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Assessing the potential causal effects of 1099
plasma metabolites on 2099 binary disease
endpoints

XianyongYin 1,10 , Jack Li2, Debraj Bose 2, JeffreyOkamoto 2, Annie Kwon2,
Anne U. Jackson 2, Lilian Fernandes Silva 3, Anniina Oravilahti 3,
Xiaomeng Chu1, Heather M. Stringham 2, Lei Liu1, Ruyi Peng1, Zhijie Xia1,
Samuli Ripatti 4,5,6, Mark Daly4,5,7, Aarno Palotie 4,5,7, Laura J. Scott 2,
Charles F. Burant 8, Eric B. Fauman 9, Xiaoquan Wen 2,
Michael Boehnke 2,10 , Markku Laakso 3,10 & Jean Morrison 2,10

Metabolites are small molecules that are useful for estimating disease risk and
elucidating disease biology. Here, we perform two-sample Mendelian rando-
mization to systematically infer the potential causal effects of 1099 plasma
metabolites measured in 6136 Finnish men from the METSIM study on risk of
2099 binary disease endpoints measured in 309,154 Finnish individuals from
FinnGen.We find evidence for 282 putative causal effects of 70metabolites on
183 disease endpoints. We also identify 25 metabolites with potential causal
effects across multiple disease domains, including ascorbic acid 2-sulfate
affecting 26 disease endpoints in 12 disease domains. Our study suggests that
N-acetyl-2-aminooctanoate and glycocholenate sulfate affect risk of atrial
fibrillation through two distinct metabolic pathways and that
N-methylpipecolate may mediate the putative causal effect of N6,N6-dime-
thyllysine on anxious personality disorder.

Metabolites are intermediate or end products of cellular metabolism
with a wide range of functions1. Compared to gene transcripts and
proteins,metabolites aremore proximal to diseases,making them ideal
biomarkers for estimating disease risk and understanding disease
biology. Metabolite levels have shown associations with many human
diseases, including type 2 diabetes, chronic kidney disease, and cardi-
ovascular diseases2–5. Some metabolites have demonstrated potential
for predicting future disease6,7. However, the causal effects of meta-
bolites on human diseases have not been evaluated comprehensively.

Metabolite levels reflect both environmental and genetic
influences1. With the advent of high-throughput metabolic profiling
technology, measuring levels of thousands of metabolites for partici-
pants in population studies hasbecomepossible. Recent genome-wide
association studies (GWAS) that combine high-throughput metabolic
profiling and genotyping/sequencing in large samples have identified
thousands of genetic associations for thousands of metabolites and
metabolic features8–15. These studies usuallymeasuremetabolite levels
in blood, which are widely considered to reflect metabolite aggregate
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concentrations across tissues16. Recently, we profiled plasma levels for
1391 metabolites using Metabolon non-targeted mass spectrometry
technology in 6136 Finnish individuals of the Metabolic Syndrome in
Men (METSIM) study17. GWAS identified 2030 genetic associations for
803 of the 1391 metabolites17. Integrating thesemetabolite GWAS with
expression quantitative trait loci (eQTL) in 49 human tissues estab-
lished associations of expression levels of 397 genes with levels of 521
plasma metabolites18. These GWAS deepen our understanding of
genetic regulation of metabolic individuality, open an avenue to
evaluate the putative causal effects of blood metabolites on human
diseases using Mendelian randomization (MR), and have the potential
to provide actionable disease interventions.

MR is an instrumental variable (IV) method to interrogate causal
effects of heritable risk factors on diseases of interest using genetic
variants as IVs19. MR tests whether IVs that affect the exposure have a
proportional effect on the outcome. If MR assumptions about rele-
vance, independence, and exclusion restriction are fulfilled20, the
proportionality constant is an estimate for the causal effect of the
exposure on the outcome. Recent method development allows
increased robustness to violations of these assumptions. For example,
MR using the robust adjusted profile score (MR-RAPS) can account for
bias of weak and outlier genetic IVs21, andmultivariableMR (GRAPPLE)
enables testing causal effects ofmultiple potentially related exposures
on the same outcome22,23.

MR is commonly used to test causal hypotheses that may be
motivated by epidemiological studies24. Recently,MRhas been used to
comprehensively screen risk factors with potential causal effects on
outcomes25,26. Latest studies have applied MR to search for causal
blood metabolites for a wide range of diseases and traits, including
type 2 diabetes27, neuroticism28, Alzheimer’s disease29, and rheumatoid
arthritis30. These studies demonstrate the utility of MR to identify
potential causal metabolites and metabolic pathways for human dis-
eases. However, the existing studies are restricted to one or a few
disease outcomes and a relatively limited set of metabolites8,9.

Here,wecomprehensively evaluatedpotential causal effectsof 1099
plasmametabolites on 2099 binary disease endpoints (hereafter disease
traits) using aMR analysis in GWAS ofMETSIM plasmametabolites17 and
FinnGen disease traits (release 7)31. We identified evidence for 282
putative causal effectsof 70plasmametaboliteson 183disease traits.Our
study uncovered potential causal effects of plasma metabolites for a
broad spectrum of human diseases. We also identified metabolites with
broad potential causal effects across multiple disease types.

Results
Summary of MR results
We previously conducted GWAS for 1099 named plasma metabolites
with annotated chemical identities in up to 6136 Finnish men aged
45–74 at enrollment from theMETSIM study17. These 1099metabolites
included nine biochemical classes of small molecules related to the
metabolisms of lipids (n = 548, 49.9%), amino acids (n = 215, 19.6%),
xenobiotics (n = 163, 14.8%), peptides (n = 42, 3.8%), nucleotides
(n = 42, 3.8%), cofactors and vitamins (n = 38, 3.5%), carbohydrates
(n = 25, 2.3%), partially-characterized molecules (n = 16, 1.5%), and
energy (n = 10, 0.9%) (Supplementary Data 1).

To identifypotential causal plasmametabolites forhumandiseases,
we carried out univariable MR analysis using MR-RAPS31 to evaluate
causal effects of the 1099metabolites on2099binarydisease traits from
the FinnGen study (release 7; Fig. 1a). In GWAS, we inverse normalized
the metabolite measurements17 andmeasured disease trait associations
by mixed-model logistic regression31. Our estimated causal effects can,
therefore, be interpreted as the change in log odds of disease risk
caused by an increase of one standard deviation of the normalized
metabolite level. To identify independent IVs for the MR analysis, we
performed linkage disequilibrium (LD) clumping in the GWAS summary
statistics for each of the 1099 metabolites to ensure resulting variants

achieve association P< 10−5 and each pair of variants within 1 megabase
(Mb) distance satisfy LD r2 < 0.01. For the 1099 metabolites, we identi-
fied from 12 to 173 likely independent variants (mean =42.3; median =
40.0) and used these as IVs (Supplementary Fig. 1).

We identified evidence for 282 potential causal effects of 70
plasmametabolites on 183 disease traits at a false discovery rate (FDR)
threshold < 1% (Fig. 2 and Supplementary Data 2), highlighting the
relevance of plasma metabolite levels to human health. These 282
metabolite-disease trait pairs showed strong robustness to IV selection
and choice of MR method (Supplementary Figs. 2–5, Supplementary
Methods). As a sensitivity analysis, we repeated our MR analysis after
removing all IVs associated with another metabolite at P < 5 × 10−8 in
METSIMmetaboliteGWAS17. The resulting estimates exhibited a strong
correlation with the original ones (Pearson r =0.92; Supplementary
Fig. 6). Of the 282 putative causal effects originally identified, 70
(24.8%) between 16 metabolites and 68 disease traits remained sig-
nificant and consistent at FDR < 5% (Supplementary Data 2). We note
that this sensitivity analysis exhibited substantially reduced statistical
power to detect causal effects and may be overly conservative. Mul-
tivariate MR suggested that the 282 putative causal relationships were
likely independent of common potential lifestyle confounders alcohol
drinking, cigarette smoking, and sleep duration (Supplementary Fig. 7
and Supplementary Data 3).

The 70 putative causal metabolites comprised lipids (n = 31,
44.3%), amino acids (n = 29, 41.4%), xenobiotics (n = 4, 5.7%), cofactors
and vitamins (n = 2, 2.9%), and nucleotides, carbohydrate, peptide, and
partially-characterized molecule (n = 1, 1.4% for each). Compared to
the total set of 1099 metabolites evaluated, the 70 metabolites with
putative causal effects were enriched in amino acids (odds ratio
(OR) = 3.20, Chi-square test P = 4.0 × 10-6) and depleted in xenobiotics
(OR =0.33, Chi-square test P = 0.041). We found that amino acids had
more IVs on average than xenobiotics (Student’s t-test P = 1.2 × 10−12),
so the observed enrichment of amino acids may be a result of better
power to detect effects. The enrichment could also be a consequence
of which xenobiotics and amino acids are represented on the Meta-
bolon platform or could indicate a more central role of amino acids in
disease risk. The 70 plasma metabolites conferred significant putative
causal effects on 1–26 disease traits (mean= 4.0;median = 1.0), with 32
(46%) showing significant putative causal effects on more than one
disease trait (Fig. 1b, c). The 183 disease traits covered a broad spec-
trumofdiseases. The FinnGen consortiumgrouped these disease traits
into 20 categories, including cancers (e.g., colon cancers), cardiome-
tabolic (e.g., type 2 diabetes), infectious (e.g., tularemia), neurological
(e.g., Parkinson’s disease), and mental and behavioral diseases (e.g.,
anxiety personality disorder) (Supplementary Data 2). Each of the 183
disease traits had 1–6 potential causal metabolites (mean= 1.5; med-
ian = 1.0); 53 (29%) had ≥2 potential causal metabolites (Fig. 1d).

Potential causal metabolites for diseases
Among the 282 putative causal effects, we reproduced several known
relationships. For example, we identified a potential causal effect of
low plasma lipid glycosyl-N-stearoyl-sphingosine levels on increasing
risk of coronary artery disease (β = −0.11, P = 1.0 × 10−6), reinforcing the
important role of sphingolipid metabolism in coronary artery
disease32. Studies have reported high levels of valine, a branched-chain
amino acid, associated with increased risk of type 2 diabetes6,33. We
validated, with nominal significance, the putative causal effect of
plasma valine levels on risk of type 2 diabetes (β =0.041, P = 5.0 × 10−3).
In addition, we found that elevated plasma N-acetylvaline levels
decreased risk of type 2 diabetes (β = −0.085, P = 1.1 × 10−8).
N-acetylvaline is a derivative of valine and belongs to a class of N-acyl-
alpha amino acids. Multivariable MR23 including both valine and N-
acetylvaline, suggested that both metabolites have direct effects on
type 2 diabetes (N-acetylvaline: β = −0.096, P = 2.7 × 10−12; valine:
β = 0.087, P = 1.8 × 10−5), indicating a potentially important and
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complex role of valine metabolism in risk of type 2 diabetes. Inter-
estingly, we found that high levels of two additional plasma N-acyl-
alpha amino acids N-acetylglutamate (β = −0.11, P = 1.0 × 10−7) and
N-acetylmethionine (β = −0.072, P = 5.5 × 10−7) potentially causally
decreased the risk of type 2 diabetes. The three N-acyl-alpha amino
acids N-acetylvaline, N-acetylglutamate, and N-acetylmethionine show
substantial phenotypic correlation and share many IVs (Fig. 3, Sup-
plementary Fig. 8). For these threeN-acyl-alpha amino acids, ourGWAS
previously identified genome-wide significant associations at the ACY1
gene17, which encodes enzyme aminoacylase 1 that catalyzes the
hydrolysis of acylated L-amino acids to L-amino acids. MR analysis
using a single IV for plasma aminoacylase 1 levels identified by the
deCODE project34 suggested that increased aminoacylase 1 levels may
decrease levels of the three N-acyl-alpha amino acids (β < −1.20,
P < 4.2 × 10−21) and increase risk of type 2 diabetes (β =0.16,
P = 2.6 × 10−4), directionally consistent with the known function of
aminoacylase 1 and a recently reported putative risk effect of
increasing aminoacylase 1 on type 2 diabetes35. These findings suggest
a possible role of synthesis or degradation of N-acetylated proteins in
type 2 diabetes. However, due to substantial sharing of IVs across the
three N-acetyl amino acids, MR cannot identify whether this effect is
due to one specific or multiple N-acetyl amino acids.

Our study also identified potential causal metabolites for human
diseases. MR recently suggested causal effects of plasma metabolites
on the risk of dementia29,36,37. Among them, previous studies only

reported 2-methoxyacetaminophen sulfate38 with a putative causal
effect specifically on frontotemporal dementia, a type of dementia
characterized by progressive loss of neurons in the brain’s frontal or
temporal lobes. We identified a significant potential protective effect
of high plasma lipid 2-arachidonoyl-GPC (20:4) levels on the risk of
frontotemporal dementia (β = −0.89, P = 1.2 × 10−6). 2-arachidonoyl-
GPC (20:4) is a lysophosphatidylcholine widely considered as a potent
pro-inflammatory mediator39. Emerging evidence has demonstrated
that neuroinflammation plays an important role in dementia40. Studies
have identified a negative association of lysophosphatidylcholine with
Alzheimer’s disease41. Consistent with these results, we found a
potentially protective causal effect of increased 2-arachidonoyl-GPC
(20:4) levels on risk of frontotemporal dementia. We previously
identified genome-wide associations for 2-arachidonoyl-GPC (20:4)
around the FADS1/FADS2, two fatty acid desaturase genes17. Interest-
ingly, we found that lowexpressionof FADS1/FADS2 in thewholeblood
but high expression in the brain significantly increased plasma 2-
arachidonoyl-GPC (20:4) level18. FADS1 variants could regulate ery-
throcyte arachidonic acid biosynthesis that subsequently induces
inflammation in Alzheimer’s disease42.

Chronic kidney disease affects >10% of the general population
worldwide43, and its risk factors are still poorly understood. We found
evidence that elevated plasma xenobiotic sulfate levels increased risk
of chronic kidney disease (β = 0.080, P = 1.9 × 10−7). High sulfate levels
have been previously found to be associated with disease progression

Fig. 1 | Summaryof the 282significantpotential causal effectsof 70metabolites
on 183disease traits. a the overall design of univariableMR to test causal effects of
1099 metabolites on 2099 disease traits; b distribution of metabolites by the
number of disease traits that they showed significant putative causal effects on;

c distribution ofmetabolites by the number of disease categories that they showed
significant putative causal effects on; d distribution of disease traits by the number
of their associated putative causal metabolites. Source data are provided as a
Source Data file.
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and increased mortality in individuals with kidney disease44. Our pre-
vious GWAS identified a genome-wide significant association with
plasma sulfate levels at the SLC13A1 gene17, which encodes a sulfate
transmembrane transporter and mediates the first step of sulfate
absorption. SLC13A1 is primarily expressed in the proximal renal
tubules. We previously found that high expression of SLC13A1
decreased plasma sulfate abundance18. These results together suggest
that SLC13A1 could serve as a potential drug target for chronic kidney
disease through the regulation of plasma sulfate levels.

Potential causal metabolites shared across diseases
We identified evidence for 32 metabolites with putative causal effects
on more than one disease trait (Figs. 1b and 2; see Summary of MR
results). Of these 32metabolites, 25 (78%) showed significant potential
causal effects on two or more disease categories (Fig. 1c and Supple-
mentary Data 2). The sharing of putative causal metabolites between
diseases may partially explain observed phenotypic correlations and
disease comorbidities. For example, we identified potential causal
effects of plasma amino acid N-acetylvaline levels on optic atrophy
(β =0.53, P = 4.7 × 10−7) and myasthenia gravis (β =0.53, P = 7.9 × 10−8),
diseases with substantial comorbidity45. These results suggest that
valine metabolism might play a role in both the cell cycle of retinal
ganglion cell axons and communication between nerves and muscle.
We found potential causal effects of plasma amino acid N-acetyl-
aspartyl-glutamate (NAAG) levels on increased risk of both Parkinson’s
disease (β =0.11, P = 3.2 × 10−7) and autoimmune hypothyroidism
(β =0.039, P = 3.9 × 10−9), which also have substantial comorbidity46.

The metabolite linked to the largest number of disease traits was
ascorbic acid 2-sulfate, with evidence of potential causal effects on 26

disease traits in 12 categories, including cardiomyopathy (disease of
the circulatory system), arthropathy (disease of the musculoskeletal
system and connective tissue), and acne (disease of the skin and sub-
cutaneous tissue) (Supplementary Data 2). We found that elevated
levels of ascorbic acid 2-sulfate may decrease risk of 12 disease traits
including colon adenocarcinoma (β = −0.13, P = 9.3 × 10−8) and endo-
metriosis of the fallopian tube (β = −0.48, P = 1.6 × 10−7) but increase
risk of 14 others including conjunctiva cancer (β =0.36, P = 2.8 × 10−14)
and arthropathy (β =0.028, P = 1.1 × 10−7).

Notably, the suggested putative causal effects of plasma ascorbic
acid 2-sulfate showed heterogeneity across disease traits, even in the
same category. For example, we found that elevated ascorbic acid
2-sulfate levels were potentially protective for acne (β = −0.18,
P = 3.9 × 10−10) and lichen sclerosus (β = −0.15, P = 7.1 × 10−7) but puta-
tively increase risk of dyshidrosis, a kind of eczema (β =0.42,
P = 4.2 × 10−10). These three conditions all affect skin but usually in
different anatomical locations: the face, upper part of the chest, and
back; the genital area; and thepalms andfingers, respectively. Ascorbic
acid 2-sulfate arises from the action of a liver-derived sulfotransferase
on vitamin C, so it is possible that plasma levels of ascorbic acid
2-sulfate are a proxy for the action of liver-derived sulfotransferases or
for vitamin C levels, or a combination of these. For example, we esti-
mated that elevated ascorbic acid 2-sulfate levels are protective for
colon adenocarcinoma (β = −0.13, P = 3.2 × 10−7), which is consistent
with a report that high-dose vitamin C kills human colorectal cancer
cells with KRAS or BRAFmutations47. Vitamin C is an essential nutrient
for humans, acting as an antioxidant by protecting the body against
oxidative stress, as a cofactor in enzymatic reactions including col-
lagen synthesis, and as a structural component for blood vessels,

Fig. 2 | Heat map of the 282 potential causal effects of 70 metabolites on 183
FinnGen disease traits. The x-axis denotes the 183 disease traits of 20 colored
categories (from left to right). The y-axis denotes the 70 metabolites of eight
colored biochemical classes (from bottom to top). The bar plots show the number
of FinnGen disease traits that each metabolite confers potential causal effects on

(on the left) and the number of putative causal metabolites for each disease trait
(on the top). The color of cells denotes the direction of potential causal effects (red
for positive and blue for negative effects) of metabolites on disease traits. Source
data are provided as a Source Data file.
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cartilage, and muscle48. Vitamin C supplementation has been broadly
recommended to help protect cells against the effects of free radicals
and has generally been found to be safe. Further investigation is nee-
ded to understand whether the effects we identified are effects of
vitamin C itself or other biological processes.

Potential independent causal metabolic pathways for the same
disease
Our univariable MR identified 53 disease traits with more than one
putative causal metabolite, which comprised 152 potential causal
associations with 41 metabolites (see Summary of MR results). This
could occur due to direct causal effects of multiple metabolites,
mediation of effects of one metabolite by another, or it could result
from heritable confounding of one metabolite by another. To gain a
better understanding of these results and to reduce the risk of false
positives due to heritable confounding, we used multivariable MR23

to jointly estimate the direct effects of all metabolites implicated for
a single disease in the univariable MR analysis. Multivariable MR
identified 20 significant putative causal effects of 17 metabolites on
23 disease traits at P < 0.05 (Supplementary Data 4). To provide
additional insight, we computed both phenotypic correlation and
correlation of IV effects (rIV) for each pair of the 70 significant
metabolites (Fig. 3 and Supplementary Figs. 9–10; see “Methods”).
We found strong correlations between some pairs of potential causal
metabolites for the same disease traits (absolute rIV median = 0.84,
mean = 0.64, range = 0.00033–0.99; Supplementary Fig. 11).

For atrial fibrillation, we identified a putative risk effect of plasma
lipid N-acetyl-2-amino-octanoate (β = 0.068, P = 2.3 × 10−7) and poten-
tial protective effects of plasma amino acid N-delta-acetylornithine
(β = −0.047, P = 5.1 × 10−7) and lipid glycocholate sulfate (β = −0.061,
P = 2.9 × 10−8). N-acetyl-2-aminooctanoate and N-delta-acetylornithine
have highly correlated IVs (rIV = 0.74), but neither has correlated IVs
with glycocholenate sulfate (|rIV| < 0.08). Multivariable MR analysis
identified direct potential causal effects on atrialfibrillation of lipids N-
acetyl-2-amino-octanoate (β = 0.054, P = 7.2 × 10−3) and glycocholenate
sulfate (β = −0.058, P = 2.6 × 10−7), but no causal effect of N-delta-
acetylornithine, conditional on the other twometabolites (β = −0.020,
P =0.17; Supplementary Data 4). In the METSIM study, we identified
816 individuals with atrial fibrillation (see “Methods”). Logistic
regression identified a significant association between plasma N-
acetyl-2-amino-octanoate level and risk of atrial fibrillation (β =0.080,
P =0.045), directionally consistent with the putative causal effect
estimated inMR.We observed no significant associations with N-delta-
acetylornithine (β = 0.057, P = 0.148) or glycocholenate sulfate levels
(β =0.072, P = 0.064), however, observational associations may be
biased by unmeasured confounding variables.

For anxious personality disorder, we identified putative risk
effects of plasma xenobiotic N-methylpipecolate (β =0.28,
P = 2.8 × 10−7) and amino acid N6,N6-dimethyllysine (β =0.24,
P = 8.6 × 10−8) and a potential protective effect of plasma lipid
androsterone sulfate (β = −0.27, P = 1.5 × 10−7). N6,N6-dimethyllysine,
and N-methylpipecolate have high IV correlation (rIV = 0.98) and share

Fig. 3 | IV sharing (upper left triangular heat map) and Pearson correlation
(lower right triangular heat map) for all pairs of the 70 metabolites. The color
bar on the x-axis and y-axis denotes the biochemical classes of metabolites. In the
upper left triangular heat map, each cell denotes the proportion of IVs with
metabolite association at P ≤ 10−5 shared between the pair of metabolites. In the

lower right triangular heat map, each cell denotes the IV correlation between the
pair of metabolites. The diagonal cells are colored in dark gray to distinguish the
upper and lower triangular heat maps. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-025-58129-2

Nature Communications |         (2025) 16:3039 5

www.nature.com/naturecommunications


42.4% of their IVs at a threshold of metabolite association P ≤ 1 × 10−5,
but neither has correlated IVs with androsterone sulfate (|rIV| < 0.03).
Because of the high IV correlation between N6,N6-dimethyllysine, and
N-methylpipecolate, there is insufficient independent genetic signal to
tease apart their putative causal effects on anxious personality dis-
order using multivariable MR. We performed two multivariable MR
analyzes, including androsterone sulfate and either
N-methylpipecolate or N6, N6-dimethyllysine. In both cases, the data
were consistent with direct effects of both included metabolites
N-methylpipecolate (β =0.29, P = 6.2 × 10−8) and androsterone sulfate
(β = −0.27, P = 7.6 × 10−8) or at N6, N6-dimethyllysine (β =0.24,
P = 5.0 × 10−7) and androsterone sulfate (β = −0.27, P = 2.5 × 10−7). N6,
N6-dimethyllysine, and N-methylpipecolate are likely derived from
lysine and pipecolate, respectively. Previous studies have suggested
that pipecolate is an intermediate product of lysinemetabolism by the
cyclodeaminases RapL/FkbL49. The ratio of N6,N6-dimethyllysine, and
N-methylpipecolate may indirectly reflect the relative levels of lysine
and pipecolate. To further investigate the putative causal role of the
relative levels of N6,N6-dimethyllysine and N-methylpipecolate on
anxious personality disorder, we created a metabolite ratio between
N6,N6-dimethyllysine andN-methylpipecolate and carried out aGWAS
on the ratio, identifying six independent association signals in the
AKR1C1/AKR1C2/AKR1C3/AKR1C4/AKR1C8, NAT8, PYROXD2, SLC6A20,
and SLC7A9 regions (P < 5.0 × 10−8) (Supplementary Data 5 and Sup-
plementary Fig. 12).MR identified evidence for a potential causal effect
of increased N6,N6-dimethyllysine:N-methylpipecolate ratio on risk of
anxious personality disorder (β = −0.34; P = 0.047; Supplementary
Fig. 13; see “Methods”). The pattern we observe in which N6,N6-
dimethyllysine and N-methylpipecolate both increase risk of anxious
personality disorder, but an increase in their ratio confers a putative
protective effect supports a hypothesis that N-methylpipecolate acts
as a mediator in the potential causal pathway of N6,N6-dimethyllysine
on anxious personality disorder (Fig. 4). This is consistent with pre-
vious reports that pipecolate is an intermediate product of lysine
metabolism49.

Discussion
In this study, we systematically screened for potential causal effects of
1099 plasma metabolites on 2099 disease endpoints using two-sample
univariable andmultivariableMRanalysis.We identified evidence for 282
putative causal effects of 70 plasma metabolites on 183 disease end-
points. We characterized the sharing of metabolite putative causal
effects across 53 humandiseases and showed the heterogeneity of causal
metabolic pathways in disease pathophysiology. This study uncovers
modifiable risk metabolites for disease intervention and underscores a
potential causal role of plasma metabolites in human health.

We identified evidence for putative causal effects of 70 plasma
metabolites on 183 human diseases. The relationships of many plasma
metabolites with diseases have not been studied previously. These
findings have several implications. First, they provide potential targets
for disease intervention. Many plasma metabolites levels can be
modified by diet and lifestyle changes. For example, we identified that
high plasma sulfate levels increased the risk of chronic kidney disease.
A wide range of food and beverages has been suggested as sources of
dietary sulfate. We can, in principle, reduce plasma sulfate levels by
reducing the consumption of these foods and beverages.

Second, these findings help elucidate disease biology and prior-
itize therapeutic targets for human diseases. For example, the risk of
high plasma sulfate in chronic kidney disease suggested SLC13A1 as a
potential drug target for chronic kidney disease. The potentially pro-
tective effect of high 2-arachidonoyl-GPC (20:4) level on fronto-
temporal dementia bolsters the hypothesis that neuroinflammation
contributes to the pathophysiology of dementia40,42. We characterize
the sharing of potential causal metabolites and their heterogeneity
effects across human diseases. The sharing may help explain some
disease comorbidity and reveal previously unappreciated connections
between diseases. For example, we identified evidence for 126 het-
erogeneous putative causal effects of 15 N-acyl-alpha amino acids on
67disease traits of 14 categories, highlighting an impact of synthesis or
degradation of N-acetylated proteins on human health.

Our study showed that metabolites with significant univariable
putative causal effects on the same disease traits might act in disease
pathogenesis through separate metabolic pathways or through a
metabolic cascade. We identified two independent metabolic path-
ways among three tested metabolites for atrial fibrillation and for
anxious personality disorder, highlighting the heterogeneity of
potential causal metabolic pathways in human diseases. We suggested
that a putative causal effect of N-delta-acetylornithine on atrial fibril-
lation might be induced by IVs shared with N-acetyl-2-amino-octano-
ate. In contrast, we suggested that N-methylpipecolate might act as a
downstream mediator in the causal pathway of N6,N6-dimethyllysine
on anxious personality disorder, which could partially explain the
strong IV correlation between N-methylpipecolate and N6,N6-dime-
thyllysine. Previous survival analyzes detected a significant positive
association of glycocholenate sulfate levels with atrial fibrillation
incidence50, while our analysis identified a negative association of
plasma glycocholenate sulfate with atrial fibrillation. The effect of
plasma glycocholenate sulfate on atrial fibrillation warrants further
investigation.

MR is an advantageous method for screening causal hypotheses
about relatively un-studied but heritable exposures because it relies on
less domain-specific knowledge than traditional causal inference

Fig. 4 |MRsuggests twometabolic pathways for anxiouspersonalitydisorder.Genes implicated for the ratio ofN6,N6-dimethyllysine, andN-methylpipecolate and for
androsterone sulfate are italicized.
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methods based on observational data. However, there are also lim-
itations to the conclusions that can be drawn from MR estimates. MR
effects may reflect causal effects of a related exposure that shares
genetic regulation with the measured exposure51. In our case, MR
estimates may reflect the causal effects of metabolite levels in non-
plasma tissues or effects of related but unmeasured molecules in the
same biochemical pathway. Despite this limitation, metabolome-wide
MR remains a powerful tool for identifying pathways and molecules
that influence disease susceptibility.

The MR estimates in this study differ from RCT estimates in sev-
eral important ways24. MR estimates do not correspond to the effect of
a specific intervention, and interventions on the plasma levels of
implicated metabolites could have different effects than the ones
estimated by MR. This could occur because (a) MR measures lifetime
exposure effects, (b) plasma metabolite levels act as proxies for the
activity of specificbiological pathways, or (c) plasmametabolites act as
proxies formetabolite levels in other tissues. The biochemical pathway
regulating the metabolite may be the true causal factor, which war-
rants further investigation. For example, we identified a negative
association of plasma 2-arachidonoyl-GPC (20:4) level with the risk of
frontotemporal dementia, which might suggest a role of 2-
arachidonoyl-GPC (20:4)-mediated neuroinflammation in the brain.
However, further evidence is required to understand whether the
modulation of plasma levels of 2-arachidonoyl-GPC (20:4) through
intervention could modify dementia risk.

In addition, the complexity of metabolites and metabolic regula-
tion presents another challenge for interpreting the metabolite-
disease trait associations. We applied multivariable MR to estimate
direct potential causal effects of multiple metabolites on the same
disease. However, multivariable MR can only distinguish the effects of
metabolites that have a sufficient number of distinct IVs. For example,
we were unable to disentangle the effects of N-methylpipecolate and
N6,N6-dimethyllysine on the risk of anxious personality disorder using
multivariable MR because they share nearly all of their IVs. We were,
therefore, only able to identify a potential causal effect related to the
process that co-regulates the levels of these two metabolites. A
metabolite ratio reflects the relative levels of two metabolites at a
given time point. Our MR analysis identified a significant putative
causal effect of the ratio between N6,N6-dimethyllysine, and
N-methylpipecolate on anxious personality disorder. This causal esti-
mate is consistent with the previous report that pipecolate is an
intermediate product of lysine metabolism49. Though the metabolite
ratio does not recapitulate the metabolic flux, we suggest that the
relative levels of N-methylpipecolate and N6,N6-dimethyllysine may
play a causal role in anxious personality disorder.

A limitation of our study is that METSIM and FinnGen study
populations differ in some features. Our METSIM metabolite GWAS
contained only non-diabetic males17, while FinnGen is not ascertained
on sex or any disease status. Our putative causal effect estimates rely
on the assumption that genetic regulation of metabolites is similar
across sex and diabetes status. If these assumptions are violated, our
estimates will be inaccurate. This issue is most likely to affect sexually
differentiated metabolites such as androsterone sulfate.

In our MR analysis, we assumed that there was no sample overlap
between the METSIM and FinnGen samples. METSIM is not directly
part of the FinnGen study. However, since FinnGen is a nationwide
biobank, there could be a small amount of sample overlap.

In conclusion, we systematically evaluated the potential causal
effects of 1099 plasma metabolites on the risk of 2099 disease
endpoints. We identified evidence for 282 putative causal effects of
70 plasma metabolites on 183 disease traits. Our study uncovered
potential causal effects of plasma metabolites on a broad spectrum
of human diseases. These findings highlight heterogeneous and
shared potential causal effects of plasma metabolites on human
diseases.

Methods
Ethics
In the present study, we used publicly available datasets fromprevious
analyzes of the METSIM and FinnGen studies. All METSIM participants
provided written informed consent. The Ethics Committee at the
University of Eastern Finland and the Institutional Review Board at the
University of Michigan approved the METSIM metabolomics study.
FinnGen obtained participants' informed consent for biobank research
based on the Finnish Biobank Act. Research cohorts collected prior to
the Finnish Biobank Act coming into effect (September 2013) and the
start of FinnGen (August 2017) obtained study-specific consents and
later transferred the consents to the Finnish Biobank after the National
Supervisory Authority for Welfare and Health (Fimea) approved the
recruitment protocols. This study was approved by the Ethics Com-
mittee at the University of Eastern Finland and the Institutional Review
Board at the University of Michigan. All the study procedures were in
compliance with the Declaration of Helsinki.

Metabolic syndrome in men (METSIM) metabolomics study. MET-
SIM is a single-site cohort study designed to investigate risk factors for
type 2 diabetes and cardiovascular diseases52. It includes 10,197 Finnish
men from Kuopio aged 45–74 years at baseline. We performed non-
targeted metabolomics profiling in 6136 randomly selected non-
diabetic participants using the Metabolon DiscoveryHD4 mass spec-
trometry platform (Durham, North Carolina, USA) on EDTA-plasma
samples obtained after ≥10-h overnight fast during baseline visits from
2005 to 201017. We completed single-variant GWAS for 1391 metabo-
lites, which identified 2030 independentmetabolite associations17. For
this study, we used GWAS summary statistics at 16.2M genotyped or
imputed genetic variants for the 1099 named metabolites with anno-
tated biochemical identities17.

FinnGen study. FinnGen is designed to collect and analyze genomeand
healthcare data to identify diagnostic and therapeutic targets for
human diseases31. FinnGen identified 3095 disease endpoints in release
7 using healthcare data from Finnish national registries: Drug Purchase
and Drug Reimbursement and Digital and Population Data Services
Agency; Digital and Population Data Services Agency; Statistics Finland;
Register of Primary Health Care Visits (AVOHILMO); Care Register for
Health Care (HILMO); and Finnish Cancer Registry. These registries
recorded disease-relevant codes of the International Classification of
Diseases (ICD) revisions 8, 9, and 10, cancer-specific ICD-O-3, Nordic
Medico-Statistical Committee (NOMESCO) procedure, Finnish-specific
Social Insurance Institute (KELA) drug reimbursement, and Anatomical
Therapeutic Chemical (ATC)17. Each FinnGenparticipantwas genotyped
with an Illumina or Affymetrix array. Genotype imputation followed
using the Finnish-specific Sequencing Initiative Suomi (SISu) v3 refer-
ence panel53. FinnGen carried out single-variant GWAS for each disease
endpoint using mixed-model logistic regression in SAIGE54. For this
study, we used GWAS summary statistics at 16.7M genotyped or
imputed genetic variants for all 3095 disease traits in up to 309,154
individuals from FinnGen release 7. After we finished the MR analysis,
FinnGen made the release 8 publicly available, which includes GWAS
summary statistics for 2202 disease traits. In comparison to FinnGen
release 7, release 8 reduced the number of disease traits primarily by
dropping redundant disease traits. To improve efficiency and reduce
redundancy, we restricted our MR analysis results to 2099 of the 3095
disease traits that are included in FinnGen release 8.

Selection of IVs. We identified 16.2Mgenetic variants shared between
GWAS summary files across all the 1099 metabolites in METSIM and
the 2099 disease traits in FinnGen release 7. To identify independent
genetic variants as IVs forMR, we performed LD clumping in theGWAS
results for each of the 1,099 metabolites in Plink to ensure resulting
variants achieved association P < 10−5 and each pair of variants within
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1Mb distance has LD r2 < 0.0155. For LD calculation, we used genotypes
in 8433METSIM individuals without close relatives defined as pairwise
kinship coefficients < 0.125.

Primary univariable MR analysis. To identify potential causal meta-
bolites for human diseases, we performed two-sample univariable MR
to test the putative causal effect of each of the 1099 plasma metabo-
lites on each of the 2099 disease traits using MR–robust adjusted
profile scoring (MR-RAPS)21. MR-RAPS allows for horizontal pleiotropy
and enables the inclusion of IVswithweakeffects by accounting for the
precision of IV exposure and IV outcome associations21. We used over-
dispersion and Tukey robust loss function parameters inMR-RAPS.We
used the IVs for each metabolite as individual covariates in MR-RAPS.
We conducted the MR-RAPS analysis using the mr.raps R package. To
identify significant potential causal effects, we applied an FDR < 1% to
account for multiple tests.

To test the potential causal effects of protein aminoacylase 1 on
plasma levels of three N-acyl-alpha amino acids, N-acetylvaline, N-
acetylglutamate, and N-acetylmethionine, and the risk of type 2 dia-
betes, we performed two-sample univariable MR. deCODE measured
plasma aminoacylase 1 level using SomaScan version 4 in 35,559 Ice-
landers, followed by protein quantitative trait loci (pQTL) analysis,
which identified three independent cis-pQTLs for aminoacylase 134.
Among the three cis-pQTLs, the top pQTL site, rs121912698 was
available in both METSIM and FinnGen. We used this variant as single
IV and performed aWald ratio test to evaluate causal effects of protein
aminoacylase 1 on plasma levels of the three N-acyl-alpha amino acids
and risk of type 2 diabetes in the two sample R packages.

Sensitivity analysis. For each of the 282 metabolite-disease trait pairs
that we detected in MR-RAPS, we evaluated its potential causal asso-
ciation using four alternative MR methods and performed sensitivity
tests using MR-Egger intercept, MR-PRESSO global, and Steiger filter-
ing tests (see Supplementary Methods). The MR-RAPS method pro-
vides some robustness to false positives due to horizontal pleiotropy
through the use of a robust loss function and allowance for over-
dispersion. However, false positives may still occur if a metabolite and
disease share a common heritable cause (heritable confounding or
correlated horizontal pleiotropy). We performed an additional sensi-
tivity analysis to evaluate the potential influence of heritable con-
foundingmediated by othermetabolites.We removed all IVs that were
associated with another metabolite at P < 5 × 10−8 in the METSIM
metabolite GWAS17 and repeated all the univariableMR-RAPS analyzes.
This method is very conservative because not all shared variants result
in bias in the MR estimate, and the removal of shared variants sub-
stantially reduces power in many cases.

Multivariable MR. To detect direct potential causal effects among
metabolites with significant univariable putative causal effects on the
samedisease trait, we performedmultivariableMRusing genome-wide
MRAnalysis under Pervasive PLEiotropy (GRAPPLE)23. For each disease
with multiple implicated metabolites, we combined IVs for all impli-
cated metabolites and performed LD clumping as in the Selection of
IVs to ensure that all IVs were nearly independent and the IVs with the
lowest association p values across metabolites were prioritized. We
used default parameters in GRAPPLE and applied a nominal P < 0.05 as
the significance threshold.

To evaluate whether themetabolite-disease trait associations that
we identified in the univariable MR were independent of common
potential lifestyle confounders alcohol drinking, cigarette smoking,
and sleep duration, we identified (a) GWAS for alcohol drinking status
(GWAS ID: ukb-d-20117_2), ever smoked (GWAS ID: ukb-b-20261), and
sleep duration (GWAS ID: ukb-b-4424) from the IEU OpenGWAS
database (https://gwas.mrcieu.ac.uk) and (b) IVs for each of these
three phenotypes (see Selection of IVs). We performed multivariable

MR through including one of the three phenotypes at a time using
GRAPPLE. We used FDR< 5% as the significance threshold.

Estimation of IV correlation between metabolites. To estimate the
degree to which each pair of metabolites shares genetic IVs, we com-
puted the proportion of overlapping IVs and the IV correlation. For
eachmetabolite pair, we took theunionof IVs for bothmetabolites.We
then performed LD clumping using LD r2 < 0.01 in 1Mb distance in
Plink55 to remove correlated IVs. Finally, we extracted association sta-
tistics for the resulting set of IVs for both metabolites. For LD calcu-
lation, we used genotypes in 8433 METSIM individuals with pairwise
kinship coefficients < 0.125.We calculated the proportion of IVs shared
as the proportion of the LD clumped union set of IVs with association
P ≤ 10−5 for both metabolites. We calculated the IV correlation, rIV, as
the correlation of association statistics of the LD clumped union set of
IVs with the two metabolites.

Associations of N-acetyl-2-aminooctanoate, N-delta-acet-
ylornithine, and glycocholenate sulfate with atrial fibrillation
in METSIM. Among the 6102 METSIM participants with measured
plasma N-acetyl-2-aminooctanoate, N-delta-acetylornithine, and gly-
cocholenate sulfate levels at baseline, we identified 816 with atrial
fibrillation inMETSIM as of June 2022. To test for associations between
plasma metabolite levels and presence of atrial fibrillation, we used
logistic regressionwith covariates baseline study age, bodymass index
(BMI), binary cigarette smoking status (ever smoker versus never
smoker), alcohol drinking amount, baseline systolic and diastolic
blood pressure, and lipid and hypertension medication use.

GWAS for metabolite ratio of N6,N6-dimethyllysine, and
N-methylpipecolate and causal effect of the ratio on anxious per-
sonalitydisorder. In the6136METSIMparticipants17, we computed the
ratio of N6,N6-dimethyllysine to N-methylpipecolate by dividing the
level of N6,N6-dimethyllysine by the level of N-methylpipecolate. We
regressed out covariates study age, Metabolon batches, and lipid-
lowering medication status, and inverse normalized the residuals. We
performed single-variant GWAS for the resulting residuals in Regenie
v3.2.256. For the chromosomes on which we identified genome-wide
significant associations (P < 5.0 × 10−8), we performed recursively a
stepwise conditional test to identify near-independent association
signals until no variant attained P < 5.0 × 10−817. To test the potential
causal effect of the metabolite ratio on the risk of anxious personality
disorder, we performed a univariable MR test using MR-RAPS21. We
used the near-independent association signals for the metabolite ratio
that are also available in the GWAS for anxious personality disorder as
IVs. We conducted the MR-RAPS analysis with over dispersion and
Tukey robust loss function parameters using the mr.raps R package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
FinnGen genome-wide summary statistics are available at https://r7.
finngen.fi. Full summary statistics from the genome-wide association
studies of the 1099plasmametabolites are available at https://pheweb.
org/metsim-metab/. The MR results are available in Supplementary
Data 2, 3, and 4. Source data are provided with this paper.
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