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Stimulation mapping and whole-brain
modeling reveal gradients of excitability and
recurrence in cortical networks

DavideMomi 1,2,3,13 , ZhengWang1,13, Sara Parmigiani2,3, Ezequiel Mikulan 4,
Sorenza P. Bastiaens 1,5, Mohammad P. Oveisi1,6, Kevin Kadak 1,5,
Gianluca Gaglioti 7, Allison C.Waters 8, Sean Hill 1,5,9, Andrea Pigorini 10,11,
Corey J. Keller 2,3,12,14 & John D. Griffiths1,5,6,9,14

The human brain exhibits a modular and hierarchical structure, spanning low-
order sensorimotor to high-order cognitive/affective systems. What is the
mechanistic significance of this organization for brain dynamics and informa-
tion processing properties? We investigated this question using rare simulta-
neous multimodal electrophysiology (stereotactic and scalp
electroencephalography - EEG) recordings in 36 patients with drug-resistant
focal epilepsy during presurgical intracerebral electrical stimulation (iES) (323
stimulation sessions). Our analyses revealed an anatomical gradient of excit-
ability across the cortex, with stronger iES-evoked EEG responses in high-order
compared to low-order regions. Mathematical modeling further showed that
this variation in excitability levels results from a differential dependence on
recurrent feedback from non-stimulated regions across the anatomical hier-
archy, and could be extinguished by suppressing those connections in-silico.
High-order brain regions/networks thus show an activity pattern characterized
by more inter-network functional integration than low-order ones, which
manifests as a spatial gradient of excitability that is emergent from, and causally
dependent on, the underlying hierarchical network structure. These findings
offer new insights into how hierarchical brain organization influences cognitive
functions and could inform strategies for targeted neuromodulation therapies.

The human brain constitutes a highly intricate network of inter-
connected regions that maintain ongoing communication, even dur-
ing periods of rest1. Research employing functional magnetic
resonance imaging (fMRI) has shown how distant brain regions exhibit

synchronized fluctuations (functional connectivity) in their sponta-
neous activity, giving rise to distinct spatial patterns of temporal
covariances known as resting-state networks (RSNs)2–4. The topo-
graphic organization of the seven canonical RSNs (visual,

Received: 12 April 2024

Accepted: 11 March 2025

Check for updates

1Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, Canada. 2Department of Psychiatry and Behavioral Sciences,
Stanford University Medical Center, Stanford, CA, USA. 3Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. 4Department of Health Sciences,
Università degli studi diMilano,Milan, Italy. 5Institute of Medical Science, University of Toronto, Toronto, Canada. 6Institute of Biomedical Engineering, University of
Toronto, Toronto, Canada. 7Department of Biomedical and Clinical Sciences “L.Sacco”, Università degli Studi di Milano, Milan, Italy. 8Nash Family Center for
Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 9Department of Psychiatry, University of Toronto, Toronto, Canada.
10Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy. 11UOC Maxillo-facial Surgery and dentistry, Fondazione
IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy. 12Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA. 13These authors contributed
equally: Davide Momi, Zheng Wang. 14These authors jointly supervised this work: Corey J. Keller, John D. Griffiths. e-mail: momi.davide89@gmail.com

Nature Communications |         (2025) 16:3222 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6048-8296
http://orcid.org/0000-0001-6048-8296
http://orcid.org/0000-0001-6048-8296
http://orcid.org/0000-0001-6048-8296
http://orcid.org/0000-0001-6048-8296
http://orcid.org/0000-0001-7259-6120
http://orcid.org/0000-0001-7259-6120
http://orcid.org/0000-0001-7259-6120
http://orcid.org/0000-0001-7259-6120
http://orcid.org/0000-0001-7259-6120
http://orcid.org/0009-0008-6665-1419
http://orcid.org/0009-0008-6665-1419
http://orcid.org/0009-0008-6665-1419
http://orcid.org/0009-0008-6665-1419
http://orcid.org/0009-0008-6665-1419
http://orcid.org/0000-0002-5577-3209
http://orcid.org/0000-0002-5577-3209
http://orcid.org/0000-0002-5577-3209
http://orcid.org/0000-0002-5577-3209
http://orcid.org/0000-0002-5577-3209
http://orcid.org/0009-0004-7420-7968
http://orcid.org/0009-0004-7420-7968
http://orcid.org/0009-0004-7420-7968
http://orcid.org/0009-0004-7420-7968
http://orcid.org/0009-0004-7420-7968
http://orcid.org/0000-0002-6374-3712
http://orcid.org/0000-0002-6374-3712
http://orcid.org/0000-0002-6374-3712
http://orcid.org/0000-0002-6374-3712
http://orcid.org/0000-0002-6374-3712
http://orcid.org/0000-0001-8055-860X
http://orcid.org/0000-0001-8055-860X
http://orcid.org/0000-0001-8055-860X
http://orcid.org/0000-0001-8055-860X
http://orcid.org/0000-0001-8055-860X
http://orcid.org/0000-0002-1856-3413
http://orcid.org/0000-0002-1856-3413
http://orcid.org/0000-0002-1856-3413
http://orcid.org/0000-0002-1856-3413
http://orcid.org/0000-0002-1856-3413
http://orcid.org/0000-0003-0529-3490
http://orcid.org/0000-0003-0529-3490
http://orcid.org/0000-0003-0529-3490
http://orcid.org/0000-0003-0529-3490
http://orcid.org/0000-0003-0529-3490
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58187-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58187-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58187-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58187-6&domain=pdf
mailto:momi.davide89@gmail.com
www.nature.com/naturecommunications


somatomotor, dorsal attention, anterior salience, limbic, frontopar-
ietal, defaultmodenetworks5) hasnowbeenextensively replicated and
validated across multiple species6–8 and data modalities9–11.

Given the significance of RSNs across cognitive and clinical
domains, a question of central importance for contemporary neu-
roscience research is how these networks emerge from their anato-
mical and physiological underpinnings. Significant progress has been
made on the anatomical underpinnings following the discovery
that the seven canonical RSNs adhere to a distinctive spatial layout12

on both cortical and subcortical structures13,14. This layout encodes
a hierarchical distinction15 between low-order networks (visual,
somatomotor) associated with fundamental sensory/motor functions,
and high(er)-order networks (limbic, frontoparietal, dorsal attention,
ventral attention, default mode) associated with introspection, self-
referential contemplation, and intricate cognitive processes12,16.
However, gaps remain in our understanding of functional brain
organization, particularly in the temporal dynamics (i.e., the time-
varying activity patterns) and neurophysiology (i.e., the underlying
cellular and circuit mechanisms) of RSNs17–19. A more comprehensive
characterization of these systems can be expected to enhance brain
stimulation techniques by improving targeting of network interac-
tions, identifying biomarkers for treatment response, and enabling the
development of personalized neuromodulation therapies20. This
expectation is supported by evidence that targeting specific RSNs
improves therapeutic outcomes and that network-level measures can
predict individual responses to stimulation21,22. The cortical hierarchy
of RSNs follows a principal gradient of organization, transitioning from
unimodal (low-order) sensorimotor regions to transmodal (high-
order) regions12. This gradient reflects fundamental differences in both
structure and function: low-order networks primarily process specific
sensory or motor information through local circuits, while high-order
networks integrate information across multiple domains through
distributed connections23. Recent evidence has revealed that this
hierarchical organization is reflected in the cellular composition of
these networks, with distinct cell-type distributions characterizing
different positions along the functional gradient24. Our central
research question focuses on whether low-order and high-order
RSNs exhibit different information processing characteristics. We
examine this through the networks’ stimulation-evoked responses,
which capture how activity propagates through the network following
external perturbation. While this measure represents a simplified
indicator of network function, it provides key insights into how these
networks process information and how these differences relate
to network dynamics. This question is critical for understanding
how brain function emerges across multiple spatial and temporal
scales25,26. Specifically, we aim to understand howneural activity that is
organized both in space (across distributed brain regions) and time
(showing coordinated temporal patterns), which we conceptualize as
coordinated RSN behavior, emerges from interactions between
underlying micro-/meso-scale circuit mechanisms and the macroscale
network structure of the anatomical connectome. It is widely believed,
due mainly to analogies with task-activation studies, that each RSN
plays a key role in one or more distinct neurocognitive processes27–29.
These distinct functional roles necessarily require different types
of neural computations—for instance, the processing of sensory
information in primary sensory networks differs fundamentally from
the integration of multiple information streams in higher-order
networks15. Such functional specialization suggests that these net-
works may have evolved different local circuit properties and pro-
cessing architectures to support their specific computational
demands23,30. This architectural specialization may be expected to
manifest in how these networks process and respond to incoming
inputs, including external stimulation. Supporting this view, the fact
that all brain regions have widespread long-range connections not
restricted to adjacent regions within the same or neighboring

hierarchical levels31,32, suggests that the RSNs should differ system-
atically in how they respond to their inputs.

A compellingmodus operandi to causally study principles of brain
organization is the perturbational approach, which combines precisely
targeted neurostimulation with neuroimaging techniques. Interleaved
TMS-fMRI has demonstrated significant activation changes within the
targeted network33,34, emphasizing its utility in tracking large-scale
network connectivity. Concurrent TMS-fMRI andTMS-PET studies have
provided valuable insights into effective connectivity across extended
brain networks by stimulating specific regions and mapping sub-
sequent activity propagation, particularly within cortico–subcortical
circuits35–38. However, TMS-fMRI lacks the temporal precision neces-
sary to capture the rapid neural communication occurring within and
between interconnected networks. Coupling neurostimulation with
fast (electrophysiological) neural activity recordings39 overcomes this
limitation, offering superior temporal resolution and providing a
complementary view of the brain’s rapid dynamic responses to tar-
geted stimulation (Fig. 1A).

Recent studies employing this approach with concurrent tran-
scranial magnetic stimulation and electroencephalography (TMS-EEG)
have reported that stimulation-evoked responses exhibit a distinctive
pattern of activity propagation, predominantly spreading to distal
regions that are both structurally and functionally connected to the
target site40–42. Importantly, these studies also demonstrate that
stimulus-evoked activity preferentially propagates to, and exhibits sus-
tained activity within, distal parts of the same (distributed, dis-
contiguous) RSN that was used for the initial TMS targeting. Moreover,
different networks can show distinct influences over brain dynamics,
with evidence that the default mode network plays a unique role in
organizing resting-state activity through its pronouncedeffects on alpha
rhythm modulation43. In related work using intracerebral electrical sti-
mulation (iES) in patients undergoing brain surgery, Veit and colleagues
observed faster activation and spreading to regions within the stimu-
lated RSN than those within non-stimulated RSNs44. Recent research has
further bridged the gap between invasive and noninvasive techniques,
showing that EEG responses to iES can reproduce features of TMS-EEG45,
and that TMS induces specific downstream effects in regions function-
ally connected to the stimulation site46. While these studies established
the network-specific nature of stimulation propagation, they did not
examine how these responses might systematically vary based on the
hierarchical position of networks along the cortical gradient.

In this study, we aim to explore how the interactions within and
between different RSNs contribute to their modular and hierarchical
organization, corresponding to their distance along the principal
gradient12, which distinguishes between low-order and high-order
networks (Fig. 1B). Are there qualitative differences between low-order
and high-order RSNs in terms of their response to external stimula-
tion? What is the level of cross-talk across RSNs in their stimulation
responses? How necessary are these network-network interactions in
determining a local brain response?

To address these questions, we analyzed brain activity patterns
using simultaneous recordings of stereotactic electro-
encephalography (sEEG) and scalp high-density electroencephalo-
graphic (hd-EEG) data from patients undergoing presurgical iES.
Evoked potentials elicited by iES provide high functional specificity47,
signal fidelity48, and excellent spatial and temporal resolution49–51.
These attributes make it ideal for studying the dynamics of brain
networks and their hierarchical structures, as well as for examining
how different regions respond to targeted perturbations. We then
employed a whole-brain, connectome-based neurophysiological
model for mechanistically investigating the level of recurrence in
cortical networks. While standard analysis of noninvasive neuroima-
ging data can offer valuable insights into neural processes in the
human brain, systematic brain stimulation techniques manipulate
neuronal activity in a temporally and spatially specificmanner,making
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them central tools for studying cause-effect relationships between
neuronal activity and cognitive processes52,53. Mathematical
modeling54,55 can complement these empirical methods by delving
deeper into the underlying mechanisms of observed phenomena,
offering insights into processes that are challenging tomeasure in-vivo
in humans56,57. Connectome-based whole-brain modeling57 has been
already utilized to both simulate the dynamics of RSNs58 and to
investigate the effects of brain stimulation on neural activity patterns
across different brain regions56,59,60. For example, Spiegler et al.
explored how different stimulation sites impact the spatiotemporal

propagation patterns in the mouse brain, demonstrating that spatial
proximity does not necessarily predict induced activity similarity61.

This study uses our recent deep learning-based whole-brain
modeling approach62, combining novel analytical techniques with
subject-specific mathematical models of brain stimulation. Using
combined iES and simultaneous recordings of sEEG and scalp hd-EEG,
we mapped the response properties of seven canonical RSNs across
323 stimulation sessions from 36 patients. By fitting connectome-
based neurophysiological models to each patient’s hd-EEG data, we
replicated the observed response patterns accurately. In addition, we

Fig. 1 | Studying Resting-State Network (RSN) input processing strategies and
the role of recurrent feedback with computational brain network models.
Shown here is a schematic of the hypotheses, methodology, and general con-
ceptual framework of the present work. A Intracerebral electrical stimulation (iES)
applied to an intracortical target region generates an early (~20-30ms) response
(evoked-related potential (ERP) waveform component) at high-density scalp elec-
troencephalography (hd-EEG) channels sensitive to that region and its immediate
neighbors (red arrows). This also appears in more distal connected regions after a
short delay due to axonal conduction and polysynaptic transmission. Subsequent
second (~60–80ms) and third (~140–200ms) late evoked components are fre-
quently observed (blue arrows). After identifying the stimulated network in this
way, we aim to determine the extent to which this second component relies on
intrinsic network activity versus recurrent whole-brain feedback. B Schematic of

the hierarchical spatial layout of canonical RSNs as demonstrated inMargulies and
colleagues12, spanning low-order networks showing greater functional segregation
to high-order networks showing greater functional integration15. Networks are
distributed based on their position along the first principal gradient. The stimula-
tion sites are distributed across different levels of this gradient. C Schematic of
virtual dissectionmethodology and keyhypotheses tested.We first fit personalized
connectome-based computational models of iES-evoked responses to the hd-EEG
time series, for each patient and stimulation location. Then, precisely timed com-
munication interruptions (virtual dissections)were introduced to thefittedmodels,
and the resulting changes in the iES-evoked propagation pattern were evaluated.
We hypothesized that lesioning would lead to activity suppression (C, right side) in
high-order but not low-order networks.
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performed spatially specific “virtual dissections” on the models, iso-
lating the stimulated network from surrounding activity while pre-
serving its ability to propagate and receive information internally. Our
main question was whether low-order and high-order RSNs show dis-
tinct patterns of information processing across their hierarchical
organization. As shown in Fig. 1C, we hypothesized that activity pat-
terns in the high-order networks would show a more integrated and
cohesive level of organization63, where feedback connections are
necessary to generate the observed iES responses. Conversely, low-
order networkswould showmore segregated and localizedbehavior in
their evoked activity dynamics64, with iES stimulation responses that
are primarily dependent on intrinsic within-network activity- and thus
relatively unchanged following virtual dissections. These network-
specific differences in response to virtual dissections highlight the
varying degrees of dependence on recurrent feedback across the
cortical hierarchy. Understanding how recurrent feedback shapes RSN
information flow enhances our ability to design more effective diag-
nostic and therapeutic strategies in psychiatry and neurology, parti-
cularly in optimizing brain stimulation protocols. This recurrent
feedback represents the continuous and dynamic exchange of infor-
mation between brain regions, where signals are sent back to the ori-
ginating regions after being processed by other parts of the network,
and it is crucial for maintaining and modulating the hierarchical
structure of RSNs from high-order to low-order networks.

Results
A gradient of excitability from low-order to high-order brain
networks
We evaluated the magnitude of stimulation-evoked global brain acti-
vation in concurrent hd-EEG and sEEG recordings as an index of neu-
ronal excitability across the seven canonical RSNs (Visual network: VN,
Somatomotor network: SMN, Dorsal attention network: DAN, Anterior
salience network: SN, Limbic network: LN, Frontoparietal network:
FPN, Defaultmode network: DMN). The assessment of whichRSN each
sEEG electrode stimulation site fell within demonstrated a high spatial
resolution as indicated by an average distance of 0.52 cm±0.22 cm to
the nearest parcel centroid (Fig. 2A). When examining the hd-EEG
global mean field power (GMFP), we observed three response clusters
at ~40ms, ~80ms, and ~370ms (Fig. 2B). These peak response timings
are consistent with results previously reported from invasive human
electrophysiology recordings44. We observed a significant interaction
between response timing and stimulated network (Fig. 2C, top row;
(F(12, 927) = 2.539, P =0.00266), indicating that the effect of stimula-
tion on the overall response varied depending on both the timing at
which the responsewas recorded and the network thatwas stimulated.
This significant interaction was supported by significant main effects
of both response timing (F(2, 927) = 93.792, P < 2e-16) and stimulated
network (F(6, 927) = 3.641, P =0.00141). For the first response cluster
(0–37ms), permuted Wilcoxon–Mann–Whitney U pairwise compar-
isons showed significant differences in AUC for the following network
pairs: DAN-VN: W = 15881, P =0.0003; SN-VN: W = 18156, P <0.0001;
SN-SMN: W = 20265, P < 0.0001; FPN-VN: W = 26141, P <0.0001; FPN-
SMN: W = 22234.5, P < 0.0001; DMN-VN: W = 27125, P <0.0001; DMN-
SMN: W = 25239.5, P < 0.0001. The comparison between LN-VN
(W = 7083, P = 0.034) was not significant after adjustment for multi-
ple comparisons. For the second response cluster (37–78ms), no sig-
nificant differences were observed across any network pairs (all
P >0.05). For the third response cluster (78–373ms), significant dif-
ferences inAUCwere found for the followingpairs: SN-SMN:W = 15881,
P =0.0002; SMN-FPN: W = 18162, P <0.0001; SMN-DMN: W = 17835.5,
P <0.0001; SMN-LN: W = 14226, P =0.0003; VN-FPN: W = 16125.5,
P <0.0001; VN-DMN: W = 15822.5, P <0.0001. However, the following
comparisons were significant before adjustment but not after cor-
recting for multiple comparisons: DAN-FPN: W = 7125, P =0.014; DAN-
DMN: W = 6832.5, P =0. 029.

When examining the sEEGdata (Fig. 2C, bottom row), a significant
interaction was also observed between response timing and stimu-
lated network (F(12, 927) = 1.904, P = 0.03048). In line with the hd-EEG
results, this interaction indicates that the impact of stimulation on the
overall response varies depending on the network affiliation of the
stimulation site. This significant interaction was supported by sig-
nificant main effects in the sEEG data of both response timing (F(2,
927) = 41.961, P < 2e-16) and stimulated network F(6, 927) = 3.556,
P =0.00173).

For the first response cluster (0–37ms), permuted
Wilcoxon–Mann–Whitney U pairwise comparisons showed significant
differences in AUC for: VN-DAN: W = 21128.5, P <0.0001; VN-SN:
W = 21212, P <0.0001; VN-LN: W = 18721.5, P < 0.0001; VN-FPN:
W = 28925.5, P <0.0001; VN-DMN:W = 17003.5, P <0.0001. SMN-DAN:
W = 19458.5, P <0.0001; SMN -SN: W = 18918.5, P < 0.0001; SMN-LN:
W = 17998, P < 0.0001; SMN-FPN: W = 24221, P < 0.0001; SMN-DMN:
W = 16121.5, P <0.0001. For the second response cluster (37–78ms),
permuted Wilcoxon–Mann–Whitney U pairwise comparisons showed
significant differences in AUC for: VN-DAN:W = 21345, P <0.0001; VN-
SN: W = 21089.5, P <0.0001; VN-LN: W = 18902.5, P <0.0001; VN-FPN:
W = 29145, P <0.0001; VN-DMN: W = 17232, P <0.0001. SMN-DAN:
W = 19285, P <0.0001; SMN-SN: W = 19102.5, P < 0.0001; SMN-LN:
W = 18100, P <0.0001; SMN-FPN: W = 24500, P <0.0001; SMN-DMN:
W = 16400, P <0.0001. For the third response cluster (78–373ms),
permuted Wilcoxon–Mann–Whitney U pairwise comparisons showed
significant differences in AUC for: VN-DAN: W= 21512, P <0.0001; VN-
SN: W = 21401.5, P <0.0001; VN-LN: W = 19110.5, P <0.0001; VN-FPN:
W = 29310, P <0.0001; VN-DMN: W = 17415.5, P < 0.0001. SMN-DAN:
W = 19532, P <0.0001; SMN-SN: W = 19345.5, P <0.0001; SMN-LN:
W = 18375, P <0.0001; SMN-FPN: W = 24712.5, P <0.0001; SMN-DMN:
W = 16634, P <0.0001.

In addition, comparisons between high-order (LN, SN, DAN, DMN
and FPN) and low-order (VN and SMN) networks consistently revealed
significant differences for both hd-EEG (low-order-high-order:
W = 4567.5, P = 0.0013) and sEEG (low-order-high-order: W = 5713,
P =0.0008). Overall, these findings demonstrate greater levels of
excitability (as indicated by the magnitude of global activation)
amongst high-order networks than in low-order networks. Moreover,
as is also observed in both sEEG and hd-EEG data, this effect follows a
continuous hierarchy over networks (Fig. 2C, right panels), that aligns
closely with the well-known macroscale functional connectivity
gradient12,16.

The results observed at the channel level in hd-EEG have been
replicated at the source level. These findings are detailed in Supple-
mentary Results 2.1 and Fig. S5, providing additional support for the
robustness of our conclusions.

The contribution of recurrent feedback to stimulation respon-
ses mirrors the excitability gradient
Comparing the simulation runs with the intact versus those with the
virtually dissected/lesioned structural connectome (for further details
see methods), significant interactions between “response timing” (3
levels: first, second and third cluster) and “stimulated network” (F(12,
1854) = 1.78, P =0.046) and between “condition” (2 levels: intact,
lesion) and “response timing” (F(2, 1854) = 5.88, P =0.002) were found.

Permuted Wilcoxon–Mann–Whitney U pairwise comparisons
between intact and lesioned structural connectome simulations
showed significant differences in AUC within the late (78–373ms)
response period for LN (W = 466.5, P =0.003), DAN (W = 71.5,
P =0.005), FPN (W = 78.5, P <0.001), and DMN (W = 1076, P <0.001).
No significant differences in these late-response AUCs were found for
SN (W = 1704, P =0.08), SMN (W = 2622.5, P =0.21), and VN (W = 275.5,
P =0.47), and no significant differences were found for any network in
the two earlier response windows (peak #1 at 0–37ms, peak #2 at
37–78ms).
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To investigate the effects of virtual lesions on the network hier-
archy, we compared low-order networks (VN and SMN) with high-
order networks (LN, SN,DAN, FPN, andDMN) in both the intact and the
lesioned structural connectome condition. A significant difference in
the late-response AUCs was found (low-order-high-order: W = 28132,
P <0.0001), while no significant differences were found in the two
earlier response windows.

Virtual dissections applied to isolate the stimulated network thus
had a significant effect on high-order networks only, and only in the
later component of their stimulation responses.Moreover, as shown in
Fig. 3C, the impact of removing recurrent connections on stimulation
response amplitudes follows a trend from low-order to high-order
networks, similar to the reverse pattern of the excitability gradient
observed in Fig. 2.

Discussion
Using a computational framework recently developed for personalized
neurostimulation modeling62, in this work we examined scalp and
intracerebral electrophysiology data as a window into feedforward
and feedback response characteristics of intrinsic human brain net-
works. Uncovering the rules and structures according to which brain
networks are organized and interact at a mechanistic physiological

level is important not only as a basic question in systems and cognitive
neuroscience, but also as a foundation for clinical applications aimed
at customizing brain stimulation techniques to enhance network
engagement, thereby promoting better clinical outcomes. Our results
demonstrate that iES leads to downstream electrophysiological
evoked responses whose spatiotemporal patterning follows the hier-
archical cortical gradient structure commonly studied in structural
and functional neuroimaging data12,15. Specifically, we found sig-
nificantly stronger activation patterns when stimulating a high-order
network (LN, SN, DAN, FPN, and DMN), particularly for the late evoked
responses. Importantly, this trend in excitability levels was observed
both in the scalp-recorded hd-EEG and the intracerebrally-recorded
sEEG data, suggesting its replicability across different measurement
modalities and scales of spatial resolution. Previous work has
demonstrated that brain regions exhibit hierarchical gradients of
activity timescales during task performance and resting state, with
slower timescales found in regions most distant from sensory
input and motor output65. These hierarchical timescales, it has been
argued, serve as an intrinsic organizing principle of brain function,
influencing large-scale networks and subcortical regions, across sen-
sory and higher-order cortical regions, as well as subcortical
structures.

Fig. 2 | Empirical high-density electroencephalography (hd-EEG) and stereo-
tactic electroencephalography (sEEG) signals show larger global activation
patterns for high-order than low-order brain networks. A The histogram illus-
trates the distance in centimeters between the electrode’s centroid delivering the
electrical stimulus and the center of the nearest Schaefer’s parcel87. The results
indicate a high level of spatial precision,with 97.2%of sessions showingdistancesof
less than 1 cm. B Global mean field power (GMFP) of hd-EEG averaged across all
36 subjects and 323 sessions, revealing three consistent response peaks/clusters
within strict confidence intervals at ~40ms, ~80ms, and ~370ms, consistent with
prior electrophysiological research44. C GMFP of every stimulated Resting-State
Network (RSN) for hd-EEG (top row) and sEEG (bottom row). The bar plot of the

normalized area under the curve (AUC) of the three clusters revealed a significantly
stronger global activationpatternwhen the stimulus targeted high-order networks,
such as the Default mode network (DMN) and Frontoparietal Network (FPN), par-
ticularly for the late evoked responses (third cluster at ~370ms).Data are presented
as mean values ± standard error of the mean (SEM) (error bars), with individual
subject data points overlaid (36 independent subjects, 323 stimulation sessions). In
the GMFP time course plots, shaded areas represent ±SEM around the mean.
Notably, this trend aligns with the “principal gradient” hierarchy reported in the
functional magnetic resonance imaging (fMRI) literature12, which describes a gen-
eral pattern from low-order to high-order regions15.
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There is growing awareness amongst neuroscientists that this
hierarchical network structure of brain organization shapes the spa-
tiotemporal propagation of activity evoked by brain
stimulation31,40,41,66,67, and specifically that iES effects depend on the
network connectivity profile of the region being stimulated49,68–71. A
seminal recent study reported that patients’ self-reported perception
of iES stimulation intensity depends on the stimulated region’s posi-
tion in the cortical hierarchy, with simpler effects in lower-level net-
works and more complex, heterogeneous effects in higher-order
networks72. Within this broader body of work, our empirical results
reported here provide electrophysiological evidence that global pat-
terns of hierarchical organization in the brain (cortical gradients)

shape evoked-response dynamics. Specifically, we show that the
position of the stimulated region along the cortical gradient is a potent
predictor of iES-evoked activation dynamics, a finding that goes
beyond the previously established network-specific propagation pat-
terns reported in stimulus-evoked EEG studies40–42,44.

Building on these observations of an excitability gradient from
our empirical sEEG+hd-EEG data analyses, we used connectome-based
whole-brain modeling62 to obtain further insights into the role of
recurrent feedback activity in stimulation-evoked brain responses.
Specifically, we employed a “virtual dissection” approach73 to isolate
and prevent the stimulated network from receiving feedback input
from the rest of the other non-stimulated RSNs. This procedure allows

Fig. 3 | Removing recurrent connections to isolate the stimulated network
suppresses late evoked potentials for high-order networks. AGlobal mean field
power (GMFP) for every stimulated network for model-generated high-density
electroencephalography (hd-EEG) data run with both the intact (continuous line)
and disconnected (dashed line) structural connectome. Findings show a more
pronounced decrease in evoked late responses for high-order networks (LN Limbic
Network, SN Salience Network, DAN Dorsal attention network, FPN Frontoparietal
Network, DMN Default mode network). B Area under the curve (AUC) differences
comparing the simulation run with the intact versus the lesioned structural con-
nectome. The bar plot shows differences across three time windows (1st response:
0−37ms, 2nd response: 37–78ms, 3rd response: 78–373ms). Data are presented as
mean values± standard errorof themean (SEM) (errorbars),with individual subject

data points overlaid (36 independent subjects, 323 stimulation sessions). A sig-
nificant reduction in the AUC was found for late responses (78−373ms) of high-
order networks (LN, SN, DAN, FPN, and DMN) compared to low-order networks
(Visual Network [VN] and Somatomotor Network [SMN]), indicated by asterisks
(*P <0.05). C Demonstration of the network recurrence-based theory for two
representative sessions. Simulations of evoked dynamics are run using the intact
(left) and lesioned (right) anatomical connectome. In the latter case, the connec-
tions were removed to isolate the stimulated networks for SMN (top) and DMN
(bottom). In the case of the low-order network, this virtual dissection does not
significantly impact the evoked potentials, while for the high-order network, a
substantial reduction or disappearance of evoked components was observed.
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us to evaluate the extent to which model-generated stimulation-
evoked patterns relied on recurrent inputs from downstream brain
areas that did not belong to the stimulated network. These in-silico
interventions resulted in substantial reductions in the stimulation-
evoked activity, with the magnitude of these reductions varying con-
siderably depending on which network was perturbed. Virtual dissec-
tions designed to isolate the stimulated network significantly reduced
the amplitude of late responses when the iES was delivered to high-
order areas, as compared to low-order areas. Interestingly, in a recent
work using the same virtual dissection methodology62, we have
demonstrated that early transcranial magnetic stimulation-evoked
responses are primarily driven by localized dynamics of the stimulated
region, whilst later components are driven by large-scale recurrent
feedback loops. In this study, we have expanded upon these earlier
findings by studying network-level responses spread widely across the
cortex (as opposed to primary motor cortex stimulation only),
demonstrating that these network-driven late responses differ based
on the position of the stimulated region along a canonical cortical
gradient hierarchy. Findings showed that the late responses mainly
depend on intrinsicwithin-network connections for low-order regions,
and extrinsic between-network connections for high-order regions.
This result suggests that varying strategies are employed by different
brain networks in terms of how they send, receive, and process, and is
in line with other results placing sensorimotor areas (with pre-
dominantly bottom-up outgoing connections) at the bottom of the
hierarchy, and higher-order association areas (with mostly top-down
outgoing connections) at the top of the hierarchy74,75. Recent studies
have also analyzed network-based incoming and outgoing commu-
nication efficiencies, characterizing low-order cortical regions as pri-
marily senders, and high-order networks as receivers76. This picture is
consistentwith reports of a developmentally driven shift inmacroscale
cortical organization during adolescence, progressing from a func-
tional motif dominated by low-order regions (e.g., Sensorimotor,
Visual) in children to an adult-like gradient, where the high-order
regions are located at the opposite end of a spectrum77. Our findings
expand this evidence base, demonstrating the existence of the mac-
roscale functional gradients for stimulus-evoked electrophysiological
data, and provide computational evidence of how this scaffold shapes
information processing strategies characterized by functional segre-
gation/integration for low-order/high-order networks, respectively.

In regard to the limitations of the study, a potential caveat is the
derivation of the resting-state networks (RSNs) which, despite being
based on individual anatomical images of the subjects, were not
derived from resting-state functionalMRI data. In addition,wedidnot
have diffusion-weighted imaging sequences available for obtaining
individual structural connectivity matrices. Although we estimated
the individual structural connectome during the model fitting pro-
cess, the posterior structural connectivity did not significantly deviate
from the prior, thereby preserving the biological properties of the
structural connectivity (please see supplementary methods for more
details).

A key limitation is the variability in spatial sampling of sEEG,which
affects intracerebral signal amplitudes. Due to differences in electrode
placement, even within the same region, electrodes can be positioned
in varying sub-regions or distances from active areas. Volume con-
duction effects further complicate interpretation. While we aimed to
minimize these confounds by focusing on specific regions, this het-
erogeneity limits the generalizability of our findings. Ongoing efforts,
such as those by Medina Villalon et al.78, are exploring source locali-
zation techniques to address these challenges.

In addition to this, we acknowledge that the variation in the
number of stimulations across different functional networks presents
a limitation in our study. While we have employed ANOVA to account
for these differences, it is important to recognize that this statistical
method, while robust, may not entirely eliminate the potential biases

introduced by unequal stimulation counts. In addition, the inherent
variability in patient responses to iES stimulation further complicates
the direct comparability across networks. Future studies with more
balanced stimulation protocols and larger sample sizes could provide
more definitive insights into the effects of iES on different functional
networks.

Furthermore, future studies could benefit from incorporating
additional open datasets, such as the F-TRACT project (https://f-tract.
eu/), which offers large cohort data and may provide further insights
into brain gradients79–81.

Another limitation of our study is the reliance on a specific com-
putational model (Jansen-Rit) and its parameters, which might not
capture the full complexity of brain dynamics. Future work could
explore the use of different models and parameter settings to validate
and extend our findings.

Finally, our results were obtained from a population of epileptic
patients whose clinical condition and specific treatment82,83 may affect
both invasive and noninvasive recordings. To minimize such con-
founds, we did not include any sEEG contact located in the SOZ (as
verified by surgical resection) or exhibiting sustained pathological
interictal activity. Moreover, we excluded from the analyses all the
CCEPs showing evoked epileptic activity at the sEEG and/or at the hd-
EEG level84.

Our results, and the framework for investigating the scientific
questions we are introducing here, have clear and practical relevance
to basic and clinical research, as well as broader implications for the
scientific understanding of functional brain organization. Using com-
putational modeling and the virtual dissection approach allows us to
ask and answer mechanistic questions around the necessity and suf-
ficiency of various anatomical and physiological components in dif-
ferent aspects of local and global brain dynamics. It also provides a
potential entry point for understanding brain disorders at a mechan-
istic level, possibly leading to novel, more effective therapeutic
interventions.

Methods
The analyses conducted in this study consist of fourmain components:
(i) measurement of stimulation-evoked responses in sEEG and hd-EEG
data, (ii) construction of anatomical connectivity priors for our com-
putational model using diffusion-weighted MRI tractography, (iii)
simulation ofwhole-brain dynamics and stimulation-evoked responses
with a connectome-based neural mass model, and (iv) fitting of the
model to individual subject scalp hd-EEGdata. A schematicoverviewof
the overall approach is given in Fig. 4.

Simultaneous stereo and high-density EEG data
The data used in this study were taken from an open dataset collected
at the Claudio Munari Epilepsy Surgery Center, Milan (https://doi.org/
10.17605/OSF.IO/WSGZP), where sEEG and scalp hd-EEG were recor-
ded following single-pulse intracerebral electrical stimulation (iES) on
36 patients (median age = 33 ± 8 years, 21 female). All subjects had a
history of drug-resistant, focal epilepsy, and were candidates for sur-
gical removal/ablation of the seizure onset zone (SOZ). For details
regarding the data acquisition and the preprocessing steps, please
refer to the original papers45,85. All the preprocessed sEEG and hd-EEG
analyses were performed using the MNE software library86 (mne.tools/
stable/index.html) running in Python 3.6.

Precise identification of the stimulated network
In order to identify the network stimulated for a specific session
(Fig. 4B), the Schaefer atlas87, which divides the brain into seven
canonical functional brain networks, subdivided at multiple spatial
scales (100, 200, 300…1000 parcels), was mapped to the individual’s
FreeSurfer parcellation. In this study we used finest-resolution (1000
brain regions) Schaefer parcellation for categorizing surgical
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stimulation sites, and a lower-resolution (200 brain regions) for whole-
brain physiological modeling and network analysis.

The seven canonical networks correspond to the visual network:
VN, Somatomotor network: SMN, Dorsal attention network: DAN,
Anterior salience network: SN, Limbic network: LN, Frontoparietal
network: FPN, Default mode network: DMN. We first projected the
seven-network cortical atlas onto the subject’s cortical surface using
the Freesurfer spherical registration parameters. The resulting maps
were then resampled to native space structural T1w MRIs. Then, we
identified the parcellation region overlapping with the intracerebral

electrode responsible for delivering the stimulus, ultimately allowing
us to determine the stimulated network. For a detailed overview of the
number of sessions included for each stimulated network, please refer
to Supplementary Fig. S4.

Analyzing differences in the activation dynamics dependent on
the stimulated network
All statistical analyseswere carriedout usingRversion 2023.06.2, Build
561. We aimed to investigate whether the pattern of activation
dynamics resulting from iES depends on the specific network that is

Fig. 4 | Methodological workflow for characterizing the stimulated network
and performing subject-specific connectome-based neurophysiological mod-
eling of evoked potentials. A Simultaneous stereotactic electroencephalography
(sEEG) and scalp high-density electroencephalography (hd-EEG) signals were
recorded. The black triangle and dashed vertical line indicate the time at which
intracerebral electrical stimulation (iES) was delivered. For further details on the
methodology and data preprocessing please refer to refs. 45,85. B To pinpoint the
brain network where the stimulus was delivered, we employed the Schaefer atlas87,
which divides the brain into 1000 regions across seven distinct Resting-State Net-
works (RSNs): Visual Network, Somatomotor Network, Limbic Network, Dorsal
attention network, Ventral Attention Network, Frontoparietal Network and Default
ModeNetwork. Subsequently, we identified theparcellation region thatoverlapped
with the intracerebral electrode responsible for delivering the stimulus, ultimately
enabling us to determine the stimulated network. C To model individual stimulus-
evoked time series, the Jansen-Rit model90, a neural mass model comprising pyr-
amidal, excitatory interneuron, and inhibitory interneuron populations, was

embedded in every parcel of the lower-resolution 200-region Schaefer atlas87 for
simulating and fitting neural activity time series. The connectivity between regions
was modeled using diffusion-weighted magnetic resonance imaging (MRI) tracto-
graphy computed from a sample of healthy young individuals from the Human
Connectome Project (HCP) Dataset94, and then averaged to give a grand-mean
anatomical connectome. The iES-induced depolarization of the resting membrane
potential was modeled by a perturbing voltage offset to the mean membrane
potential of the excitatory interneuron population. Next, a lead field matrix was
employed to project the time series from the cortical surface parcels into EEG
channel space, resulting in the generation of simulated scalp hd-EEG measure-
ments. The quality of fit (loss) was quantified by calculating the cosine similarity
between the simulated and empirical stimulus-evoked time series. Optimization of
model parameters was accomplished by leveraging the autodiff-computed
gradient95 between the objective function and the model parameters, employing
the ADAM algorithm96. Ultimately, the optimized model parameters were utilized
to generate the fitted, simulated (optimized) stimulus-evoked hd-EEG activity.
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stimulated. In order to explore this, the GMFP was extracted from
every stimulation session

GMFP tð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xk

i

V i tð Þ � Vmean tð Þ� �2

K

s

where t is time, Vi(t) is the voltage at channel i at time t, Vmean is the
meanof the voltage over all channels, andK is the number of channels.
Upon examining the average scalp hd-EEG GMFP across subjects and
sessions, we identified three clusters of response peaks in a time frame
consistent with findings already reported in electrophysiological data
from previous research using similar approaches44. We extracted the
area under the curve (AUC)—which reflects cortical excitability88,89—for
each one of these clusters (Fig. 3B; cluster 1: 0–37ms; cluster 2:
37–78ms; cluster 3: 78–373ms), and subsequently grouped the AUC
values belonging to the same stimulated network session. This allowed
us to assess whether the overall activity evoked by the stimulation
varies systematically as a function of the specific network that was
perturbed. To address the varying number of sessions among
participants, a mixed-design analysis of variance (ANOVA) was
conducted. “response timing” was treated as a within-subjects factor
with three levels corresponding to the three response clusters (first,
second, and third clusters), based on previous literature44 and the
results from our peak-finding analysis. “stimulated network” was
treated as a between-subjects factor with seven levels corresponding
to the stimulated networks (VN, SMN, DAN, SN, LN, FPN, DMN).

A Wilcoxon–Mann–Whitney U test was then conducted to evalu-
ate pairwise comparisons between the different stimulated networks
for each response cluster. Each comparison was assessed with a null
distribution constructed from 1000 random permutations, with a
significance threshold set at P < 0.007 (after adjusting for multiple
comparisons). In addition, we compared low-order (VN, SMN) and
high-order (LN, SN, DAN, FPN, DMN) networks using the same
approach to investigate broader network hierarchy effects on theAUC.
By comparing these conditions, we sought to determine statistically
significant network-wise differences in AUC, without making any
assumptions about the underlying distribution of the data.

Overview of computational modeling approach
We employed a whole-brain modeling57 approach to analyze hd-EEG
data and study the physiological mechanisms of network excitability.
The specific model we used here incorporated 200 distinct brain
regions (as defined by the Schaefer 200 parcellation), connectedwith
a set of inter-regional weights derived from the anatomical con-
nectome. Jansen-Rit neural mass dynamics90 at each region described
the process of stimulated activation and oscillatory responses
resulting from local interactions within cortical microcircuits, with
these effects propagating to regions distal to the stimulated site via
the long-range anatomical connections. After specifying its structure
and a common set of priors for all parameters, the model was fit to
EEG data separately for each patient. This resulted in a set of indivi-
dualized physiological and connectivity parameters, having a
mechanistic influence on several spatial and temporal features of the
brain stimulation response, which we subsequently interrogated to
obtain further insight into our research questions around the topo-
graphic organization and network specificity. For details regarding
the computational model and the parameter estimation, see
refs. 62,91 and supplementary methods. For a graphical overview of
all optimized parameters and their distributions, see Supplementary
Figs. S1, S2, and S3.

Assessing the similarity between simulated and empirical
evoked responses
To further assess the goodness-of-fit of the simulated waveforms
arrived at after convergence of the ADAM algorithm, Pearson

correlation coefficients and correspondingp-values between empirical
and model-generated waveforms were computed for each subject. In
order to control for type I error, this result was compared with a null
distribution constructed from 1000 time-wise random permutations,
with a significance threshold set at P <0.05.

Dissecting the network-specific activation dynamics
The primary objective of this study is to determine the extent to which
the activation patterns observed in sEEG and hd-EEG data depend on
intrinsic dynamics within the stimulated network, or on contributions
from other non-stimulated network regions. In order to explore this,
simulations were re-run for each subject using their optimal para-
meters estimated from the original evoked potentials fitting step, but
this time with specifically designed “virtual dissections” applied to the
(otherwise intact) structural connectome. These virtual dissections
were performed by setting to zero the weights of all connections
returning to the stimulated network from other non-stimulated RSNs.
In this way the stimulated network was still able to send information to
the whole brain, and receive information from regions that belong to
the same network. Once the whole-brain model was re-run with these
new virtually dissected connectome weights, the evoked potential
time series of each brain region were again projected to the hd-EEG
channel space, and the AUC was extracted for the same clusters, and
compared against the original model-generated evoked potentials’
AUC. For this comparison, a mixed-design ANOVA was run with “con-
dition” as a within-subjects factor, corresponding to the 2 simulation
runs with different connectomes (2 levels: intact, lesion); “response
timing” as a within-subjects factor, corresponding to the 3 response
clusters (3 levels: first, second and third cluster); and “stimulated
network” as a between-subjects factor, corresponding to the sevenYeo
networks (7 levels: VN, SMN, DAN, SN, LN, FPN, DMN). Then, the
Wilcoxon–Mann–Whitney U test was conducted to evaluate pairwise
differences between the two simulation conditions across different
stimulatednetworks. In addition, comparisons between low-order (VN,
SMN) and high-order (LN, SN, DAN, FPN, DMN) networks were made
using the same statistical approach to investigate differences in
response to virtual lesions along the cortical hierarchy. Every com-
parison was compared with a null distribution constructed from 1000
time-wise random permutations, with a significance threshold set at
P <0.05. We hypothesized that when the stimulus is delivered to high-
order networks, these virtual dissections would significantly suppress
later responses, as the activity of these networks is intricately inte-
grated and heavily reliant on recurrent feedback from the rest of the
brain. In contrast, we expect the propagation dynamics when the sti-
mulus is delivered to low-order RSNs to remain largely unaltered, due
to the fact that their activity is characterized by segregated commu-
nication strategies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
As noted above, sEEG and hd-EEG data were obtained from the
EBRAINS Knowledge Graph (https://ebrains.eu/) and are also available
at the Open Science Framework (https://doi.org/10.17605/OSF.IO/
WSGZP). The dataset is provided in BIDS format92 and includes:
simultaneous hd-EEG and sEEG from a total of 323 iES sessions,
obtained from 36 subjects. In addition, it includes the spatial locations
of the stimulating contacts in native MRI space, MNI152 space and
Freesurfer’s surface space, as well as the digitized positions of the
185 scalp hd-EEG electrodes. It also contains the MRI of each subject,
de-identifiedwith AnonyMi93. StructuralMRI data used in this study for
specifying anatomical connectivity priors are available from the ori-
ginal Human Connectome Project dataset94, and have been used for
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similar purposes in previous work62. Source data are provided with
this paper.

Code availability
Full code for the reproduction of the data analysis and model fitting
described in this paper is freely available online at https://github.com/
Davi1990/Momi_et_al_2024 [https://doi.org/10.5281/zenodo.14743983]
and https://github.com/griffithslab/whobpyt.
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