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CUT&Tag recovers up to half of ENCODE
ChIP-seq histone acetylation peaks

Leyla Abbasova 1,2,5, Paulina Urbanaviciute3,4,5, Di Hu1,2,5, Joy N. Ismail3,4,
Brian M. Schilder1,2, Alexi Nott 1,2, Nathan G. Skene1,2 & Sarah J. Marzi 2,3,4

DNA-protein interactions have traditionally been profiled via chromatin
immunoprecipitation followed by next-generation sequencing (ChIP-seq).
Cleavage Under Targets & Tagmentation (CUT&Tag) is a rapidly expanding
technique that enables the profiling of such interactions in situ at high sensi-
tivity. However, thorough evaluation and benchmarking against established
ChIP-seq datasets are lacking. Here, we comprehensively benchmarked
CUT&Tag for H3K27ac and H3K27me3 against published ChIP-seq profiles
from ENCODE in K562 cells. Combiningmultiple new and published CUT&Tag
datasets, there was an average recall of 54% known ENCODE peaks for both
histone modifications. We tested peak callers MACS2 and SEACR and identi-
fied optimal peak calling parameters. Overall, peaks identified by CUT&Tag
represent the strongest ENCODE peaks and show the same functional and
biological enrichments as ChIP-seq peaks identified by ENCODE. Ourworkflow
systematically evaluates the merits of methodological adjustments, providing
a benchmarking framework for the experimental design and analysis of
CUT&Tag studies.

In recent years, the field of epigenetics has attracted increasing inter-
est as a source of new insights into themechanisms underlying human
disease. Human disease risk variants identified through genome-wide
association studies (GWAS) overwhelmingly localize to non-coding
regions of the genome1–4. These risk variants appear to be enriched in
gene regulatory regions5–7. Chromatin dynamics at regulatory regions
are governed by nucleosomes and their post-translational modifica-
tions, as well as interacting chromatin-associated complexes and
transcription factors. Chromatin marks can define regions of activa-
tion and silencing andmark transcriptional regulatory elements. These
can be cell type-specific and are known to be dynamic throughout
development, aging, and disease progression8. Disease risk variants
appear to be specifically enriched in active regulatory elements, par-
ticularly those marked by H3K27ac6,7. H3K27ac is a highly cell type-
specific histone modification and a marker of active enhancers and
promoters9, which has been implicated in complex diseases. For

example, in the brain, variation in H3K27ac has been associated with
neurodegenerative and neuropsychiatric disorders, including Alzhei-
mer’s disease6,10,11. However, understanding the precise regulatory
mechanisms underlying epigenetic regulation in complex human dis-
ease and linking non-coding variants to disease phenotypes has been
impeded by a lack of epigenomic annotations in disease and control
tissues. Furthermore, the resources that do exist tend to use bulk tis-
sues of heterogeneous organs, which are characterized by epigenomic
signatures that are predominantly influenced by cell type composition
and obscure cell type-specific regulatory landscapes.

For many years, chromatin immunoprecipitation followed by
next-generation sequencing (ChIP-seq) has served as a standard
method for epigenomic profiling. In ChIP-seq, chromatin is first cross-
linked and solubilized, after which a primary antibody specific for the
histonemark of interest enables immunoprecipitation of boundDNA12.
However, it has potential limitations, such as low signal-to-noise ratio,
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epitopemasking from fixation and cross-linking, and heterochromatin
bias from chromatin sonication13,14. ChIP-seq poses challenges when
working with low cell numbers, requiring approximately 1-10 million
cells as input, with high demands on sequencing coverage, due to the
low signal-to-noise ratio. In addition, ChIP-seq does not adapt well to
single-cell applications due to its high cell input requirements and
poor signal specificity. Cleavage Under Targets & Tagmentation
(CUT&Tag) is an enzyme-tethering approach that has been presented
as a streamlined, easily scalable, and cost-effective alternative to ChIP-
seq. CUT&Tag has been reported to have superior chromatinmapping
capabilities as compared to ChIP-seq at approximately 200-fold
reduced cellular input and 10-fold reduced sequencing depth
requirements15. CUT&Tag uses permeabilized nuclei to allow anti-
bodies to bind chromatin-associated factors, which enables the
tethering of protein A-Tn5 transposase fusion protein (pA-Tn5). Upon
activation of pA-Tn5, cleavage of intact DNA and insertion of adapters
(tagmentation) occurs for paired-end DNA sequencing. Following
tagmentation, DNA fragments remain inside the nucleus, making the
method amenable to single-cell chromatin profiling applications, for
example, enabling individual sorting of nuclei and PCR barcoding. The
increased signal-to-noise ratio of CUT&Tag for histone marks is
attributed to the direct antibody tethering of pA-Tn5 and its integra-
tion of adapters in situ while it stays bound to the antibody target of

interest during incubation. The process involves minimal sample loss
with direct enzymatic end-polishing and ligation compared to regular
library preparation protocols that result in sample loss, includingChIP-
seq and CUT&RUN15.

For ChIP-seq, experimental and analytical guidelines as well as
datasets generated by the Encyclopedia of DNA Elements (ENCODE)
consortium, have served as standard references in the field for years16.
In contrast, as a relatively new method, CUT&Tag lacks equivalent
systematic optimization or benchmarking against existing datasets,
and there is no established consensus regarding experimental
recommendations and data analysis workflows. Here, we undertook
experimental optimizations and systematic benchmarking of CUT&-
Tag against ENCODE in human K562 cells for histone modifications
H3K27ac and H3K27me3 to serve as a guide for the design and analysis
of future CUT&Tag studies. Since the development of CUT&Tag has
primarily assessed methyl marks, where H3K27me3 is the recom-
mended positive control17, we focused in-depth on underexplored
H3K27ac, testing multiple ChIP-grade antibody sources6,10,18,19, anti-
body dilutions, histone deacetylase inhibitors (HDACi), as well as PCR
parameters, and DNA extraction methods for library preparation
(Fig. 1a). Experimental outcomes were evaluated by quantitative
polymerase chain reaction (qPCR) and paired-end genomic sequen-
cing. Our computational workflow served to iteratively guide
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Fig. 1 | Overview of experimental design and computational benchmarking.
a Summary of experimental design. Five antibodies were tested at dilutions 1:50,
1:100, and 1:200, and 11, 13, or 15 PCR cycles for library preparation. H3K27ac
libraries were assessed with and without HDAC inhibitor Trichostatin A (TSA; 1 µM)
or sodium butyrate (NaB; 5mM). Column- and SDS-based DNA extractionmethods
were compared. Antibodyperformancewas assessed byqPCR and sequencing, and

sequenced reads were processed with and without duplicates using peak callers
SEACR and MACS2. b Summary of analytical approaches. Analysis comprised
quality control of sequencing data, optimization of peak calling approaches with
both peak callers, and comparison between CUT&Tag and ENCODE datasets at the
level of reads, peaks, and functional annotation.
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experimental optimizations, appraise CUT&Tag data quality, and
benchmark CUT&Tag performance against ENCODE ChIP-seq profiles
(Fig. 1b). We explored the suitability of different peak calling approa-
ches (SEACR andMACS2), and the effects of inclusion versus exclusion
of PCR duplicate reads. We characterized the similarities and differ-
ences between CUT&Tag and ENCODE ChIP-seq based on parameters
including read- and peak-level correlation, regulatory element anno-
tation, gene ontology enrichment, and transcription factor binding
motif (TFBM) analysis. We developed a benchmarking pipeline,
EpiCompare20, to help researchers optimally analyze and interpret
CUT&Tag studies.

Results
Overview of systematic H3K27 CUT&Tag experimental design
and analysis
To benchmark the performance of CUT&Tag against established
ENCODE ChIP-seq, we profiled histone modifications H3K27ac, a
marker of active enhancers and promoters, andH3K27me3, associated
with heterochromatin and assessed in the original series of papers
introducing CUT&Tag15,17,21. Both histone modifications were char-
acterized in K562 cells, generating a total of 38 new CUT&Tag
sequencing datasets. We undertook systematic experimental optimi-
zations for H3K27ac CUT&Tag testing multiple ChIP-grade antibody
sources6,10,18,19, antibody dilutions (1:50, 1:100, 1:200), as well as dif-
ferent PCR cycle numbers, DNA extraction methods for library pre-
paration, and histone deacetylase inhibitors (HDACi; Fig. 1a). Primary
conditions were first validated by performing qPCR using positive and
negative control primers designed based on ENCODE ChIP-seq peaks
(Supplementary Table 1). The best conditions were subsequently
subjected to paired-end sequencing. Our computational workflow
iteratively guided experimental optimizations, assessed data quality,
and benchmarked CUT&Tag performance against ENCODE ChIP-
seq (Fig. 1b).

Experimental optimization of CUT&Tag
We first assessed four ChIP-seq grade H3K27ac antibodies across three
dilutions (1:50, 1:100 and 1:200) by qPCR, using primers designed to
amplify regions corresponding to genes falling into the most sig-
nificant ENCODE peaks (positive controls: ARGHAP22, COX4I2,MTHFR,
ZMYND8) versus least significant ENCODE peaks (negative controls:
KLHL11, SIGIRR) (Methods; Supplementary Table 1; Fig. 2a). Based on
the outcome, we selected Abcam-ab4729 (1:100; the same antibody
was used in ENCODEChIP-seq), Diagenode C15410196 (1:50 and 1:100),
Abcam-ab177178 (1:100), and Active Motif 39133 (1:100) for sequen-
cing. These antibodies will be henceforth referred to as Abcam-ab4729
(ab4729), Diagenode (diag), Abcam-ab177178 (ab177), and Active
Motif. H3K27me3 CUT&Tag was profiled using ChIP-grade antibody
Cell Signaling Technology-9733, the same antibody used in ENCODE,
at a dilution of 1:100 as previously recommended17. In-house samples
were compared with published CUT&Tag17 and CUT&RUN22 data from
the research group that originally developed these methods.

Since H3K27ac is dynamically deposited and removed by histone
acetyltransferases and deacetylases (HDACs), chromatin mapping
methods can potentially benefit from adding HDACi to eliminate
residual deacetylase activity and thereby stabilize acetyl marks. This is
particularly relevant for CUT&Tag, which is carried out under native
conditionswhere residualHDACactivitymayhave a greater impact. To
test whether the addition of a potent HDAC inhibitor improves data
quality and ENCODE coverage of previously tested antibodies,
H3K27ac CUT&Tag was performed with the addition of Trichostatin A
(TSA; 1 µM). This data was compared to original samples scaled to the
same read depths. Addition of TSA did not consistently increase total
peak detection using MACS2 (q-value threshold 1×10-5, nolambda,
nomodel) or SEACR (stringent settings and threshold 0.01 (Supple-
mentary Fig. 1a) and did not improve signal to noise ratio

(Supplementary Fig. 1b) or ENCODE capture (Fig. 2b). Here, ENCODE
capture was assessed using two metrics: precision (the proportion of
CUT&Tag peaks falling into ENCODE peaks of the same histone mod-
ification) and recall (the proportion of ENCODE peaks captured by
CUT&Tag). H3K27ac CUT&Tagwas also attemptedwith the addition of
sodium butyrate (NaB; 5mM), and libraries were evaluated by qPCR,
which revealed no improvement in CUT&Tag binding signal (Supple-
mentary Fig. 1c).

Preliminary analysis of sequencing data revealed high duplication
rates across all samples (min: 55.49%; max: 98.45%; mean: 82.25%;
Supplementary Table 2). CUT&Tag library preparation was initially
carried out with 15 PCR cycles, as per the original protocol16. To test
whether this contributed to high numbers of duplicate reads, we car-
ried out CUT&Tag library preparation at 11 and 13 PCR cycles. In
addition to varying cycle numbers, we also tested SDS-based versus
column-based methods of DNA extraction (see Methods). All samples
were analyzed at the original read depth (Fig. 2c–e) and down sampled
to the shared minimum read depth (2.6 million paired-end reads;
Supplementary Fig. 1d–f) to compare duplication rates, total unique
fragments, and ENCODE coverage. Varying PCR cycles while employ-
ing SDS-based DNA extraction producedmixed changes in duplication
rate, whereas samples obtained with column-based extraction showed
an increase in duplication rate from 11 to 13 PCR cycles (Fig. 2c).
Overall, the greatest numbers of unique fragments were generated
using 15 PCR cycles and SDS-based DNA extraction (Fig. 2d), although
the difference was less significant after down sampling (Supplemen-
tary Fig. 1e). Almost all samples captured ENCODE peaks with high
precision regardless of condition and analysis approach, but total
ENCODE recall by Abcam-ab4729 and Diagenode (1:50) was improved
when using 15 PCR cycles (Fig. 2e). The superior unique fragment yield
at 15 PCR cycles did not translate into improved ENCODE coverage
after down sampling (Supplementary Fig. 1f). Based on these optimi-
zations, the 15 PCR cycle, SDS-based DNA extraction experiments
without addition of HDACi were taken forward for systematic
benchmarking.

Quality control of CUT&Tag data
To ensure robust quality control and analytical benchmarking, we
generated two additional sequencing datasets with lower duplication
rates for the best performing antibodies: Abcam-ab4729, Abcam-
ab177178, and Diagenode for H3K27ac, and CST-9733 for H3K27me3
(Supplementary Table 3). We first quantified fragment length and
observed fragment sizes comparable to CUT&Tag in human nuclei,
with an abundance of fragments at around 180bp in size, reflecting the
length of DNA from a single nucleosome (Fig. 3a; Supplementary
Fig. 2a)23,24. We also observed short fragments (<100 bp) similar to
previous CUT&Tag data17, potentially caused by tagmentation of open
chromatin25. Shorter fragments were not more abundant in duplicate-
containing samples, suggesting that these are not a consequence of
PCR amplification bias26.

We next evaluated signal-to-noise quality by calculating the frac-
tions of CUT&Tag reads in peaks (FRiPs) defined in our dataset, as well
as pre-defined ENCODEpeaks. Specifically, we compared our datawith
ENCODEH3K27ac narrow andH3K27me3 broad peak sets (Fig. 3b). To
identify peaks in our CUT&Tag samples, we used two analytical
approaches: (1) MACS2, a standard peak caller for ChIP-seq data used
by ENCODE that was also applied to recent CUT&Tag datasets, and (2)
SEACR, an algorithm developed specifically to detect peaks in high
signal-to-noise data, such as CUT&RUN and CUT&Tag27,28.

FRiP scores for H3K27ac CUT&Tag sample peaks were compar-
able across antibodies and peak callers (ab-177, ab-4729, diag, MACS2
mean = 38.23, 32.22, 42.87, sd = 0.44, 12.05, 4.82, respectively; SEACR
mean = 40.78, 33.86, 43.07, sd = 0.10, 6.69, 4.16, respectively). These
were also highly similar to FRiP scores in pre-defined ENCODE peaks
(mean = 37.16, sd = 6.29) and close to the reported ENCODE ChIP FRiP
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score of 42% (Fig. 3b; Supplementary Fig. 2b). Removing duplicate
reads yielded slightly higher Diagenode MACS2, SEACR, and ENCODE
FRiP scores, although for the remaining antibodies this effect was not
observed. We did find that for some samples with high duplication
rates, FRiP scores for MACS2 peaks were inflated (Supplementary
Fig. 2b). Of the H3K27ac antibodies tested, Diagenode, at 1:50 dilution
withoutduplicates, showed thehighest percentageof reads falling into
published ENCODE H3K27ac peaks (mean = 43.43, sd = 2.56). This was
closely followed by one of the Abcam-ab4729 samples (ab-4729-2;
39.28). For H3K27me3, CUT&Tag sample FRiPs (MACS2 mean = 73.65,
sd = 1.11; SEACR mean = 72.43, sd = 2.74) outperformed the ENCODE
reported H3K27me3 FRiP score of 66%, although these were sig-
nificantly lower than the CUT&Tag FRiPs in ENCODE H3K27me3
regions (mean = 85.80, sd = 0.81) (Fig. 3b).

We quantified the specificity of CUT&Tag reads in ENCODE peaks
of the corresponding histone modification as a proportion of CUT&-
Tag reads in ENCODE peaks of the other modification. Of note,
H3K27me3 CUT&Tag reads show a highly specific enrichment at
ENCODE H3K27me3 peaks, while H3K27ac CUT&Tag produces more
residual reads aligning to someENCODEH3K27me3 locations, both for

in-house (H3K27me3: mean = 0.99, sd = 1.74 × 10−3; H3K27ac: mean =
0.65, sd = 6.54 × 10−2) and published data (H3K27me3: mean = 0.99,
sd = 2.12 × 10−3; H3K27ac: mean = 0.66, sd = 1.23 × 10−3). Among the
tested H3K27ac antibodies, the highest ENCODE enrichment was seen
with the Diagenode antibody (mean = 0.72, s d = 2.23 × 10−2). Visuali-
zation in the Integrative Genomics Viewer (IGV)29 showed comparable
signal to noise levels for H3K27ac CUT&Tag relative to ENCODE ChIP-
seq, while H3K27me3 CUT&Tag exhibited consistently higher signal
to background noise, in accordance with the improved FRiP scores
(Fig. 3d). To correct for potential differences in breadth and read
capture of ENCODE and CUT&Tag peaks, FRiP calculations were
repeated for intersecting ENCODE ChIP and CUT&Tag peak regions,
which were determined separately for each CUT&Tag sample
(Supplementary Fig. 2c). This revealed that while H3K27ac FRiP scores
were relatively similar for CUT&Tag and ENCODE, H3K27me3 pro-
duced approximately twice as many reads in overlapping intervals.

Since CUT&Tag and other Tn5 transposase-based methods may
be susceptible to open chromatin bias resulting in preferential detec-
tion and over-representation of accessible regions of the genome30, we
assessed theproportionof reads falling intoopen chromatinATAC-seq
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peaks (Fig. 3c; Supplementary Fig. 2d). Nearly 70% of ENCODE
H3K27ac peaks overlapped with ATAC-seq peaks. Therefore, ENCODE
H3K27ac peaks were further subset to obtain those exclusive to the
histone modification, exclusive to ATAC, and shared by both (Fig. 3c).
This revealed that nearly all H3K27ac regions profiled by CUT&Tag fell
into open chromatin regions shared with ATAC, but not into ATAC-
only regions. For H3K27me3, around 8% of CUT&Tag reads fell into
ATAC peaks (mean = 8.29, sd = 0.21), and this percentage was similar
across comparison data (mean = 4.85, sd = 0.219). Removing short
fragments (<100 bp) reduced this to 5.88% (sd = 4.82×10-2). Short
fragment exclusion hada similar effectonH3K27ac (mean =35.60, sd =
4.61 tomean 28.31, sd=4.86), corresponding to a 29% to 20% reduction
of CUT&Tag reads overlapping all ATAC peaks.

CUT&Tag peak calling with SEACR and MACS2
We next assessed different peak callers and their settings to identify
which would be most suitable for CUT&Tag. We evaluated the per-
formance of both SEACR and MACS2, which were developed for
CUT&RUN28 and ChIP-seq31, respectively. Parameter optimization was
conducted based on precision and recall of ENCODE ChIP-seq peak
capture by CUT&Tag (Fig. 4a; Supplementary Fig. 3a), with the aim of
maximizing ENCODE capture while maintaining high precision (>75%).
SEACR peaks were called using the stringent setting and thresholds of
0.01, 0.03, 0.05, or 0.1, as the relaxed setting was found to be too
permissive, with precision scores consistently falling below the 75%
threshold.MACS2 peaks were called using the narrow peak setting and
p- and q-values (calculated using FDR correction) between 1 × 10−⁵ and
0.1. These settings were also tested with local lambda deactivated to
replicate the global background approximation employed by SEACR.
Basedonprecision and recall analysis, optimumSEACRH3K27ac peaks
were called using the stringent setting and a threshold of 0.01, and

narrowpeakswith local lambdadeactivated and aq-valueof 1 × 10−⁵ for
MACS2. As a broader histone mark, H3K27me3 peaks were called with
the same settings, but using the broad flag in MACS2 or an increased
SEACR threshold of 0.1. With these parameters, SEACR peaks were
called with slightly higher precision compared to MACS2, and anti-
body ab-177178 did not achieve the minimum 75% precision with
MACS2, calling more peaks not identified in the ENCODE set (Fig. 4a;
Supplementary Fig. 3b). CUT&Tag peaks identified with both peak
callers were comparable in ENCODE recall at around 50%, capturing
peaks of high signal intensity and missing some of lower intensities
(Fig. 4a, b; Supplementary Fig. 3c). Peak calling was also attempted
using the parameters mentioned above and published IgG control
data. Although it increased ab-177178 precision, this did not improve
ENCODE capture (Supplementary Fig. 3d) and was, therefore not used
for further analyses.

SEACR defined a higher number of H3K27me3 peaks, but fewer
H3K27ac peaks compared to MACS2. It also displayed robustness
under very high duplication rates, while MACS2 called an excessive
number of spurious peaks despite stringent parameters (Supplemen-
tary Fig. 3e). Although H3K27me3 peaks were of comparable width
between peak callers, H3K27ac SEACR peaks were significantly wider,
while the MACS2 peak width distributionmore closely resembled that
of ENCODE ChIP peaks (Supplementary Fig. 3f, g). The inclusion of
duplicates did not affect peak widths. However, we note that increas-
ing the stringency of the SEACR threshold from 0.1 to 0.01 results in a
substantial increase in peak widths, thereby selecting peaks with more
signal overall (Supplementary Fig. 3f, g). We observe that oftentimes
multipleMACS2 peaks corresponded to a single SEACR peak (Figs. 3d,
4b; Supplementary Fig. 3b), ranging from an average of 1.35 to 1.68
(sd = 0.79-1.39) MACS2 peaks overlapping a SEACR peak per sample.
While this may not pose an issue for broader histone marks, such as
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H3K27me3, it may complicate the detection of subtle, local changes in
histone modifications, and potentially merge nearby promoter and
enhancer peaks.

Following subsampling to the same read depths, read profiles
around peak summits confirmed that at the selected settings, peaks
called by SEACR possessed broader read densities (Fig. 4c). CUT&Tag
samples achieved greater peak read enrichment compared to
ENCODE. However, this did not necessarily translate to higher FRiPs,
which depend on abundance of peaks (Supplementary Fig. 3e).
Genome-wide H3K27ac peak correlations, quantified with DiffBind32,
revealed thatMACS2 called peakswith higher consistency than SEACR.
MACS2 also possessed greater similarity to ENCODE peaks (which are
also called using MACS2), particularly for the Diagenode antibody.
Overall, both MACS2 and SEACR peaks were much more similar to
ENCODE H3K27ac than H3K27me3 (Fig. 4d; Supplementary Fig. 4a).

Benchmarking of CUT&Tag against ENCODE ChIP-seq
We proceeded to further benchmark CUT&Tag against ENCODE ChIP-
seq profiles. First, in an attempt to minimize any bias potentially
incurred by peak calling, samples were correlated on the basis of read
counts in different genomic regions: ENCODE H3K27ac peak ranges
(Fig. 5a; Supplementary Fig. 4b), the hg19 reference genome33 parti-
tioned into 500bp bins (Supplementary Fig. 4c), and ENCODE
H3K27me3 peak ranges (Supplementary Fig. 4d). While genome-wide

correlation revealed that similarity among CUT&Tag samples was
markedly higher than that betweenCUT&Tag and ENCODEChIP-seqor
CUT&RUN, the CUT&Tag-ENCODE correlations were much enhanced
when the analysis was restricted to ENCODE H3K27ac and H3K27me3
peak regions for the corresponding mark. This is likely because
genome-wide comparison incorporates many regions that are devoid
of true signal or contain noise, adding unwanted variability to the
correlation analysis. Overall, there was high correspondence between
read- and peak-level correlations (Figs. 4d, 5a; Supplementary
Fig. 5a–c).

To determine the extent towhichCUT&Tag recovers knownChIP-
seq peaks, the GenomicRanges34 package was used to calculate the
proportion of ENCODE peaks overlapping with CUT&Tag (recall) and
the proportion of sample peaks overlapping with ENCODE (precision;
Fig. 5b; Supplementary Fig. 4e). Overall, ENCODE recall was compar-
able between MACS2 and SEACR, with an average of 54% across
CUT&Tag experiments (sd. 4.99; Fig. 5b). The maximum ENCODE
capture was 63% for Diagenode containing duplicates with the MACS2
peak caller. A slightly lower empirical ceiling was observed across the
comparison of previously published CUT&Tag and CUT&RUN sam-
ples, with 41% for H3K27ac CUT&Tag with duplicates andMACS2 peak
calling, and 53% for CUT&RUN with SEACR. Despite the much greater
number of peaks called, H3K27me3 CUT&Tag reached an ENCODE
coverage ceiling of approximately 58% (Fig. 5b). To test whether these
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metrics might be improved by further increasing library complexity,
we generated aggregate, merged samples for either all internal
H3K27ac CUT&Tag samples (N = 6), or merged by antibody (N = 2).
Both approaches increased ENCODE recall, accompanied by a drop in
precision. Precision was higher for peak sets frommerged samples by
antibody compared to all aggregated samples, although no MACS2
experiment reached 75% (Supplementary Fig. 4f). To determine whe-
ther these conclusions may be consistent across other cell types, we
also assessed ENCODE precision and recall using publishedH3K27me3
CUT&Tag data from theHCT116 cell line35 to find even poorer ENCODE
capture at comparable levels of precision (Supplementary Fig. 4g).

To facilitate comparisonbetweendifferent samples, precisionand
recall were compounded into a single metric, the F1 score,

representing a weighted average of the two measures (Methods;
Supplementary Fig. 4h). This approach excludes true negative peaks,
which might distort the score since they occupy the vast majority of
the genome. We confirmed Diagenode and Abcam-ab4729 as the
better performing antibodies, while also finding that peak calling with
SEACR resulted in slightly higher F1-scores on average. For antibody
selection, ENCODE coverage was re-calculated with all samples sub-
sampled to the same read depth. Here, antibodies were highly com-
parable, with the exception of one of the Diagenode samples showing
improved metrics with SEACR peak calling (Supplementary Fig. 4h).
Duplicates in CUT&Tagdatamay have biological relevance, potentially
arising from tagmentation events that recur in the same place by
chance. Thus, peaks were called with versus without duplicates.
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Duplicate inclusion had no effect on SEACR precision or recall, and
small increase in recall with decrease in precision when included with
MACS2, although exacerbated when duplication rates are elevated
(Fig. 5b, Supplementary Fig. 4e). Given the risks of detecting a large
number of false-positive peaks at high duplication rates, we recom-
mend exclusion of duplicates.

To further characterize the ENCODE H3K27ac peaks that were
captured andmissed in each CUT&Tag sample, the -log(q) significance
values of the ENCODE peaks from original peak calling performed in
ENCODE were compared. This showed that CUT&Tag captures the
most significant peaks (Fig. 5c). We supplemented this by analyzing
ATAC-seq read counts (Fig. 5d), as the H3K27acmarks should coincide
with open chromatin regions. This showed that the ENCODE peaks
captured by CUT&Tag samples contain more ATAC reads even when
corrected for the total base count of the captured andmissed ENCODE
peak sets, supporting the notion that CUT&Tag detects more promi-
nent H3K27ac peaks, or at least those that are more likely to also be
detected by an orthogonal epigenomic method. In all cases, the dif-
ferences between the q-values and ATAC-seq read counts in captured
and missed ENCODE peaks were statistically significant (p < 2 × 10-16

across all q-value pairs and p = 2.4 × 10−8 for ATAC reads; two-tailed
t-test).

Due to lower background signal, CUT&Tag should allow for
higher data quality at read depths lower than those required for ChIP-
seq, as previously shown for methyl histone marks17. To test whether
H3K27ac CUT&Tag might have an advantage at lower read depths,
FRiPs were calculated at 0.5, 1, 1.5 and 2 million unique reads (Fig. 5e).
This analysis showed thatH3K27acCUT&TagantibodiesAbcam-177178
and Abcam-4729 produced fewer reads in peaks than ENCODE ChIP-
seq at low read depth despite greater mean read counts around the
peak summits (highest point of the peak detected by peak caller)
(Fig. 5f). Only the Diagenode H3K27ac antibody produced higher FRiP
scores than ENCODE when down sampled, and displayed the highest
read pileups at the peak summit, in accordance with the highest peak
calling precision scores (Fig. 5b). Cumulative sample read enrichments
at equal read depths revealed that the read distributions of H3K27ac
and H3K27me3 CUT&Tag samples showed more restricted read dis-
tributions than ENCODE H3K27ac and H3K27me3, respectively,
though the effect was much more prominent for H3K27me3 (Fig. 5g).
In agreement with the peak summit read enrichment analyses, this
indicates that at equal read depths, H3K27ac CUT&Tag samples con-
tain less off-target reads than ENCODE ChIP-seq.

Functional analysis of CUT&Tag peaks
To investigate functional similarities of peaks identified by CUT&Tag
compared to ENCODE ChIP-seq, we assessed the genomic distribution
of CUT&Tag peaks in relation to genes and chromatin states. Using the
ChIPseeker R package36, peaks were mapped to their most proximal
genes in terms of genomic distance to gene transcription start site
(TSS). This revealed a strong skew towards promoter proximal regions
for H3K27ac and a corresponding depletion in promoter regions for
H3K27me3 (Fig. 6a). H3K27ac CUT&Tag peaks called by SEACR
exhibited a stronger promoter preference than H3K27ac ENCODE
ChIP-seq (Fig. 6a).H3K27acCUT&Tagalso showed similar enrichments
for distal intergenic regions to ENCODE ChIP, which likely harbor a
significant fraction of enhancers37. Next, we explored an alternative
gene-independent breakdown of functional genomic elements by
assigning peaks to ChromHMM-derived chromatin states38 using the
genomation R package39. This confirmed a predominance of pro-
moters and enhancers amongst the regions mapped by H3K27ac
CUT&Tag and ENCODE ChIP (Fig. 6b). In contrast, as expected,
H3K27me3 overwhelmingly localized to heterochromatic and repres-
sed chromatin regions. The two peak callers showed slight differences
in regulatory element enrichment. While MACS2 corresponded better
to ENCODEH3K27ac with enrichments at active promoters and strong

enhancers, SEACR peaks were additionally more enriched at weak
enhancers, weak promoters, weakly transcribed regions, than their
MACS2-called counterparts (Fig. 6b). This could be partly attributed to
the fact that SEACR peaks are broader than MACS2 peaks, capturing
more genomic sequence context and may extend to neighboring ele-
ments, as suggested by multiple state assignments for each
SEACR peak.

Peaks specific to high duplicate-containing samples were func-
tionally annotated to reveal that a significant portion of excess MACS2
peaks called upon inclusion of duplicates fall into heterochromatic
regions, even among H3K27ac CUT&Tag samples (Supplementary
Fig. 5a). This suggests that duplicates should not be retained when
calling peaks with MACS2 in samples with high duplication rates, as it
can lead to artifacts. On the other hand, the few extra peaks called by
including duplicates in SEACR match the regulatory element distribu-
tion of the corresponding deduplicated peaks. Finally, CUT&Tag peaks
that did not overlap with ENCODE spanned diverse element types, with
tested antibodies showing an enrichment in areas of weak transcrip-
tion, weak enhancers and heterochromatin, while published CUT&Tag
and CUT&RUN data showed an enrichment for transcription elonga-
tion, weak transcription, weak enhancer and transcription transition
categories (Supplementary Fig. 5b). For H3K27me3, these peaks were
still almost exclusively located in heterochromatin regions. Read dis-
tributions around TSS obtained from NCBI RefSeq40 were visualized
with heatmaps, which showed enrichment around TSS for H3K27ac as
expected (Supplementary Fig. 5c). When subsampled to the same read
depth, CUT&Tag showed higher average read densities in these regions
for H3K27ac compared to ENCODE ChIP and CUT&RUN. Reads from
H3K27me3 samples generally did not co-localize with promoters,
besides some residual CUT&Tag signal in our dataset. Enhancer
enrichment was further tested by measuring capture of genome-wide
STARR-seq peaks41 (see Methods), at baseline and controlling for total
genomic coverage (8Mb). STARR-seq peaks were filtered to retain
those that fall into K562 DNase-seq regions to yield putative cell-
specific enhancers. ENCODE H3K27ac ChIP-seq recovered significantly
more STARR-seq peaks than CUT&Tag, even when restricting to
STARR-seq peaks overlapping with open chromatin regions that were
profiled by DNase-seq experiments. However, when adjusting for
genomic coverage overlap was highly comparable with MACS2
CUT&Tag (Supplementary Fig. 6a). This was accompanied by a shift
towards higher q-value distributions of STARR-seq peaks captured
versus missed by CUT&Tag and ENCODE (Supplementary Fig. 6b). To
test whether SEACR promoter-overlapping peaks are more likely to
also capture enhancers, we quantified the overlap with published
STARR-seq data41. Calculating enhancer capture did not reveal a sig-
nificant difference in promoter-enhancer co-occurrence among SEACR
and MACS2 promoter-containing peaks (Supplementary Fig. 6a). A
higher proportion of SEACR peaks overlapped promoter regions,
although total promoter capturewas comparable between peak callers,
and in considerationwith higher STARR-seq capture, it suggests SEACR
peaks are less likely to be localized in enhancer regions (Supplemen-
tary Fig. 6c, d). Both peak callers displayed an average of one sample
peak to capture promoter region (Supplementary Fig. 6e).

Finally, we performed gene ontology enrichment analysis visua-
lizing the union of top fifteen pathways in each enriched categorywith
the clusterProfiler R package42. Overall, CUT&Tag recovered all top
ENCODE K562 H3K27ac ChIP-seq ontology terms, including cadherin
binding, RNA-acting catalytic activity, and ubiquitin-like protein ligase
binding (Fig. 6c). The correspondence of enriched terms indicates that
although CUT&Tag may not recover all K562 ChIP-seq peaks, it per-
forms sufficiently well to approximate the K562 regulatory landscape.
We further conducted motif analysis with HOMER43 using all peaks
from each sample. Plotting the union of the top 15 enriched tran-
scription factors per sample revealed that most CUT&Tag samples
detected the ENCODEH3K27ac TFBMs. This includes those for the TFs
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BACH1, BACH2, FOSL2, GATA1, GATA2, GATA6, JUN-AP1, JUNB, NRF2,
NF-E2, NFE2L2, and NRF2 (Fig. 6d), which relate to cell growth44 and
hematological cell fate45,46. CUT&Tag also detected TFBMs not cap-
tured by ENCODE H3K27ac, such as those for ELK1, ELK4, GATA3, and
GATA4, which are TFs involved in hematopoiesis47. This is consistent
with the K562 lineage (lymphoblast) and was observed when calling
peaks with both SEACR and MACS2 (Fig. 6d). H3K27me3 samples

showed more variable and modest TFBM enrichment, which is
expected given that the vast majority of TFs bind in open chromatin
regions.

Discussion
Here, we optimized the execution and analysis of CUT&Tag for H3K27
histone marks, benchmarking its performance against matched
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Fig. 6 | Functional analysis of CUT&Tag and ENCODE ChIP-seq peaks.
a ChIPseeker assignment of peaks to regulatory elements. b ChromHMM assign-
ment of peaks to chromatin states, showing the relative percentages of total peaks
falling into each category (note that peaks can fall into multiple categories simul-
taneously). c ClusterProfiler gene ontology enrichment analysis of genes assigned
to sample peaks. The plot displays negative log-transformed p-values corrected for
multiple testing correction with Benjamini-Hochberg at a p-value cutoff of 0.05
(-log10(p.adj)) for top enriched GO terms in the over-representation analysis using

a hypergeometric test. Dot size represents the GeneRatio, which reflects the pro-
portion of total differentially expressed genes falling into a particular GO term.
d HOMER top significantly enriched motifs across all samples. Dots colored by
negative log-transformedp-valuesof enrichedmotifs from the hypergeometric test
(-log(p.val)). Dot size corresponds to the number of times a motif appears in the
target sequences (Ntarget). Motif enrichment was tested within 1000bp windows
of the peak center.
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ENCODE ChIP-seq reference datasets. We studied H3K27ac in depth
due to its functional co-localization with active promoters and
enhancers, relevance for mapping risk variants in complex human
disease, and the lack of previous literature optimizing CUT&Tag for
acetylation marks. We systematically assessed experimental optimi-
zations including antibody selection, antibody concentration, DNA
extraction method, use of enzymatic inhibitors of deacetylases and
PCR cycles. Due to the lack of consensus regarding specific analysis
parameters, we assessed the performance of peak callers SEACR and
MACS2 with different peak calling parameters and inclusion versus
exclusion of duplicates.

Overall, H3K27ac CUT&Tag successfully recovers many features
of ENCODE ChIP-seq and captures themost significant ENCODE peaks.
However, across all individual samples, CUT&Tag only recovers
around half of ENCODE peaks. Additionally, CUT&Tag appears to
generate distinct peak profiles that favor H3K27ac domains coinciding
with open chromatin regions and does not capture less significant
ENCODE peaks, which are less enriched in open chromatin. It is
uncertain whether this is a result of a failure to capture finer but
nevertheless relevant ChIP-seq peaks or an indicator that ENCODE
ChIP-seq may detect less relevant H3K27ac domains that have lower
incidence of open chromatin, an important featureof active regulatory
elements. Thus, although ENCODEChIP-seq is often used as a standard
reference dataset, it is unclear exactly how well ENCODE data reflects
the ground truth. ChIP-seq peaks missed by CUT&Tag could poten-
tially represent noise or false signals detected by ChIP-seq due to
chromatin shearing and sonication, aswell asfixation and cross-linking
resulting in heterochromatin bias13,14. Investigation into new methods
of chromatin profilingwould significantly benefit from the inclusion of
orthogonal approaches to mapping chromatin modifications and
regulatory elements. We used K562 STARR-seq data41 to estimate the
captureof enhancer regions bybothCUT&Tag andENCODEand found
that ENCODE recovers a greater number of putative enhancers with
higher efficiency. However, since STARR-seq identifies regulatory ele-
ments independently of chromatin context, such analysis is ideally
restricted to cell-specific active regulatory elements (by using ENCODE
DNase-seq data). Benchmarking was also attempted with massively
parallel reporter assay (MPRA) data48, but the most significant reg-
ulatory assay quantitative trait loci (raQTLs) did not appear to be
enriched in enhancer and promoter elements, and their coordinates
could not be used as proxies for their genomic locations. Going for-
ward, it would be important to determine whether H3K27ac ChIP-seq
peaks that are not captured can be functionally validated.

The performance of CUT&Tag likely also varies depending on
histonemark. It should be noted that theH3K27me3 antibody that was
used in this study ismonoclonal, whereas theH3K27ac antibodies used
are polyclonal except for monoclonal Abcam-ab177178, which did not
perform as well as polyclonal Abcam-4729. Enhanced performance of
Abcam-4729 inH3K27acCUT&Tag could relate partially to the fact that
this is the antibody used by ENCODE ChIP-seq, leading to favorable
results in ENCODE overlap and comparisons. Analysis of both current
and comparison data showed that CUT&Tag achieves just over 50%
ENCODE coverage for the H3K27ac mark, which may be improved to
over 70% when using aggregate high-complexity samples. This sug-
gests that joint peak calling across multiple merged samples may
improve library complexity and signal capture, although at the
expense of precision. CUT&Tag appears to perform better for methyl
marks than for H3K27ac, and in the literature, the superiority of
CUT&Tag over ChIP-seq was demonstrated on methyl marks17. How-
ever, it should be noted that our assessment of ENCODE capture by
HCT116 CUT&Tag suggests that this might not always be the case. We
found that peak calling parameters can greatly influence quality
measures, such as FRiPs, and shouldbe adjusted depending onhistone
modification. Nevertheless, it is uncertain why H3K27ac did not yield
itself as well to CUT&Tag in this experimental context. A possibility is

that acetylation marks may be more dynamic (e.g. in response to
environmental triggers) while methylation marks tend to be more
stable49. Itwould be interesting todeterminewhether similar issues are
encounteredwhenprofilingother acetylmarks, whichhas not yet been
systematically addressed.

High duplication rates can result from overamplification during
library preparation or over-sequencing. In either case, duplicates can
be removed without compromising data quality, assuming there is an
appreciable number of non-duplicate reads remaining. An advantage
of high sequencing depths is sample saturation, meaning that the
majority of unique fragments present in each sample was recovered.
However, one intended advantage of CUT&Tag relative to methods
such as ChIP-seq is the ability to recover comparable or superior levels
of information at lower sequencing depths. Fractions of reads in
ENCODE H3K27ac peaks were approximately equal with and without
duplicates, suggesting that they are evenly distributed. Consequently,
duplicates made little to no differencewhen calling peaks with SEACR,
since genuine H3K27ac reads contributed to peaks that would in any
case be calledwithout duplicates, and reads outside genuine peaks did
not meet the peak calling threshold. However, duplicates can result in
the detection of a significant number of spurious peaks withMACS2 in
samples with high duplication rates, many of which fell into hetero-
chromatin regions, which should not be marked by H3K27ac9. There-
fore, there is a marginal gain in recall (ENCODE capture) with the
retention of duplicates at the expense of precision (detection of
spurious peaks). Using fewer PCR cycles during library preparation
appears to modestly reduce duplication rates without significantly
influencing ENCODE recall.

Peak calling settings can have a significant effect on the outcomes
of chromatin profiling experiments. In this study,multiple peak calling
parameters were tested and selected based on precision and recall
against matched ENCODE ChIP-seq profiles. MACS2 and SEACR per-
formed similarly despite the marked differences in peak definition
between the two peak callers. Which approach is most suitable is
debatable because there is no strict definition as to what qualifies as a
‘peak’, but one concern is that peak calling with SEACR might make it
difficult to detect subtle changes in histone marks due to its tendency
to call wider peaks and combine multiple potentially distinct H3K27ac
domains into single peaks. We did not find a significant difference in
promoter-enhancer merging by the two peak callers, although SEACR
appears to attain higher capture of weak enhancers and fewer sample
peaks called outside promoter regions. With regards to differences in
precision, MACS2 was optimized specifically for ChIP-seq. ChIP-seq
samples are typically sequenced tomuch higher read depths and tend
to possess higher levels of background, which is why MACS2 is
designed to identify signals in data with high levels of noise31,50. In
principle, CUT&Tag and CUT&RUN have reduced background as the
only DNA fragments that are released are those bound by the protein
of interest17,51. CUT&RUN is likely to be superior for mapping TF
binding, as CUT&Tag employs elevated salt conditions for pA-Tn5
binding to prevent tagmentation of accessible DNA. This, in turn, can
strip away transcription factor-DNA interactions, while histone mod-
ifications stay intact21. For a peakcaller likeMACS2, any off-target reads
in samples with low background might be perceived as legitimate
peaks, and thismay explain why the inclusion of duplicates gave rise to
spurious peaks. Notably, our analyses did not confirm a higher signal-
to-noise ratio for H3K27ac CUT&Tag compared to ENCODE ChIP-seq
profiles. Rather, H3K27ac CUT&Tag displayed equal or higher noise
levels, in contrast to what was seen for H3K27me3 and other methyl
marks in our analyses and previously reported by others. When
restricting the interrogated regions to ChIP-seq and CUT&Tag-over-
lapping ranges to address the confounding effects of differential peak
calling, H3K27ac CUT&Tag produced similar FRiP scores to ChIP-seq,
whereas H3K27me3 CUT&Tag showed significantly improved perfor-
mance. Whether this represents a general challenge for CUT&Tag of
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histone acetylation marks remains to be explored. In the future, more
specific peak calling methods designed for CUT&Tag data, such as the
method GoPeaks52, are likely to improve the performance of CUT&Tag
profiling and should be included in future comparisons for bench-
marking analysis.

The lack of established metrics to standardize performance
makes it challenging to compare peak callers. Precision cutoffs are
arbitrary, and there is an opportunity to significantly increase recall at
the expense of precision, even within a predetermined boundary.
Going forward, it may be worthwhile characterizing the CUT&Tag
peaks that could be obtained without strict limits on precision to
determine whether they could be legitimate peaks that are not cap-
tured by H3K27ac ChIP-seq. For example, it has been suggested that
the relatively low correlation between CUT&RUN and ChIP-seqmay be
due to CUT&RUN’s superior ability to map repetitive, difficult regions
that are typically not covered by ChIP-seq53. We found some indication
of this as CUT&Tag and CUT&RUN samples processed with SEACR
were far more enriched in weak enhancers and weakly transcribed
regions than ENCODE ChIP-seq, but MACS2 ChromHMM profiles dif-
fered minimally from ENCODE and this analysis indicated that this
effect is more likely a result of peak caller selection rather than being
intrinsic to CUT&Tag. One limitation associated with the use of
ChromHMM annotations is that chromatin states are inferred on the
basis of broad ENCODE ChIP-seq peaks, which introduces some cir-
cularity into overlap analysis with ENCODE H3K27ac peaks. Thus,
chromatin states that occur in CUT&Tag but not in ENCODE H3K27ac
are those that should theoretically not contain the H3K27ac mark.
However, these annotations draw upon combinations of histone
marks54 and still give some indication as to where a particular mod-
ification might or might not be expected to occur.

The improved sensitivity of CUT&Tag compared to ChIP-seq is
due to the use of pA-Tn5 to streamline library preparation through
direct insertion of PCR sequencing adapters via in situ tagmentation.
However, its sensitivity is inherently limited by PCR, since pA-Tn5
inserts its adapters in random orientations such that approximately
half of the targets do not have adapters in the correct orientation to
amplify. In addition, PCR library preparation is highly sensitive to size
variations of amplicons.When twoadjacent transposition events occur
too far apart, theywill not amplify efficientlyduring PCRor sequencing
cluster generation. However, when they are too close, they will bias
library coverage in an exponential manner due to increased PCR
amplification and clustering efficiency of shorter fragments. One
recent approach thatmay help overcome someof these issues is linear
amplification by Targeted Insertion of Promoters (TIP-seq18,35). Linear
amplification appears to generate greater fidelity and uniformity, as
mistakes made during amplification do not themselves become tem-
plates that can exponentially propagate errors. This results in higher
mapping of single-cell sequencing reads55. Comprehensive optimiza-
tion and benchmarking of this technique will be important moving
forward.

CUT&Tag has been reported and widely adopted as a more
streamlined, cost-effective approach to chromatin profiling. Despite a
definite correspondence with ENCODE ChIP-seq, CUT&Tag con-
sistently reaches an ENCODE recall ceiling of approximately 60%.
Furthermore, the performance of this method appears to vary by
histone mark. Additional analysis will be required to better char-
acterize the inconsistencies between CUT&Tag and ENCODE ChIP-seq.
Following optimizations of experimental parameters, we established
Abcam-ab4729 and Diagenode as the top-performing antibodies for
H3K27acanddemonstrated that theuseof anHDACi does not improve
H3K27ac CUT&Tag performance. Duplicates can and should be dis-
carded, particularly beyond a threshold at which they start to con-
tributemore off-target than on-target information. The optimal choice
of peak caller is dependent on multiple input and output parameters.
However, overall, MACS2 without the retention of duplicates seems to

result in better performancemetrics,more restrainedpeakwidths, and
slightly higher consistency. We observed that fewer PCR cycles
reduced duplication rates at the expense of ENCODE recovery and
capture. We hope that our systematic optimizations of CUT&Tag will
help to facilitate its more widespread adaptation in the field and
expedite its application in understanding the epigenetic causes and
consequences of complex diseases.

Methods
Biological materials
Human K562 cells were obtained from ATCC (Manassas, VA, Catalog
#CCL-243) and cultured according to the supplier’s protocol. Myco-
plasma was tested to be negative for all cellular input reported using
Mycoplasma Detection Kit (Jena Bioscience PP-401) following manu-
facturer’s instructions. The following antibodies were used: Guinea Pig
anti-Rabbit IgG (Heavy & Light Chain) Preabsorbed antibody (Anti-
bodies-Online ABIN101961), H3K27me3 (Cell Signaling Technology,
9733, Lot 14), H3K27ac (Abcam ab177178, Lot GR3202987-5), H3K27ac
(Active Motif 39133, Lot 16119013), H3K27ac (Abcam ab4729, Lot
G3374555-1), H3K72ac (Diagenode C15410196, Lot A1723-0041D). The
following histone deacetylase inhibitors were used: Sodium butyrate
(Merck B5887-250MG; used at 5mM inCUT&Tag solutionswithHDACi
treatment), Trichostatin A (Enzo Life Sciences BML-GR309-0001; used
at 1 µM in CUT&Tag solutions with HDACi treatment). The following
commercial loaded protein A-Tn5 transposase fusion protein (pA-Tn5)
were used at recommended dilutions by the manufacturer: CUTANA™
pAG-Tn5 (Epicypher 15-1017; Lot 20142001-C1), or pA-Tn5 Transposase
- loaded (Diagenode C01070001; Lot 1/b/b).

CUT&Tag nuclei processing
Bench top CUT&Tag was performed as previously described (https://
www.protocols.io/view/bench-top-cut-amp-tag-bcuhiwt6)17. Exponen-
tially growing K562 cells were harvested, counted, and centrifuged for
3min at 600 g at room temperature (RT). 500,000 cells per condition
were washed twice in 1mL Wash Buffer (20mM HEPES-KOH pH 7.5,
150mM NaCl, 0.5mM Spermidine, 1x Protease inhibitor cocktail;
Roche 11836170001). Nuclei were extracted by incubating cells for
10minutes on ice in 200 µL/sample of cold Nuclei Extraction buffer
(NE buffer: 20mM HEPES-KOH pH 7.9, 10mM KCl, 0.1% Triton X-100,
20% Glycerol, 0.5mM Spermidine, 1x Protease Inhibitor cocktail).
Following incubation in NE buffer, nuclei were centrifuged for 3min at
600 g at RT, then resuspended in 100 µL cold NE buffer. Concanavalin
A-coated magnetic beads (Bangs Laboratories, BP531) were prepared
as previously described51, and 11μL of activated beads were added per
sample intoPCR strip tubes and incubated atRT for 10min. Beadswere
placed on a magnetic rack, and unbound supernatant was discarded.
Bead-bound nuclei were resuspended in 50 µLDig-washBuffer (20mM
HEPES pH 7.5, 150mMNaCl, 0.5mM Spermidine, 1× Protease inhibitor
cocktail, 0.05% Digitonin) with 2mM EDTA and 0.1% BSA. Primary
antibody was added at 1:50, 1:100, or 1:200 concentration and subse-
quently incubated on a rotating platform overnight at 4 °C. Primary
antibody solution was removed by placing the PCR tube on amagnetic
rack, allowing the solution to fully clear, then removing the super-
natant. Next, the appropriate secondary antibody, Guinea Pig anti-
Rabbit IgG antibody for a rabbit primary antibody, was added at 1:100
in Dig-Wash buffer and incubated at RT with rotation for 30-60min.
Nuclei were washed twice in 200 µL Dig-Wash buffer using a magnetic
rack to remove unbound antibodies in supernatant. Nuclei were
resuspended in 50 µL Dig-med Buffer (20mM HEPES pH 7.5, 300mM
NaCl, 0.5mM Spermidine, 1× Protease inhibitor cocktail, 0.05% Digi-
tonin), then 1:20 CUTANA™ pAG-Tn5 (Epicypher 15-1017) or 1:250 pA-
Tn5 Transposase - loaded (Diagenode C01070001) was added, gently
mixed and spun down. pA-Tn5 binding occurred at RT for 1 hour on a
rotating platform. To remove unbound pA-Tn5, nuclei were washed
twice in 200 µL Dig-med Buffer. Nuclei were then resuspended in 50 µL
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Tagmentation buffer (10mMMgCl2 in Dig-med Buffer) and incubated
at 37 °C for 1 hour to activate transposase enzymatic activity. Next,
either column or sodium dodecyl sulfate (SDS) based DNA extraction
was conducted.

Column DNA extraction
To stop tagmentation and solubilize DNA fragments, the following
were added to each 50 µL sample: 1.68 µL 0.5M ethylenediaminete-
traacetic acid (EDTA), 0.5 µL 10% SDS, 0.44 µL 10mg/mL Proteinase K.
The samples were briefly mixed and vortexed at full speed for ~2 sec-
onds, then incubated at 55 °C for 1 hour todigest theDNA.After a quick
spin, tubes were placed on a magnetic rack, and the solution was
allowed to clear. Supernatant was carefully transferred to a new 1.5mL
microcentrifuge tube, then the sample processing protocol of ChIP
DNA Clean & Concentrator (Zymo Research D5205) was executed,
eluting with 21 µL Elution Buffer.

SDS-based DNA extraction
Following tagmentation at 37 °C for 1 hour, PCR tubeswereplacedona
magnetic rack, and the solution was allowed to clear. Supernatant was
removed carefully, then beads were resuspended thoroughly in 50 µL
[tris(hydroxymethyl)methylamino]propanesulfonic acid (TAPS) Buffer
(10mM TAPS pH 8.5, 0.2mM EDTA) at RT. Tubes were returned to a
magnetic rack, and the supernatant was removed. 5 µL SDS Release
Buffer (10mMTAPS pH8.5, 0.1% SDS) was added at RT to each sample,
and tubes were vortexed at full speed for ~10 seconds. After a quick
spin, ensuringnobeads are stuck to the sideof the tubes, sampleswere
incubated at 58 °C for 1 hour. Next, 15 µL SDS Quench Buffer (0.67%
Triton-X 100 inMolecular grade H2O) was added at RT and vortexed at
maximum speed to neutralize the SDS prior to PCR library
amplification.

CUT&Tag PCR-based library amplification
For library amplification in PCR tube format, 21 µL DNA was combined
with 2 µL of universal i5 and uniquely barcoded i7 primer56 where a
different barcode was used for each sample that was intended to be
pooled together. 25 µL NEBNext HiFi 2× PCR Master mix was added,
and then the sample was gently mixed through and spun down. The
sample was placed in a Thermocycler with heated lid following these
conditions: 72 °C for 5min (gap filling); 98 °C for 30 s; 11–15 cycles of
98 °C for 10 s and 63 °C for 30 s; final extension at 72 °C for 1min; and
hold at 4 °C. Following PCR, bead cleanup was conducted by the
addition of 1.1x Ampure XP beads (Beckman Coulter). Library and
beadsweremixed thoroughly, then spundownand incubated atRT for
10–15min. Beads were gently washed twice with freshly prepared 80%
ethanol using a magnetic rack, then the library was eluted with
20–30 µL 10mM Tris-HCl pH 8.0 at RT.

Sequencing
Final library size distributions were assessed by Agilent 2100 Bioana-
lyzer and Agilent 4200 TapeStation for quality control before
sequencing. Libraries were pooled to achieve equal representation of
the desired final library size range (equimolar pooling based on Bioa-
nalyzer/TapeSation signal in the 150bp to 800bp range). Paired-end
Illumina sequencing using the HiSeq 4000 PE75 strategy was con-
ducted on barcoded libraries at Imperial Biomedical Research Centre
(BRC) Genomics Facility following manufacturer’s protocols.

qPCR
Quantitative real-time PCR (qPCR) was performed following manu-
facturer’s instructions in triplicate technical and triplicate biological
replicates (https://www.thermofisher.com/order/catalog/product/
4309155#/4309155). Positive and negative control primers were
designed based on ENCODE peaks ranked highest to lowest, respec-
tively (Supplementary Table 1). Levels of H3K27ac CUT&Tag binding

signal was determined by qPCR amplification carried out with the
QuantStudio™ 5 Real-Time PCR System (ThermoFisher A34322) using
the Standard Curve experiment type and SYBR Green Master Mix
(ThermoFisher 4309155). Each qPCR condition was conducted with
triplicate repeats and the data was analyzed using the 2^-ΔΔCTmethod
where each CUT&Tag sample was normalized to qPCR levels of K562
genomic DNA (gDNA) run in parallel. qPCR results were calculated
using the equation:

2�ðCT sample�CT DNAÞ ð1Þ

Data processing
The full dataset, i.e. paired-end reads were used for the analysis.
Sequencing data was processed according to the CUT&Tag Data Pro-
cessing and Analysis Tutorial (https://yezhengstat.github.io/CUTTag_
tutorial), with some alterations. Raw sequencing reads were trimmed
using TrimGalore (version 0.6.6; https://github.com/FelixKrueger/
TrimGalore) to remove adapters and low-quality reads. The trimmed
fastq files were aligned to hg19 using bowtie (version 2.2.957) with the
following parameters: --local --very-sensitive --no-mixed --no-dis-
cordant --phred33 -I 10 -X 700. PCR duplicates were removed using
Picard (version 2.6.0; http://broadinstitute.github.io/picard/), andbam
and fragment bed files from original and deduplicated alignments
were generated using samtools (version 1.3.158) and bedtools (version
2.25.059), selecting for fragment lengths under 1000bp. Peaks were
called using MACS2 (Model-based Analysis of ChIP-seq; version
2.2.9.1)50 and SEACR (Sparse Enrichment Analysis for CUT&RUN; ver-
sion 1.3)28. MACS2 peaks were called as follows: macs2 callpeak -t
input_bam -n sample_name -f BAMPE -g hs -q 1e−5 --keep-dup all
–nolambda --nomodel --outdir out_dir. SEACRpeakswere called on the
basis of fragment bedgraph files generated with bedtools genomecov.
SEACR peaks were called as follows: SEACR_1.3.sh input_bedgraph
0.01 non-stringent out_name. In both cases other combinations of
peak calling settings were also tested (see Results). To test peak
calling performance with control data, published IgG CUT&Tag
replicate libraries (SRR8754611 and SRR8754612; study accession
PRJNA512492)17 were downloaded in fastq format from the
European Nucleotide Archive60 (https://www.ebi.ac.uk/ena/browser/
home), pooled together, and processed as described to produce bam
and bedgraph files as inputs for MACS2 and SEACR; otherwise, peaks
were called using previously selected parameters. Motifs were identified
from complete peak sets using HOMER (Hypergeometric Optimization
of Motif EnRichment; version 4.11.143) as follows: findMotifsGenome.pl
input_bed hg19 out_dir -size 1000. Down sampled bam files were gen-
erated by random sampling of original bam files as follows, where {x}
represents the seed value and {y} the fraction of total read pairs to be
sampled: samtools view -bs {x}.{y} input_bam > downsampled_bam.

To more closely approximate the replicated peaks strategy
employed by ENCODE, pooled peaks were called with SEACR and
MACS2 across thresholds after merging bam files across all CUT&Tag
H3K27ac samples generated in this study (6 samples total) or antibody
replicates (2 samples per antibody). This procedurewas carried out by
running the pooled_peaks function in the R package PeakyFinders
(https://github.com/neurogenomics/PeakyFinders). EpiCompare61 was
then run on each set of pooled peak files separately to generate
precision-recall curves.

Sample comparisons
Published CUT&Tag17 and CUT&RUN22 samples were obtained as fastq
files from the European Nucleotide Archive (study accessions
PRJNA512492 and PRJNA522731, respectively) and processed as
described above. Peak-level correlations were obtained with the Diff-
Bind package (version 3.8.432). Genome-wide sample correlations were
carriedout usingbedtoolsmulticov against hg19 split into 500 bpbins.
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Read counts were then quantile-normalized and rounded to the
nearest integer, and heatmaps plotted in R62 based on sample-by-
sample Pearson correlations of the processed counts. Fingerprint plots
were generated from sample and ENCODE bam files using deepTools
(version 3.5.463) plotFingerprint, setting genome-wide bin sizes of
1000 bp. Heatmaps were plotted using deeptools computeMatrix and
plotHeatmap to visualize read enrichment around hg19 transcription
start sites (obtained from NCBI RefSeq) and peak summits. For these
ends, ENCODE H3K27ac and H3K27me3 samples (ENCSR000AKP
and ENCSR000EWB, respectively) were run through the ENCODE
histoneChIP-seq pipeline (https://github.com/ENCODE-DCC/chip-seq-
pipeline2), with replicates down sampled to 1million reads per sample
and pooled together. Likewise, to plot heatmaps, paired-endCUT&Tag
sample bam files were down sampled to 2 million fragments (4 million
reads) and only the first of the readmates mapped to yield a total of 2
million mapped reads. As a weighted average of precision and recall,
F1-scores were calculated as follows, where tp, fp, and fn represent the
numbers of true positive, false positive, and false negative CUT&Tag
peaks, respectively:

F1 =
tp

tp + 1=2 f p + f n
� � ð2Þ

Downstream data analysis
Downstream analysis, including quality control, ENCODE benchmark-
ing, and regulatory element annotation, was performed in R62. Peak
overlaps were determined with the GenomicRanges package (version
1.50.234). All peaks overlapping with hg19 blacklisted regions (ENCODE
ID: ENCFF000KJP) were removed prior to downstream analysis. Peaks
falling into mitochondrial or other non-standard chromosomes were
also excluded using BRGenomics (version 1.10.0; https://mdeber.
github.io). FRiP scores were calculated using the chromVAR package
(version 1.20.164). ATAC-seq libraries (ENCODE IDs: ENCLB918NXF and
ENCLB758GEG) used for FRiP analysis were processed with the nf-core
ATAC-seq pipeline65. To calculate FRiP scores in overlapping ENCODE
and CUT&Tag peak regions, CUT&Tag peak ranges intersecting with
ENCODE H3K27ac replicated narrow peaks (ENCFF044JNJ) and
H3K27me3 replicated broad peaks (ENCFF000BXB) were obtained
using the bedtools intersect tool; the same peak files were used for
ENCODE capture calculations. This was performed for each sample-
ENCODE pair. For the calculation, pooled reads from ENCODE
H3K27ac ChIP-seq replicates ENCFF384ZZM and ENCFF070PWH, and
H3K27me3 ChIP-seq replicates ENCFF000BXA and ENCFF000BXC,
were used. To determine the precision and recall of ENCODE peak
capture in the HCT116 cell line, H3K27me3 narrow peaks
(ENCFF255ARD) and published H3K27me3 CUT&Tag data (study
accession: PRJNA779107; sample accession: SRR16963158) were used35.
Regulatory element annotation was performed using ChIPseeker
(version 1.34.136), after annotating peaks with genes using the
TxDb.Hsapiens.UCSC.hg19.knownGene database (version 3.2.266),
tssRegion -3000, 3000, andflankDistance 5000. To identify promoter-
overlapping peaks, this database was also used as input to the ChIP-
seeker getPromoters function to obtain genomic ranges 1.5Kb
upstream and downstream of known promoters. ChromHMM anno-
tations assigned with genomation (version 1.30.039). To test for
enhancer enrichment, STARR-seq peak files (ENCFF717VJK and
ENCFF394DBM) were processed to keep only replicated peaks and
lifted over to hg19 using the rtracklayer liftOver function67. To obtain
putative cell-specific enhancers, STARR-seq peak ranges were filtered
to keep those overlapping with K562 DNase-seq peaks (ENCODE ID:
ENCFF722NSO). Functional enrichment analysis was carried out with
clusterProfiler (version 4.6.268), using the “enrichGO” function. Results
from motif analysis were processed with marge (version 0.0.4.9999,
https://github.com/robertamezquita/marge). For visualization with

the Integrative Genomics Viewer (IGV; v2.9.4)29, sample bedgraphs
were converted to bigwig files using the UCSC Genome Browser bed-
GraphToBigWig binary. Single ENCODE replicate bam files (H3K27ac:
ENCFF384ZZM; H3K27me3: ENCFF000BXA) were converted to bed-
graphs with bedtools genomecov59, and similarly converted to bigwig
format.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CUT&Tag data generated in this study have been deposited in the
Gene Expression Omnibus (GEO) database under accession code
GSE286492. The bigwig, bedgraph, and peak data generated in this
study can be found at: https://data.cyverse.org/dav-anon/iplant/
home/paulinaurbana/H3K27_CUT%26Tag_Benchmark/. The UCSC
bigwig tracks data generated in this study can be found at: https://
genome.ucsc.edu/s/pu1918/CUT_and_Tag_benchmarking. Published
IgG CUT&Tag libraries were accessed from SRR8754611 and
SRR8754612. We downloaded published H3K27ac and H3K27me3
CUT&Tag sequencing datasets from BioProject accession code
PRJNA512492, and CUT&RUN from PRJNA522731. Comparisons were
made against ChIP-seq datasets accessed from ENCODE experiments
ENCSR000AKP and ENCSR000EWB for H3K27ac and H3K27me3,
respectively. Blacklist regions for filtering peaks were used from
ENCODE file ENCFF000KJP. ATAC-seq libraries were accessed from
ENCODE experiments ENCLB918NXF and ENCLB758GEG. ENCODE
H3K27ac and H3K27me3 ChIP-seq peak sets accessed from
ENCFF044JNJ and ENCFF000BXB. HCT116 cell line H3K27me3 ChIP-
seq narrow peaks were downloaded from ENCODE ENCFF255ARD,
and CUT&Tag data for sample SRR16963158 was accessed from Bio-
Project PRJNA779107. Enhancer STARR-seq peakswere accessed from
ENCFF717VJK and ENCFF394DBM, which were overlapped with K562
DNase-seq peaks from ENCFF722NSO. Source data are provided with
this paper.

Code availability
Code used in this study is available in the dedicatedGitHub repository:
https://github.com/Marzi-lab/CUTnTag-benchmarkinganalysis and on
Zenodo69. Generalized code for performing comparisons between
genome-wide histonemodification profiles has beenmade available in
the EpiCompare R package61 via GitHub at https://github.com/
neurogenomics/EpiCompare.
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