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Enhanced diagnosis of multi-drug-resistant
microbes using group association modeling
and machine learning

JulianG. Saliba1,2,WenshuZheng 1,3 , QingboShu1,3, LiqiangLi 4,5, ChiWu4,5,
Yi Xie6, Christopher J. Lyon1,3, Jiuxin Qu4,5, Hairong Huang 7, Binwu Ying6 &
Tony Ye Hu 1,3

New solutions are needed to detect genotype-phenotype associations
involved inmicrobial drug resistance. Herein, we describe a GroupAssociation
Model (GAM) that accurately identifies genetic variants linked to drug resis-
tance and mitigates false-positive cross-resistance artifacts without prior
knowledge. GAM analysis of 7,179 Mycobacterium tuberculosis (Mtb) isolates
identifies gene targets for all analyzed drugs, revealing comparable perfor-
mance but fewer cross-resistance artifacts than World Health Organization
(WHO) mutation catalogue approach, which requires expert rules and pre-
cedents. GAM also reveals generalizability, demonstrating high predictive
accuracy with 3,942 S. aureus isolates. GAM refinement by machine learning
(ML) improves predictive accuracy with small or incomplete datasets. These
findings were validated using 427 Mtb isolates from three sites, where GAM
inputs are also found to be more suitable in ML prediction models than WHO
inputs. GAM+ML could thus address the limitations of current drug resistance
prediction methods to improve treatment decisions for drug-resistant
microbial infections.

Microbial drug resistance arising from mutations, horizontal gene
transfer, and the overuseof antibiotics is a growingproblem that could
diminish the utility of many commonly used antibiotics1–4. Infections
caused by drug-resistant microbes are more difficult to treat5, often
leading to prolonged treatment, increased healthcare costs, and the
development of additional drug resistance1–3. Rapid and accurate
identification of drug-resistant isolates and their specific drug resis-
tance profiles are thus necessary to guide antibiotic treatment and
limit their transmission1,2,6. However, current approaches used to
identify drug resistance have significant limitations. Culture-based
techniques traditionally require microbial growth at multiple drug

concentrations6–8; are labour-intensive and time-consuming (requiring
days to weeks), especially for slow-growing bacteria7–10; and may
require careful interpretation of susceptible, resistant, or intermediate
drug responses5,7,8. Molecular approaches that detect resistance-linked
mutations, including polymerase chain reaction and microarray
methods, are faster8,11,12 but identify only known and relatively com-
monmutations. DNA sequencing can detect novel and rare mutations
but is limited by the accuracy of cataloguedmutations associated with
phenotypic drug resistance11,13. New methods that can identify drug-
resistance phenotypes from an isolate’s genomic information are thus
needed to guide treatment decisions.
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Mycobacterium tuberculosis (Mtb), the causative agent of tuber-
culosis (TB), represents a strong case for the value of accurate drug
resistance determinations14,15. There were an estimated 10.6 million
new TB cases and 1.6 million TB deaths in 202116, including 450,000
rifampicin-resistant TB (RR-TB) cases, the majority of which were also
resistant to isoniazid16. Accurate assessment of Mtb drug resistance is
essential since the 86% overall TB treatment success rate drops to 57%
for RR-TB and multidrug-resistant TB (MDR-TB: RR-TB plus at least
isoniazid resistance)16, and underdiagnosis and treatment failures can
increase the spread of RR-TB and MDR-TB, as occurred during the
COVID-19 pandemic16,17.

Effective TB treatment requires the use of a multi-drug regimen
that employs drugs with distinct mechanisms of action. Spontaneous
mutations that confer resistance to one of drugs can allowMtb bacilli
to proliferate under selective pressure for mutations that confer
resistance to other drugs in the multi-drug regimen18. Reliance of pre-
defined drug regimens, including those tailored to resistant strains,
can further promote development ofmultidrug-resistant (MDR-TB) or
extensively drug-resistant (XDR-TB) Mtb strains19. This process drives
sequential accumulation mutations in genes that directly confer
resistance to specific drugs aswell as in genes or sets of genes that alter
metabolic processes to confer overlapping resistance to multiple
drugs18,20. Mutations that produce overlapping resistance phenotypes
can thus complicate efforts to genetically disentangle resistance
mechanisms and identify specific mutations linked to resistance, par-
ticularly when a singlemutation alters a pathway, or several pathways,
that confers resistance to multiple drugs18. This complexity highlights
the need for advanced analytical approaches that can address the
dynamic and interconnected nature of the evolution of Mtb drug
resistance.

Genome-wide association studies (GWAS) can identify genetic
variations associated with specific traits21–24, including mutations
linked to specificMtb drug resistance phenotypes23,25. However, GWAS
has limitations when used to evaluate mutations associated with
multiple drug resistance phenotypes, including resistance to second-
line TB drugs23,26,27. Most notably, GWAS can detect artificial associa-
tions with non-targeted drug resistances28,29, particularly in MDR-TB
and XDR-TB30 isolates that can arise sequentially during TB treatment.
These artificial cross-resistances can identify false-positive associa-
tions between drug resistance and genetic variations31–33 by detecting
irrelevant genetic markers or incorrectly linking mutations involved in
drug resistance that affect different drugs, mechanisms, and gene
targets. It is thus important to consider a drug’smechanismof action, if
known, and use functional assays to validate GWAS associations29,
which is not always feasible34. Other statistical approaches, such as
those employed by theWHOcanmitigate artificial cross-resistance but
require prior knowledge, including masking to remove neutral muta-
tions and expert rules to resolve interim cases35,36. Novel approaches
that identify genetic variations associated with drug resistance should
reduce or eliminate cross-resistance artifacts detected by GWAS and
require no prior knowledge.

We hypothesized that this could be done using a novel Group
Association Model (GAM) approach that identifies sequence variants
enriched in isolates grouped by shared drug-resistance profiles and
then identifies variants associated with specific drug-resistance by
evaluating their enrichment in all isolates that are and are not resistant
to a specific drug. We evaluated this hypothesis using sequence and
drug-resistance data from the CRyPTIC (Comprehensive Resistance
Prediction for Tuberculosis: An International Consortium)
database29,37. GAM analysis performedwith 7179Mtb isolates identified
single gene associations with eight of the nine first- and second-line
drugs, unlike previous GWAS studies that identified multiple erro-
neous gene targets for each drug29, or untargeted confidence gating
approaches that required expert rules or precedents35,36. GAM also
demonstrated generalizability when applied to evaluate drug

resistance using sequence from 3942 S. aureus isolates. Further, GAM
predictive accuracy could be significantly improved by ML (Fig. 1),
particularly for datasets with relatively few isolates or incomplete data,
andML inputs supplied byGAMperformed better than those from the
WHO approach as shown in 427 retrospective and prospective Mtb
clinical isolates collected from multiple sites.

Results
Group characterization of drug-resistant isolates
We screened 12,288 CRyPTIC Mtb genome entries from lineage 1
through4 (>99%of the database entries)37 and identified 10,228 entries
(DS1) that met our criteria for acceptable data quality after excluding
those lacking high-quality drug resistance or sequence information or
that had contig data that did not meet abundance or length criteria
(Supplementary Fig. 1). DS1 entries with incomplete drug resistance
profiles were excluded to generate a dataset containing 7179 entries
(DS2) that were analyzed to identifymutations associatedwith specific
drug-gene interactions, while all DS1 entries were analyzed to identify
mutations associatedwith resistance to specific drugs (Supplementary
Fig. 2). A phylogenetic analysis revealed that DS2 isolates were not
disproportionally distributed within or among the four major Mtb
lineages (Fig. 2a, b), reducing the potential for lineage-based bias
during our screening and GAM processes. All four DS2 lineage groups
also revealed similar fractions of drug-sensitive and drug-resistant
isolates and drug-resistance category distributions (Monoresistance,
MDR/RR, Pre-XDR, XDR, etc.; Supplementary Fig. 3).

Segregating the DS2 isolates by their shared drug-resistance
profiles to increase data dimensionality generated 126 groups with ≥2
isolates for further analysis, and excluded 132 isolates (1.8%) belonging
to singlemember groups not fit for statistical analysis (Fig. 2c).Most of
these DS2 isolates (3997; 54.7%) were susceptible to all 13 analyzed
drugs, but 3182 isolates segregated into 126 groups of varying size
(2–551 isolates) with distinct drug-resistance profiles. Most drug-
resistant isolates (86.6%) belonged to groups containing ≥14 isolates
(Fig. 2d), and relatively uniform distribution were observed for the
number of groups and mean number of isolates per group when
ranking them by their number of drug resistances (Fig. 2e–f). Mtb
isolates across the mono- to multi-drug resistance spectrum had
multiple drug resistance phenotypes at high frequency when analyzed
at the isolate and group level (Supplementary Figs. 4, 5), although
specific drug resistance frequencies in these groups varied by drug
tier. DS2 group resistance rates were highest for the first-line drugs
rifampicin (67%), isoniazid (74%), and ethambutol (49%), and the
second-line rifampicin replacement rifabutin (62%); moderately lower
for the remaining second-line drugs (24–42%); and lowest for the new
and repurposed drugs (6–23%) (Fig. 2g), and mimicked frequencies
observed in DS2 isolates (Supplementary Fig. 6). The distribution of
DS2 isolates among the four Mtb lineages, and isolates and specific
drug resistance among the resistance groups was expected to provide
sufficient discriminatory power to identify specific gene-drug asso-
ciations and attenuate cross associations due to its classification
approach.

Identification of genes and mutations associated with drug-
resistance phenotypes
To identify variants associated with specific groups for inclusion in
future analyses, variant detection rate differences were analyzed
between all drug-resistant groups and the drug-susceptible control
group by Fisher’s exact test adjusted for multiple comparisons
(Fig. 3a). Variant p-values for all GAM Mtb groups are available on
Figshare (SF2). All variants enriched in a drug-resistant group (odds
ratio≥1)were assigned to that group and all otherswereexcluded from
further analysis, markedly reducing the number of target variants
(55.8 × 106 to 31.0 × 103). Variants present in groups resistant to a spe-
cific drug (e.g., rifampicin) were then compared to those in groups
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sensitive to that drug to identify variants associated with a specific
drug resistance phenotype, using a -log10

p-value > 5.22 threshold to
identify variants associated with drug resistance (Fig. 3b). This
approach correctly identified variants in six genes associated with the
nine first-and second-line drugs, with a single false-positive match
between katG and rifampicin38,39. No significant associations were
detected for the four new or repurposed drugs (bedaquiline, clofazi-
mine, delamanid, and linezolid), likely due to scarcity of groups/iso-
lates resistant to them (8–29 groups; mean 2.4–8.6 isolates/group)
versus the first- and second-line drugs (30–93 groups; mean 9.8–28.7
isolates/group).

GWAS gene-drug associations previously reported using a LMM
accurately detected gene targets for the first- and second-line drugs,
but detected multiple false-positive gene associations (≥20) for most
of them29. Cross-association wasmost prominent for rpoB, but all first-
and second-line drugs had multiple cross-associated genes (Fig. 3c)
due to extensive drug resistance overlaps (Fig. 3d). Such overlaps were
highest (72.2–90.1%) for drugs targeting the same genes (rifampicin/
rifabutin, amikacin/kanamycin, and levofloxacin/moxifloxacin), but
were also substantial for drugs with different gene targets. Spurious
associations were also detected with two genes (pncA and rpsL)
involved in resistance to drugs not analyzed in this dataset (pyr-
azinamide, and streptomycin), and with ethA, a reported target for
ethionamide14,40,41. GAM results excluded all cross-resistances detected

by the LMM, except a single erroneous katG association with rifam-
picin resistance that was likely caused by the limited number of
rifampicin-sensitive but isoniazid-resistant groups (82.5% overlap in
these resistance phenotypes).

GAM results primarily identified a single gene variant associated
with a specific drug resistance, butmultiple variants are often involved
in resistance. We therefore next employed a similar confidence grad-
ing method as developed by the World Health Organization (WHO)35,
and identified 3–20 drug-resistance-associated DS2 variants in each
GAM-identified gene per drug (Supplemental Table 1), including var-
iants detected at low frequencies (Supplementary Fig. 7), which had
highly variable sensitivity (0.43–76.27%) but uniformly high specificity
(98.75–100%; Supplementary Fig. 8).

To evaluate the performance of GAM relative to standard GWAS
LMM, true positives, false positives, and false negatives were com-
pared between the twomethods (Fig. 3e–g). RawMtb LMM results are
available on Figshare (SF3). GAM consistently identified substantially
fewer false positives than LMM (1-2 vs. 1000~5000) across all drugs in
this comparison, highlighting its ability to avoid misleading cross-
associations often caused by overlapping drug resistances. Both
approaches detected comparable numbers of false negative associa-
tions for each drug (Fig. 3g). For new and repurposed drugs, GAM
exhibited lower sensitivity (fewer true positives) than LMM, which was
expected given the small number of resistant isolates and the

Fig. 1 | GAM+ML workflow summary. a Genotyping and minimum inhibitory
concentration (MIC) culture analysis for drug susceptibility testing (DST) pheno-
types of Mtb isolates. b Data filtration via genotype and phenotype information.
c Mtb isolate sequence and DST data are fed into GAM to identify mutations
associated with drug resistance, after which GAM classification performance is

evaluated using statistical metrics. dMachine learning is applied to SNPs that GAM
classifies as being associated with drug resistance to predict drug resistance pro-
files. e Multi-site cross-validation is performed to characterize the utility of this
GAM+ML prediction approach. Created in BioRender.
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stratification required by GAM. However, for drugs with larger sample
sizes, GAM not only minimized false positives but also sometimes
matched or outperformed LMM in detecting true associations, show-
casing its precision when sufficient data is available. Overall, GAM
showed more than a 200-fold higher positive prediction value (PPV)
than LMM.

To examine GAM’s ability to identify antimicrobial resistance
(AMR) variants in other pathogens, we next employed it to analyze an
S. aureus dataset containing 3942 isolates with variable resistance
signatures for 13 drugs. Variant p-values for all GAM S. aureus groups
are available on Figshare (SF4 and SF5). GAM identified SNP

resistance-associated mechanisms for three drugs (fusidic acid,
ciprofloxacin, and trimethoprim) with a broad-range of resistance-
associated isolates (466–3027; Supplementary Table 2), where 23
SNPs linked with five genes (fusA, gyrA, parE, parC, and dfrB) had p-
values ranging from >1 × 10−200 to 1.33 × 10−4. GAM also detected
horizontal gene transfer mechanisms for four drugs (gentamicin,
methicillin, tetracycline, and trimethoprim) with a broad-range of
resistance-associated isolates (277–3501; Supplementary Table 2).
Six horizontally transferred genes (aacA-aphD,mecA, tetM, tetK, dfrA,
and dfrG) that conferred resistance to four drugs (gentamicin,
methicillin, tetracycline, and trimethoprim) were detected with
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p-values ranging from 4.09 × 10−24 to 4.10 × 10−9. GAM detected some
SNPs within transferred genes, but these were not directly associated
with drug resistance. Four of the remaining seven drugs had few
resistant isolates (2–50), and data for two of these four drugs did not
appear in the database. The three remaining drugs with horizontal
resistance mechanisms did not have these issues, and it is not clear
why GAM did not detect gene associations with these drugs,
although the SNP-based GAM design was not intended to detect such
horizontal gene transfer mechanisms. All significant S. aureus genetic
variants found by GAM are available on Figshare (SF6). Additionally,
GAM identified a comparable number of true positives while pro-
ducing fewer false positives than LMM (Supplementary Table 4),
demonstrating that GAM outperformed LMM in detecting SNP-based
drug resistance. However, for drugs such as penicillin, erythromycin,
and clindamycin, where resistance primarily arises from horizontally
transferred genes, LMM detected more true positives. Notably, this
advantage came at the expense of a significantly higher number of

false positives. All raw S. aureus LMM results are available on Figshare
(SF7 and SF8).

Optimization of variant detection to improve phenotypic
prediction
To evaluate predictive accuracy, DS1 dataset variants identified by
GAM were compared to those of the WHO catalogue. GAM drug-
specific variants demonstrated variable overlap with the WHO 2023
and 2021 Mtb mutation catalogues generated with the WHO dataset
with (1.2–68.8%) and without (9.1–80.0%) interim criteria (Supple-
mentary Figs. 9 and 10). Since GAM minimized the detection of mis-
leading variants and requires no prior knowledge, it was hypothesized
that GAM outputs could achieve better predictive accuracy and thus
serve as improved inputs for a machine learning (ML) model (Fig. 4a).
To assess the best model, nine ML models were screened and opti-
mized for classification performance. Gradient Boosting achieved the
highest mean accuracy (81.0%) and lowest overall variance (1.66%)

Fig. 3 | GAM and LMM detection of drug resistance associations. a GAM work-
flow for data grouping and association.bGene level interpretations ofDNAvariants
associated with specific drug resistance as calculated by Fisher’s exact test, indi-
cating the significance threshold (dashed line; -log10

p-value < 5.22) determined after
Bonferroni correction formultiple tests. cGene-drug interactions detectedby both

LMMandGAM (orange), LMM alone (blue), or neither (white), using associations in
the top 20 LMM associations for each drug. d Co-occurrence of DS2 drug-resistant
phenotypes, where dark and light green indicates high and low percent overlap,
respectively. eTrue positive, (f) false positive, (g) false negativemutations foundby
GWAS LMM (blue) and GAM (red). Source data are provided as a Source Data file.
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Source Data file.
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across all ninedrugs, (Fig. 4b), and thismodelwas then introduced into
a streamlined workflow to evaluate predictive performance (Fig. 4c).

PPV comparisons on AMR strains between the GAM, WHO, and
GAM+ML approaches revealed differential predictive performance
characteristics for these methods. GAM consistently minimized false-
positive drug resistance strains by reducing cross-resistance associa-
tions. However, GAM PPV results varied by drug and differed from
those of the WHO approach for amikacin, kanamycin, and rifampicin
resistance (Fig. 4d). Integrating GAM results into a machine learning
(ML)model enhanced the PPV for rifampicin resistance, withoutmajor
effects on PPVs for other drugs resistances except for slight decreases
in ethionamide, isoniazid, and levofloxacin.

Specificity analyses also emphasized the advantages of combining
GAM with ML. GAM exhibited high specificity across all drugs, but the
addition of ML led to a notable increase in rifampicin specificity
(10.9%) (Fig. 4e). Specificity estimates modestly changed for other
drugs,withminor decreases (ethionamide, isoniazid, and levofloxacin)
and increases (ethambutol) observed for specific drugs. These findings
indicate the robust predictive performance of GAM, and the
enhancement provided by ML, particularly for rifampicin specificity.
Notably, WHO+interim criteria did not markedly contribute to resis-
tance classification since GAM and WHO non-interim variants pro-
duced similar PPV and specificity estimates (Supplementary Fig. 11).

Comparison of GAM, WHO, and GAM+ML sensitivity in predict-
ing drug resistance revealed distinct performance patterns. GAM
demonstrated variable sensitivity across different drugs, with the
highest sensitivity observed for ethionamide resistance (Fig. 4f), while
the WHO approach had better sensitivity for isoniazid resistance.
Integrating GAM into anMLmodel improved predictive sensitivity for
amikacin, ethionamide, isoniazid, kanamycin, and levofloxacin resis-
tance, without affecting sensitivity estimates for other drugs. The use
ofML thus enhances GAMpredictive ability, particularly for drugswith
complex resistance patterns. Area under the receiver operating char-
acteristic curve (AUC) values ranged from 85.0 ± 1.0% to 97.0 ± 1.0%
(Supplementary Fig. 12).Applyingoptimal cutoff values corresponding
to the highest F1 scores increased overall model accuracy by 2.6%,
further enhancing prediction of all nine drug phenotypes. These
results demonstrate that integrating GAM outputs with ML can
improve diagnostic accuracy, particularly for drugs where sensitivity
and specificity remain challenging.

Impact of sample size and data completeness on GAM
Sample size and data completeness are expected to influence the
ability of GAM to recover known gene resistance associations. To
assess the effect of sample size on GAM and LMM performance,
samples containing 179–7179 DS2 isolates were randomly generated
and assessed for the number of true positive drug-gene pairs identified
in ten replicates (Fig. 5a). For GAM, the analysis revealed an asymptotic
relationship between sample size and true positive genes, with an
inflection near themidpoint reflecting sample size difference required
to detect specific drug-gene interactions (Supplementary Fig. 13), and
false-positive increases detected in large samples resulting from a
cross-association between rpoB and katG.

Comparing GAM and LMM reveals that while LMM generally
identified a slightly higher number of true positives, it exhibited a
100–1000 times higher false positive rate than GAM across all sample
sizes (Fig. 5a). Notably, PPV analysis further demonstrated that GAM
consistently exhibited a significantly higher PPV than LMM (Fig. 5b),
indicating its superior ability to distinguish true positives from false
positives in the data. Similar trends were observed at the mutation
level, where true positive differences remained minimal, but false
positive rates and positive predictive value (PPV) declined more
rapidly as sample size increased (SupplementaryFig. 14a, b).Whennew
and repurposed drugs were included in the analysis, LMM showed an
increase in true positives, while GAM struggled to capture significant

associations due to the limited sample size available for these drugs;
however, the LMM false positive rate also increased, while GAM’s rate
remained stable (Supplementary Fig. 14c, d).

Randomly varying the drug resistance information drop rate from
data entries also detected an inverse sigmoidal relationship between
accurate gene identifications and themissing data percentage (Fig. 5c)
since removing drug resistance data from an isolate deletes it and its
variants from its assigned group and transfers it to a group that has
indeterminate resistance data for this drug. In larger groups, this
obscures variant frequency differences between it and the control
group, but in groups with only two isolates (>25% of DS2 groups) this
deletes all this group’s data. Data losses in drug-susceptible isolates
diminishes the size and pool of neutral variants of this group. Losses
affecting isolates of a drug-resistant group eliminates these isolates
and their variants from the group, but in isolates resistant to two or
moredrugs this can create groups that include variants associatedwith
both drug-susceptible and drug-resistant isolates of the eliminated
phenotypes. GAM analyses that included groups with missing data
must thus increase the multiple testing correction factor and sig-
nificance threshold, particularly when isolates have missing data for
more than one drug resistance phenotype.

We next explored the potential of ML to attenuate the effect of
data omission on GAM predictions by partitioning the dataset into a
training set with complete data and a testing set that was resampled
with varying data omission rates. ML models generated with training
set data were employed to reconstitute the missing testing set data
prior to GAM analysis (Fig. 5d), and revealed similar prediction accu-
racy for missing data (0.767 versus 0.801) even when comparing
models that used 1% and 75% of the total sample as their training sets
(Fig. 5e). Notably, these training sets included data from single-isolate
groups that could not be used in GAM analyses. However, while ML
adjustment mitigated the effect of information loss on GAM identifi-
cations, irrespective of the amount of data removed from the test
samples,GAMgene detections still relied on sample size (Fig. 5f). Thus,
MLmodels builtwith small but complete training sets can allow theuse
of large but incomplete datasets that would otherwise exhibit poor
performance in GAM analyses.

Relative performance of GAM and WHO variant data in ML
phenotype prediction
Subsequent analyses performed using both GAM and 2021 and 2023
WHO interim variants as inputs for Gradient Boosting ML models
found that GAM-based models had predictive accuracies greater than
(amikacin, isoniazid, kanamycin, and rifampicin) or comparable to
those of the WHO+interim models (Supplementary Fig. 15). Similar
results were obtained when using WHO non-interim variant inputs,
except that GAM models then also had higher predictive accuracy for
ethionamide (both WHO datasets) and ethambutol resistance (2023
WHO dataset only) (Supplementary Fig. 16).

This analysis was subsequently replicated using an independent
dataset of 428Mtb isolates (DS3) that produced similar trends, as GAM
inputs yielded predictive accuracies thatwere significantly higher than
2021 and 2023 WHO+interim inputs for all drugs but ethionamide,
kanamycin, and levofloxacin (Supplementary Fig. 17). Superior per-
formance of the 2021 and 2023 WHO+interim variants in predicting
ethionamide resistance was apparently due to the greater number of
inputs (296 and 331 versus 4; 3 shared among all), since GAM variants
performed better thanWHOnon-interim variants for the sameanalysis
(4 and 8 versus 4; 1 shared among all) (Supplementary Fig. 18). Loss of
2021 and 2023 WHO variants identified by interim criteria also
decreased the predictive accuracy of the WHOmodels for kanamycin,
isoniazid, and rifampicin, while eliminating the predictive differenceof
the GAM and 2023 models for levofloxacin. These differences may be
due toMLmodel’s ability to better handle fewer inputs and the relative
quality of these inputs.
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Similar model performance trends were also obtained when we
used GAM and WHO-based ML models to analyze genomic sequence
variants of 427 Mtb isolates collected at the West China Hospital
(Chengdu), Beijing Chest Hospital, and Shenzhen Third People’s Hos-
pital (Fig. 6a; Supplementary Table 5). GAM+ML performance varied
byhospital (Supplementary Table 6), butmodels that usedGAM inputs
had consistently better accuracy overall in predicting resistance to
ethambutol, ethionamide, isoniazid, kanamycin, moxifloxacin, and
rifampicin than those using 2021 or 2023 WHO+interim inputs, while
revealing similar results for all other drugs (Fig. 6b–i). GAM and WHO
non-interim model results were also comparable to previous results,
although the 2021 and 2023 non-interim models had reduced mean
predictive accuracies for ethambutol, ethionamide, kanamycin, and
moxifloxacin resistance and the 2023 model had a slight increase in
accuracy for isoniazid (Supplementary Fig. 19). These results support

our hypothesis that GAM inputs are more suitable for ML-based drug
resistance prediction models than WHO inputs.

Discussion
Cohort size, data characteristics, known resistant mechanisms and
other prior knowledge should all be considered when selecting the
most appropriate means to analyze drug resistance in populations
with complex resistance profiles. GAM has several advantages for
streamlined identification of gene-drug interactions from datasets of
microbial genome sequence data and drug resistance data, including
its ability to remove neutralmutations by discarding those that are not
differentially expressedbetween the control anddrug-resistant groups
to reduce cross-resistant artifacts observed with other prediction
methods. This process also reduces potential lineage-bias. GAM also
does not rely on prior knowledge of genes, pathways, or mechanisms
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Fig. 5 | Effect of sample size andDSTdata incompleteness onGAMandML-GAM
outputs. a Effect of sample size on GAM and LMM true positive (TP) and false
positive (FP) gene identifications. Y-axis breaks between 20 and 200.bHeatmap of
mean PPV from model runs, each using a different random test set and seed
(N = 10), for GAM and LMM for varying sample sizes. c Effect of missing data on
GAMperformance. a, c Solid anddashed lines represent nonlinear sigmoidal curves
and their two-sided 95% confidence intervals, respectively. Data points display
mean ± standard error values frommodel runs, each using a different random test
set and seed (N = 10). d ML-GAM workflow for datasets with missing data. e ML
training set size effect on GAM accuracy, indicating median (central line) and

minimum andmaximum range (box boundaries), and p-value from a 1-way ANOVA
with Tukey’s multiple comparison test from model runs, each using a different
random test set and seed (N = 30). f Effect of missing data on accurate GAM gene
identification after adjusting data with ML models trained with different sample
sizes,where the remaining samples are analyzed as theGAMtest samples. Solid and
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data are provided as a Source Data file.
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involved in drug resistance, enabling it to comprehensively analyze all
variants present in a dataset. In contrast, the currentWHO approach is
specifically tailored to Mtb and relies on identifying resistance-
associated mutations through a combination of expert-driven rules,
masking strategies to exclude naturally occurring or neutral muta-
tions, pathway knowledge derived from prior genetic studies to pin-
point relevant gene functions, and relaxed statistical thresholds to
account for rare mutations35,36. While these strategies provide valuable
insights within the constrained scope of Mtb, they inherently limit
broader applicability. The ability of GAM to operate independently of
such predefined rules or assumptions allows it to provide a more
flexible and data-driven framework for identifying drug resistance-
associated variants across diverse pathogens. Additionally, GAM uti-
lizes a straightforward computational process, unlike LMMs that must
account for randomeffects and intricate covariance structures. Finally,

unlike current drug resistance prediction methods, GAM allows rapid
identification of key input features for ML approaches that could
ultimately improve treatment of drug-resistant microbial infections.

GAM analyses have specific limitations despite these advantages.
First, GAM datasets should contain high-quality phenotype data and a
diverse array of resistance profiles, with multiple entries for each
profile, to capture the full range of variations associated with all drugs
required to avoid incorporating resistance-associatedmutations in the
control group. Resistance to a specific drug should also be spread
across groups with different resistance profiles to enhance statistical
power, andmost isolates in the dataset should be resistant tomultiple
drugs outside a single drug family to avoid categorization bias. This
can require a substantial numbers of isolates per resistance depending
upon the complexity and prevalence of resistance profiles in an isolate
population. Alternate approachesmay bemore effective when it is not

Fig. 6 | GAM vs WHO MLmodel accuracy for drug resistance prediction in 427
Mtb isolates. a Mtb isolates from three hospital sites in China were analyzed by
drug susceptibility testing and sequenced to identify variant sequences. Created in
BioRender. b–i Pair-matched model accuracy for isolates resistant to eight drug
targets as assessed acrossN = 10 randomseeds and analyzed by 1-wayANOVAswith
Geisser-Greenhouse corrections and Dunnett’s tests for multiple comparisons. The

number of isolates used for these comparisons varied according to the number of
isolates with phenotype data for (b) amikacin (n = 427), (c) ethambutol (n = 423),
(d) ethionamide (n = 421), (e) isoniazid (n = 352), (f) kanamycin (n = 427), (g) levo-
floxacin (n = 112), (h) moxifloxacin (n = 415), and (i) rifampicin (n = 185) suscept-
ibility tests. Source data are provided as a Source Data file.
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possible to meet these criteria, such as when analyzing small datasets
with limited resistance group diversity. The WHO model leverages
prior knowledge, which can be particularly beneficial for identifying
drug-gene associations in limited datasets. While LMMs used in GWAS
analyses can partially address missing data through imputation
methods, they still require complete phenotypedata for each isolate to
ensure accurate association analyses. Similarly, standardGAManalyses
also exhibit substantial performance losses when applied to datasets
that contain incomplete phenotypedata.However, our results indicate
thatMLmodels trainedusing small datasetswith completedata (1% the
size of the test population) can adjust for this missing data to prevent
performance losses. These ML models do not reduce the dataset size
requirement for GAM analysis, but they can use isolates with complete
phenotype data but unique resistance profiles, which are excluded by
GAM criteria (4.2% of DS1 isolates) to maximize number of isolates
available for GAM analyses. Further, the ability to correct for missing
data can permit GAM to analyze isolates with incomplete data (30.2%
of DS1 isolates) to improve predictive power gene-drug associations
for less frequent drug resistances.

GAM demonstrates limited performance in identifying extra-
genomic resistance mechanisms, as shown by its inability to detect
horizontal gene transfer mechanisms in isolates resistant to penicillin,
erythromycin, and clindamycin within an S. aureus database contain-
ing 295 to 3840 isolates with these resistance phenotypes. This per-
formance deficit could potentially be mitigated by developing coding
frameworks that facilitate the analysis of gene-level differences across
multiple reference genomes and by applying machine learning
approaches. However, the current version of GAM is not designed to
capture resistance mechanisms that primarily arise from horizontal
gene transfer, as occurs in Enterobacterales andmany othermicrobes.
This is due to its reliance on SNP-based correlations against a single
reference genome, an approach that does not accommodate the
complex resistance mechanisms conferred by the expansion of the
accessory genome. However, we hypothesize that there are two sce-
narios where GAM might identify horizontal gene transfer mechan-
isms. First, GAM could directly detect SNPs within horizontally
transferred genes, regardless of their direct association with resis-
tance, leading to association of the entire gene with the resistance
phenotype. Second, if a horizontally transferred gene integrates near a
polymorphism in the host genome, GAM might detect this poly-
morphism as being associated with drug resistance due to its linkage
equilibrium with an adjacent integrated gene. However, this latter
approach would require that a substantial number of isolates contain
the same integration site.

ML models that used GAM data had better overall sensitivity and
accuracy for drug resistance predictions than the GAM or WHO
methods alone or equivalent WHO+ML models, without major spe-
cificity differences. This superior performance could be attributed to
multiple factors.ML algorithmshave the inherent capability to capture
complex, nonlinear relationships within data42–44, while GAM relies on
additive components that may not adequately model intricate inter-
actions and patterns present in antibiotic resistance data. Conse-
quently, ML introduces an additional layer of flexibility, enabling the
model to adapt and better capture this underlying complexity to
improve predictions. It is also worth noting that the specific ML
technique chosen for this study, Gradient Boosting, has demonstrated
strong performance for various classification tasks45,46, including suc-
cessful applications for similar biomedical research topics, making it a
suitable candidate approach to improve antibiotic susceptibility pre-
diction. However, future studies are still needed to accurately evaluate
the full potential of GAM+ML to enhance antibiotic susceptibility
prediction.

Comparison of the GAM andWHO workflows and outputs clearly
favor the use of GAM results as the input for such Gradient Boosting
models as GAM isolates exhibit less overlap to yield amore distinct set

of features, as demonstrated by the relative predictive value ofmodels
built with these inputs. Further, GAM requires fewer input features
(mutations associated with resistance) to effectively capture drug
resistance patterns than the WHO approaches. Classification accuracy
differences obtained using GAM and WHO inputs were small but
consistent, underscoringGAM’s ability to optimizepredictive accuracy
within a ML framework.

GAM analyses represent a powerful means to identify genetic
variations associated with drug resistance in species with diverse
resistance profiles, which is essential for development of new treat-
ments and effective management of drug-resistant infections6,47. GAM
analyses could predict specific drug-gene associations in multidrug-
resistant Candida auris48, Escherichia coli49, and other infectious dis-
eases with a complex spectrum of drug resistance. GAM could also be
applied to identify genetic factors associatedwith disease resistance in
crops, such as maize lethal necrosis disease or downy mildew, which
could help inform breeding programs, promote more sustainable
agricultural practices, and improve food security50,51. Future studies
will incorporate GAM into the analysis of multi-gene mutations and
horizontal gene transfer mechanisms to enhance the prediction of
resistance phenotypes in Mtb, S. aureus, and other microbes. This
includes understanding how mutations in multiple genes or compen-
satory mutations can significantly increase drug resistance52.

In summary, GAM provides a valuable framework to mitigate
neutral mutations, false positives, and cross-resistance artifacts that
can hinder accurate identification of gene-drug associations involved
in drug resistance in populations with complex resistance profiles,
without requiring prior knowledge of resistance mechanisms. Cou-
pling GAM with ML can also improve the sensitivity and accuracy of
resistance predictions made with complete data or adjust incomplete
data to improve its predictive power. Future studies could therefore
benefit from incorporating GAM+ML to predict drug-gene associa-
tions in species with complex drug resistance profiles.

Methods
Ethical approval
The use of archived clinicalMtb sample data analyzed in this study25,53

was approved of use by the Beijing Chest Hospital, and West China
Hospital, Sichuan University. For all prospective data analyzed, ethical
approval was obtained from the Research Ethics Committee of Third
People’s Hospital of Shenzhen.

Dataset and exclusion criteria
The CRyPTIC database was selected for its complete and consistent
phenotyping across 13 drugs, as well as its extensive global coverage,
features that distinguish it from other larger databases. Sequence and
drug susceptibility testing (DST) data for 13 antibiotics were obtained
from 12,289 Mtb isolates in the CRyPTIC database37. These files were
filtered using CRyPTIC criteria to remove entries that lacked high-
quality DST results or sequence data29, and to exclude entries with
incomplete DST data profiles for any drug (N/A, blank, or indetermi-
nate) prior to their use as input files in a GAM analysis (Supplemen-
tary Fig. 1).

GAM analysis procedure in identification of AMR-associated
sequence variants
CRyPTIC database entries that did not meet study exclusion criteria
(Supplementary Fig. 1) were grouped based on their unique drug
resistance profiles to produce a control group that contained the
genetic variations present in isolates susceptible to all 13 drugs, and an
array of groups with distinct drug resistance profiles and associated
genetic variants. Resistance groups analyzed by GAM were defined
based on drug susceptibility testing (DST) profiles, where isolates
sharing identical drug resistance profiles were grouped together. To
ensure statistical robustness, we selected all observed resistance
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groups that included two or more Mtb strains to maximize both the
number and diversity of resistance groups. Non-synonymous genetic
variants that differed from the Mtb H37Rv reference genome
(NC000962.3) were identified in all groups. Differences in variant
detection frequency between the drug-susceptible control group and
each drug-resistant group were analyzed using Fisher’s exact tests
corrected formultiple tests to identify genetic variants associatedwith
drug resistance without considering specific associations (Supple-
mentary Fig. 2). Variants not significantly enriched in at least one drug-
resistant group were eliminated from further analyses. Next, all var-
iants enriched in groups resistant to a specific drug were compared to
those present in all groups not resistant to that drug by Fisher’s exact
tests corrected for multiple tests to identify variants associated with
specific resistance phenotypes.

The GAM procedure identifies DNA variants that are significantly
associated with specific single drug AMR phenotypes, while results are
interpreted at both the gene and sequence variant level. AMR-
associated variants are first linked with their respective genes and
then all mutations within these genes are then analyzed to identify
those that are significantly associated with the targeted single-drug
AMR phenotype.

Significant drug-gene interactions detected by GAM were then
further analyzed for variants associated with drug resistance by
screening coding region mutations with these genes using WHO-
proposed confidence gating criteria35. A variant was considered to
have positive predictive value (PPV) if it was the only variant in the
target gene of ≥5 isolates (solo mutation), had a resistance-associated
solo mutation odds ratio (OR-solo) ≥1, an OR-solo PPV 95% lower
confidence interval ≥25%, and an OR-solo false discovery rate-
corrected Fisher’s exact test p-value ≤0.05. Double mutations were
considered when there were no solo mutations in a target gene and
one mutation was a neutral mutation.

Correction for multiple testing
Fisher’s exact test results were adjusted using Bonferroni corrections
formultiple tests based on the number of unique variants employed in
each test. Variants were considered significantly associated with
resistance if they were detected at odds ratios ≥1 and had p-values <α/
n, where α =0.05 was employed as the false positive rate and n
denoted the number of analyzed genetic variants28,54. Therewere 8320
mutations across all groups that significantly differed from the control
group, resulting in a final p-value threshold of −log10

p-value 5.22. The
−log10

p-value significance thresholds for all 126 group associations are
available on Figshare (SF9) along with a full list of Mtb isolates within
each group (SF10).

GAM identification of S. aureus AMR variants
Adatabase of 3942 S. aureus isolates resistant to a spectrumof 13 drugs
(gentamicin, penicillin, cefoxitin, fusidic acid, teicoplanin, vancomy-
cin, erythromycin, clindamycin, linezolid, ciprofloxacin, rifampicin,
tetracycline, and trimethoprim)55 were analyzed using a methodology
thatmirrored that used to analyze the CRyPTICMtb isolates. However,
given the smaller size of the overall sample and its control group, the
order of GAM analyses was reversed, so that resistance groups, were
first compared to identify SNPs that were detected at different fre-
quencies in the resistance groups that were resistant and sensitive to a
specific drug, and these SNPs were then compared to the control
group to exclude neutral mutations. Groups were also allowed to
contain single isolates, and the number of solo mutations required for
inclusion was lowered to ≥1. For instances where drug resistance
mechanisms stemmed from gene acquisition rather than mutation, a
dataset of all genes present within each isolate was used and the
analysis terminated at the gene level, as further data extractionwasnot
feasible. S. aureusHO50960412 (HE681097)was used as the reference
genome.

Evaluation of GAM performance
To evaluate the accuracy of GAM identification of variants associated
with resistance, GAM andGWAS LMMoutputs were compared for true
positive, false positive, and true negative counts based on known
variant-resistance associations summarized in the WHOMtbmutation
catalogue, which is the clinically recognized gold standard reference
for resistance-associated Mtb mutations36.

Additionally, we assessed predictive performance by comparing
the sensitivity, specificity, and PPV of GAM outputs versus the WHO
mutation catalogue as predictors of phenotypic drug susceptibility
across different datasets.

Comparison of ML models
Eight machine learning models (Gradient Boosting, Naive Bayes, Ran-
dom Forest, AdaBoost, Nearest Neighbor, RBF SVC, Decision Tree, and
Neural Network) were trained on the same 7129 Mtb isolates using
default hyperparameter tuning set by scikit-learn library (Version
1.3.0). Statistical significance of accuracy differences among these
models, the primary performancemetric, was assessed using one-way
analysis of variance (ANOVA) against the Gradient Boosting reference
model with Dunnett’s test used to correction for multiple compar-
isons. Analyses were performed in Python using scikit-learn using a
ten-fold cross-validation approach to ensure model robustness.

GAM+ML model generation
A multi-output classification was performed using the scikit-learn
library (Version 1.3.0), where input data (X) was GAM-highlighted
mutations and labeled data (y) was the drug resistance profiles for
individual isolates. To assess the ML model’s performance, the data
was analyzed using 10-fold stratified cross-validation (90% and 10%
into training and testing sets, respectively) and fold outputs were
conjugated for calculation of overall results. This ML classification
model used aGradient Boosting classifierwith a learning rate of0.1 and
950 estimators and a multi-output classifier wrapper to allow it to
manage multiple target variables, using the mean of 100 repeats to
evaluate the model’s performance.

ML model ROC and AUC analyses
ROC curves were generated for each drug using the scikit-learn library
(Version 1.3.0) to assess the ability of the Gradient Boosting models to
predict resistance to each analyzed drug. This process was repeated
three times using different random seeds to ensure data robustness,
after which mean AUC± standard deviations were computed for each
drug. Optimal cutoff value determinations for individual drug resis-
tance predictions were identified as the values that matched the
highest F1 scores.

Comparison of ML models generated with GAM and WHO cat-
alog input data
Significant GAM outputs and 2021 and 2023 WHO mutation catalog
results were utilized as inputs for a Gradient Boostingmodel that used
consistent model parameters and differed only in their respective
input sources. The 7129 Mtb isolate dataset was partitioned into
training and testing subsets containing 75% and 25% of these isolates,
respectively, and model accuracy for each drug was compared using
10 consecutive random seeds. Statistical significance of accuracy dis-
parities versus the GAM reference model was analyzed using row-
matchedone-wayANOVAs employingGeisser-Greenhousecorrections
and Dunnett’s test for multiple comparisons. These analyzes were
performed in Python using the scikit-learn library (Version 1.3.0) using
a 10-fold cross-validation approach to improve result reliability.

This process was replicated using held out data from 428 DS3
isolates employed as a validation dataset and with an independent
dataset of 427 isolates from a multisite cross validation dataset (DS4)
generated from three sites in China. DS4 consisted of 80 samples from
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West China Hospital (Chengdu), 281 from Beijing Chest Hospital
(Beijing), and 102 samples from Shenzhen Third People’s Hospital
(Shenzhen), after excluding 36 samples with low genome alignment
rates (<50%) or read depths (<10), poor DST quality, or missing phe-
notypic information.

Clinical sample culturing, phenotyping, and genotyping
Archived data from West China Hospital and Beijing Chest Hospital
isolates analyzed in this study was previously collected using pub-
lished protocols25,53. Data from Shenzhen Third People’s Hospital was
generated from isolates cultured between 2015 and 2023. Sputum
specimens obtained from patients were inoculated into Bactec MGIT
960 culture tubes (Becton, Dickinson and Co., Sparks, MD, USA,
245122) to verify positive isolates after standard NALC-NaOH decon-
tamination (BaSO, Wuhan Jinhong Biotech Development Co., China,
BC1999). Positive isolates were identified using acid-fast staining kit
(BaSO, Wuhan Jinhong Biotech Development Co., China, Catalog Cat-
alog BA4092A). Strains isolated from sputum were subcultured on
Lowenstein-Jensen (L-J) medium agar (BaSO, Wuhan Jinhong Biotech
Development Co., China, CUSTOM0038) for phenotypic drug sus-
ceptibility testing (DST) and DNA extraction.

Phenotypic MIC DST was performed according to the manu-
facturer’s instructions (Trek Diagnostic Systems Ltd., UK, V3020)56,57.
Colonies in the log-phase growth stage were suspended in a saline-
Tween solution (Trek Diagnostic Systems, T3491), adjusted to a
McFarland standard of 0.5, and allowed to settle for 15min. A 100 µL
aliquot was transferred to 11mL of Middlebrook 7H9 broth (Trek
Diagnostic Systems, T3441) and vortex-mixed for 20 s. Another 100 µL
of thismaterialwas inoculated into eachwell of the SensititreMYCOTB
MIC plate (Trek Diagnostic Systems, MYCOTBI). Each MYCOTB plate
consisted of 2 antibiotic-free positive control wells and 94 antibiotic-
containing wells testing 7 antibiotics: amikacin, ethambutol, ethiona-
mide, isoniazid, kanamycin, moxifloxacin, and rifampicin. Plates were
covered with permanent plastic seals provided in the test kit and
incubated at 37 °C in 5% CO2. Growth was monitored at days 7, 10, 14,
and 21 using a mirrored viewer. The lowest concentration with no
visible growth was recorded as the MIC. Unless otherwise specified,
MYCOTB test results were based on the first time point with adequate
growth in the drug-free control wells.

Genomic DNA was extracted using the CTAB method with
reagents from Sangon Biotech (Shanghai) Co., Ltd. Colonies from
Lowenstein-Jensen (L-J) slants were collected into 500 µL of Tris-EDTA
buffer (pH8.0SangonBiotech, Catalog#B540625) andheated at 80 °C
for 20min. Lysozyme (50mg/mL, Sangon Biotech, Catalog #B541002)
was added (10 µL per tube), followed by vortex mixing and incubation
at 37 °C for 2 h. Proteinase K (2mg/mL, Sangon Biotech, Catalog
#A414170) and 10% sodium dodecyl sulfate (SDS, Sangon Biotech,
Catalog #A425678)were then added (50 µL each), vortexed gently, and
incubated at 65 °C for 20min. A 150 µL mixture of N-acetyl-N,N,N-tri-
methyl ammonium bromide (CTAB, Sangon Biotech, Catalog
#A600108) and NaCl was added, followed by the addition of NaCl
alone. The suspension was vortexed until milky and incubated at 65 °C
for 10min. Chloroform-isoamyl alcohol (24:1, Sangon Biotech, Catalog
#A610278) was added (700 µL), vortexed, and centrifuged at
13,000 rpm for 5min at room temperature using a microcentrifuge
(Thermo Fisher Scientific Inc., USA, ModelST40R). The genomic DNA
in the aqueous phase was then isolated by ethanol precipitation and
resuspended in 30 µL of nuclease-free water (Sangon Biotech, Catalog
#B300591).

DNAquality control was performed using anAgilent 5400 system.
DNA shearing was conducted using a Covaris instrument (Covaris,
USA, model ML230) to generate ~350bp fragments. End repair was
performed using T4DNA polymerase (New England Biolabs, M0203L),
and 3’ adenylationwas performedwithKlenow fragment (NewEngland
Biolabs, Catalog #M0212). DNA adaptors (Illumina, Catalog #FC-121-

1031) were ligated using T4 DNA ligase (New England Biolabs, Catalog
#M0202). Size selection was performed using SPRIselect beads
(Beckman Coulter, USA, Catalog #2358413). The DNA library was
amplified using high-fidelity polymerase (New England Biolabs, Cata-
log #M0530), and sequencing was performed using the Illumina
NovaSeq platform (Illumina, USA, model NovaSeqX) with 150 bp
paired-end reads (PE150).

Sample size and data completeness analyses
The effect of sample size on the ability for GAM to distinguish true-
positive from false-positive associations was assessed by system-
atically reducing the dataset to contain 179, 529, 879, 1579, 2279, 2979,
4329, 5779, and 7179 samples. Each subset was analyzed using GAM to
identify true- and false-positive drug-gene associations.

A comparative analysis of the effect of sample size on the ability of
GAMandLMMto identify drug-gene associationswasperformedusing
the same datasets used to evaluate sample size effects on GAM per-
formance. The LMMmodel employed in this analysis used FaST-LMM58

with adjustments for kinship, lineage, geographic region of sample
collection, and the testing site of each sample, where the kinship
matrix was assessed using the Jaccard similarity index, and lineage,
geographic region, and test site were included as covariates.

The effect of missing data was assessed by eliminating random
drug resistance data fields from random isolates to generate data sets
with missing DST data rates of 1, 5, 7.5 10, 12.5, 15, 17.5, 20, and 25%.
Sample and data exclusion processes were repeated 10 times, and the
resulting data was analyzed to determine themean and standard error
of the number of true- and false-positive drug-gene associations
detected at each sample size or data drop rate. This analysis was not
performedusing the LMMapproach, as FaST-LMM inherently excludes
isolates with missing phenotype information, and thus the effects for
missing DST data can be drawn from the effects of reduced
sample size.

Both studies analyzed and/or dropped data from the three first-
line drugs and six second-line drugs (amikacin, ethambutol, ethiona-
mide, isoniazid, kanamycin, levofloxacin, moxifloxacin, rifabutin, and
rifampicin), since the four new/reproposed drugs analyzed in the
CRyPTIC dataset lacked significant drug-gene associations and thus
did not contribute to GAM performance.

ML adjustment for missing data
To assess the impact of ML on GAM analyses performed with incom-
plete DST data, a multi-output classification task was performed using
the scikit-learn library (Version 1.3.0). In this analysis, the 7179CRyPTIC
isolates suitable for GAM analyses were systematically divided intoML
training sets containing 1, 25, 50, and 75% of these entries, with the
remaining samples employed for the corresponding GAM testing
dataset. These ML training datasets were supplemented with 428
entries (DS3) with unique drug resistance profiles that could not be
grouped for GAM (Supplementary Fig. 1) but provided valuable
information to train the ML model. These training datasets were used
to train Gradient Boosting classifiers, configuredwith a learning rate of
0.1 and 100 estimators, and later applied to predict missing values in
the testing datasets employed for GAM analyses. Missing data in these
testing datasets was produced by randomly excluding a drug resis-
tance data field from a randomly selected isolate to generate testing
datasets 0, 5, 20, 40, 60, 80, and 99% missing DST data rates, and
repeating this procedure five times for each missing data rate value.
Missing DST data values were then imputed by the MLmodels and the
adjusted data was subjected to GAM evaluation. All GAM results were
analyzed to determine mean and standard error values.

Data visualization and statistics
Data visualization and statistical analysis were carried out using var-
ious software tools. Figures were created using GraphPad Prism
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(Version 10.0.2), with p-values obtained through a one-way analysis of
variance (ANOVA) and Tukey’s multiple comparison test. Additionally,
Matplotlib (Version 3.8.0) and Seaborn (Version 0.13.0) were used for
generating other data plots to provide comprehensive visual repre-
sentations of the study’s findings. The performance of machine
learning models was assessed using the scikit-learn library (Version
1.3.0), enabling rigorous evaluation of their predictive capabilities. In
investigating associations between categorical variables and addres-
sing the need for multiple comparisons, we conducted Fisher’s exact
tests and applied Bonferroni correction, making use of the statsmodel
library (Version 0.14.0) to maintain statistical rigor. For the visualiza-
tion of phylogenetic trees and their associated data, we utilized the
phylobase (Version 0.8.10) and ggtree (Version 3.2.1) packages, pro-
viding a comprehensive representation of evolutionary relationships
within the dataset. TheGAManalysis codewas developed and tested in
Python (version 3.8.1) using Jupyter Notebook (version 7.3.2). Key
libraries included Pandas (version 1.3.5), NumPy (version 1.18.2), SciPy
(version 1.6.2), PySnpTools (version 0.0.2), FastLMM (version 0.0.1),
and scikit-learn (version 1.6.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study are provided in the Supplementary
Information and Source Data within this paper. Significant variants,
SNPs, genes, and group thresholds for GAM and LMM analyses ofMtb
and S. aureus, along with large input files for code execution, are
accessible on Figshare [https://doi.org/10.6084/m9.figshare.
28191398]59. Gene variant and DST data for the 12,289 CRyPTIC data-
base Mtb isolates (DS1-DS3) used in this study are available at the
European Bioinformatics Institute (EBI) FTP site [https://ftp.ebi.ac.uk/
pub/databases/cryptic/release_june2022/]. The 427 DS4 isolates from
China with linked DST profiles (DS4) are available under restricted
access for research purposes only, access can be obtained by request
from the corresponding authors, subject to institutional approval. Raw
whole genome sequencing data forMtb isolates collected by the Third
People’s Hospital of Shenzhen were deposited in Sequence Read
Archive (SRP567794) [https://www.ncbi.nlm.nih.gov/sra/?term=
SRP567794]. Whole genome sequencing raw data from the Beijing
Chest Hospital were deposited in Sequence Read Archive (SRP134826)
[https://www.ncbi.nlm.nih.gov/sra/?term=SRP134826] and Genome
SequenceArchive (CRA000786) [https://ngdc.cncb.ac.cn/gsa/browse/
CRA000786]. S. aureus gene variants and linkedDST data for the 3,942
isolates used in this study are available at GitHub [https://github.com/
nwheeler443/staph_gwas]. Source data are provided with this paper.

Code availability
The GAM pipeline code is available on Zenodo [https://doi.org/10.
5281/zenodo.14975407]60.
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