the consistency ofCCD regions,we calculated themarker
genes for each of them. Marker genes show consistency of the gene
expression and the cell community region in both UMOD KI and WT
samples (Supplementary Fig. 11). CCD manages to process these two
kidney samples in 31 seconds while consuming only 684 MB. It costs
less in terms of execution time and memory compared to other tools
(Supplementary Table 2).

Temporal gene pattern identification (TGPI) algorithm
It is of interest that the gene expression exhibits a certain pattern
during distinct biological processes. Among various kinds of gene
patterns, up- or down-regulation is a prevalent phenomenon. Here we
devised a approach for identifying genes exhibiting up- or down-
regulated expression, utilizing the serial test along time series and cell
type trajectory. Note that the t-test statistics might lead to false

positive discovery as described in Lamian65. Thus, we have imple-
mented the permutation test andWilcoxon test in TGPI. By employing
a one-tailed test, we obtain statistical scores and p-values between
consecutive time points. To capture both ends of the spectrum, we
calculate p-values for both higher and lower expression, thereby
characterizing up- and down-regulated genes, respectively.

Plt =permutation test expt + 1, expt,alternative=
0
less0

� 	
t 2 f1, 2, . . . ,T � 1g

Pgt =permutation test expt+ 1, expt,alternative=
0
greater0

� 	
t 2 f1, 2, . . . ,T � 1g

ð11Þ

Then we proposed the False Positive Risk Score (FPR Score) to
combine the p-value so that we can sort out the most up- or down-
regulated genes. We proposed the FPR score and integrated its metrics
into theTGPI framework.Our hypothesis is rooted in thenotion that the
alternative probability signifies an increase in gene expression between
adjacent time points, with each time point being independent. Conse-
quently, the FPR score serves to highlight the significance of serial up or
down-regulation. Its calculation adheres to the following formula:

FPR score= 1�
Yk

i = 1
ð1� PiÞ ð12Þ

While some genes exhibit straightforward serial up or down-
regulation, others manifest more complex patterns during certain
biological processes. To automatically capture all types of patterns, we
draw inspiration fromMfuzz35 and employ fuzzy Cmeans clustering of
genes. Our methodology, Stereopy, takes into account both spatial
and temporal expression features, yielding more biologically sig-
nificant results.

Definition 1 (Spatial features). Stereopy calculates PCA based on
rasterized expression on a certain bin size, and uses the first several
principal components as spatial features.We use rasterized expression
by sum the expression of a gene within a bin size square, which can
eliminate the impact of cells with relatively high expression.

expi, j = sum expx,y

� 	
, x = int

i
bin size


 �
, y= int

j
bin size


 �
ð13Þ

f spatial = PCA exp1, 1, exp2, 1, . . . , expi, j, . . . , expI, J

n o� 	
i 2 1, I½ �,

j 2 ½1, J�
ð14Þ

exp represents the expression in coordinateði, jÞ.
Definition2 (Temporal features). Stereopyutilizes the result from

serially up/downregulated genes as input. We use the serial greater p-
value Pgi and serial less p-value Pli as features for each gene based on
the following formula:

f temporali =
Pli � Pgi

Pli � Pgi

�� �� × max 1� Pli, 1� Pgi

� �
, f temporali 2 �1, 1ð Þ ð15Þ

The Pgi represents the probability of the gene expression not
being up-regulated at the i+ 1 timepoint compared with the i time-
point. Consequently, 1� Pgi can be interpreted as the probability of
the gene being up-regulated at the i+ 1 timepoint according to the
alternative hypothesis. Similarly, 1� Pli represents the probability of
the gene being down-regulated at the i+ 1 timepoint. By combining the
probabilities of up and down regulation, with a minus sign to indicate
down regulation, we assign lower values of f i to represent down-
regulated genes and higher values to represent upregulated genes. In
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this manner, we consider f i as the tendency of a gene between adja-
cent time points. In contrast to Mfuzz, which utilizes mean expression
values as input, Stereopy’s temporal feature places greater emphasis
on the tendency rather than the original gene expression levels.

Definition 3 (Spatiotemporal features). To incorporate both
temporal and spatial information, we concatenate the scaled spatial
features with the first N spatial f eatures and to temporal features for
each gene. A parameter alpha is also introduced to weigh the effect of
spatial features.

f = concatðf temporal,alpha*f spatial½1 : N spatial f eature�Þ ð16Þ

Finally, we employ the Fuzzy C means algorithm to cluster genes
into distinct groups. The main objective of the Fuzzy C means algo-
rithm is to minimize J according to the following equation:

J u, vð Þ=
XN
i = 1

XC
j = 1

um
i, j jf i � vjj
��� ���2i 2 1,N½ �, j 2 ½1,C� ð17Þ

ui, j =
1

PC
k = 1

jf i�vj j
�� ��
jf i�vk jj j


 � 2
m�1 ð18Þ

vj =

PN
i = 1u

m
i, j:f iPN

i = 1u
m
i, j

ð19Þ

In this equation, f i represents the feature that combines both
temporal and spatial, and vj belongs to the center of each cluster.m is
the fuzziness and is set to 2 by default. um

i, j denotes themembership of
the i gene in the j cluster:

XC
j = 1

uij = 1,uij >0 ð20Þ

The termination condition of the iteration is defined as follows,
where ε is the threshold with default as 10−15:

max uk + 1
i, j � uk

i, j

��� ���� 	
< ε ð21Þ

By incorporating spatial features, Stereopy’s TGPI can differ-
entiate gene clusters that exhibit similar temporal expression patterns
but varying levels of spatial differential expression. This integration of
spatial information enhances the biological significance of the results
obtained (Supplementary Figs. 17, 18).

Benchmarking of temporal gene pattern identification
algorithm
The evaluation of Stereopy’s TGPI contains two important modules: 1)
the false positive risk score FPR score proposed in TGPI to find the up-/
down- regulated genes. 2) the whole temporal gene pattern detection
algorithm TGPI in spatial-resolved temporal datasets.

False positive risk score evaluation. We benchmarked our proposed
p-value combination metric FPR score on the temporal mouse fore-
brain datasets. We made three comparisons with respect to three cell
types including dorsal forebrain, forebrain neuronal intermediate
progenitor, and forebrain cortical glutamatergic in these datasets
(Supplementary Figs. 14–16). According to the occurrence of three cell
types, three comparisons contain 7, 5, and 3 time points respectively.
FPR score can find real continuously up-/down- regulated genes that
have a stable tendency of rise or fail gene expression along with the
time series in all these comparisons.

Temporal gene pattern detection algorithm evaluation. We first
tested the effect of spatial features. N top spatial features range from 3
to 6 are tested. Taking Foxg1,Hes5, andMab21l2 as examples, we tested
the 4 nearest neighbors (NN) of these genes according to Euclidean
distance basedonN top spatial features. (Supplementary Fig. 17). From
the result we observed that a similar spatial expression pattern is
detected in each 4NN gene. The higher the N spatial feature is, the
more similar spatial expression patterns can be observed (Supple-
mentary Fig. 17). Additionally, as the N spatial feature reaches 5, the
4NN genes tend to be constant. Since the N spatial feature can reflect
the spatial expression feature, we tested its influence on TGPI (Sup-
plementary Fig. 18a). The result indicated that the increment of the N
spatial feature resulted in higher consistency of genes in a temporal
pattern to some extent (blue box). Moreover, with the help of spatial
features, TGPI can distinguish genes with similar temporal patterns.
For example, Cluster 2 and Cluster 8 of TGPI with N spatial feature
equal to 3 are similar in temporal expression pattern and divergence in
spatial expression pattern (Supplementary Fig. 18b, c).

To evaluate TGPI’s performance on real datasets, we compared the
TGPI algorithm with another time series gene pattern method called
Mfuzz35. The Stereo-seq mouse embryo brain data from E9.5 to E16.5,
which is the subset of the mouse embryo dataset with annotation as
Brain, is used to evaluate the performance of TGPI3. Genes were clus-
tered into 8 clusters for both Stereopy and Mfuzz. To evaluate the
performance of the gene pattern results, we calculate the Pearson’s
correlation of gene expression with the pseudotime and ANOVA test
among time points. The F-score of the ANOVA test is used to reflect the
divergencebetween timepoints. If a certaingene ismore related to time
points, the F score will be higher. We calculated the top 1000 genes of
each TGPI cluster ordered by weights of clustering results for both
Stereopy and Mfuzz. The results show that most TGPI clusters exhibit
not only a higher F score in the ANOVA test among time points but also
higher Pearson’s correlation with pseudotime, which means genes
within the genepattern identifiedbyTGPI aremore related toboth time
point and pseudotime (Supplementary Fig. 19a). Moreover, from the
GO enrichment results, we concluded that TGPI is more capable of
grouping genes with the same expression pattern and functions (Sup-
plementary Fig. 19b, c). We conducted GO enrichment analysis on the
top20genes of each cluster for bothTGPI andMfuzz. As a result, 6 gene
pattern clusters of TGPI enriched GO terms while only 3 clusters enri-
ched GO terms for Mfuzz with the same p-value cut off (p =0.05).

3D cell-niche regulatory network prediction algorithm
The Stereopy-NicheReg3D algorithm, designed for predicting 3D cell-
niche regulatory networks, encompasses an initial step of adaptive 3D
niche reconstruction, followed by cell-niche communication prediction
at the single-cell resolution. This analysis is based on the high-quality
reconstructed 3D architecture of a series of adjacent 2D sections, which
necessitates the correlations between spots/genes across different
sections and within each section in the preliminary cell clustering and
annotation to guide the reconstruction and the process of the 3D
integration. In this study, the alignment has been completed by using
the automated Fused Gromov-Wasserstein Optimal Transport-based
algorithm, ST-GEARS66, and additional manual curations. Note that ST-
GEARS improves the alignment accuracy by incorporating both gene
expression and structural similarity into the optimization process of
anchors with cell type-specific distributive constraints. These anchors
further connect to the slice-specific groups of spots and genes and
transmit the elastic registration across each entire slice, recovering the
3D regionalization of each cell type. We investigated potential batch
effects using BatchEval67. The results suggested that there were no
significant batch effects among the 59 2D samples.

To ensure the accurate modeling of juxtacrine signaling pro-
cesses, three fundamental principles are proposed to govern the par-
ticipation of cells:
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1. Bordering principle: Cell-cell communications (CCC) between each
pair of cell groups should be restricted to their border regions
within a reasonable spatial distance. This principle is underpinned
by the hypothesis that extracellular CCC predominantly occurs
through signaling molecules released by sender cells, which can be
sensed by receiver cells in close proximity.

2. Non-confusion principle: CCC analysis should be confined to
regions where the cellular composition is relatively uncompli-
cated. As the number of cell types within a region increases,
accurately determining the exact source and target of the signals
becomes challenging.

3. Multi-slice principle: The niche should be constructed in a 3D
environment rather than a 2D plane. Therefore, employing a 3D
multi-slice analysis that more accurately simulates the cellular
environment is preferable over performing CCC analysis on
individual 2D slices.

In accordance with these principles, the fundamental step in
investigating cell-type interactions involve the construction of the 3D
niche associated with the central cells. This task is accomplished
through an adaptive edge detection approach. The gene expression
data, sequenced and annotated in multiple spots that form an orga-
nized 3D point cloud denoted as C, serve as the basis. Given a central
group or type of cells of interest T , the identity of any spot pi2C can be
represented with an indicator function

IT pi

� �
=

1, if the spot is assigned to cell type T

0, if the spot is assigned to other types

�1, if the spot captures nothing

8><
>: ð22Þ

Define all the neighboring spots of pi of cell type T within a cube
of size s as Ni sð Þ= n1,n2, � � � ,nk

� �
(excluding unassigned spots). The

shift of the centroid for pi is computed as

Di = 1�
1

Ni sð Þ
�� ��X

k

j = 1

IT nj

� 	
ð23Þ

We construct the border region of cell type T by identifying spots
with relatively large shifts. The threshold is chosen in an adaptive and
dynamicmanner, catering to the local confusion level of cell types. Let
the information entropy in the square centered at pi be

Si = �
Xn
j = 1

p xj

� 	
logp xj

� 	
ð24Þ

where n represents the total number of cell types in the data, and
p xj
� 	

is the frequency of cell type j in the cube.
Definition 4 (Border region). Given a cell type T , the border

region of T is defined as

BT = pi 2 T Di>θ � Si
��� � ð25Þ

Here, θ is a constant parameter controlling the magnitude of the
threshold. If the square area is highly fused, then a stricter threshold is
applied. With all spots identified within the border region, we can
construct the 3D niche using a variable-sized sliding cube at the cel-
lular resolution.

Definition 5 (Niche). Given a cell type T , let Sk denote the set of all
cells of type k,Nið�Þ represent the cube centered at the spotpi, and the
niche for cell type T is defined as follows:

NT =
[
k≠T

pi 2 BT ,pj 2 Sk pj 2 NiðsðnÞÞ
���n o

ð26Þ

where the size s of eachNi is determined such that there are at least n
spots of type k within the cube.

Next, we perform a label permutation-based statistical CCC ana-
lysis to identify significant cell-niche L-R pairs by incorporating both
L-R gene co-expression and 3D colocalization of the cells. In brief, we
collect potential L-Rpairs and construct a customizedLiana consensus
database43 (https://github.com/saezlab/liana-py/tree/main/liana/
resource/omni_resource.csv)

Pair L,Rð Þ=
[

i2 20databasesf g
Pairi L,Rð Þ ð27Þ

It is converted to the CellPhoneDB format using the command
cellphonedb database generate, where input files of protein, gene,
complex, and interactions are created according to the Liana con-
sensus lists. We then follow a similar approach reported by
CellPhoneDB45 to compute the average expression level of the ligand in
the sender cells and that of the receptor in the receiver cells within the
previously calculated niche.

Definition 6 (Communication Score). Given the average expres-
sion level of ligand l in sender cell type i, xl

i , and the average expression
level of the receptor r in receiver cell type j, xr

j , the communication
score is defined as themean value of the average L-R expressionwithin
a 3D niche:

slrij =
1
2

xl
i + x

r
j

� 	
ð28Þ

The significance of the true communication scores is evaluated
through random shuffling of cell-type labels of spots within the niche
for m times. The p-value is defined as the proportion of random
shuffles that reach a score higher than the true score:

p=

Pm
k = 1I x>sTf gðskÞ

m
ð29Þ

where sT is the true communication score, sk is the calculated com-
munication score at the k th shuffle, I x>sTf gð�Þ is the indicator function
defined as

I x>sTf g xð Þ= 1, if x > sT
0,otherwise



ð30Þ

Typically, a p-value smaller than 0.05 suggests that the corre-
sponding L-R interaction is statistically significant. This suggests that
the observed true communication score is unlikely to be solely
attributed to chance.

Cells receive signals from spatially proximate cells within the
niche through the expression of receptor proteins. These signals fur-
ther initiate a cascade of intricate intra-cellular regulatory events that
culminate in the modulation of gene expression within the recipient
cells. This cascade of gene regulation forms a crucial mechanism by
which cells respond and adapt to their microenvironment.

To demonstrate the possible regulation mechanism, we even-
tually connect significant L-R interactions detected in the cell-niche
communication analysis with the TF-centered regulons identified by
the SpaGRN68 analysis based on the integrated weighted ligand-
signaling network from Nichenet-v260 (https://zenodo.org/record/
7074291/files/weighted_networks_nsga2r_final_mouse.rds). This data-
base contains 3,865,137 rows, each of which represents a pair of
directed signaling interactions with a specific weight prioritized using
57 data sources. We convert the whole network data into a weighted
directed graph G= V , E,Wh i, where W : E!R is the weight for each
edge. For a given receptor, vsource and TF, vtarget , we search for the
shortest expressed path between the two nodes using the Dijkstra
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method and consider it as the potential signaling path between them.
The distance of each graph edge is defined as the reciprocal of its
weight:

dij =
1
wij

ð31Þ

wherewij is the weight of the edge eij = ðvi, vjÞ connecting node i and j.
For each possible path P, its corresponding distance is defined as

D Pð Þ=
X
e2EðPÞ

de ð32Þ

where EðPÞ is all the edges that make up the path P.

Benchmarking of cell-niche communication prediction
algorithm
To demonstrate the algorithm efficiency, we systematically compared
the general features of the Stereopy-NicheReg3D module with two
other algorithms, namely CellPhoneDB45 andNICHES50, using the same
mouse heart dataset (Supplementary Table 6). We slightly modified
two software tools to enable them to analyze the 3D SRT data. For the
CellPhoneDB implementation, the spatial relationship of VCM and
other cell clusters was initially provided, and the default parameters
were used to obtain significantly expressed to- and from-VCM L-R
pairs. NICHES was adopted to obtain single-cell-resolution interaction
results. We then integrated the expression of L-R pairs coming from
each niche component and landing on the VCM cells by summing the
L-R expressions, and identified the cell type-specific L-R pairs using the
Seurat FindAllMarkers function.

We benchmarked the performance of Stereopy-NicheReg3D and
the other two tools on the same Linux system with an Intel Core Pro-
cessor (Broadwell, IBRS) of 30 threads and 512 GB memory. Both
Stereopy and NIHCES enable the investigation of sender–receiver
interaction at the single-cell level, which is usually computationally
prohibitive for CCC analysis thanks to Stereopy’s niche extraction and
NICHES’s subsampling strategies. These strategies also accelerate the
computation compared to the whole cluster-based approach
employed by CellPhoneDB (Supplementary Fig. 27). While CellPho-
neDB does offer the option of subsampling, it is important to note that
subsampling might preclude a complete view of CCC structure and
risk obscuring significant L-R pairs. As a result, in terms of the number
of specific CCC interactions, Stereopy obtains the most specific L-R
pairs in all VCM-niche cases except ACM-VCM, almost covering those
derived by other tools (Supplementary Fig. 27).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed datasets have been deposited in published papers.
Slide-seq2 datasets: mouse kidney datasets are downloaded from30, of
which Puck_191204_22.h5ad and Puck_191204_15.h5ad are used as
BTBRWT and ob/ob sample respectively and Puck_191223_19.h5ad and
Puck_200104_07.h5ad are used as WT and UMOD KI sample respec-
tively. Stereo-seq datasets: a sample of 12 weeks adult mouse brain,
mouse embryo SRT samples from E9.5 to E16.5, and entire 3D mouse
embryonic heart datasets are downloaded from StomicsDB MOSTA71.
Three adjacent samples of coronal mouse brain are downloaded from
Spatial-ID63. Source data are provided with this paper.

Code availability
The code used to develop the model, perform the analyses and gen-
erate results in this study is publicly available and has been deposited

inGitHub repository at https://github.com/STOmics/Stereopy72, under
MIT license. The specific version of the code associated with this
publication is archived in Zenodo and is accessible via 10.5281/
zenodo.14722436. The documentation of Stereopy can be found at:
https://stereopy.readthedocs.io/en/latest/. All the code to reproduce
the result of the analysis can be found at the following GitHub repo-
sitory: https://github.com/STOmics/Stereopy/tree/main/docs/source/
Tutorials. Users are permitted to reuse, modify, and distribute the
code in accordance with the terms of the license. Anymodifications to
the code should appropriately credit the original authors as outlined
by the license terms.
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