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Large-scale biosynthetic analysis of human
microbiomes reveals diverse protective
ribosomal peptides

Jian Zhang 1,3, Dengwei Zhang1,3, Yi Xu 2, Junliang Zhang1, Runze Liu1,
YingGao1, Yuqi Shi1, Peiyan Cai 1, Zheng Zhong 1, Beibei He 1, Xuechen Li 1,
Hongwei Zhou2, Muxuan Chen 2 & Yong-Xin Li 1

The human microbiome produces diverse metabolites that influence host
health, yet the chemical landscape of ribosomally synthesized and post-
translationally modified peptides (RiPPs)—a versatile class of bioactive com-
pounds—remains underexplored. Here, we conduct a large-scale biosynthetic
analysis of 306,481 microbial genomes from human-associated microbiomes,
uncovering a broad array of yet-to-be-discovered RiPPs. These RiPPs are dis-
tributed across various body sites but show a specific enrichment in the gut
and oral microbiome. Big data omics analysis reveals that numerous RiPP
families are inversely related to various diseases, suggesting their potential
protective effects on health. For a proof of principle study, we apply the
synthetic-bioinformatic natural product (syn-BNP) approach to RiPPs and
chemically synthesize nine autoinducing peptides (AIPs) for in vitro and
ex vivo assay. Our findings reveal that five AIPs effectively inhibit the biofilm
formation of disease-associated pathogens. Furthermore, when ex vivo testing
gut microbiota from mice with inflammatory bowel disease, we observe that
two AIPs can regulate the microbial community and reduce harmful species.
These findings highlight the vast potential of human microbial RiPPs in reg-
ulating microbial communities and maintaining human health, emphasizing
their potential for therapeutic development.

Humans and their symbiotic microbes form a complex and diversi-
fied holobiont. Perturbation of the human microbiota, known as
dysbiosis, has been implicated in the pathogenesis of various
diseases1,2, which is largely attributed to the chemical interactions
mediated by metabolites de novo biosynthesized or transformed by
the colonized microbiota3–6. As a result, extensive efforts have been
made to decipher bioactive molecules secreted by the human
microbiota7,8, revealing a rather diverse array of metabolites such as
polyketides (PKs), non-ribosomal peptides (NRPs), and ribosomally
synthesized and post-translationallymodified peptides (RiPPs). RiPPs

have particularly attracted increasing attention because of their
diverse structures9, various biological functions, and manifold roles
in physiology and ecology10,11.

RiPPs are a class of diverse and widespread natural products
produced by a multitude of producers, including bacteria, fungi, and
plants10. They often exhibit diverse activities12, allowing them to
mediate the communications betweenmicrobes or betweenmicrobes
and human hosts. Antibacterial RiPPs can enable commensal produ-
cers to combat pre-existing or foreign pathogens13. For example, lac-
tocilin, a thiopeptide from vaginal Lactobacillus gasseri, demonstrates
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potent antibacterial effects against vaginal pathogens such as Cor-
ynebacterium aurimucosum14. Nisin-like lantibiotics identified in gut
microbiome against both pathogens and human gut commensals
could shed light on the future development of therapeutics15. Addi-
tionally, immunomodulatory RiPPs16–19 can interact with the human
immune system, exemplified by tonsillar microbiome-derived Sali-
varicins, whichcanblock thebindingof IL-6 and IL-21 to their receptors
to disrupt the immune response16. Beyond impacting the microbial
community or host directly, RiPPs can also act as signaling molecules
to regulate human microbiome responses, as evidenced by auto-
inducing peptides (AIPs) from the skin microbiome, which maintain
skin barrier homeostasis by disrupting the agr system of the Staphy-
lococcus aureus pathogen20. These observations underscore the
diverse chemical nature of RiPPs and their varied protective roles to
human health. Nonetheless, our current understanding in this area is
primarily limited to sporadic reports, highlighting the urgent impera-
tive for a more comprehensive investigation.

While over 40 subclasses of RiPPs are differentiated by their
unique structures, their biosynthesis follows a standard three-step
process controlled by biosynthetic gene clusters (BGCs)9,21. The bio-
synthesis process includes expressing a precursor peptide, installing
various structural features to the core peptide through post-
translational modifications (PTM), and finalizing with leader cleavage
and export to produce active RiPP products. The conserved biosyn-
thetic logic allows the development of computational approaches for
RiPP discovery, rendering diverse tools poised for RiPP identification
from the human microbiome22,23. These tools typically are established
on precursor-centric genome mining strategies (e.g., DeepRiPP24 and
TrRiPP25) or primarily targeting the PTM enzymes (e.g., antiSMASH26

and DeepBGC27). Leveraging various bioinformatics tools, researchers
are now focusing on understanding the biosynthetic potential of RiPPs
within the complex microbiota. Some studies have concentrated on
the biosynthetic potential of specific strains, as illustrated by the dis-
covery of bioactive RiPPs like Ruminococcin C28 and Streptosactin29

from human commensal bacteria Ruminococcus gnavus and Strepto-
coccus spp., respectively. Others have centered on in silico investiga-
tion of RiPP from a limited number of reference genomes14,30–32.
However, our understanding of the biosynthetic landscape of RiPPs
from human microbiomes is still limited, hindered by a lack of
explored referencegenomes and imperfect prediction tools. As such, a
more thorough examination of RiPPs is needed to improve our
understanding of their biosynthesis, laying the groundwork for
understanding the crucial biological role of RiPPs within the complex
microbiota.

The exponential increase in human microbial genome data pro-
vides an opportunity for systematically exploring RiPPs biosynthesis in
thehumanmicrobiomeand their potential role in humanhealth. In this
study, using precursor-centric and PTM-centric approaches, we sys-
tematically examined the RiPP biosynthetic potential of 306,481 gen-
omes of the humanmicrobiota to identify 12,076 yet-to-be-discovered
RiPP families (the clusters of RiPP precursors with a threshold of 50%
identity), largely expanding the chemical landscape of RiPPs. For a
proof of principle study, we have found 30 RiPP families, through
comparative meta-omic analyses, that are negatively associated with
multiple diseases such as inflammatory bowel disease (IBD) and col-
orectal cancer (CRC). While synthetic-bioinformatic natural product
(syn-BNP) strategies have historically focused on NRPs due to their
modular biosynthetic logic and compatibility with bioinformatic pre-
diction tools33–35, we sought to expand this framework to RiPPs. Spe-
cifically, we targeted autoinducing peptides (AIPs), considering their
biological significance, synthetic feasibility, and well-established
enzymology. Experimental validation of biosynthesis-guided chemi-
cally synthesized AIPs demonstrated their potential to counter biofilm
formation of disease-related pathogens. Using an ex vivo culture to
simulate the gut microbiota’s response to AIPs, we identified two AIPs

capable of modifying the gut microbial community and reducing
pathogenic species from IBD-affected mice. These findings offer
valuable insights into the chemical diversity of RiPPs and their pro-
tective roles in human health, sparking growing interest in the ther-
apeutic potential of RiPPs released by our microbiota.

Results
Mining human microbiomes reveals the untapped biosynthetic
potential of RiPPs
Current genome mining for RiPPs can be approached through two
main methods: tailoring enzymes-oriented approach (e.g., antiSMASH
6.026) and precursors-centric approach (e.g., DeepRiPP24 and TrRiPP25).
The enzymes-oriented approach is reliable in identifying known RiPPs
but may miss out on discovering uncharacterized ones. On the other
hand, the precursors-centric approach is better suited for identifying
uncharacterized RiPPs, especially from highly fragmented
metagenome-assembled genomes but may have a slightly lower
accuracy rate. To comprehensively explore the biosynthetic potential
of RiPPs in the humanmicrobiomes, we combined both types of tools
to analyze a dataset consisting of 306481 referencemicrobial genomes
from diverse human body sites36–38, including the gut, oral cavity, skin,
airways, vagina, and nasal cavity (Fig. 1, Supplementary Fig. 1). Results
showed that most genomes (78.3% identified by antiSMASH and 95.3%
identified by DeepRiPP and TrRiPP) could encode RiPPs.

The analysis of antiSMASHdetected 410,487RiPPBGCs in 239,927
genomes, accounting for 74.5% of the predicted secondary metabolite
BGCs (Fig. 1b, Supplementary Fig. 1, Supplementary Data 1). The other
two precursor-centric tools identified 1,777,091 RiPP precursors in
292,041 genomes, with 359,815 precursors overlapping between the
two tools (Fig. 1c, Supplementary Fig. 2, Supplementary Data 2).
Through examining the adjacent genes of RiPP precursors identified
by precursor-centric approaches, we found that the genomic contexts
of 32.6% of precursors contained genes associated with known RiPP
biosynthesis (Fig. 1c, Supplementary Fig. 3, Supplementary Tables 1-2),
while the genomic contexts of 58.4% of precursors contained
uncharacterized RiPP biosynthetic enzymes collected in decRiPPter39

(Fig. 1c). These findings indicated that the precursor-centric approach
offered a higher level of uncharacterized biosynthetic potential. The
analysis also showed that antiSMASH-defined RiPP BGCs were more
abundant in 25 phyla, expanding to 29phylawith the precursor-centric
approaches (Fig. 1d, Supplementary Fig. 1). Notably, the most abun-
dant phyla in the human gut40, Bacteroidota and Firmicutes, harbored
the most abundant RiPPs. This widely distributed RiPPs across diverse
human microbiomes underscores human microbes’ robust RiPP bio-
synthetic potential.

Broad diversity and novelty of RiPP precursor peptides in the
human microbiome
Given the tremendous potential of RiPP biosynthesis in the human
microbiome, we next sought to examine their chemical diversity and
novelty. To balance the accuracy and novelty of genome mining in
our analysis, we only retained 423,831 RiPP precursors confirmed by
at least two mining strategies for downstream analysis, which could
effectively reduce the number of false positives while preserving
uncharacterized RiPPs. The 423,831 RiPP precursors were found
either located within RiPP BGC regions41 identified by antiSMASH
(62.4%) or by both precursors-centric approaches (37.6%) (Fig. 2a,
Supplementary Data 3), with rSAM-modified RiPPs being the most
abundant (Fig. 2b). Furthermore, we also examined whether these
orphan precursors are associated with other antiSMASH-defined
RiPP BGCs within the same genome. We found 109,581 out of 159,475
precursors co-exist with other RiPP BGCs within the genome, with
3473 pairs being situated in the same contig (Supplementary Data 3).
This suggests that those orphan precursors might be the precursors
of other far-distant BGCs. These RiPPs were strongly enriched in 21
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Fig. 1 | Comprehensive survey of RiPPs in the human microbiome. a The
workflow of identifying RiPP BGCs and RiPP precursors from 30,6481 human-
associated microbial genomes collected from wide body sites. Tailoring enzymes-
oriented tool (e.g., antiSMASH) and precursors-centric tools (e.g., DeepRiPP and
TrRiPP) are adopted for predicting RiPP BGCs and RiPP precursors, respectively.
The pie charts show the percentage of genomes that encode RiPPs. b BGCs iden-
tified by antiSMASH are grouped into eight BGC classes, including RiPPs (410,487,
74.5%), Terpene (14,753, 2.7%), PKS/NRPS Hybrids (4067, 0.7%), Saccharides (17,
0.003%), NRPS (47,281, 8.6%), PKS_others (5210,0.9%), PKS_I (1506,0.3%), and
Others (67,328, 12.2%). c Genomic context of identified RiPP precursors by Dee-
pRiPP and TrRiPP. The left panel of the figure displays the scales representing the
proportion of precursors identified by either DeepRiPP or TrRiPP, or both

approaches (DeepRiPP_TrRiPP). The right panel of thefigure illustrates the genomic
context associated with the identified precursors. This includes: (1) RiPP related:
Genes in the genomic context that are associated with known RiPP biosynthesis.
(2) Other biosynthetic enzyme related: Precursors that co-occur with potentially
uncharacterized RiPP biosynthetic enzyme(s) from a broader PTM enzyme dataset
collected by decRiPPter39. (3) Others: Precursors located in the biosynthetic gene
cluster (BGC) region of other secondary metabolite BGC classes or under other
conditions. d The top section of the bar chart represents the counts of BGCs per
genome in each phylum, while the bottom section represents the counts of RiPP
precursors per genome in each phylum. Taxonomic classification was determined
based on annotations from the Genome Taxonomy Database (GTDB). Phyla with
higher RiPP biosynthetic potential are highlighted in red.
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phyla, 1014 genera, and 3369 species. At the genus level, which is an
appropriate taxonomic rank for assessing secondary metabolite
biosynthetic diversity42, we found that RiPP biosynthetic potential
considerably varied from 1 to 33 RiPP precursors per genome, with
Elizabethkingia (n = 33), Chryseobacterium (n = 18) and Tissierella
(n = 15) having the highest number of RiPP precursors (Supplemen-
tary Fig. 4, Supplementary Information).

To evaluate RiPP sequence diversity, we calculated the Extended-
connectivity fingerprints (ECFPs)43 of each RiPP precursor, a topolo-
gical fingerprint for molecular characterization utilized in two-
dimensional chemical space. Comparing them with experimentally
validated RiPP precursors in the MIBiG database (3.0)6, we observed a
notably expanded chemical space (Fig. 2c, Supplementary Data 4),
suggesting that human microbiome-derived RiPPs could significantly
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enlarge the chemical diversity within the RiPP superfamily. Next, we
explored the chemical diversity of nine RiPP classes based on the core
precursor sequences predicted by the cleavage prediction module of
DeepRiPP24 (Fig. 2d, Supplementary Data 4). Pairwise Tanimoto coef-
ficient was used to measure the similarity between precursors. Nota-
bly, autoinducing peptides exhibited the highest median Tanimoto
coefficient, suggesting that their sequences were comparatively con-
served within the class. In contrast, bacterial head-to-tail cyclized
precursors had the lowest Tanimoto coefficient, indicating high intra-
class sequence diversity. Moreover, we found that different RiPP
classes were far apart, indicating their sequence uniqueness. Overall,
RiPP precursor peptides in the human microbiome exhibit a remark-
ably diverse chemical landscape characterized by both intra-class and
inter-class variations.

To further assess the novelty of RiPPs in the humanmicrobiome, we
examined their precursor sequences and tailoring enzymes, which can
dictate the chemical structure of mature RiPP products (Fig. 2e, f and
Supplementary Figs. 5-6, Supplementary Information). When evaluating
the chemical novelty of RiPPs based on their precursors, we clustered
423,831 RiPP precursors into 12,076 families with a threshold of 50%
identity (Fig. 2e, SupplementaryData 5). Through querying these families
against known RiPP precursors deposited in the MIBiG database, we
surprisingly found that only 292 (2.41%) families were homologous (e-
value <0.05 and coverage ≥ 90%). For the remaining families, we used
RPS-BLAST to search protein domains against the Conserved Domains
Database (CDD), detecting 2339 families (19.37%) containingwell-defined
RiPP precursor domains, such as AgrD domain and rSAM-modified RiPP
domain (Supplementary Information). Notably, most families (9445,
78.21%) remained uncharacterized or exhibited significant distinctions
from known RiPPs (Fig. 2e). We examined the adjacent genomic context
of RiPP precursor families when evaluating the novelty based on tailoring
enzymes. We found that the genomic contexts of 60.9% RiPP precursor
families harbored classical RiPP biosynthetic-related genes, while the
genomic contexts of 23.8% RiPP precursor families contained unchar-
acterized RiPP biosynthetic-related enzymes defined by DeepBGC27

(Fig. 2f). Considering both aspects, 63.7% of RiPP precursor families have
the potential to produce uncharacterized RiPP products (Fig. 2f). This
finding suggests the possibility of uncharacterized enzymology and
chemistry in these RiPPs families.

RiPPs are niche-specific and actively transcribed in the healthy
human microbiome
We then attempted to assess RiPP distribution in the human micro-
biome by examining their profile in healthy human microbiomes. We
analyzed 748 metagenomic samples from the Human Microbiome
Project (HMP)44, covering six human body sites: gut, buccal mucosa
(oral), supragingival plaque (oral), tongue dorsum (oral), anterior
nares (skin), and posterior fornix (vaginal) (Supplementary Data 6).
Metagenomic analysis revealed 28.63% (3457/12,076) of RiPP pre-
cursor families were detected in healthy individuals, varying

considerably from 100 families in anterior nares to 2791 families in the
stool (Fig. 3a, Supplementary Data 5). Accumulation curves showed a
steep increase, indicating that more RiPP precursor families could be
identified in each body site with larger sample sizes (Supplementary
Fig. 7a). Compared to the sporadic presence in the skin and vagina,
RiPP precursor families exhibited higher diversity, prevalence, and
abundance in the oral and gut (Fig. 3a and Supplementary Fig. 7b).
Among these detected families, 73.2% (2530/3457) were niche-specific,
while 0.9% (31/3457) were present across six body sites in at least one
sample (Supplementary Fig. 7c). This could be largely attributed to the
fact that the producers of niche-specific RiPPs were habitat-specific
(Fig. 3b). Furthermore, two-dimensional visualization demonstrated
distinctpatterns of RiPP precursor families amongdifferent body sites,
indicating their niche-specificity (Fig. 3c). Activity prediction showed
that most RiPPs (70.7%, 8533/12,076) were antibacterial (Fig. 3d),
possibly enabling their producers for niche adaption.

To further confirm whether RiPPs are potentially active in the
human microbiome, we looked into their transcription in 281 pairs of
metagenomic and metatranscriptomic data45 (Supplementary Data 6).
Among8272 (68.50%, 8272/12,076) RiPP precursor families detected in
metagenome samples, 3419 (28.31%, 3419/12,076) were found to be
actively transcribed in metatranscriptome data. Furthermore, a sig-
nificant proportion of them in each class (ranging from 54.5% of
thiopeptide to 91.7% of graspetide) were predicted to exhibit bioac-
tivity (Fig. 3e). These findings necessitate investigating the potential
role of bioactive RiPPs in human health.

Differentially transcribed RiPP families are associated with
multi-diseases
Inspired by numerous functional RiPPs from human microbiota linked
to mediate microbe-microbe interactions or microbe-host interactions,
we aimed to explore the potential impact of RiPPs on human health. For
a proof of principle study, we conducted comparative metatran-
scriptome analyses to identify underlying bioactive RiPPs associated
with multiple diseases, including type 1 diabetes mellitus (T1D), obesity
(OB), liver cirrhosis with hepatitis C infection (LC), colorectal cancer
(CRC), Parkinson’s disease (PD), and inflammatory bowel disease (IBD,
encompassing Crohn’s disease (CD) and ulcerative colitis (UC)) (Sup-
plementary Data 6). Themetatranscriptomic analysis showed significant
differences in RiPP diversity between the health and disease groups
(Supplementary Fig. 8). Specifically, the healthy groups had a lower
diversity than patients with OB. Permutational multivariate analysis of
variance (PERMANOVA) based on Bray-Curtis dissimilarity showed a
significant difference (p<0.05) in the overall composition of transcribed
RiPPprecursor families betweenhealth anddisease inCRC and IBD case-
control cohorts. In total, we identified 195 precursor families depleted
while 146 enriched in disease groups within these disease case-control
cohorts (Fig. 4a, Supplementary Data 7). Remarkably, 23 families
exhibiteddepletion acrossmultiple disease groups,while 7 familieswere
enriched in multiple disease groups (Fig. 4b, Supplementary Fig. 9).

Fig. 2 | RiPPprecursor peptides present a hypervariable chemical diversity and
novelty. a RiPP precursors retained for downstream analysis. Upper: Two circles in
different colors represent the RiPP precursor peptides identified by DeepRiPP and
TrRiPP. The red-circled area highlights the precursors that were retained for
downstream analysis. Bottom: The stacked barplot illustrates the proportion of
RiPP precursors retained for analysis. b The outer barplot displays the count of
precursor sequences for nine RiPP classes, while the inner stacked barplot repre-
sents the distribution of precursor length. c UniformManifold Approximation and
Projection (UMAP) plot showing the chemical space of RiPP precursors obtained
from the human microbiome (black dots) and experimentally validated RiPP pre-
cursors deposited in the MIBiG 3.0 database (red dots). d Multi-Dimensional Scal-
ing (MDS) plot displays the chemical diversity of predicted mature precursors
within and between RiPP classes. Dot size signifies the count of unique precursor
sequences per class, color indicates median Tanimoto coefficient reflecting class

similarity, and distance between dots represents similarity among different RiPP
classes. e, f Classify the novelty of RiPP families based on their precursor and
genomic neighborhood (Supplementary Information). e The chord diagram illus-
trates the novelty of identified precursor families (left panel) for nine different RiPP
classes (right panel). The novelty of RiPP precursor families into “MIBiG” (homo-
logous to characterized precursors in MIBiG), families with RiPP-associated
domains (1, Graspetide (3 families), 2, Lanthipeptide (31 families), 3, Lassopeptide
(26 families), 4, Thiopeptide (5 families), 5, RiPP-like (25 families), 6, LAP (19
families), and 7, other known RiPPs (2 families)), and “Uncharacterized RiPP”
families. Numbers in brackets indicate the count per category. f RiPP families are
classified as Classic RiPP (known precursor homology and defined genomic
neighborhood), Uncharacterized RiPP (no known precursor homology or novel
genomic neighborhood), and Others (remaining families).
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Some families (e.g., BF_63 and BF_94) significantly differentiated CD
patients fromhealthy individuals in a random forest classificationmodel
based on the abundance of transcribed precursor families (Supple-
mentary Fig. 10), suggesting their important roles inmaintaining human
health. Although the causal relationship and specific mechanisms
remain to be determined, these RiPPs may be contributors to host
health, and future experimental studies warrant establishing the exact

roles of differentially transcribed RiPPs (e.g., exacerbate disease patho-
genesis or promote human health16,46).

Autoinducing peptides negatively associated with diseases
exhibit anti-pathogenic biofilm and anti-inflammatory activity
Although many differentially expressed uncharacterized RiPPs were
discovered in our analysis of healthy/disease states (Fig. 4), their
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structural complexity and incompletely comprehensively mapped
enzymology hindered biosynthetic pathway reconstruction, mature
peptide isolation, and functional characterization. Considering the
comparative conciseness and predictability of the AIP products, we
next sought to experimentally validate the potential functions of six
AIP families (BF_63, BF_94, BF_280, BF_398, BF_488, and BF_598), which
were enriched in the healthy microbiome (Fig. 4b, Supplementary
Figs. 11-16, Supplementary Table 3). The AIP biosynthesis involves the
removal of a C-terminal follower and modifications, which are
achieved by the AgrB enzyme. The resulting intermediate then
undergoes a second cleavage in the N-terminus, ultimately producing
mature AIPwith variable lengths of the exotail47. Althoughwe intended
to carry out heterologous expression of six AIPs, this proved unsuc-
cessful. This might be because the protease involved in the second
cleavage ofAIPs’ biosynthetic pathway is still not fully understood, and
the native producers of these six AIPs are unavailable. We, therefore,
alternatively attempted to chemically synthesize the candidatemature
chemicals of AIPs. Here, we extended syn-BNP strategies33–35, which
historically focused on NRPs, to RiPPs. Specifically, we employed a
combination of structural prediction and conservation analysis of RiPP
precursor to deduce the matured structure of AIPs (Fig. 4c). To do so,
we initially established this approach on a well-studied AIP-I from
Staphylococcus aureus (Supplementary Information). Specifically, we
utilized AlphaFold-Multimer to predict the interaction between pre-
cursor peptide and AgrB protein and found that the modification core
region precisely docks into the catalytic pocket. In the core region,
thiolactone or lactone will be installed between Cysteine or Serine and
another amino acid containing a hydrophobic side chain by AgrB.
Additionally, we can deduce the exocyclic tail region of the final AIPs,
as the proteolysis step recognizes and occurs at conserved residues.
AIPs containing thiolactone, without the exocyclic region, may rear-
range to form homodetic cyclopeptides (cAIPs)48,49. Therefore, we
could infer the structure of mature AIPs by combining the prediction
of core region, modified residues, and exocyclic tail. The accuracy and
reliability of this approach were further validated by another two
reported AIPs (Supplementary Fig. 17).

According to the biosynthetic logics of AIPs, we deduced the
potential mature chemicals of six AIP families (Fig. 4b, Supplementary
Fig. 18) and chemically synthesized 9 AIP chemicals, including 3 var-
iants. These were confirmed through high-resolutionMS/MS and NMR
(Fig. 4d, Supplementary Figs. 19-36, Supplementary Information).
After observing that none of them exhibited significant antibacterial
activity against a panel of 17 human pathogens (Supplementary
Data 8), even at concentrations of 100 or 50μg/mL, we proceeded to
evaluate their inhibitory activities against the biofilm formation of
these pathogens (Supplementary Figs. 37-38). We observed that the 5
AIPs (BF_94_et_free, BF_280_t, BF_280_c, BF_398_c, and BF_598_c)
demonstrated significant inhibition against at least one pathogenic
biofilm (Fig. 4e, Supplementary Fig. 38, Supplementary Data 9), 4 of
which showed extended-spectrum activities against pathogenic bio-
film across different species. For example, BF_398_c and BF_94_et_free
from Lachnospira genus, showed relatively potent anti-biofilm activ-
ities to Staphylococcus aureus, Listeria monocytogenes, and

Peptostreptococcus stomati. We further explored their immunomodu-
latory effects in vitro in lipopolysaccharide (LPS)-induced mouse
macrophage RAW264.7 cells. Using an enzyme-linked immunosorbent
assay (ELISA), we observed that BF_94_et_L1 could significantly
decrease two pro-inflammatory cytokines, tumor necrosis factor-α
(TNF-α) and interleukins 6 (IL-6), at a physiologically relevant low
concentration of 0.1μg/mL (Fig. 4f, Supplementary Data 10). Collec-
tively, their multiple functions implied that human microbiome-
derived AIPs potentially provide a multifaceted protective role in
human health.

AIPs affect the composition of IBD mouse fecal-derived ex vivo
microbial community
Efforts to investigate the role of AIPs in disease contexts would greatly
benefit from studying a system that mimics disease-derived microbial
communities. We, thus, adopted an IBD mouse fecal-derived ex vivo
microbial community to model how the gut microbiota responds to
AIPs (Fig. 5a, Supplementary Data 11). We selected two functional AIPs
(i.e., BF_280_c and BF_398_c) for assay, given their potent inhibition
against biofilm formation, which is a major virulence factor in IBD50,51.
Antibiotic vancomycin was used as a positive control due to its clinical
use in IBD treatment52. After incubating fecal-derived microbiota with
AIPs or vancomycin for 48hours, we found, except for vancomycin
(10μg/mL), no marked difference in major taxa when compared with
the blank group (Fig. 5b, Supplementary Fig. 39, SupplementaryData 11).
Nevertheless, despite their lack of antibacterial activity in our tests, both
two AIPs (10μg/mL) significantly reduced the microbial diversity, as
reflected by the Shannon diversity index (Fig. 5c, Supplementary
Data 11). Beta diversity analysis utilizing principal coordinate analysis
based on Bray-Curtis distances revealed distinct clustering between
blank and treatment, with notable differences observed in groups of
AIPs (10μg/mL) and vancomycin (1μg/mL and 10μg/mL) (Fig. 5d, Sup-
plementary Fig. 40, Supplementary Data 11). These results indicated that
BF_280_c and BF_398_c could affect the overall microbial community,
possibly by (1)manipulating the production of othermetabolites such as
antibiotics53, which could inhibit the growth of pathogens and recon-
stitution of the protective gut microbiota; (2) regulating (stimulating or
inhibiting) the quorum sensing pathway54,55, thus affecting the commu-
nication between microbes.

Using MaAsLin256 (microbiome multivariable associations with
linearmodels), we found variable number of significantly differentially
abundant species (FDR‐adjusted p value < 0.05) in groups of vanco-
mycin (1μg/mL and 10μg/mL), BF_280_c (10μg/mL), and BF_398_c
(0.1μg/mL and 10μg/mL) when compared with blank group (Supple-
mentary Fig. 41, Supplementary Data 11). At the same concentration of
10μg/mL, vancomycin affected more species (n = 73) than the other
two AIPs (n = 16 and 40). Nevertheless, most differentially abundant
species were affected in a similar pattern by vancomycin or AIPs at
10μg/mL concentration (Supplementary Fig. 41c, Supplementary
Data 11), some of which are closely associated with IBD. As depicted in
Fig. 5e, they inhibited the growth of pathobiont species from genera
Paramuribaculum57 (Paramuribaculum intestinale), and
Oscillospiraceae58,59 (Oscillospiraceae bacterium), which are known to

Fig. 3 | Identified RiPP families are present and transcribed in the healthy
human microbiome. a The data represents RiPP precursor families’ prevalence
and average abundance across six human body sites. Each dot signifies a family,
with bioactive ones in red and unknown ones in black. Blue numbers denote the
count of bioactive and total families per site. Dark grey number in the brackets
indicates the number of RiPPs that are present in at least 50% of individuals at each
body site. b The Sankey diagram illustrates the distribution of RiPP families in the
healthy human microbiome, categorizing them as either niche-specific (present in
one site) or cross-niche (present in more than one site), and further differentiating
them as genus/species-specific or genus/species-cross. c The t-SNE plot showcases
the distinct profiles ofRiPPprecursor families in different body sites. The clustering

of RiPP families within each body site indicates conservation. Each dot on the plot
represents onemetagenome sample.d Predicted activity of RiPP families. The scale
represents the proportion of each predicted activity (upper) or uncharacterized
RiPP families (bottom). The number in brackets indicates the count and percentage
of the RiPP family relative to all families. The term “multiple” indicates multi-
functional RiPPs. Different colors are used to highlight the connections between
RiPP types and their predicted activities. e Presence and transcription of all RiPP
classes in281 pairedmetagenomicandmetatranscriptomic data from fecal samples
of healthy individuals. The pie charts present the percentage of transcribed RiPP
families in each class that predicted bioactivity (red) or unknown (grey).
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be enriched in patients with IBD. Another species, Heminiphilus
faecis60,61, which could produce IBD pathogenic factors, was also found
to be reduced. Additionally, both AIPs decreased the abundance of
pathobiont species from the Prevotella genus62,63 (Prevotella spMGM1),
whichare linked to increased susceptibility tomucosal inflammation in
IBD. These findings implied that AIPs could modulate the fecal

microbial composition and reduce potential pathogens in IBD, justi-
fying their possibly protective effects on human health.

Discussion
Extensive studies have highlighted the profound functional impact of
the host-microbiome interaction on human health, as well as the

5

31

50

59

8

22

104

17

62

21

Enriched in
health
disease

CRC T1D CD UC LC

a

CRC

T1D

CD

UC

LC

BF_30 BF_488*

BF_280*
BF_1459
BF_3128

BF_375

BF_54
BF_1811
BF_4892
BF_6701

BF_63*
BF_2275

BF_398* BF_545

BF_638

BF_94*
BF_96
BF_279
BF_598*
BF_635
BF_972
BF_1270
BF_4093

▪ Autoinducing peptide
▪ rSAM-modified RiPP 

▪ Lanthipeptide
▪ Lasso peptide

Class of RiPP family
▪ Other

b

AgrB-AIP precursor
pairs

AlphaFold
multimer

Precursor

AgrB

MNTLFNLFFDFITGILKNIGNIAA
YSTCDFIMDEVEVP

KELTQLHE

modification
core region

80

0 10 20 30 40

Conservation
precursor

CY S T D F

I
MS

O

NTLFNLFFDFITGILKNIGNIAAMN
YSTCDFIMDEVEVPY

KELTQLHE

(X: amino acid with
hydrophobic side chain)

C/S X

(1)

(3)

(2)

c

d f

S F F
Y

MO
O

A

BF_94_et_L1

C V G
F

L
O

HS

HN

BF_280_c

C W G
L

L
O

HS

HN

BF_398_c

e

C A G
I

L
O

HS

HN

BF_598_c

LPS (1μg/mL)

BF_et_94_L1

Dexamethasome

-

- 1 0.1 --

- - - - 25

+ + + +

0

1000

2000

3000

4000

0

20000

40000

60000

80000

100000

IL
-6

 (p
g/

m
L)

TN
Fα

 (p
g/

m
L)

Pathogen
BF_598_cBF_398_cBF_280_cBF_280_tBF_94_et

_free

>5025>50>5025
Peptostreptococcus
stomatis DSM17678

25> 50> 50> 5012.5
Streptococcus gallolyticus
subsp. Gallolyticus
DSM 16831

502525>10050Listeria monocytogenes
ATCC 19115

251.561.561.5625Staphylococcus aureus
ATCC 43300

25>100>100>100100Candida albicans
ATCC 10231

AIPs (μg/mL)
(lowest concentration for significantly inhibit biofilm formation)

S F F
Y

MO
O

C V G
F

LS

O

H2N

BF_280_tBF_94_et_free

H2N H2N

Article https://doi.org/10.1038/s41467-025-58280-w

Nature Communications |         (2025) 16:3054 8

www.nature.com/naturecommunications


etiology and progression of various diseases64. These research findings
underscore the crucial role that human microbiota plays in health
maintenance by producing a wide variety of unique metabolites65.
These metabolites possess various biological activities and mediate
interactions betweenmicrobes or betweenmicrobes and the host. Yet,
a significant knowledge gap persists in understanding microbial ribo-
somal peptides’ diversity, abundance, prevalence, and role in main-
taining microbial and human homeostasis. In this study, we
investigated the biosynthetic potential of RiPPs within the human-
associated microbiota, demonstrating their remarkable chemical
diversity, novelty, and potential bioactivity. However, it is important to
recognize that the scope of RiPP discovery is constrained by the
availability ofmicrobial genome datasets, predominantly from the gut
microbiome, particularly bacteria. Concurrently, while utilizing a
combination of deep learning-based and rule-based methods can help
strike a balance between precision and novelty in studying RiPP bio-
synthesis, this strategy may result in a somewhat constrained depic-
tion of the entire RiPP family from the human microbiome, as part of
actual RiPPs may be excluded from the analysis. Nonetheless, our
study thoroughly uncovers the profile of RiPP biosynthesis in the
human microbiome and compiles an atlas of RiPPs for future research
on innovative antimicrobial strategies and therapeutic interventions
targeting microbiome66,67.

The ecological dynamics of the human microbiome are greatly
shaped by specialized microbial metabolites that play protective roles
and can potentially impact human health. Recent analyses of the
human microbiome have revealed hidden potential for antibiotics,
with RiPPs being the most commonly predicted compounds across
various microbial environments within the body13. Concurrently,
peptides with potentially harmful effects were also identified, includ-
ing a lasso peptide from the oral bacterium Rothia aeria and a
potentially toxic lantibiotic from translocating Streptococcus68,69. Our
study observed that RiPPs are enriched in the human gut and oral
microbiome,most of which are niche-specific bioactivemolecules and
actively transcribed in healthy humangutmicrobiomes. In our analysis
of activity predictions, over 70% of RiPPs were predicted to be anti-
bacterial, which should be interpreted with caution. DeepBGC was
trainedprimarily on antimicrobial RiPPs fromMIBiG, inevitably leading
to a potential bias towards antibacterial prediction. Additionally, the
RiPPs analyzed in this study might fall outside the algorithm’s applic-
ability domain. Recent research has revealed that common RiPP clas-
ses possess more diverse functions16–20 than previously recognized,
including roles in microbial communications that are not included in
DeepBGC’s training data. Therefore, the functions of RiPPs might be
more diverse than our predictions suggest. RiPPs with protective roles
can mediate microbe-microbe interaction (e.g., antibacterial
activities13, quorum-sensing or quorum-quenching20), or microbiome-
host interaction (e.g., immunomodulatory activities16–19,
and cytotoxicity70). These interactions could influence the balance of
the human-microbe holobiont and potentially substantially impact
human health. We believe that these protective RiPPs, sourced from

the humanmicrobiome, represent innovative antimicrobial tactics and
therapeutic interventions that are yet to be fully explored.

In microbe-microbe interactions, quorum-sensing is used for
social coordination, often via peptide-mediated mechanisms in Gram-
positive bacteria. RiPPs, particularly AIPs, can act as signaling mole-
cules, regulate their production, and respond to quorum-sensing
signals10. Our study identified six AIP families enriched in healthy
microbiomes, most exhibiting significant antibiofilm activity against
IBD- or CRC-related pathogens. Polymicrobial biofilms, particularly in
IBD and CRC71, complicate treatment as antimicrobials need to
target all biofilm pathogens. The combination of AIPs with antibiotics,
specifically AIP-I, has shown potential in enhancing biofilm infection
treatment72,73, as it can triggerMRSA biofilm dispersal and increase the
susceptibility of detached cells to antibiotics. Our study revealed five
AIPs with anti-pathogenic biofilm activity and found that two anti-
biofilm AIPs could adjust the gut microbial community in an ex vivo
assay and hereby reduced pathogenic species linked to IBD, suggest-
ing an alternative treatment option. These AIPs may assist inmicrobial
communication through quorum-sensing or indirectly influencing the
microbiome by controlling the production of antibacterial
metabolites53. Considering their increased prevalence in healthy indi-
viduals compared to patients with IBD or CRC, our findings suggest
that they could provide protective roles by inhibiting the growth or
biofilm formation of pathogens74. While exploring AIPs’ impact on
harmful biofilms and microbiome homeostasis could open up new
therapeutic avenues, their exact mechanisms remain to be under-
stood, and their bioactivity needs to be confirmed in vivo animal
models.

Our study provides a comprehensive analysis of the biosynthetic
landscape of RiPPs in the largely unexplored human microbiome,
using (meta)genomemining and extensive omics analysis. In a proof of
principle study, we linked RiPP profiles with various human diseases
and pinpointed several RiPP candidates that may potentially impact
human health. However, several important caveats should be con-
sidered when interpreting the biological significance of these differ-
entially expressed RiPPs between healthy and diseased states. For
example, the observed differences in RiPP diversity between health/
disease states could potentially be explained by underlying variations
in microbial species composition. We also need to acknowledge that
observed associations could be due to co-occurrence with other
functional genes within the same species, rather than direct effects of
the RiPPs themselves. To establish causality and biological relevance,
future studies should systematically investigate the interplay between
RiPP diversity, microbial community dynamics, and disease progres-
sion using both observational and mechanistic approaches.

The success of our approach in elucidating and optimizing AIP
analogues underscores the transformative potential of combining
computational tools like AlphaFold with biosynthetic pathway enzy-
mology.While traditional RiPP discovery pipelines often stall when the
heterologous expression fails, our methodology demonstrates that
structural prediction and chemical synthesis can circumvent these

Fig. 4 | Differentially transcribed RiPP families in multi-disease case-control
cohorts. a The bar plot displays the number of RiPP precursor families that are
significantly enriched in the healthy group (top) or the disease group (bottom).
Statistical significance was determined using criteria of |log2 fold change | ≥1 and
adjusted p values≤0.05. b The intersection of differentially transcribed RiPP pre-
cursor families that are enriched in healthy groups compared to multiple disease
groups. The top bar plot and connecting lines represent the differential RiPP pre-
cursor families identified in the corresponding disease case-control cohorts. Pre-
cursor families are highlighted in different colors based on their RiPP
classes.*Families chosen to tested bioactivity in this study. c The workflow for
predicting themature AIP uses the reported AIP-I from Staphylococcus aureus as an
illustrative example (Method). d Chemically synthesized AIPs with antibiofilm or

anti-inflammatory activity in this study. Here, the compound name consists of the
family name and a specific suffix denoting its characteristics. For example, “et_L1”
indicates that the AIP has an exotail with a length of 1 amino acid, “et_free” signifies
an AIPwithout an exotail, “c” denotes cyclopeptides, and “t” represents exotail-free
AIPs with a thiolactone group. e, f n = 3 biological samples for each experiment, 2
independent experiments. Significancewasdeterminedusingone-wayANOVA test.
e Anti-biofilm activity of AIPs against pathogenic biofilm by pathogens. n = 3 bio-
logically independent samples. f Anti-inflammatory activity of BF_94_et_L1 in
RAW264.7 cell lines. Bars representmean ± standard error. For all p values, p <0.05
mean significant difference compared with the control group. Exact adjusted p-
values from left to right are: <1e−15, 1.248e−5, 1.866e−5, and 2.706e−12 in TNFα
(upper) and <1e−15, 0.0089, 0.0006, and 6.055e−7 in IL-6 (lower).
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Fig. 5 | AIPs regulate IBD mouse fecal-derived ex vitro microbial community.
a Graphical depiction of the ex vivo experimental setup. b Relative abundance of
microbial genera after 48h of treatment with vancomycin, BF_280_c, and BF_398_c
at concentrations of 0.1, 1, and 10μg/mL. DMSO was used as a blank control. Only
20 abundant species are displayed. c Bar plots show the alpha diversity of the
microbial community at the species level, as represented by the Shannon diversity
index. Data (n = 3) are mean ± standard deviation. Significances between treatment
groups and blank groupwere indicated by using two-sidedWelch’s t-test. The exact
p values are as follows (order as 0.1, 1, 10 μg/mL): vancomycin, 0.082, 0.054, 0.85e
−3; BF_280_c, 0.13, 0.067, 0.25e-3; BF_398_c, 0.010, 0.23, 0.76e-2. Three biological
replicates (n = 3) were included for each group. d Principal coordinate analysis
(PCoA) of microbial community based on the Bray-Curtis dissimilarity at the spe-
cies level. The enclosing ellipses are estimated using the Khachiyan algorithm by R

function “geom_mark_ellipse”, representing the distinct clustering of groups.
e Relative abundance of four representative taxa. All box plots include center lines
representing the median, box limits representing upper and lower quartiles,
whiskers representing the 1.5x interquartile range, andpoints representing outliers.
The exact p values are as follows (order as vancomycin, BF_280_c, BF_398_c):
Paramuribaculum intestinale, 0.41e−3, 0.036, 0.039; Oscillospiraceae bacterium,
0.0020, 0.021, 0.013; Heminiphilus faecis, 0.35e−3, 0.0044, 0.0076; Prevotella sp
MGM1, 0.55, 0.036, 0.027. MaAsLin2, a tool relying on general linearmodels to find
multivariable association, was used to compare the species between vancomycin/
AIP and the control group. The Benjamini-Hochberg (“BH”)methodwas adopted to
adjust p values for multiple comparisons. Three biological replicates (n = 3) were
included for each group. *p <0.05; **p <0.01; ***p <0.001; ns, not significant.
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limitations. However, these strategies may need reconsidering when
applied to complex RiPP classes. For instance, lanthipeptide bio-
synthesis often involves multiple enzymes with unclear recognition
rules, making structure determination difficult without heterologous
expression. Lassopeptides’ complex structures require precise mod-
eling of peptide folding, which is a substantial challenge for prediction
accuracy. These limitations reveal a persistent challenge in RiPP
bioinformatics: the development of enzyme-aware predictive tools
that holistically incorporate precursor peptide sequences and the
biochemical context of modifying enzymes—including their substrate
specificities, catalytic mechanisms, and reaction dynamics. Our ana-
lysis of differentially expressed RiPPs in healthy and disease states
(Fig. 4) revealed numerous uncharacterized candidates, including
putative lanthipeptides and rSAM-modified peptides. While their
experimental characterization fell outside this study’s scope, these
candidates still warrant further investigation. Advances in predictive
tools (e.g., AlphaFold 3’s improvement in handling of multimeric
complexes) and growing structural databases (e.g., RiPP-PRISM,
RODEO) will enhance our ability to model complex RiPPs.

Despite certain limitations, our study offers valuable insights into
the diversity and potential functions of RiPPs in the human micro-
biome.We also identified protective RiPPs that can combat pathogenic
biofilms and possess the ability to maintain the balance of microbial
communities, thus offering alternative antimicrobial tactics or ther-
apeutic interventions that target the microbiome.

Methods
Biosynthetic gene cluster analysis and RiPP precursor
identification from human microbiome reference genomes
We retrieved reference genomes of body-wide human microbes from
two available datasets: 289,232 genomes from Unified Human Gas-
trointestinal Genome dataset (UHGG, v2.037,38), and 17,249 genomes
from CIBIO36 (Supplementary Data 12). To normalize taxonomic
annotations for all the genomes, we re-annotated all of them using
GTDB-Tk75 (v2.0.0) against GTDB (rev207 version). All genomes were
analyzed by antiSMASH 6.026 for BGC detection using default para-
meters. To identify theRiPPprecursor peptide, all open reading frames
(ORFs) in each genome were annotated by prodigal-short76. Subse-
quently, small ORFs ( ≤ 150 amino acids) containing a start and stop
codon and ribosome-binding site motifs were subjected to TrRiPP25

and DeepRiPP24 for RiPP precursor identification with default para-
meters. Notably, DeepRiPP can identify RiPP products even when the
precursor genes are distant from the tailoring enzymes, while TrRiPP
can detect RiPPs from highly fragmented metagenomes. Combining
these tools can effectively identify more potential RiPP precursor
peptides inmetagenome-assembled genomes,which are predominant
in our collection.

Analysis of genomic context of predicted RiPP precursor
peptides
For all identified RiPP precursors, we first checked whether they were
within the region of antiSMASH-defined BGCs. For those precursors
outside antiSMASH-defined BGC region, we defined 10 genes of the
precursor upstream and downstream as genomic neighborhoods. We
used two methods to examine the characteristics of these genomic
neighborhoods associated with RiPP. First, we analyzed the protein
domain of precursors and their 10 flanking genes downstream and
upstream by a domain-based approach: RPS-BLAST. A domain was
significantly assigned with a default CDD e-value threshold (0.01), and
the protein aligns to at least 80% of the PSSM’s length. The assigned
domain belonging to a dataset of known RiPP precursor domains and
RiPP-related biosynthetic enzyme domains was noted as RiPP-related
domains (Supplementary Tables 1 and 2). This database was collected
and expanded based on the hmm-rule-parser of antiSMASH and pre-
vious studies9,21,26,77. For the remaining precursor, the domains were

paired with a broader dataset of biosynthetic enzyme domains, which
were used in the decRiPPter39 pipeline for exploring uncharacterized
biosynthetic enzyme candidates for RiPP.

Chemical space comparison of RiPP precursor peptides
Known RiPP precursor peptides were collected from The Minimum
Information about a Biosynthetic Gene cluster database (MIBiG 3.0)78.
Extended-connectivity fingerprints (ECFPs) are used to predict and
gain insight into RiPPs precursors’ chemical diversity43. Then ECFP6
fingerprints for each unique RiPP precursor were compared with each
other to generate Tanimoto coefficient matrices79 and visualize the
chemical space by uniform manifold approximation and projection
(UMAP). Specifically, The ECFP6 chemical fingerprints of the domain
representatives were calculated using The Chemistry Development
Kit80. Subsequently, we generated a Jaccard distance matrix based on
the chemical fingerprints and performed dimension reduction using
densMAP81 with n_neighbors= 15, implemented in the UMAP Python
package. Furthermore, we calculated the pairwise Tanimoto coeffi-
cient of each precursor using NumPy and scikit-learn. The average
Tanimoto coefficient was obtained by averaging all of these coeffi-
cients. Next, core precursor sequences predicted by the cleavage
predictions module of DeepRiPP were used to explore the chemical
diversity of nine RiPP classes. Pairwise Tanimoto coefficient was fur-
ther adopted for measuring the similarity between precursors. The
precursor with the highest median within-class Tanimoto coefficients
was chosen as representative structures to generate Tanimoto coeffi-
cient matrices for intra-classes and further calculate the diversity for
intra-classes. Tanimoto score ranges from 0 to 1. The higher Tanimoto
scoremeans higher chemical similarity between twoprecursors or two
subclasses.

Novelty examination of RiPP precursor families
To trade off the novelty and accuracy, 423831 RiPP precursors that
were either within RiPP BGCs region41 identified by enzymes-oriented
approach or identified by both two precursors-centric approaches
were retained for further analyses. These precursor peptides were
grouped by MMseqs2 (13.45111)82 with the following parameters: easy-
cluster clusterRes tmp --min-seq-id 0.5 --single-step-clustering --clus-
ter-mode 2 --cov-mode 2 -c 0.95. The precursors within a family are
more likely to share a similar function83. Each RiPP precursor family
was classified based on precursor homology and genomic context
(Supplementary Information). The novelty of RiPP families was further
classified into three types: (1) “classic RiPP families”, which are identi-
fied by having precursors that exhibit similarity to known RiPP pre-
cursors and are located in a genomic context associated with typical
RiPP biosynthetic gene clusters. (2) “Uncharacterized RiPP families”,
which consist of uncharacterized precursors and/or genomic neigh-
borhoods containinguncharacterizedbiosynthetic genes. (3) “Others”.

Bioactivity prediction of RiPP families
We utilized the DeepBGC (https://github.com/Merck/deepbgc)27 tool
to identify the potential bioactivity of RiPP precursors. This approach
allowed us to assess and classify the potential bioactivity of RiPPs
based on the predicted functional genes within their genomic neigh-
borhoods. Our approach involved collecting gene regions within 10
genes upstream and downstream of RiPP precursor genes, which we
referred to as genomic neighborhoods. We then utilized DeepBGC to
predict the potential function of eachRiPP. This tool could account for
the four most common compound activity classes: antibacterial,
cytotoxic, inhibitor, and antifungal. Precursors exhibiting multiple
predicted activities were labeled as “multiple”, while the activity of
each RiPP family was determined by considering the activities of over
50%of the precursorswithin the family. It is important to acknowledge
that the training set’s bias toward antimicrobial RiPPs fromMIBiGmay
limit the prediction accuracy of DeepBGC when analyzing RiPPs from
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the human microbiome, as these peptides likely possess a broader
range of uncharacterized biological functions16–20 besides anti-
microbial activity.

Analysis of metagenomic and metatranscriptomic data
Themetagenomic andmetatranscriptomic samples were downloaded
from sequence readarchive (SRA) of theNCBI (SupplementaryData 6).
Raw metagenome and metatranscriptome sequencing reads were
quality filtered using bbduk.shwith the following parameters: qtrim=rl
ktrim=r mink=11 trimq=10 minlen=40. The resulting metatran-
scriptomic reads were subjected to bbmap.sh for removing reads
derived from ribosomal RNAs. To remove the human host con-
tamination, the high-quality metagenomic and metatranscriptomic
sequencing reads were further searched against the human reference
genome (GRCh38.p13) from NCBI, and unmapped reads were mapped
to microbe reference genomes using BWA (0.7.17-r1188)84 with default
parameters. The reads mapped to RiPP precursor gene were counted
by featurecounts85 with the following parameters: -f -t CDS -M -O -g
transcript_id -F GTF -s 0 -p --fracOverlap 0.25 -Q 10 -primary. In meta-
transcriptomic datasets, the countfilewith the absolute abundance for
each family was imported, and differential gene abundance between
healthy and diseased subjects was normalized and analyzed by
implementing DESeq2 pipeline in R. Of note, the abundance of each
family was calculated by the sum of the abundances of all genes in the
family. Additionally,MetaPhlAn 4 (version4.1.1)86 wasused to compute
the relative abundance of microbial species. In addition, accumulation
curves, alpha-diversity, beta diversity and PERMANOVA were per-
formed using the R package vegan. Beta diversity was performed to
quantify the relative abundance differences in the overall composition
of RiPP precursor families between the disease and the control groups.
PERMANOVA was performed to show the encoding and expression
profile differences of RiPP precursor families between disease and
control groups. Specifically, familieswith aprevalence ≥ 5% ina cohort
were subjected to further analysis (Beta diversity, differential analysis,
and classifier) for investigating potential causality in humandisease. In
metagenomic datasets, we calculated the significance of prevalence
using a two-sided Fisher’s exact test, p < 0.05. BiG-SCAPE (version
1.1.5)87 was used to visualize the genomic context of differential RiPP
precursors families. Besides, only 50memberswith formative genomic
context (larger gene sizes) in RiPP families with larger members (≥ 50
genes) were chosen for analysis. Each representation biosynthetic
gene cluster was chosen to show the conserved domain and products
in each family. Multiple sequence alignment of all precursor families
was conducted using MAFFT (v7.508)88, followed by Jalview (version:
2.11.4.1) for visualization.

Chemical synthesis of AIPs
To begin, we initiated the calculation and analysis of the precursor-
AgrB complex (Supplementary Table 3). The calculation was per-
formed using the following command: colabfold_batch --amber
--templates --num-recycle 3 --use-gpu-relax --model-type alpha-
fold2_multimer_v3 input_path output_path. The resulting structures
were visualized using PyMol (version 2.5.3). During our analysis of the
reported AIP precursor and paired AgrB, we observed that the binding
of the Precursor-AgrB complex can be partially buried. In other words,
the core peptide of the precursor should be fully accommodated
within the catalytic pocket of AgrB. Based on this observation, we
manually examined the predicted complexes. Specifically, we focused
on twoaspects: 1.We inspectedwhether the conservedC-terminal core
region is captured and effectively buried within the catalytic pocket of
AgrB. By conducting this analysis, we aimed to gain insights into the
interaction between the precursor and AgrB, shedding light on the
potential core peptide of AIP precursors. Next, we aimed to compre-
hensively assess the conservation patterns of precursor sequences
within each AIP family, incorporating both our study data and relevant

sequences available in public databases. Thus, we first collected non-
redundant precursor sequences from our study. Additionally, we
included similar sequences ( > 50% similarity) obtained from NCBI as
additional sources of AIPs found in nature. Next, Logo sequences for
each clustered short peptide family were generated by makelogo.py,
which is available at https://github.com/yxllab-hku/cluser_to_logo/
blob/main/makelogo.py. With the bioinformatic prediction, we
deduced the potential mature chemicals of six AIP families and che-
mically synthesized 9 potential AIPs (Supplementary Information).

Antibiofilm assay
Biofilm formation was assessed using the crystal violet method. The
strains listed in Supplementary Data 8 were employed as the tested
strains. To initiate the experiment, the inocula fromovernight cultures
were diluted at a ratio of 1:100 using the corresponding culture med-
ium. To perform dose-response assays, the chosen peptide was pre-
pared as a stock solution and serially diluted in DMSO. Following this,
1μL of each concentration was carefully dispensed into the corre-
sponding wells. Subsequently, 99μL of the bacterial culture, diluted
accordingly, was added to the respective wells. Additionally, vehicle
controls consisting of 1μL of DMSO were included to establish the
baseline biofilm formation of the strains. Themicrotiter plate was then
incubated under appropriate conditions. Following the incubation
period, the biofilm was gently washed with PBS to remove any unat-
tached cells and then allowed to air dry. Next, 100μL of a 0.1% crystal
violet solution was added to each well to stain the biofilm. The plate
was further incubated at room temperature for 15minutes to ensure
proper staining. After the incubation, each well was washed three
times with water to completely remove the dye. The plate was then
inverted and allowed to air-dry at ambient temperature throughout
the night. To quantify the biofilm formation, 100μL of a 30% acetic
acid solution was added to each well to dissolve the crystal violet.
Following an additional incubation period of 10-15minutes at room
temperature, the absorbance was measured at 550 nm. Three repli-
cated wells were used for each group to ensure accuracy and
reproducibility.

Anti-inflammatory activity by ELISA experiment
TheRAW264.7 cells were seeded at a density of 15 × 104 cells/well in 24-
well plates and cultured at 37 °C and 5% CO2 overnight. Cells were
treated with AIPs (1μg/mL and 0.1μg/mL) or 25μg/mL of Dex-
amethasone for 3 hours and then stimulated with 1μg lipopoly-
saccharides (LPS) for 24 hours. The secretion of TNFα and IL6 was
measured according to the ELISA kit (Elabscience). ELISA methods
were applied according to themanufacturer’s instructions without any
modifications by using mouse IL-6 (Interleukin 6) ELISA Kit (E-EL-
M0044), mouse TNF-α (tumor necrosis factor alpha) ELISA Kit (E-EL-
M3063). Optical densities were read on a plate reader set at 450nm a
microplate reader (BioTerk, Winooski, VT, USA). The concentration of
eachparameter in the sampleswas calculated fromthe standard curve,
multipliedby thedilution factor andwas expressed asmean± standard
error of the mean (SEM).

Ex vivo screening study
Mice. Mouse studies were performed in accordance with all relevant
ethical regulations and were approved by the Ethics Committee of the
Animal Experimental Center of ZhuJiang Hospital, Southern Medical
University (LAEC-2022-059). IL-10-deficient (IL-10−/−) male mice with
C57BL/6N background were purchased from Cyagen Biosciences
(Guangzhou, China). All the mice were housed in specific pathogen
free (SPF) conditions with a 12 hours light/dark cycle, and were pro-
vided sterilized water and food ad libitum (temperature 23 ± 2°C,
humidity 45 ± 5%). IL-10-deficient mice were used to model sponta-
neous chronic colitis, which closely mimics human inflammatory
bowel disease (IBD)89.
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Feces collection. Fecal samples were collected from 10 IL-10-deficient
C57BL/6N male mice (16 weeks old), with an average of 7-8 droppings
per mouse. The collected pellets were combined and resuspended in
65mL of a rich medium mGAM. Following resuspension, the tubes
were gently centrifuged at 112 g for 2minutes, and the supernatants
were then retained for further assay.

Two selected AIPs were pre-dissolved in DMSO to final con-
centrations of 0.1 g/mL, 1 g/mL, and 10 g/mL. Subsequently, 1 µLofAIPs
with varying concentrations and 49 µL of fecal supernatant were
inoculated into 950 µL of mGAM media, resulting in a final volume of
1mL. The mixtures were then anaerobically incubated at 37 °C for
48 hours. Following the incubation period, the bacterial growthmedia
were centrifuged at 16,099 g for 10minutes. The supernatants were
carefully removed, and the resulting pellets were washed twice with
1mL of PBS before being collected for DNA extraction. The pelleted
samples were extracted using the QIAamp® DNA Micro Kit (Qiagen)
according to the manufacturer’s instructions. Finally, all DNA samples
were prepared for shotgun metagenomics sequencing.

Metagenomic sequencing. All DNA samples were submitted to
Novogene for shotgun metagenomics sequencing using a 150 bp
paired-end protocol. Initially, 1 µg of DNA per sample was fragmented
via sonication to achieve a size of 350bp. Subsequently, the frag-
mented DNA underwent end-polishing, A-tailing, and ligation with a
full-length adaptor for library construction. The constructed libraries
were assessed for quality and quantity using Qubit and real-time PCR
for quantification, aswell as a bioanalyzer for size distribution analysis.
The quantified libraries were then pooled and sequenced on the Illu-
mina NovaSeq X Plus platform, generating approximately 10.7 Gb of
data per sample.

Metagenomic analysis. Raw reads frommetagenomic sequencingwere
processed using Fastp v0.21.1 for quality control, with parameter of
“--detect_adapter_for_pe -l 50 -5 3 -3 3”. High-quality metagenomic
sequencing reads were further subjected to KneadData (https://github.
com/biobakery/kneaddata) for detecting and removing reads belonging
to the human genome, though searching against the mouse reference
genome (GRCm39) from GENCODE90. MetaPhlAn (version 4.1.1)86 was
used to generate taxonomic profiles of metagenomes.

Alpha diversity, as measured by Shannon diversity, and beta
diversity, evaluated through Bray-Curtis dissimilarity, were computed
for species-level taxonomic profiles utilizing the Vegan package in R91.
Differential abundance analysis between groups was conducted using
MaAsLin2 (version 1.12.0)56 (microbiome multivariable associations
with linear models). Species with a false discovery rate (FDR)-adjusted
p-value of less than 0.05 were deemed significantly different between
the two groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw read sequences of the shotgun metagenomic sequences were
deposited at Sequence Read Archive (SRA, NCBI) under accession of
PRJNA1166984. The BGC and RiPP precursors identified in this study
are available in Supplementary dataset 1-3, which have been deposited
in Zenodo (https://doi.org/10.5281/zenodo.14994355)92. Other data
supporting the findings of this study are available in supplementary
information, supplementary datasets, and source data files. The raw
data for omics data analysis were collected from NCBI datasets
through the accession numbers provided in Supplementary Data 6.
Reference genomes of body-wide humanmicrobes from two available
datasets: 289232 genomes from Unified Human Gastrointestinal Gen-
ome dataset (UHGG, v2.0, https://ftp.ebi.ac.uk/pub/databases/

metagenomics/mgnify_genomes/human-gut/v2.0/), and 17249 gen-
omes from CIBIO. The genomes used in this study are provided in
Supplementary Data 12. Source data are provided with this paper.

Code availability
Codes related to the analyses in this study are available at https://
github.com/ZHANGJianArya/RiPPs_human-microbiome. The source
code used in the paper has also been assigned a citable DOI through
Zenodo (https://doi.org/10.5281/zenodo.14866373)93.
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