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Data-driven design of shape-programmable
magnetic soft materials

Alp C. Karacakol 1,2, Yunus Alapan 1,3,4 , Sinan O. Demir 1,5 &
Metin Sitti 1,5,6

Magnetically responsive soft materials with spatially-encoded magnetic and
material properties enable versatile shape morphing for applications ran-
ging from soft medical robots to biointerfaces. Although high-resolution
encoding of 3D magnetic and material properties create a vast design space,
their intrinsic coupling makes trial-and-error based design exploration infea-
sible. Here, we introduce a data-driven strategy that uses stochastic design
alterations guided by a predictive neural network, combined with cost-
efficient simulations, to optimize distributed magnetization profile and mor-
phology of magnetic soft materials for desired shape-morphing and robotic
behaviors. Our approach uncovers non-intuitive 2D designs that morph into
complex 2D/3D structures and optimizes morphological behaviors, such as
maximizing rotationorminimizing volume.We further demonstrate enhanced
jumping performance over an intuitive reference design and showcase fabri-
cation- and scale-agnostic, inherently 3D, multi-material soft structures for
robotic tasks including traversing and jumping. This generic, data-driven fra-
mework enables efficient exploration of design space of stimuli-responsive
soft materials, providing functional shapemorphing and behavior for the next
generation of soft robots and devices.

Stimuli-responsivematerials,which respond to external stimuli suchas
light, pH, and magnetic or electrical fields1–4, have gained significant
attention for enabling complex shape-morphing in untethered
structures5–7, and shown distinct advantages in fields like object
manipulation, soft robotics, wearable devices, and biomedical
applications1,2,8–10. Among various responsive composites, magnetic
soft materials stand out due to their rapid advancements in micron-
scale resolution, three-dimensional (3D) directionality, multi-material
compositions, and complex 3D structures11–16. These capabilities
enable a wide range of static and dynamic shape-morphing behaviors
across different length scales, from micro to milli.

Magnetic soft materials consist of hard magnetic particles (e.g.,
Nd2Fe14B, CrO2) embedded within a soft material matrix (e.g., silicone
rubber, polydimethylsiloxane (PDMS), hydrogels) and spatially

magnetized at desired orientations to create a distributed magnetic
moment. When subjected to an external magnetic field, the particles
experience torques that align their magnetization with the field, gen-
erating programmable shape deformations. This spatial program-
mability is achieved through techniques such as jig-assisted assembly11,
lithography12,15, 3D printing13, and local heat-assisted magnetization in
micromachined structures14. Thesemethods allowprecise control over
material composition, magnetization orientation and magnitude, and
structural features, enabling complex shape-morphing capabilities.

The capability to finely tune and spatially program these different
materials and structural properties in magnetic soft materials enable a
vast design space for complex shapemorphing. However, themajority
of the literature relies on intuition-based trial and error (Edisonian)
approaches despite the highly non-intuitive-design space, arising from
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the inherent coupling between the magnetic and mechanical respon-
ses. In a unit segment, the ratio of magnetic and soft materials affects
the magnetization strength along with elastic modulus. Similarly, the
cross-sectional area and thickness of a segment (i.e., morphology/
structural configuration) determine magnetic strength and bending
stiffness, which are inversely related17. Magnetic torque on the seg-
ment also nonlinearly changes during deformation depending on the
misalignment between its magnetization and the external magnetic
field direction18. Furthermore, different magnetization directions in
neighboring segments could result in incomplete alignment with the
external field, due to the counteracting mechanical forces arising in
the continuous segments. Overall, the mechanical continuum and
distributed magnetic profile along with these coupling effects govern
the relative deformation and position of each segment throughout the
structure4. In such multi-dimensionally coupled systems, a marginal
change in magnetic programming or morphology of a local segment
could significantly change the shape-morphing of the whole structure
(Fig. S1). Non-intuitive shape-morphing, stemming from such intricate
coupling effects, renders Edisonian approaches infeasible to explore
the vast design space enabled bymagnetic softmaterials. The previous
approaches for design optimization of magnetic soft materials were
mostly limited to pre-defined simplemorphologies (e.g., rods, beams),
two-dimensional (2D) magnetic profiles, and 2D planar
deformations11,19–24. Efficient design strategies for the spatial pro-
gramming of morphology (structural optimization) and 3D magneti-
zation profile in magnetic soft materials with 3D structure and multi-
material composition for desired 2D and 3D shape-morphing or
behavior are yet to be shown.

Here, we present a data-driven design approach to spatially pro-
gramboth 2D/3Dmorphology, 3Dmagnetic profile, andmulti-material
composition of magnetic soft materials for desired 3D shape-
morphing and behavior. The design approach relies on continuous
exploration of the design space through randomly generated candi-
dates and exploitation of promising designs via stochastic variations
guided by a predictive neural network (NN) model. The selected pro-
mising designs are tested in a computationally cost-effective simula-
tion engine capable of evaluating the dynamic behaviors of magnetic
soft materials. The resultant best-performing designs for desired 2D
and 3D shape-morphing of beams inspired by mathematical functions
and intricate sharp-cornered shapes are experimentally demonstrated,
showcasing the sim2real transfer. The developed design strategy is
also employed to achieve desired dynamic behaviors, without any
defined target shape-morphing, including maximizing turn number,
maximizing height, and minimizing bounding sphere volume for
magnetic soft beams and sheets. The superiority of the data-driven
approach is further highlighted in the high-performance jumping
behavior of magnetic soft robots, where the intuitive design adapted
from the literature25 failed to lift from the surface. The proposed fra-
mework is also utilized to design magnetic soft materials with 3D
structure and multi-material composition for configurable robotic
behaviors of traversing, and vertical and directional jumping, high-
lighting its fabrication, programming, and applicability across scales.
The data-driven design strategy introduced here provides an efficient
and versatile platform, capitalizing on the extensive design space
enabled by the advances in fabrication and programming capabilities,
thus unlocking the potential of stimuli-responsive soft materials
toward real-world applications.

Results
Data-driven design framework
The data-driven design strategy aims to achieve desired quasi-static
anddynamic shape-morphing behaviors formagnetic softmaterials by
optimizing the spatial programming of the magnetic profile and
morphology with respect to pre-defined external magnetic fields
(Fig. 1A–C). Our magnetic soft materials are composed of

ferromagnetic neodymium-iron-boron (Nd2Fe14B) microparticles
(5–25 µm diameter) dispersed in an elastomer. For 2D structures,
magnetic soft elastomer sheets are laser micromachined into desired
morphologies and heat-assistedmagnetic programming14 is employed
for spatialmagnetic encoding (Fig. S2A–C),which results in distributed
3D magnetization directions over the morphology (Fig. 1B). Multi-
material magnetic soft 2D/3D structures are built by voxel-based
assembly of individual pre-magnetized voxels of different materials
(Fig. S3). The resolution of morphological features and distributed
magnetization are represented by voxel and segment parametrization,
respectively (Fig. 1B). The distributed magnetization segment matrix,
defined as magnetic profile (M), is represented directly in spherical
coordinates (Mθ, Mφ). Morphology is determined by mapping the
spatial coordinates of voxels to material type (e.g., 1 for magnetic
material and 0 for empty voxels), utilizing a compositional pattern-
producing network (CPPN)26, as CPPNs have shown to be beneficial in
reducing the parameter numberwithout the loss of generalizability for
soft material morphology representation27.

The exploration of the coupled vast design space resulting from
co-optimization of themorphology and 3Dmagnetic profile is enabled
by the developed data-driven design algorithm and a computationally
low-cost simulation engine (Fig. 1D, E). A heuristic design space
exploration method of multi-dimensional archive of phenotypic elites
(MAP-elites)28 is guided by a surrogatemodel of a neural network (NN),
establishing an interconnected data-driven algorithm (Figs. 1D
and S4A, B, and SI S1). The performances of generated design candi-
dates are predicted within the simulation environment (Fig. 1D). The
developed parallelizable simulation environment utilizes a mass-
spring lattice model involving both translational and rotational
springs29 coupled with magnetic forces and torques, and completes a
dynamic simulation within a few minutes (Fig. 1E and SI S2). Evaluated
candidates establish a design repertoire within a user-chosen low-
dimensional feature space (e.g., filled voxel ratio, net magnetic
moment), illuminating the effect of these features over the design
space (Fig. 1F). The process of design generation and performance
prediction is repeated until the defined threshold of performance or
maximum generation number is reached. The final best-performing
design is experimentally realized, displaying sim2real transfer, as
demonstrated for a triangular wave shape-morphing under magnetic
field (Fig. 1G and Supplementary Movie S1). The algorithm bench-
marking is also established by comparing our algorithm with original
MAP-elites, random search and other MAP-elites variants. Compre-
hensive benchmarking for various performancemetrics including QD-
score, global performance, reliability, precision, coverage, and per-
formance over iterations highlights the effectiveness of our algorithm
for the design of stimuli-responsive soft materials (Fig. S5 and SI S1.3).

2D and 3D shape-morphing magnetic soft beams
To test the performance of our data-driven design framework for
shape-morphing, magnetization distribution and morphology for unit
beams (12mm length × 1mm width × 0.2mm thickness) were deter-
mined for a variety of nonengineered intricate shapes originating from
mathematical functions that are hard to design based on intuition. The
design algorithm balances external magnetic field-induced local
deformations against gravitational effects in beams fixed at one end.
We first demonstrated a non-periodical and varying amplitude sinu-
soidal shape-morphing, closely matching the desired shape, in terms
of period and amplitude, both in simulation and experiment (Fig. 2A
and Supplementary Movie S1). We further validated the non-intuitive
nature of the coupleddesign spaceby introducingmarginal changes in
magnetization and morphology of the sinusoidal shape-morphing
beam, aswell as the externalmagnetic field, which resulted in dramatic
shifts from the desired shape in the simulation environment
(Figs. S6–S8). These sensitivity analysis results show that the design
space is inherently non-linear with numerous local minima and there
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are a wide range of equilibrium states for a given design, which
depends on the initial design state (Fig. S7) and the induced magnetic
field input sequences (Fig. S8) to the system.

While shape deformations with smooth curvatures have been
abundantly shown and used in the shape-morphing materials11,19,20,30,31,
sharp deformations in soft structures are constrained by the high

strain energies localized at the bending sections as can be seen in our
simulation results. Our data-driven design approach addresses this
challenge by balancing magnetic torques, bending stiffness, and
gravity, as shown in examples of a step signal (Fig. S9A and Supple-
mentary Movie S1) and a square signal (Fig. 2B and Supplementary
Movie S1) with 2 and 4 sharp corners, respectively. Another challenge
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Fig. 1 | Data-driven design of magnetically programmed soft materials. A
desired behavior, such as jumping and shape-morphing, of amagnetic softmaterial
(A) is encoded by programming themorphology and distributed 3Dmagnetization
(yellow arrows) (B) for a pre-defined external magnetic field over time (C). The
magnetic soft material is parametrized into voxels and segments representing the
resolution ofmorphological feature andmagnetization, respectively. Themagnetic
profile (M) is defined in spherical coordinates (Mθ,Mφ) via direct representation of
distributed magnetization segment matrix. Morphology is determined by a com-
positional pattern-producing network (CPPN) that maps the spatial coordinates of
voxels tomaterial type.D The data-driven design strategy is enabled by a heuristic
design space exploration method (Multi-dimensional archive of phenotypic elites,
MAP-elites) guided by a neural network (NN) operating as a surrogate model.

EProposeddesigncandidates are evaluated ina custom-built, computationally low-
cost simulation environment utilizing mass-spring lattice model with translational
and rotational springs coupled with magnetic forces and torques. F For a given
behavior, the data-driven design strategy generates a repertoire within a low-
dimensional space for user-chosen features, such as filled voxel ratio (Feature 1)
and net magnetization (Feature 2). The best design is highlighted with the gray
shade. G Experimental realization of the best-performing design; (i) morphology
and magnetic profile, (ii) predicted, and (iii) experimental shape-morphing beha-
vior. The scale bar is 2mm. Magnetic field (B) is pre-defined as 30mT in the
direction indicated by the black arrow. Magnetization directions are depicted via
the yellow arrows.
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unique tomagnetic softmaterials is creating tip deformations over 180
degrees from the initial orientation under constant magnetic fields
since the final position and orientation of the tip are highly coupled to
the deformation of the rest of the structure. We initially showed the

potential of our approach in designing such tip deformations through
a Fibonacci-inspired shape-morphing with a total tip rotation of 270
degrees (Fig. S9B and Supplementary Movie S1). Next, we also
demonstrated a diamond shape-morphing structure, combining
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4 sharp corners with a tip rotation of 225 degrees (Fig. 2C and Sup-
plementary Movie S1). Overall, intricacy of our shape-morphing
demonstrations, quantified by a shape-complexity score (SI S3), is
2–20 times greater than previous examples in the literature11,19,20,32

(Fig. S11 and Table S1).
Our data-driven design strategy can be further expanded to 3D

shape-morphing of beams, which could necessitate the incorporation
of bending and twisting around all axes rather than bending around a
single axis as in 2D deformations, rendering intuition-based designs
significantly more challenging. Beams morphing into 3D helices of a
single period with constant (Fig. S9C and Supplementary Movie S2) or
varying amplitude (Fig. 2D and SupplementaryMovie S2)were realized
under constantmagneticfieldswithout environmental constraints.We
further designed beam structures shapemorphing in 3Dwith multiple
sharp corners (Figs. S9D and 2E, and Supplementary Movie S2),
inspired by the evolved antenna structures33. We observed that our
data-driven designs overcame the challenging deformation angles by
bending and twisting simultaneously, as evident in the localized high
strain energies around deforming sections. Also, slight deviations in
simulation results for some of the demonstrations (Table S2) could be
ascribed to the physically unrealizable nature of the desired shapes, as
these were chosen without prior knowledge of feasibility. Never-
theless, performance evolution graphs show initial rapid improve-
ments, followed by a slower but steady increase in performance for
both 2D and 3D shape-morphing cases, which could alleviate these
deviations with extended algorithm runs (Fig. S10). The demonstrated
intricate 2D and 3D shape-morphing of soft beam structures underline
the capability of the developed approach to systematically explore the
coupled morphology and magnetic profiles, resulting in extensive
design spaces of around 2.7e141 and 3.4e186, respectively (Table S3).

Design of magnetic soft structures for morphological tasks
Shape-morphing inmagnetic soft materials can be utilized to generate
a functional behavior, ranging from locomotion to gripping31,34. How-
ever, conventionally, functional behaviors are intuitively defined
through several temporal shape-morphing states, such as open and
closed forms of a gripper. Subsequent design of the magnetization
profile and morphology of the magnetic soft materials, along with the
external magnetic field control, are further defined intuitively to gen-
erate the desired shape-morphing states. Overall, such existing intui-
tive designs achieve functional behavior through either cycling
between different shape-morphing states15 or changing the direction
of the external magnetic field while conserving the shape-morphing
state, including surface rolling locomotion and corkscrew motion-
induced swimming35,36. Despite abundant examples of functional
behaviors shown in the literature, they are based on discovered mag-
netization and morphological designs, along with external fields,
rather than systematically programmed for the desired functionality.

The data-driven design strategy described here enables direct
programming of desired functional behaviors through magnetization
andmorphology optimization of magnetic soft structures without any
restrictions to biased shape definitions as utilized in previous intuitive
approaches. The capability of our data-driven strategy to design for
functional behaviors was initially demonstrated through a series of
morphological tasks. First, afixed-endbeamwasdesigned tomaximize
the turn number around the longitudinal axis under a constant mag-
neticfield (Fig. S12A and SupplementaryMovieS3).While themagnetic
soft beam was able to complete a full turn, consistent with the simu-
lation result, its position was shifted downwards, which is plausible
given the fact that the design algorithm solely aims for the rotation
around the longitudinal axis of the beamwithout trying to balance the
gravity or other effects. We further extended our design strategy to
optimize the magnetization and morphology of a free-form magnetic
soft material sheet (10 × 10 ×0.2mm) to maximize the height of its
center point (Fig. S12B and Supplementary Movie S3). Data-driven

algorithm-generated design was able to achieve a height of 3.7mm
(0.37 body length) for its center point under a constant magnetic field
of 30mT. Similarly, an optimized designwas generated forminimizing
the bounding sphere volume of amagnetic soft sheet (6 × 6 × 0.2mm),
achieving aminimumbounding sphere radius of 3.09mm, resulting in
a volume of 123.6mm3 with a 2.6-fold volume reduction from
319.3mm3 (Fig. 3A and Supplementary Movie S3). These demonstra-
tions show the capability of our data-driven strategy to design mag-
netic soft structures to achieve desired behavioral tasks, in which the
design space can reach up to ~5.4e1233 (Table S3).

Jumping behavior for magnetic soft millirobots
An interesting functional behavior for magnetic soft millirobots, other
than locomotion andobjectmanipulation, is jumping,which requires a
sudden release of energy to overcome the gravity. Most conventional
soft materials with relatively slow actuation require the utilization of
bistablemechanismdesigns for generating suddenmovements37,38. On
the other hand, magnetic soft materials with rapid response times can
achieve jumping by gaining enough momentum through fast interac-
tion with surfaces25. However, the momentum gained inherently
depends on spatial interaction with the surface, interaction speed, and
stored elastic energy, all of which are directly determined by the
material properties (e.g., remanent magnetization strength, elastic
modulus),magnetization profile, andmorphologyof themagnetic soft
robots.

We employed our data-driven design strategy to develop a small-
scale magnetic soft millirobot with high-performance jumping. To
quantitatively compare the performance of our data-driven design, we
adapted an existing intuitive design and external magnetic field signal
from the literature25, with the caveat of 3-times smaller magnetization
strength of our magnetic material (due to Nd2Fe14B particles with a
lower Curie temperature for heat-assisted magnetic programming as
different from the commonly used ones in the literature with much
higher Curie temperature and magnetization strength) (Table S4).
When both our data-driven design and the intuitive design adapted
from the literature are programmed into a magnetic soft millirobot
(3.6 × 1.4 × 0.2mm) using the same fabrication and programming
method and actuated under reversing magnetic fields of 10mT, the
intuitive design failed to lift from surface at all both in simulation and
experiment (Figs. 3B, C and S13A). On the other hand, the magnetic
soft robot with the data-driven design (generated from a design space
of around 1.8e53, Table S3) achieved a jumping height of ~1.4mm,
equivalent to0.39 body length, under the sameconditions (Fig. 3D and
Supplementary Movie S4).

It was previously claimed that the jumping performance of mag-
netic soft robots could significantly deterioratewhen thewidth-to-length
aspect ratios are closer to 1 with the intuitive magnetization profile and
morphology25. For a sheet-shaped magnetic soft robot with an aspect
ratio of 1, we employed our data-driven framework to optimize the 3D
magnetization profile and morphology for enhanced jumping behavior
(Fig. S13B and Supplementary Movie S4). Expansion in the morphology
workspace (6×6mm) and the 3Dmagnetic profile significantly amplifies
the design space from around 1.8e53 (for the beam structure) to around
1.2e752 (Table S3). In contrast to the intuitive design employed in the
literature, the data-driven algorithm-based design generated a jumping
height of around 1.9mm equivalent to 0.43 body length, achieving a
slightly better jumping performance than the aforementioned beam-
shaped soft robots. These results show that discovered intuitive mag-
netization profile designs cannot be transferred to different morpholo-
gies andmaterials, which require systematic approaches for task-specific
designs, as exemplified in our design strategy.

Design of multi-material and 3D magnetic soft millirobots
Magnetic soft materials have recently been combined with other
stimuli-responsive and passive materials with varying elastic modulus
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to achieve shape-morphing structures and robots with multi-func-
tionality, environmental adaptation, and enhanced robustness16,39–41.
While advances in fabrication techniques allow spatially encoding
material type and response in 2D and 3D structures, designingmaterial
profiles along with spatial programming of stimuli response is a

daunting task, given the enormous design space due to the wide
variety in material selection and response. In addition, the scale of
desired structures or robots, that could range from micrometers to
centimeters, would require different fabrication techniques with cri-
tical implications for the design process. Therefore, the design
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strategies should be compatible with different fabrication techniques
and capable of handling the enormous design space resulting from
material selection, spatial stimuli response, and 3D structural com-
plexity at varying scales. The data-driven strategy proposed here can
also address the design challenge of soft materials with different fab-
rication methods, multi-material composition, and 3D structures due
to its generic and versatile framework (Fig. 4A). To demonstrate the
compatibility of our approach in with other fabrication methods, we
adapted voxel-based assembly16 capable of fabricating 3D structures
with multi-material compositions into our framework (Fig. S3). We
created a material palette consisting of passive and magnetically
responsive materials with soft and rigid variations (Figs. 4B and S14A,
and Table S4), expanding the design space by a power of 2.5 for any
given structural workspace. The magnetization directions of the
magnetic materials are discretized into six discrete primary Cartesian
axes directions to simplify the fabrication process (Figs. 4B and S14B).
The flexible nature of the proposed design strategy allows facile
adaptation of the constraints for the parameter representation arising
from the requirements of different fabrication methods, as well as
material and structural complexity.

We first employed our strategy in designing a multi-material 2D
structure, with a workspace of 9 × 5 × 1 voxels, for vertical jumping,
resulting in a design space of ~2.9e66 (Table S4). The best-performing
design (Fig. S14C) achieved a jumping height of ~5mm (0.28 body
length) experimentally with a comparable behavior to simulation
results (Fig. S15, and Supplementary Movie 5), showing the capability
of our approach in designing 2D structures with multi-material com-
position for robotic behaviors. Next, we extended our design strategy
to intrinsically 3D structures with multi-material compositions for a
diverse range of robotic behaviors, including vertical and directional
jumping, as well as traversing locomotion (Fig. 4C–E, and Supple-
mentaryMovie 5). The workspace for these demonstrations was set to
7 × 7 × 5 voxels with a design space of ~7.8e361 (Table S3). The best-
performing designs (Fig. S14D, E) for vertical and directional jumping
demonstrated a jumping height and distance of ~5mm (0.36 body
length), and ~20mm (1.43 body length), respectively, under the same
reversing magnetic fields of 10mT (Fig. 4C, D and Supplementary
Movie 5). The data-driven design for vertical jumping structure heavily
relied on soft variants of passive and magnetic materials, whereas the
directional jumping structure included both soft and rigid counter-
parts. These demonstrations highlight the extensive design possibi-
lities for distinct behaviors under the same control input by spatially
encoding material composition and response. In addition, we showed
the data-driven design of a 3D multi-material structure for traversing
locomotion (Figs. 4E and S14F, and Supplementary Movie 5) under
quarterly rotating and cycling magnetic fields, generating ~6.5mm
(0.46body length) displacement per cycle. This demonstration further
shows prowess of our data-driven strategy in designing 3D multi-
material structures for repeatingmotion under continuously changing
control signals. Additionally, the incorporation of well-established
control strategies, including the utilization of net magnetization
moment for rolling locomotion13,15,16,25 and visual feedback for pro-
grammed trajectory42–44, can enable multimodal locomotion modes
for the untethered demonstrations (Fig. S16). Other than locomotion,
we further applied our framework to design multi-material structural
configuration for maximizing force generation under an external field
in the simulation environment (Fig. S17).

Incorporation ofmultiplematerials responsive to different stimuli
further expands the design flexibility and provides an opportunity in
designing configurable robotic behaviors.We show the applicability of
our strategy to design soft robots with configurable behaviors by
designing 3D multi-material structures composed of thermo-
responsive and magneto-thermo-responsive materials, that are rigid
in room temperatures and become softer after heated (Fig. S18A). The
3D andmulti-material composition of the design was optimized in the

simulation environment for thedesired robotic behaviorsof traversing
and directional jumping under the samemagnetic field actuation with
thermally-triggered behavior change (Fig. S18B). The best-performing
design generated by our framework (Fig. S18C) showed ~2.1mm (0.1
body length) traversing per cycle at room temperature (Fig. S18D, G
and Supplementary Movie S6) and ~12.4mm (0.62 body length)
directional jumping distance after heating (Fig. S18E, G and Supple-
mentary Movie S6), respectively, under the same magnetic actuation
signal. Furthermore, the same design demonstrated vertical jumping
after heating when the applied magnetic field strength is doubled,
indicating the distinctiveness of designs generated by our data-driven
strategy for desired behaviors under pre-defined control inputs
(Fig. S18F, G). The experience-free design of these soft structures for
diverse and configurable robotic behaviors not only illustrates the
applicability of our data-driven strategy beyond 2D structures with
single material composition, but also shows its fabrication, program-
ming, and scale-agnostic nature. Overall, these results highlight the
potential of our data-driven design strategy in developing physically
intelligent small-scalemagnetic soft robots3 for functional behaviors to
be employed in long-anticipated real-world applications, ranging from
targeted delivery of therapeutics to minimally invasive operations.

Discussion
Shape-morphing is utilized extensively in nature by biological organ-
isms ranging from single cells (e.g., amoeba) to large animals (e.g.,
octopus) enabling physical adaptation to unstructured and con-
strained environments, different tasks, and physical damage. Inspired
by nature, the shape reconfigurability and reprogrammability are
highly desired for engineering applications requiring multi-functional
operation in unstructured environments, such as medical operations
in human body and wearable and haptic bio-interfacing30,45,46. Advan-
ces in spatial programmability of stimuli-responsive materials at high
resolution has led to the development of advanced shape-morphing
capabilities rivaling their counterparts in nature1–3. Among different
responsive materials, magnetic soft materials are especially attractive
for applications in enclosed, constrained, and unstructured environ-
ments due to their fast and reversible response and the safe tissue
penetration ofmagneticfields. Despite such advantages alongwith the
developments in spatial programming and fabrication ofmagnetic soft
materials, coupled nature of the magnetic and morphological prop-
erties renders the design process highly non-intuitive, thus cumber-
some. Thedata-drivendesignmethodology introducedhere addresses
the design problem of non-intuitive coupled morphology and mag-
netic profile configuration and establishes an efficient and experience-
free way to achieve shape-morphing for desired functional behaviors
of magnetic soft materials with 3D structure and multi-material
composition.

The design capability of our data-driven strategy was highlighted
in magnetic soft beam structures morphing into 3D complex shapes,
which were difficult to achieve with intuitive-design approaches. Such
complex shape-morphing of soft beam structures could be especially
desirable in potential future catheter applications to achieve access to
hard-to-reach regions or operations requiring complex shapes at the
site of action30. We further showed optimization of the magnetic and
morphological profile of magnetic soft structures for desired beha-
viors, such asminimizing the bounding volume, or given tasks, such as
jumping the highest. When we tested the intuitive jumping designs
reported in the previous literature with the weaker magneticmaterials
employed in our study, the intuitive design failed to lift from the sur-
face. On the other hand, our data-driven design approach was able to
generate jumping behavior, thus highlighting the potential of our
design strategy in improving the performance of desired behaviors.
The enhanced performance achieved using our framework could fur-
ther enable other stimuli-responsive soft materials suffering in terms
of performance (i.e., slow actuation, inferior mechanical properties)
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Fig. 4 | Multi-material and 3D structural design of magnetic soft millirobots.
A 3D and multi-material structural design is defined by a compositional pattern-
producing network (CPPN) by mapping the voxel positions to material type. The
magnetization directions are defined via direct representation of distributed
magnetization voxel tensor. B Thematerial palette consists of five types, including
a cut out “empty” voxel, two passive and two magnetically responsive materials
with soft and rigid variations. The magnetization directions of the magnetically
responsive materials, depicted via yellow arrows, are restricted to six discrete
primary cartesian axes directions to simplify the fabrication. The conceptual
drawing of the desired robotic behavior, best-performing structural designs, and

predicted behavior and experimental realization shown in side (top rows) and
isometric (bottom rows) views for vertical (C) and directional (D) jumping, as well
as traversing (E) 3Dmulti-material soft robots, achieving ~5mm (0.36 body length)
jumping height, ~20mm (1.43 body length) directional jumping distance and
~6.5mm (0.46 body length) traversing per cycle, respectively. Design space is cal-
culated as ~7.8e361. Orange and blue dashed lines represent initial and final refer-
ence position, respectively. Scale bars, 5mm. Actuation is performed by applying a
uniform magnetic field (B) of 10mT in the direction indicated by black arrows.
Voxel colors indicate the material types.
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but are desirable in other aspects, including sustainability47 and
biocompatibility48. For example, although biocompatible and biode-
gradable magnetic particles are highly sought after for medical
applications48, their weak magnetization strength and intuitive mag-
netic andmorphological designs result in unsatisfactoryperformances
for desired behaviors, which could be alleviated by the introduced
data-driven approach.

Multi-material structures with desired arrangement of stimuli-
responsive and passive materials in 3D provide much greater design
flexibility and wider range of material functionality and robotic
applications, despite the tremendous increase in design space. The
generic structure of our framework, allowed us to design 3D struc-
tures with multi-material compositions, featuring materials respon-
sive to different stimuli and with varying mechanical properties. The
designed 3D and multi-material structures were built by voxel-based
assembly of individual units with relatively larger volumes compared
to 2D demonstrations, showcasing the scale, fabrication, and pro-
gramming independent operation of our approach. Our data-driven
design approach was also able to encode configurable robotic
behaviors to 3D multi-material soft structures by spatially program-
ming multiple material types responsive to different stimuli,
including magnetic and temperature. While the developed frame-
work currently optimizes the design for user-defined external sti-
muli, control of the external fields could be further included in the
data-driven design process, providing additional design flexibility for
complex dynamic behavior, temporally-resolved multi-tasking, and
adaptability.

Earlier works attempting to design magnetic soft materials uti-
lized genetic algorithms along with conventional finite element
simulations, resulting in unreliable and computationally time-
intensive processes, thus limiting the designs to 2D planar defor-
mation with simplified 2D magnetic profiles and pre-defined
morphologies of rods and beams11,19,20,32 (Fig. S19A and SI S4.1). Fur-
thermore, the comparison with other methods for the design of
stimuli-responsive materials shows the latent potential of our
approach, especially its capacity to deal with extremely large design
spaces, which has been the bottleneck for experience-free
design27,39,49–51 (Fig. S19B and SI S4.2). While our data-driven strat-
egy enables the design of stimuli-responsive soft materials for 3D
complex shape-morphing behaviors by optimizing the 3D magnetic
profile and 2D/3Dmorphology with multi-material compositions, the
performance of the design process can be enhanced by improve-
ments in the algorithm and the simulation environment. Althoughwe
represented the magnetic profile directly and the morphology via
CPPN, their individual or coupled representation using other meth-
ods, such as variational autoencoders, and Gaussian mixture models
could significantly enhance the performance in terms of the design
quality and the algorithm run-time52. While our heuristic exploration
algorithm is guided by an NN, acting as a surrogate model, its
architecture is comparatively simple compared to NNs utilized in
the machine learning field. NNs with higher architectural complexity
could enable the development of advanced surrogate models for
efficient prediction of the shape-morphing of magnetic soft materi-
als, as well as other stimuli-responsive soft materials. The 5 million
designs generated in this work, made available through an open-
access database, could enable the testing, development, and adap-
tation of a myriad of NNs for the design of magnetic soft materials.
Furthermore, the demonstrated performances could be enhanced by
increasing the maximum iteration number, as observable by the
improvements up to the pre-determined iteration limits (Fig. S13C,
D). On the other hand, advancements in the simulation engine in
terms of computation time, model precision, and contact modeling
for environment interactionwould significantly improve the sim2real
gap and reliable synthetic data generation for the design of magnetic
soft materials.

Methods
Simulation environment
Amass-spring latticemodel coupledwithmagnetic forces and torques
is used as a simulation engine for the dynamic behavior of magnetic
softmaterials. A version of the “Voxelyze” environment29 is adapted for
mechanical deformations and modified for enabling magnetic mate-
rials. “Voxelyze” implements a mass-spring lattice model with transla-
tional and rotational springs and is capable of efficiently simulating
heterogeneous 3D soft bodies dynamically. Magnetic forces and tor-
ques, calculated according to a pre-defined permanentmagnet used in
the experiments, are integrated into the simulation platform. The
values in Table S4 are used for density, Young’s modulus (E), and
magnetic remanence (Mr). The Poisson’s ratio is assumed to be 0.49.
The respective voxel sizes of the demonstrations can be found in
Table S5. The computationally low-cost predictions realized in the
developed simulation environment enabled the exploration of the
presented design space.

Validation of the developed simulation engine is performed
through a fixed-end beam magnetized along its longitudinal axis via
vibrating-sample magnetometer (VSM) under a uniform magnetic
field of 1.6 T. The magnetic field for actuation is generated vertically
with an electromagnetic coil setup providing uniform fields. Experi-
ments were conducted for seven different beam samples (12mm
length × 1.6mm width × 0.2mm thickness) under uniform magnetic
field strength of 0, 0.5, 1, 2, 3, 5, 7, 10, and 13mT. Simulation results
under the same conditions for experimentally measured values of
density 2.41 g/cm3, Young’s modulus (E) 200 kPa, and magnetization
of 28.6 kA/m show a similar trend to the experiments (Fig. S20A). The
accuracy of the simulation engine is further improved by the fitting
parameters of E and magnetic remanence. Fitted values of E 150 kPa
and magnetic remanence of 20 kA/m are found after the fitting
process utilizing Bayesian optimization (BO) (Fig. S20A and SI S2).
For the jumping demonstration, damping parameters that are
affecting the dynamic behavior are fitted by using the experimental
results of vertical jumping presented in ref. 25. Fitted internal, col-
lision, and global damping parameters are set to 1, 0.01, and 0.001,
respectively.

The computation time of the simulation engine for magnetic soft
materials is characterized for various voxel numbers and voxel size
ranges (Fig. S20B–D). The computation time of a single run of 0.5-s
dynamic simulation takes on average ~86 wall clock seconds for
demonstrated beams (12mm length × 1mmwidth × 0.2mm thickness)
with 300 voxels (200 µm) on an Intel E5-1650 v4 processor. As the
whole simulation engine is implemented in platform-agnostic C++,
multiple simulation runs are easily parallelizable.

Parameter space representation
Magnetic soft material morphology is parametrized into voxels, which
are the smallest geometrical feature size. Representation of the mor-
phology is determined by a compositional pattern-producing network
(CPPN). The CPPN maps the spatial coordinates of the voxels in the
workspace to the type of voxel. In this work, 0 for cut voxels (empty)
and 1 for magnetic soft material are used. CPPNs for each design
candidate are initialized with 5 nodes and 5 connection links. Activa-
tion functions utilized by CPPNs are “sin(x)”, “±abs(x)”, “±square(x)”,
“±sqrt(abs(x))”, “square(sin(x))+x”, “Gaussian“, periodic “triangle
wave”, “square wave”, “rectified sine wave”, and traditional NN func-
tions of “relu”, “elu”, “tanh”, “swish”.

The magnetic profile (M), defined in spherical coordinates of the
magnetic soft material, is divided into segments depicting the defined
magnetization resolution size for themagnetic programmingmethod.
Direct representation is used for showing M resulting in distributed
magnetization segment matrices (Mθ, Mφ), mapping the segments to
M. More details on parameter space representation can be found
in SI S1.1.
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Data-driven design algorithm
Multi-dimensional archive of phenotypic elites (MAP-elites) and a
neural network (NN) are coupled to construct the data-driven algo-
rithm. MAP-elites is used as a heuristic design space exploration
method, and a NN is operated as a surrogate model guiding the
exploration. During the evaluation of the design candidates in
the developed simulation engine, NN is trained in parallel. NN is used
as a pseudo model to predict the performance quality of the gen-
erated candidates to have an educated guess on promising candi-
dates. Then, the most promising candidate population of 50 is
selected for evaluation within the simulation engine. This process is
repeated until the defined threshold, the number of evaluations, is
reached. Detailed algorithm flow and pseudo-code can be seen in
Fig. S4A, B.

MAP-elites code is adapted andmodified from ref. 53. Filled voxel
ratio over the workspace and net magnetization directions of (Mθ and
Mφ) in spherical coordinates are chosen as the features of the MAP-
elites. For 2D magnetic profiles, only Mθ is used. Mutation operations
are done randomly either on morphology or magnetic profile. Muta-
tion on morphology adds/removes a node, adds/removes an edge, or
changes the weight of an existing edge on CPPN, while magnetic
profile mutations apply a randomly sampled Gaussian mutation on a
randomly selected segment (Fig. S4C). Crossover operation is defined
as the interchange between the morphology and magnetic profile.
Randomly chosen design candidates exchange their magnetic profiles
(Mθ and Mφ parameter matrices) (Fig. S4D).

NN is constructed with “Keras” as dense layers with a dropout
ratio of 0.1. The input layer is structured as the total node number of
morphology voxels and magnetic profile segments, followed by 6
dense layers with 128 nodes using “tanh” as an activation function. The
final layer of 1 node for regression is added to these layers with the
“sigmoid” activation function. The Adam optimizer is utilized for
training with a default learning rate of 0.001. The loss is defined as a
mean-squared error, and the batch size is set to 512. More details on
the algorithm can be found in SI S1.2.

The algorithm is run on a cluster environment, and each iteration
on average takes around 110 s in which the simulationmakes up about
85% of the time, resulting in around 166 h of wall clock time for 5000
iterations, resulting in a total evaluations number of 2.5e5 designs for a
population of 50 on 50-cores processors in parallel (SI S1.4 and
Table S6).

Fabrication and programming of magnetic 2D soft structures
Magnetic soft materials are prepared by mixing Nd2Fe14B (MQFP-10-
8.5HD-20180, Magnequench, Neomaterials, Toronto, Canada) micro-
particles into Ecoflex 00-30 silicone rubber (Smooth-on, Macungie,
PA, USA) at a 2:1 (Nd2Fe14B: Ecoflex) mass ratio. For this, Nd2Fe14B
particles are mixed with Ecoflex-30 A andmixed thoroughly for 3min.
Then, part B of Ecoflex-30 is added to the mixture and further mixed
for another 3min. The final mixture is degassed under vacuum for
5min to eliminate any entrapped air. Next, the mixture is cast into
molds composed of 200 µm thick tapes adhered to a flat PMMA sub-
strate, and cured at room temperature for 4 h (Fig. S2A).Magnetic soft
devices are cut into the desired morphology with an ultraviolet laser
system (LPKF ProtoLaser U3, Garbsen, Germany) (Fig. S2B).

An optical profilometer (VK-X250, Keyence, Osaka, Japan) is used
to measure the thickness of the magnetic soft materials, and the cut
size accuracy of the laser-machining for square-shaped cutswith 1mm,
0.8mm, 0.6mm, 0.4mm, and 0.2mm edge length (Fig. S21J). To
characterize the Young’s modulus (E) and the strain at the break of the
magnetic soft materials, uniaxial tensile testing is performed on dog
bone-shaped samples at a strain rate of0.005 s−1 (Instron 5942, Instron,
Norwood, MA). This measurement is done both for magnetic soft
materials in native conditions and after a heating cycle of 25 at 250 °C
(Fig. S21G).

Heat-assisted magnetic programming is utilized for encoding
desired magnetization directions in the distributed segments14. The
magnetic profiles are encoded by locally heating the desired segment
around the Curie temperature of the Nd2Fe14B. Particles located at the
heated spot lose their magnetization, and their magnetization direc-
tion is reoriented by applying an external magnetic field at the desired
orientation during the cooling period (Fig. S2C).

Local heating of the magnetized spot area is achieved by utilizing
a power-adjustable fiber-couple NIR laser (808 nm, 133 to 457mW;
Edmund Optics, Barrington, NJ) with a collimator (F230SMA-850,
Thorlabs, Newton, New Jersey, United States) located at a 7 cm dis-
tance. The targeted segment of magnetic soft materials is moved
under the laser spot via an automated XY stage (Axidraw v3, Evil Mad
Scientist, Sunnyvale, CA) for a heating-cooling cycle. A permanent
Nd2Fe14B magnet (20-mm diameter and 20-mm thickness; Super-
magnete, Gottmadingen, Germany) is located at a distance of 20.4mm
to align the magnetization direction of the magnetic particles during
the heating-cooling cycle (Fig. S2D, E). Thermal measurements of the
heating-cooling cycle are measured by using an infrared thermal
camera (ETS320,Wilsonville, OR, USA) at a distance of 7 cm (Fig. S21A).
The external magnetic field direction is adjusted relying on the mea-
surements done by a 3D magnetic Hall effect sensor (TLE493D-W2B6,
Infineon Technologies, Munich, Germany) located 1mm below the
sample. Desired 3D orientation of the permanent magnet is achieved
via stepper motors. The wholemagnetization process is automated by
a custom script.

Magnetized spot sizes at sample surfaces for heating at varying
laser powers and heating times are measured with a magneto-optical
sensor (MagViewS, Matesy, Jena, Germany) (Fig. S21B, C). Magnetiza-
tion and magnetic properties of the magnetic soft materials are char-
acterized by a vibrating-sample magnetometer (VSM; MicroSense,
Lowell, MA) (Fig. S21D–F). The Curie temperature measurements are
conducted by the comparison of demagnetization ratios after heating
hard-magnetized samples to a range of temperatures (Fig. S21D). First,
samples aremagnetized in VSMunder 1.8 T, and theirmagnetization is
measured with VSM. Next, samples are heated to a temperature range
of 200 °C–350 °C in an oven. Then, the magnetization of the heated
samples is measured via VSM. The demagnetization ratio is calculated
by dividing the difference in magnetization strength change after
heating to the magnetization strength before heating. Based on these
measurements, the Curie temperature is approximated as 260 °C.
Magnetic hysteresis loops are obtained by placing a circular sample of
8mm in diameter on the sample holder and ranging the field between
−1.8 and 1.8 T at room temperature. Remanent magnetization (Mr) of
83 kA/m and coercivity (Hc) of 340mT are measured (Fig. S21E).
Magnetization ratios are determined as the ratio of heat-assisted
magnetization strength to hardmagnetization strength via VSM under
1.8 T. Heat-assisted magnetic programming ratio is found to be 34.5%
for 5 s of heating at 475mW laser power, resulting in 28.6 kA/m mag-
netization (Fig. S21F).

Themagnetizationorientation accuracyofmagnetization process
is characterized in the range of 0° and 90° in 22.5° increments for in-
plane and out-of-plane orientations (Fig. S21H). The orientations of the
magnetization calculated from the VSMmeasurements in x–y axes and
y–z axes for in-plane and out-of-plane, respectively. Also, the potential
effect of the surrounding magnetized regions on the magnetized spot
is found negligible by the comparison of the magnetized spot size for
non-magnetized and hard-magnetized samples (Fig. S21I).

Fabrication andmagnetic programming of 2D and 3Dstructures
with multi-material compositions
The 2D and 3D structures with multi-material compositions are fabri-
cated via voxel-assembly method16. The voxels of each respective
material are fabricated with a 2mm edge length. First, a positive
template of the desired voxel size was fabricated by 3D printing, and

Article https://doi.org/10.1038/s41467-025-58091-z

Nature Communications |         (2025) 16:2946 10

www.nature.com/naturecommunications


the surface of the template was coated twice with EASE RELEASE™ 200
(Smooth-on, Macungie, PA, USA). Then, Polydimethylsiloxane (PDMS)
(a mixture of siloxane base and cross-linking agent at 10:1 mass ratio,
Dow Corning, Midland, MI) was poured over the positive template,
cured at 60 °C for 6 h in an oven, and peeled off, resulting in a negative
template. The surface of the PDMS molds was coated twice with
SuperSeal (Smooth-on, Macungie, PA, USA) to prevent sticking and
curing inhibition. Subsequently, prepolymersofmixture of Ecoflex00-
30 (Smooth-on, Macungie, PA, USA) and yellow color Silc Pig pigment
(Smooth-on, Macungie, PA, USA), Smooth-Sil 960 (Smooth-on,
Macungie, PA, USA), mixture of Nd2Fe14B (MQFP-10-8.5HD-20180,
Magnequench, Neomaterials, Toronto, Canada) and Ecoflex 00-30 at a
2:1 (Nd2Fe14B: Ecoflex)mass ratio andmixture of Nd2Fe14B (MQFP-15-7-
20065, Magnequench, Neomaterials, Toronto, Canada) and Dragon-
skin 30 (Smooth-on, Macungie, PA, USA) at a 2:1 (Nd2Fe14B: Dragon-
skin)mass ratio are cast intomolds. The castedmaterials are degassed
under vacuum for 10min to eliminate any entrapped air, and then the
excess materials are scraped away with a flat scraper. Afterward, the
prepared samples are cured at room temperature for 4 h. The cured
voxels are peeled off by a plastic tweezerwith a blunt tip. The prepared
magnetic voxels were hard magnetized in VSM under a 1.6 T uniform
magnetic field (Fig. S3A).

The fabricated voxels were attached to each other by applying
droplets of Ecoflex 00-35 FAST (Smooth-on, Macungie, PA, USA) on
the assembly surfaces (Fig. S3B), and cured at room temperature for
5min. Using the voxel-voxel attachments, the individual layers were
formed according to the layer designs provided by our data-driven
strategy (Fig. S14C–F). Then, the layers were assembled together
sequentially by applying droplets of Ecoflex 00-35 FAST (Smooth-on,
Macungie, PA, USA) (Fig. S3C, D) and cured at room temperature for
5min, resulting in 3D multi-material structures.

Magnetic actuation and data acquisition setups
Actuation of all the shape-morphing demonstrations (Figs. 1G, 2
and S9) along with the desired morphological task demonstrations
(Figs. 3 and S12) is performed using an actuator setup consisting of
permanent magnets. Two cylindrical neodymium magnets (60-mm
diameter and 10-mm thickness; Supermagnete, Gottmadingen, Ger-
many) are stacked onto each other and fixed on a platformonlymoving
in vertical direction. Controlled vertical movement of the magnet
platform is achieved by utilizing a linear motorized stage (LTS300,
Thorlabs, Newton, New Jersey, United States). For data acquisition,
cameras are located at the side, top, front, and isometric viewpoints.
Side, top, and front views are captured by a benchtop digital micro-
scope (Toolcraft USB microscope 5 MP) at 10 fps, while the isometric
view is captured by a CMOS camera (Grasshopper 3 USB3, Teledyne
Flir, Wilsonville, Oregon, United States) at 60 fps (Fig. S2F).

Magnetic fields for simulation validation and robotic behavior
experiments (Figs. 3C, D, 4, S13 and S15) are generated by a custom
3-axis Helmholtz coil setup that can generate a maximum uniform
magnetic field of 13mT in all axes within a 4 × 4 × 4 cm3 workspace
(Fig. S2G). Data acquisition at 175 fps is realized by two cameras (Basler
aCa2040-90uc, Ahrensburg, Germany) placed at the side and
isometric views.

Performance measurements
The performances of the designs are measured through the pre-
defined performance objective functions.While the average positional
root means square error (RMSE) is utilized for all the shape-matching
demonstrations, the robotic behavior demonstrations have different
performance objective functions (SI S5.1). For the shape-matching
demonstrations, the average positionalRMSE is calculated considering
the voxel position differences between the desired shape and the
simulation results. The desired shape definitions are provided
in SI S5.2.

Design space calculation
The design spaces for different demonstrations are quantified to
provide a better understanding of the relative and increasing com-
plexity. The reported design spaces in Table S3 are calculated by dis-
cretizing the continuousmagnetization direction of segments. Then, a
simple calculation considering all the possibilities of the voxel and
magnetization directions yields the rough estimation of the design
space (SI S6). Figures S14C–F and S22A–F show the close-up mor-
phology and magnetic profile design of demonstrations. The para-
meter details of the voxel, segment, and parameter numbers and the
calculated design space resulting from the pre-defined workspace for
these demonstrations are gathered in Tables S3 and S5.

Data availability
All data generated or analyzed during this study are included in the
published article and its Supplementary Information. The algorithm
run data54 generated in this study have been deposited in the Zenodo
database under accession code https://doi.org/10.5281/zenodo.
14827843.

Code availability
The source code of the developed simulation and design algorithm55

has been deposited in the Zenodo under accession code https://doi.
org/10.5281/zenodo.14827691. It is also available at the link: https://
github.com/AlpKaracakol/data_driven_magnetic_soft_material_design.
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