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Integration of GWAS, QTLs and keratinocyte
functional assays reveals molecular
mechanisms of atopic dermatitis

Meritxell Oliva 1 , Mrinal K. Sarkar 2, Michael E. March 3,
Amir Hossein Saeidian3, Frank D. Mentch3, Chen-Lin Hsieh1, Fanying Tang1,
Ranjitha Uppala2, Matthew T. Patrick 2, Qinmengge Li2, Rachael Bogle 2,
J. Michelle Kahlenberg 2, Deborah Watson 3, Joseph T. Glessner 3,
Leila Youssefian3,4, Hassan Vahidnezhad3,5, Lam C. Tsoi2, Hakon Hakonarson 3,
Johann E. Gudjonsson 2, Kathleen M. Smith 1 & Bridget Riley-Gillis 1

Atopic dermatitis is a highly heritable and common inflammatory skin condi-
tion affecting children and adults worldwide. Multi-ancestry approaches to
atopic dermatitis genetic association studies are poised to boost power to
detect genetic signal and identify loci contributing to atopic dermatitis risk.
Here, we present a multi-ancestry GWAS meta-analysis of twelve atopic der-
matitis cohorts from five ancestral populations totaling 56,146 cases and
602,280 controls. We report 101 genomic loci associated with atopic derma-
titis, including 16 loci that have not been previously associated with atopic
dermatitis or eczema. Fine-mapping, QTL colocalization, and cell-type
enrichment analyses identified genes and cell types implicated in atopic der-
matitis pathophysiology. Functional analyses in keratinocytes provide evi-
dence for genes that could play a role in atopic dermatitis through epidermal
barrier function. Our study provides insights into the etiology of atopic der-
matitis by harnessingmultiple genetic and functional approaches to unveil the
mechanisms by which atopic dermatitis-associated variants impact genes and
cell types.

Atopic dermatitis (AD) is one of themost common chronic conditions,
affecting 15–20% of children and 5–10% of adults worldwide1,2. AD is
characterized as a pruritic rash primarily on the flexural areas of the
arms and legs, and can vary widely in severity and presentation3,4. Both
genetic and environmental factors can predispose individuals to
impaired epidermal barrier function and inflammation that, alongwith
itch, drive the vicious cycle of AD5,6. Genetic studies published to date
support a role for genetic defects in innate and adaptive immunity
resulting in Th2 skewing as well as defects in skin barrier function,
most notably loss-of-function variants in filaggrin (FLG)7,8. AD

heritability has been estimated from twin studies to be 75–80%9–11, and
there are currently more than 90 published GWAS loci that explain
about 5–15% of heritability12–14, suggesting additional AD genetic loci
are to be discovered.

As GWAS data in diverse populations becomes available, the
human genetics field has moved toward multi-ancestry approaches.
Multi-ancestry GWAS meta-analysis across diverse populations can
increase the power to detect complex trait loci when the underlying
causal variants are shared between ancestry groups. Our study is
motivatedbyprevious reports andour ownexperiencemeta-analyzing
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European cohorts and the desire to incorporate diverse populations of
Asian and African ancestry. Moreover, we know that AD affects
populations worldwide, and diverse populations can expand our
understanding of the genetic architecture of AD.

Here, we report a large-scale multi-ancestry GWAS of 56,146 AD
cases and 602,280 controls as well as ancestry-specific analyses. The
cohorts include individuals of European (EUR), Asian (ASN), African
(AFR), and American (AMR) ancestries. In total, we report 101 genome-
wide significant loci associated with AD, including 16 loci that have not
been previously reported as associated with AD or eczema. We char-
acterize genetic factors for AD across multiple ancestral populations
and perform fine-mapping and colocalization to identify putatively
causal genes at genome-wide significant loci. Cell-type enrichment
analysis identifies the disease-relevant cell types implicated by the
GWAS signal, including keratinocytes, in which we perform functional

experiments. Our findings highlight AD associated loci and link genes
in these loci to cell types in key AD mechanistic nodes.

Results
Multi-ancestry and ancestry-specific GWAS meta-analyses iden-
tify novel AD loci
WeperformedGWASmeta-analysis on 12 cohorts comprising a total of
56,146 AD cases and 602,280 controls of European (EUR), Asian (ASN),
African (AFR), American (AMR) and admixed ancestries (Fig. 1, Sup-
plementary Data 1) to obtain ancestry-specific (EUR, EAS and AFR) and
multi-ancestry (MULTI) GWAS summary statistics (Methods, Supple-
mentary Data 2). Across all GWAS meta-analyses, we detected 101
genome-wide significant (P < 5e-08) non-overlapping loci (Supple-
mentary Data 3), including 16 loci not reported as associated to AD or
eczema (P < 5e−8) to date (Table 1, Fig. 2a); we will refer to these as

Fig. 1 | Scheme of data generation and analysis overview. Ancestry-stratified
GWAS meta-analyses were utilized to identify and fine-map genome-wide sig-
nificant GWAS loci for atopic dermatitis risk. GWAS signal was integrated with
functional maps and evaluated for cell-type context-specific enrichment and QTL
colocalization; genes were prioritized per GWAS locus. The expression of a subset

of prioritized genes was functionally characterized in keratinocytes for differ-
entiation, cell-subtype specificity, knock-out (KO) andQuantitative Trait Loci (QTL)
signal. This figure contains illustrations from BioRender. Oliva, M. (2025) [https://
BioRender.com/r58o311].
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novel. Of those, 7 loci have been identified as suggestive (P < =5e−6) in
previous studies14–16 (Fig. 2b). Novel AD loci were identified in the two
largest GWASmeta-analyses (MULTI and EUR) (Fig. 2a, Table 1). The 12
genome-wide significant loci identified in the ASN meta-analysis
(Supplementary Fig. 1a) were located within the significant loci from
the MULTI meta-analysis (Fig. 2b), however, comparison of the MULTI
meta-analysis with and without the ASN cohorts confirms increased p-
value significance for lead SNPs when the ASN samples are included
(Supplementary Fig. 1b). No genome-wide significant loci at MAF >
0.01 were identified in the AFR GWAS meta-analysis despite the
number of cases included (N = 7063); corresponding GWAS signal was
seemingly well-controlled (λgc = 1.02) but underpowered (Supple-
mentary Fig. 1, Supplementary Data 2), which may be due, among
possible factors, to genetic admixture and differential environmental
exposure17. To further assess the replicability of the 16 novel loci, we
considered a lenient threshold (GWAS P < =5e−6) and identified 7/16
loci with suggestive signal across three studies14–16 (Table 1, Fig. 2b), six
of which are reported in Budu-Aggrey et al.14. Compared to the GWAS
meta-analyses generated herein, Budu-Aggrey included 16%
(N = 65,107) more AD cases, but less diverse (30% less non-Europeans),
alsowithin European cohorts (85% less non-Finns). Among lociwithout
suggestive signal, we identified rs541390276, a low-frequent variant
(gnomAD4.0POPMAXMAF =0.00049)with higher frequency in Finns
(FinnGen R10MAF=0.0361). This variant has associations with asthma
(FinnGen R10, P < 1.30e−7) and with dermatitis and eczema (FinnGen
R10, P < 7.20e−10). Altogether, these observations indicate that, at
least in part, the identified novel loci arise from more diverse –

including within European ancestry level—cohorts utilized herein
compared to other works.

We quantified heritability—the proportion of phenotypic variance
explainedby genetics—in the Europeancohort to be 9.67%ona liability
scale (Methods). This estimate agrees with previous reports11,13, but is
substantially smaller than the 75–80% estimated heritability derived
from twin studies9–11. This may be due to several factors, including
contribution from genetic loci not captured by the European ancestry
meta-analysis, rare variants with large effect sizes not captured by
genotyping arrays, complex gene-gene or gene-environment interac-
tions important to the genetic architecture of AD, or overestimation of
twin heritability18.

To better understand the relationship between the AD-associated
loci identified herein and previously published results on AD-related
phenotypes, we assessed overlap with reported genomic associations
for atopic march phenotypes other than AD: eczema, allergy, and
asthma (Methods). Out of the 101 loci identified in our analysis, we
observe that the majority (95/101) overlap significant or suggestive
atopic-march associated loci (Fig. 2b), including 10 out of the 16 novel
loci not previously reported to be associated with AD. The overlap
supports the known shared genetic architecture of AD with other
atopic-march phenotypes19,20 and pinpoints additional contributing
loci. Of the 6 novel loci not previously reported in AD/eczema, allergy,
or asthma GWAS, only the IL6ST locus - rs7731626 (5q11.2) - has
reported disease associations in GWAS catalog, mainly with auto-
immune phenotypes such as rheumatoid arthritis21, inflammatory
disease21, multiple sclerosis22, and type 1 diabetes23. Combined, these
results suggest that we have replicated genetic loci that play a role in
atopic disease and identified novel loci that expand the current
knowledge of the genetic architecture of AD.

Cell-type enrichment confirms key AD mechanistic nodes
To identify the disease-relevant cell types impacted by the identified
AD relevant loci,we integratedGWAS signalwith epigenetic and single-
cell transcriptomic annotations. LD score regression (LDSC-SEG) was
used to identify genomic annotations enriched for genetic trait herit-
ability in the EURGWAS, andbulkATAC-seqdata for cells isolated from
peripheral blood from healthy donors (GSE118189, Methods)24. ADTa
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Fig. 2 | AD GWAS loci annotation by ancestry and AD-related phenotypes.
a Nominal p-values (y-axis) derived from the multiple ancestry-combined (MULTI)
(top panel) and the European-ancestry stratified (EUR) (bottompanel) GWASmeta-
analysis are plotted by corresponding genomic coordinate (x-axis). P-values are
derived from a two-sided test for effect size in a fixed-effect inverse variance
weighted approach (Methods). Novel associations are highlighted in green and
annotatedwith the nearest gene. Associations that reached significance (P < 5e−08)
in both MULTI and EUR GWAS meta-analyses are annotated in the top panel;
associations that reached significance (P < 5e−08) in only the EUR GWAS meta-
analysis are annotated in the bottom panel. b Top panel illustrates the presence of

significant (P < 5e−08) AD GWAS loci (x-axis) across ancestry-stratified and -com-
bined GWAS meta-analyses (y-axis); significant loci per ancestry endpoint are
indicated with a darker color shade. P-values are derived from a two-sided test for
effect size in a fixed-effect inverse variance weighted approach (Methods). Bottom
panel illustrates overlap of significant AD GWAS loci with previously reported
genome-wide significant (P < 5e−08) and suggestive (P < 5e−06) GWAS loci for AD/
eczema, allergy, and asthma phenotypes (Supplementary Data 10, 11). Bold frame
indicates the 16 novel AD GWAS loci reported herein, annotated with corre-
sponding cytoband, lead variant and nearest gene. P-values are shown as reported
in the EBI GWAS Catalog (Methods).
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GWAS variants are enriched primarily in open chromatin of T-cell
populations such Th1, Th2, Th17, and Treg cells. These findings sup-
port the known pathobiology of T-cell driven inflammation in
AD25,26 (Fig. 3a).

To explore disease-relevant cell types in skin, we utilizedMAGMA
to evaluate the enrichment of GWAS signal in skin cell types from the
Human Cell Atlas skin dataset27, a single cell RNAseq dataset (sc-
RNAseq) derived from healthy skin tissue (H) and AD lesional skin
tissue (LS) (Methods). Cell-type-specific gene programs (differential
gene expression inone cell type compared toother cell types inHor LS
tissue) and disease progression (DP) programs (differential expression
between cells of the same type in LS vs. H tissue) were constructed for
14 cell type categories to test for enrichment of GWAS signal (Meth-
ods). For cell type and DP programs, strong enrichment was identified
in lymphocytes, including T-cells, NK cells, and innate lymphoid cells
(ILCs), as well as macrophages and dendritic cells. These findings
underscore the contributions of both innate and adaptive immune cell
types in the inflammatory node of AD biology. Enrichment in kerati-
nocytes pinpoints another key mechanistic node in AD biology, the
skin barrier. This signal is significantly enriched in LS skin from AD

patients and in the DP program, but not in healthy skin (Fig. 3b).
Refinement of the keratinocyte cluster into defined sub-populations
shows strongest enrichment in differentiated keratinocytes in LS and
DP programs followed by undifferentiated and proliferating kerati-
nocytes in DP program and inflammatory differentiated KCs in LS
program (Supplementary Fig. 2). The specific keratinocyte enrichment
patterns underscore the role for AD GWAS implicated genes in epi-
dermal differentiation and barrier function in the upper layers of the
epidermis.

To investigate the genetic contribution of the AD GWAS signal to
the cell types identified in Fig. 3b, we clustered the gene program
scores for the 146 genes with MAGMA Bonferroni-corrected p-
value < 2.7e−06 for the 14 cell-type clusters and identified distinct
clustering by immune and non-immune cell types in the skin (Sup-
plementary Fig. 3). Additionally, the DP cell types frequently clustered
separately from the H and LS cell types, indicating different roles for
ADGWASgenes in H and LS states compared toDP. An exception is for
the keratinocytes and melanocytes, where the LS and DP programs
cluster together. Enrichment of the GWAS signal in keratinocytes and
clustering of LS and DP keratinocyte gene programs supports further
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exploration of AD GWAS genes influencing keratinocytes and the role
in barrier function.

Integration of functional annotations identifies putative causal
genes at AD GWAS loci
To identify putative causal genes and variants at each locus, we per-
formed the following analyses. First, we performed fine-mapping on 78/
101 loci that reachedgenome-wide significance (P< 5e−08) inEUR(75/78)
or ASN (11/78) meta-GWAS analyses (excluding MHC region). We identi-
fied 13 credible set variants annotated as moderate or high impact in 9
genes (Supplementary Data 4) including 3 coding variants in the FLG,
TESPA1, and NLRP10 loci with posterior inclusion probability (PIP >0.9
(Supplementary Data 4). Notably, for the fine-mapped variants in TESPA1
(rs183884396, PIP =0.99) and NLRP10 (rs59039403, PIP = 1), the
minor alleles are enriched in specific ancestral populations.
TESPA1_rs183884396-G allele is >14x more frequent in the Finnish popu-
lation compared to non-Finnish Europeans and NLRP10_rs59039403-G
has an allele frequency in East Asian populations of 12.4% compared to
<0.1% in EUR populations, demonstrating the value of cohorts from
diverse ancestries to identify genetic signal for AD. Second, we identified
coding variants in LD with the lead variants from the 3 GWAS meta-
analyses performed with genome-wide significant results (P<5e−8),
excluding the MHC region (r2 >0.6, MULTI, EUR, EAS samples in 1KG
Phase3;Methods) andannotated thecodingvariantspredicted to impact
gene function. Twenty-seven coding variants in 19 genes were identified
across the MULTI, EUR, and ASNmeta-analyses (Supplementary Data 5).
The identified genes include reported causal or putatively causal AD
genes such as FLG28 andNLRP1028 as well as geneswith reported eczema,
dermatitis or immunodeficiency phenotypes in OMIM: SIK3, IL7R and
RTEL1, respectively. Combined, the genes with coding variation in the
fine-mapped credible sets and in LDwith theGWAS lead variants identify
potentially causal AD genes.

Next, we performed colocalization with Quantitative Trait Loci
(QTLs) to infer molecular consequences of the AD GWAS variants. We
compiled and harmonized a QTL catalog of 297 full summary statistics
of expression (eQTL), splicing (sQTL), protein (pQTL), and DNA
methylation (mQTL) maps maximizing the inclusion of immune cell
types relevant to AD (Supplementary Data 6). In total, we identified
3195 colocalizations (PP4 >0.75) across the majority (86/100) of AD-
associated non-MHC loci including 13/16 novel loci (Supplementary
Data 7, Fig. 4a). While for most (85%, 73/86) QTL-associated loci,
colocalization(s) at gene expression level (eQTL)were identified, 13/86
loci lacked eQTL associations but were supported by other molecular
phenotypes (Supplementary Fig. 4). Among those, we identified genes
related to pathways relevant to AD, e.g. IL-22 genes, and less char-
acterized genes, e.g. CLEC16A, uncharacterized in AD but reported to
be a master regulator of autoimmunity29. It has been shown that
multiple regulatory effects for the same gene often mediate the same
complex trait associations, and that QTLs derived from different
molecular phenotypes have an independent contribution to complex
traits30,31. We quantified QTL support per gene (Fig. 4b) and identified
CRAT, IL6R, IL7R, and INPP5D as supported by all QTL molecular phe-
notypes, and by multiple cells/tissue QTL endpoints. While the CRAT
locus GWAS lead variant is located in an intronic region of the
uncharacterized protein-coding gene ENSG00000235007, the AD risk
allele rs1107329-C is associated (P = 6.9e−44, b = 0.25) with increased
CRAT protein abundance in plasma and increased levels of
2-methylmalonylcarnitine32. (Fig. 4c). CRAT encodes carnitine O-acet-
yltransferase; CRAT transcript levels and acetylcarnitines are reported
to be altered in skin33 and serum of AD patients34, respectively. These
results indicate that rs1107329-C increased AD risk may derive from
genetic impact on carnitine metabolism.

The usage of diverse cell and tissue QTL endpoints can aid the
prioritization of cell of origin for a candidate gene. For example, we
identified CD207 colocalization instances exclusively in skin and

myeloid dendritic cell (DC) eQTL endpoints, with the AD risk allele
rs4852714-A associated with decreased and increased expression of
CD207 in skin and DCs, respectively (Fig. 4d). In skin, CD207 is exclu-
sively expressed in Langerhans cells (LCs), which are epidermal resi-
dent DCs of the myeloid lineage. These results pinpoint skin-resident
dendritic cells as the causal cell of origin type of rs4852714-A increased
AD risk and demonstrate the need of skin QTL maps at cell-type
resolution to confidently assess the effect directionality of AD risk
alleles on impacted genes in causal cell-type contexts.

Finally, to prioritize genes at each locus,we scored eachcandidate
gene within the locus by aggregated support from multiple lines of
evidence, including variant-to-gene predictions, QTL evidence, coding
variant genes, AD phenotype annotations (Methods, Supplementary
Data 8, Supplementary Fig. 5). Top-scoring genes in novel loci include
ITK and BATF (Fig. 5a). ITK encodes IL-2 inducible T-cell kinase, colo-
calizes exclusively in T-cells, is upregulated in AD lesional skin33,35 and
has been suggested as a potential target for the therapy of T-cell-
mediated inflammatory skindiseases35. Autosomal recessivemutations
in ITK cause Lymphoproliferative Syndrome 1, a primary immunode-
ficiency characterized by early childhood Epstein-Barr virus associated
immune dysregulation manifesting in lymphoma and autoimmune
disorders. BATF encodes basic leucine zipper ATF-like transcription
factor, it colocalizes in CD8+ memory T-cells and is upregulated in AD
lesional skin33. AD GWAS associations with the BATF gene family
member BATF3 have been reported36. In mice, the Batf/Batf3 interac-
tion controls Th2-type immune response through regulation of IL-4
production37. Given their role in immune response, T-cell function, and
reported links to immune diseases, ITK and BATFmay play a role in AD
biology and warrant further investigation.

Among high-scoring, prioritized genes we found multiple
instances of receptor–ligand interactions for circulating cytokines
and TNF-superfamily members, including genes involved in IL-6 and
IL-22 signaling pathways (Fig. 5b, c). The variant rs7731626 is located
within an intron of ANKRD55 and colocalizes with T-cell eQTLs for
both ANKRD55 and IL6ST, which encodes IL-6 receptor complex pro-
tein gp130. We, and others38, prioritize IL6ST as the putative causal
gene, linking the locus to the IL-6 signaling pathway that plays a key
role in autoimmune and chronic inflammatory diseases.We identified
additional IL-6 pathway genes – IL6, IL6R (IL-6 receptor), and SOCS3
(JAK/STAT inhibitor) – as prioritized candidates for correspondingAD
GWAS loci. In the IL-22 pathway, we identified both IL22 and IL22RA2
as prioritized AD candidates. IL22RA2 is the gene prioritized at the
most significant novel AD GWAS locus (P = 2.57e−10) and has support
from both cis and trans pQTL signals in plasma. The trans IL22RA2
pQTL variant rs4265380 is located at the prioritized gene RUNX3
locus. RUNX3 has been previously associated with psoriasis39 andmay
modulate frequency of Th17 and Th22 cells40; RUNX3 and IL22RA2
interactions have been reported to be involved in macrophages IL-22
mediated intestinal inflammatory response in mouse leading to
colitis41. The prioritization approach captures known and unchar-
acterized AD molecular associations, aids the prioritization of puta-
tive AD-causal genes and cellular contexts, and provides insight into
gene sets and pathways contributing to AD pathobiology.

Integration of colocalization and functional assays identifies
keratinocyte-specific AD-linked genes
Skin barrier defects, a key feature of AD, primarily affect
keratinocytes42, and we observed AD genetic signal enrichment for
genes differentially expressed in keratinocytes from AD patients
(Fig. 3). Hence, we hypothesized that a fraction of the colocalized
genes impact AD by altering keratinocyte-specific gene expression
programs andmechanisms. To explore our hypothesis, we selected 22
colocalized genes associated with keratinocyte-specific signatures
(Methods, Supplementary Data 9). We defined this set as “AD
keratinocyte-linked gene candidates” and profiled them by four
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complementary functional assays. Firstly, to evaluate their enhanced
expression in keratinocyte populations, we generated sc-RNAseq
profiles of epidermal cells from seven human body sites (Methods,
Supplementary Fig. 6). Secondly, to investigate their involvement in
keratinocyte differentiation, we generated a three-dimensional epi-
dermal model and generated bulk-RNA-Seq profiles from seven dif-
ferentiation timepoints (Methods, Supplementary Fig. 7). Thirdly, we
explored their response to the AD-relevant cytokine pathways IL-13
and IL-2243, considered the two major effector cytokines in AD
pathogenesis44,45, by silencing each gene in keratinocyte models and
characterizing the expression of cytokine IL-22 and IL-13 pathway
proxy genes under different treatment conditions: no treatment, sti-
mulationwith IL-22, IL-13, or both (Methods). Finally, to assesswhether
AD risk alleles affect transcript abundance in keratinocytes, we map-
ped cis eQTLs from keratinocyte cell lines derived from 50 human
subjects (Methods).

We observed that, compared to non-prioritized candidates (Sup-
plementary Fig. 8), per-locus prioritized AD keratinocyte-linked genes

(Fig. 6) tend to yield significant effects across assays. Considering
differential expression by keratinocyte cell population, we identified
CEBPA as enhanced in differentiated keratinocytes, AQP3 and RGS14 in
non-keratinized keratinocytes, and RORA and ANK3 in keratinized
populations. In epidermalmodels, CEBPA, AQP3, RORA and ANK3were
identified as strongly positively associated with keratinocyte differ-
entiation (Fig. 6). While cytokine pathway signal differs by treatment,
all tested prioritized candidates—except RGS14—show nominally sig-
nificant (t test, P <0.01) signal in at least one treatment condition
(Supplementary Fig. 9b). Despite the limited power of the keratinocyte
eQTLmap, all tested prioritized candidates show nominally significant
(t test, P <0.05) eQTL signal, confirming that AD risk alleles impact
candidate genes expression in keratinocytes (Fig. 6, Supplemen-
tary Data 9).

Combined, resources generated herein provide valuable
mechanistic insights for uncharacterized AD genomic associations.
One example is the novel ANK3 locus. ANK3 is known to play a role in
neurodevelopmental disorders46, but its role in atopic dermatitis has
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not yet been described.We hypothesize thatANK3 could be associated
with AD immunopathogenesis by playing a role in keratinocyte-
mediated inflammatory programs, asweobserve thatANK3 expression
is enhanced in keratinized populations (granular layer), and the cor-
responding transcript silencing increases IL-13 pathway proximal gene
expression in IL-13 + IL-22 co-stimulated keratinocytes (Fig. 6, Supple-
mentary Fig. 9). The AD risk allele rs11817236-A may impact ANK3 in a
cell-type specific manner; we observed decreased expression in kera-
tinocytes (Fig. 6), but increased expression is reported in specific T-cell
populations47. Together, these results highlight the utility of per-
forming a comprehensive QTL-GWAS colocalization approach and
integrating this data with cell-type relevant functional assays, to
elucidate the potential mechanism by which genes not previously
linked to AD could play a role in the disease by altering keratinocyte
function.

Discussion
We present a large-scale, AD GWAS meta-analysis leveraging multi-
ancestry cohorts, including N = 13,183 non-European subjects affected
byAD.We identified 101 loci associatedwithAD, including 16 novel loci
not previously reported. While the inclusion of subjects from diverse
ancestry backgrounds contributed to the overall multi-ancestry GWAS
meta-analysis signal, we did not identify novel ancestry-specific GWAS
loci in non-European cohorts. Fine-mapping of the ancestry-specific
EUR and ASN GWAS meta-analyses identified variants with high pos-
terior probability of being causal, including missense variants in
TESPA1 and NLRP10 enriched in Finnish and East Asian populations,
respectively. These findings support that larger AD cohorts in under-
represented non-European populations are required to increase the
power to detect genome-wide significant variants, and that fine-
mapping of ancestry-specific AD GWAS signal can identify putatively
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causal genes and variants. Furthermore, previous studies of AD and
asthma in African Americans suggest that applying a stricter pheno-
type definition may aid discovery of novel signal48,49, and existing dif-
ferential AD-triggering environmental exposures17 may contribute to
explain the higher prevalence of AD for this community that is see-
mingly not explained by genetics50. To improve the characterization of
AD genetic architecture, future efforts should not only continue the
diversification and expansion of AD GWAS cohorts, but also focus on
the refinement of phenotype definition and control for environmental
exposure.

Exploring the genetic relationship between AD and atopic march
phenotypesmay help us to better understand the genetic architecture
of disease. Atopic dermatitis often precedes the development of ato-
picmarch, defined as disease progression of AD to asthma and allergic
rhinitis, which is associated with more severe and persistent disease19.
We found that most of the identified AD loci overlap with previously
reported atopic march GWAS loci, supporting the largely shared
genetic architecture across atopic diseases. Both the replicated and
novel AD loci highlight genomic regions that expand the under-
standing of AD biology.

Integration of multi-omic QTL sources from diverse biotypes to
prioritize disease causal genes comprises the most extensive QTL-
GWAS colocalization effort for AD genetic risk signals to date. Inclu-
sion of complementary molecular phenotypes with cell-type specific
QTL sources enabled the identification of AD-gene links otherwise
missed. To prioritize genes at the novel and known loci, we leveraged
multiple, complementary variant-to-gene approaches and functional
annotations to derive a prioritization score. We focused on the biolo-
gical interpretation of candidate genes at novel loci (for example ITK
and BATF) and featuredmultiple prioritized genes in the IL-6 and IL-22
pathways, including IL6ST, IL22RA2 and SOCS3, located in novel
AD loci.

Cell-type enrichment analysis identified immune cells, particularly
T-cells, as the top enriched cell type in the AD genetic signal, sup-
porting the known pathobiology of T-cell driven inflammation in AD.
Additionally, enrichment analysis in skin sc-RNAseq identified kerati-
nocytes as a significant cell-type contributor, revealing AD genetic
signal enrichment in sc-RNAseq-derived keratinocyte expression sig-
natures and supporting the known role for skin barrier alterations in
AD. To functionally characterize the keratinocyte signal on a selected
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gene candidate set, we generated a comprehensive array of skin and
keratinocyte functional assays, including a cross-body epidermal sc-
RNAseq atlas, keratinocyte multi-timepoint differentiation expression
data, keratinocyte-derived eQTLs and KOs across AD-relevant stimu-
lation contexts in interleukin pathways. The integrated cross-assay
results pinpoint RORA, CEBPA, AQP3, and ANK3 as strong AD-linked
candidates and highlight keratinocyte-subtype and context specifi-
cities. Yet, we acknowledge that future work to characterize the
prioritized keratinocyte genes’ role in the complex crosstalk of epi-
dermal differentiation and cytokine response is warranted. Impor-
tantly, the array of unique keratinocyte-derived resources generated
herein can be further utilized by the scientific community to better
understand AD pathobiology linked to the disruption of the epidermal
barrier.

In conclusion, we leveraged multiple genetic and functional
approaches to understand the mechanisms by which AD-associated
variants impact genes and cell types. We identified novel AD suscept-
ibility loci, prioritized potentially causal genes, and pinpointed cellular
contexts that contribute to the genetic architecture of AD. The pro-
vided resources can be utilized to further characterize the contribu-
tion of genetic signal to AD pathobiology and enable future efforts to
identify AD-associated genes that may be transferrable into clinically
actionable targets for atopic dermatitis.

Methods
Ethics
The study adhered to all applicable regulations governing the use of
human participants and was conducted in accordance with the prin-
ciples of the Declaration of Helsinki. Participants in the FinnGen study
provided informed consent for biobank research, with the study pro-
tocol (No. HUS/990/2017) approved by the Coordinating Ethics
Committee of the Hospital District ofHelsinki andUusimaa (HUS). The
UK Biobank received ethical approval from the North West Multi-
center Research Ethics Committee (approval number: 11/NW/0382),
with all participants giving informed consent. The CHOP cohort study
was approved by the Institutional Review Board of Children’s Hospital
of Philadelphia (IRB# 4886). Informed consent was obtained from all
CHOP subjects or, if subjects were less than 18 years of age, from a
parent and/or legal guardian, with assent from the child if 7 years or
older. BioBank Japan participants provided written, informed consent
approved by ethics committees of the Institute of Medical Sciences,
the University of Tokyo and RIKEN Center for Integrative Medical
Sciences. Skin biopsies were obtained from volunteer patients fol-
lowing protocols approved by the University of Michigan Institutional
Review Board, written informed consent was obtained from all
subjects.

Study populations
In this study, we included genome-wide association study summary
statistics derived from genetic and phenotype data from FinnGen, UK
BioBank, and Children’s Hospital of Philadelphia and previously pub-
lished GWAS from EAGLE consortium and BioBank Japan. The detailed
information for each study is described below.

FinnGen. The FinnGen researchproject [www.finngen.fi] was launched
in 2017 with the aim to improve human health through genetic
research. The project combines genome information with digital
health care data from national registries: the genotype data are linked
to national hospital discharge, death, cancer, and medication reim-
bursement registries using the national personal identification num-
bers. In the current analysis, we included 166,390 Finnish participants
from FinnGen Data Freeze 10. Cases were obtained from ICD-8/9/10
diagnosis codes for atopic dermatitis, excluding other forms of der-
matitis, from inpatient, outpatient or primary care registries and we
required that a case also had a prescription code for AD medications

from purchase or reimbursement registries. Controls excluded indi-
viduals with any dermatitis ICD codes or AD comorbidities (asthma
andallergic rhinitis). The association analysis included20,115 cases and
146,275 controls. GWAS was performed in the FinnGen Sandbox using
the Scalable and Accurate Implementation of GEneralized mixed
model (SAIGE v0.36.3.2) including sex, age, genotyping batch and the
first 10 genetic principal components. SNPs with minor allele count
(MAC) > 5 and imputation quality score > 0.6 were kept in the asso-
ciation analysis.

UK Biobank. The UKBB is a large and population-based prospective
cohort of approximately 500,000 participants aged 40–69 years
recruited between 2006 and 2010 in the United Kingdom. For the
European ancestry analysis, we only included participants with Eur-
opean ancestry defined as Caucasian by the UKBB Field 22006. Atopic
dermatitis cases were defined using ICD-9/10 codes for atopic der-
matitis, excluding other forms of dermatitis, from hospital in-patient
data and primary care and also had a prescription code for AD. Con-
trols excluded individuals with any dermatitis ICD-9/10 codes or AD
comorbidities (asthma and allergic rhinitis). The UKBB European
ancestry association analysis included 10,470 cases and 210,720
controls.

For individuals of African and Central South Asian, we utilized the
Pan-UK Biobank project [pan.ukbb.broadinstitute.org] assignment of
UKBB participants to 6 continental ancestries. This resulted in identi-
fication of 6636 individuals of African ancestry and 8876 individuals of
Central-SouthAsian ancestry in theUKBBproject. Similar to the above-
described case-control definitions, cases were defined using ICD-9/10
codes for atopic dermatitis, excluding other forms of dermatitis, from
hospital in-patient data and primary care. Controls excluded indivi-
duals with any dermatitis ICD-9/10 codes or AD comorbidities (asthma
and allergic rhinitis). The UKBB African ancestry association analysis
included 146 cases and 4799 controls and the Central South Asian
ancestry association analysis included 376 cases and 5594 controls
(Supplementary Data 1).

GWAS for the UKBB European, African, and Central South Asian
cohorts was performed using mixed logistic regression model
including sex, age, the first 10 genetic principal components and a
genetic relatednessmatrix. To fit themodelweused SAIGEgds (v1.6.0),
an R package that implements the Scalable and Accurate Imple-
mentation of GEneralizedmixedmodel (SAIGE)method on a Genomic
Data Structure (GDS) file format to optimize computational efficiency.
SNPs with minor allele count (MAC) > 10 and imputation quality score
> 0.7 were kept in the association analysis.

Children’s Hospital of Philadelphia (CHOP). The cohort from the
Center for Applied Genomics is composed of approximately 85,000
juvenile subjects below 18 years of age and of a diverse set of ances-
tries. Subjects were recruited at Children’s Hospital of Philadelphia
starting in 2006 and continuing to the present; genotyping of subjects
has occurred across the same timeline. Cases were obtained from ICD-
9 diagnosis codes for atopic dermatitis (6918, 6918B), excluding indi-
viduals with other forms of dermatitis. Controls excluded individuals
with any dermatitis ICD-9 codes (690–698).

Subjects in the study were genotyped on multiple versions of
Illumina genotyping arrays. These arrays fell into four families
(HumanHap 550/610, Infinium Omni 2.5, Infinium OmniExpress, and
Infinium Global Screening Array). Chips within families were
merged, filtered for genotype missingness (0.05), individual miss-
ingness (0.02) and minor allele frequency (0.05). Genotypes were
imputed against the TOPMed reference panel using the TOPMed
imputation server51–53. Imputed genotypes were filtered for imputa-
tion quality using the R2 metric (>= 0.6). Post filtering imputed
datasets weremerged on common SNPs. The final dataset contained
41,180,882 variants.
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Ancestry was assigned using PCA.Merged genotypeswerefiltered
for minor allele frequency (0.01) and then pruned for linkage dis-
equilibriumusing PLINK (v1.9) (indep-pairwise 500 500.05)54. The PCA
dataset contained 157,203 SNPs. PCA was performed using flash-pca
(v2.0)55. The first three principal components were visualized using the
plot3D function from the rgl library in R v4.2.3. Subjects were grouped
based on observed centers of density into European, African, East
Asian, South Asian, and Hispanic/American ancestries. Subjects that
fell outside of thosefive groupings were aggregated into a sixth group,
designated “Unassigned”. Genotype files for each ancestry were
separated, and another ancestry-specific PCA was performed as above
to identify any further outliers.

The association analysis included individuals of African ancestry
(6917 cases and 11,080 controls), European ancestry (1590 cases and
21,499 controls), East Asian ancestry (219 cases, 692 controls), South
Asian ancestry (123 cases, 1045 controls), American ancestry (237
cases, 1884 controls) and unassigned mixed ancestry (869 cases, 4927
controls). GWAS was performed Scalable and Accurate Implementa-
tion of GEneralized mixed model (SAIGE v1.1.4) including sex, age,
genotyping batch and the first 10 genetic principal components. SNPs
withminor allele count (MAC) >= 5 and imputationquality score >=0.6
were kept in the association analysis.

EAGLE consortium. The EArly Genetics and Lifecourse Epidemiology
(EAGLE)ConsortiumADmeta-analysis publishedby Paternoster et al in
ref. 12, performed fixed-effect GWAS meta-analysis on ~21,000 cases
and 95,000 controls. Cases were defined as described in the paper12,
briefly each cohort defined cases by a mixture of self-report, doctor
diagnosis, and/or ICD codes. Summary statistics were generated for
the discovery cohort using GWAMA56 and were downloaded from the
EBI GWASCatalog (study accessionGCST003184, excludes 23&Meand
non-European cohorts), totaling 10,788 cases and 30,047 controls of
European ancestry.

BioBank Japan. BioBank Japan collaboratively collects DNA and serum
samples from 12 medical institutions in Japan and recruited approxi-
mately 200,000patients with a diagnosis of at least one of 47 diseases.
Mean age at recruitment is 63 years. Sakaue et al. 57 performed GWAS
analysis on 220 phenotypes, including atopic dermatitis. Summary
statistics for atopic dermatitis GWAS were downloaded from the Bio-
Bank Japan portal (https://pheweb.jp/downloads). The GWAS sum-
mary statistics include 4,296 AD cases and 163,807 controls run using
SAIGE (v.0.37) and included age, age2, sex, age × sex, age2 × sex and the
top 20principal components as covariates. Caseswere defined by ICD-
10 code L20 and controls were individuals without a L20 ICD-10 code
in their medical history.

GWAS meta-analysis
Multi-ancestry GWAS statistics were obtained by fixed-effect inverse
variance weighted meta-analysis of the summary statistics (beta
values) from FinnGen, UKBB_EUR, UKBB_AFR, UKBB_CSA, EAGLE, BBJ
and the 6 CHOP cohorts, using GWAMA (v2.2.2)56 (Supplementary
Data 1). Ancestry-stratified GWAS statistics were obtained by per-
forming an analogous meta-analysis strategy considering cohorts
stratified by continental populations: EUR, ASN, AFR (Supplementary
Data 2). In total, GWAS signal from 4 ancestry endpoints—multi-
ancestry, EUR, ASN, and AFR populations—were generated. Subse-
quently, we identified autosomal loci with GWAS signal, i.e. genomic
windows containing independent GWAS signals, across ancestry end-
points. For that, we first constructed a reference dataset of best-guess
genotypes fromUKBiobank (UKBB)58 by considering imputed dosages
of variants with info score > 0.3 and MAF>0.1%, selecting genotypic
data corresponding to 15,000 randomly selected or to 2000 ancestry-
matched unrelated UKB samples, to generate multi-ancestry or
ancestry-stratified genotype panels, respectively. We then filtered

variants with missingness > 5% and Hardy–Weinberg equilibrium test
P < 1 × 10−7. For each of the 4 GWASs, we used the PLINK (v1.9) ref
‘clumping’ algorithm to select top-associated variants (P < 5 × 10−8) and
corresponding LD-linked variants at r2 > 0.05 with the top associated
variant within ±1Mb, utilizing the GWAS-matching ancestry-stratified
or multi-ancestry UKB genotype data. We determined the genomic
span of each LD-based clump and added 1 kb up- and downstream as
buffer to the region. If any of these windows overlapped, we merged
them together into a single (larger) locus.

To determine a set of non-redundant GWAS loci across ancestry
endpoints, we selected all multi-ancestry derived clumps, and com-
plemented this set with non-overlapping clumps identified in a single
ancestry. The resulting GWAS hit loci set is composed of genomic
regions with suggestive GWAS signal in at least one ancestry endpoint.
For each GWAS locus, considering the ancestry endpoint were the
GWAS hit was identified, the smallest p-value per locus was defined as
the proxy GWAS lead variant for that locus. The final set is composed
of 101 GWAS loci.

Comparison of the 101 loci with published literature was per-
formed for atopic march phenotypes: atopic eczema/eczema
(EFO_0000274, HP_0000964, allergic disease (MONDO_0005271) and
asthma (MONDO_0004979) studies reported in the EBI GWAS catalog
(https://www.ebi.ac.uk/gwas; 2024-09-26). To include not only
genome-wide significant (P < 5e−08) but also suggestive (P < =5e -06)
GWAS signal, we considered both reported entries for all atopicmarch
GWAS studies (Supplementary Data 10) and full summary statistics
from the largest GWAS per disease group: Budu-Aggrey14 (atopic
eczema/eczema), Han59 (asthma) and Ferreira20 (allergic disease)
(Supplementary Data 11). Overlap analysis was performed in R with
data.table foverlaps() function. For the 101 genomic loci, start and stop
positions windows were set to ±0.5Mb from the lead variant and
intersected with reported variant positions from the EBI GWAS cata-
log, andwith variant positions from the aforementionedGWASs.Novel
AD loci are defined as loci not overlapping previously published atopic
eczema/eczema GWAS P < 5e−08.

LDSC heritability
LDSC regression (v1.0.1) was applied to estimate the variant-based
heritability (h2

SNP) of AD from the European ancestry GWAS meta-
analysis. h2

SNP was estimated on liability scale using population pre-
valence (--pop-prev) 0.15 and sample prevalence (--samp-prev) 0.095
in the meta-analyzed sample (4-cohort EUR meta-analysis 42,963
cases/451,435 controls).

Fine-mapping
Statistical fine-mapping was performed using the SuSiE (susieR
v0.12.35) with GWAS summary statistics from the European, Asian and
African meta-analyses and LD reference panels calculated from UKBB
for EUR, AFR and EAS individuals as classified by the Pan-UKBB project
[pan.ukbb.broadinstitute.org]. We defined fine-mapping regions
based on a 1Mb window around each lead variant and excluded the
major histocompatibility complex (MHC) region from analysis due LD
structure in the region. Themodel allowed up to 10 causal variants per
region and 95% credible sets (CS) were calculated with posterior
inclusion probabilities (PIP) of each variant reported. In loci with
multiple causal variants identified, there will be multiple 95% CS. All
variants in the 95% credible setswere annotatedwith VEP (v110, [http://
grch37.ensembl.org/Homo_sapiens/Tools/VEP]) using default criteria
to select one block of annotation per variant.

LDSC – cell-type specificity
LDSC-SEG (v1.0.1) was used to identify genomic annotations enriched
for AD trait heritability. Bulk ATAC-seq data (GSE118189 [https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118189]) for cells isolated
from peripheral blood from healthy donors was used to test for
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enrichment in open chromatin regions. These isolated cells were cul-
tured in vitro with and without stimulation as described by Calderon
et al. 24. Briefly, T cells were stimulated with Dynabeads conjugated
with CD3/CD28 antibodies and IL-2; B cells were stimulated with anti-
IgG/IgM antibodies and IL-4;Monocytes were stimulatedwith LPS; and
NK cells were stimulated with CD2 and CD355 coated beads as well as
IL-2. Together there are 222 samples for 32 types of immune cells, 20of
which have data for both unstimulated and stimulated status. Each of
cell-type/ATAC-seq bed files was added to the baseline model inde-
pendently when building the regression model and testing for
enrichment.

Generation of cell-type-specific and disease programs
We scored genes for skin cell-type-specific programs by testing for
differential expression by cell-type in healthy and lesional AD cells
independently, utilizing a sc-RNAseq dataset derived from skin in the
Human Cell Atlas27. Briefly, sc-RNAseq data of skin biopsies from 5
healthy controls (HC) and 4 atopic dermatitis (AD) patients were
analyzed. The skin biopsies were separated into epidermis and dermis
before dissociated and enriched for various cell fractions (keratino-
cytes, fibroblasts, and endothelial cells) and immune cells (myeloid
and lymphoid cells) to up sample rare cell-types. In total, the HC group
skin samples sc-RNAseq dataset includes 195,739 cells and AD lesion
group sc-RNAseq dataset includes 63,512 cells). Cells were clustered
using UMAP dimensionality reduction and Leiden graph-based
method then annotated by comparing differentially expressed genes
between clusters to published bulk transcription profiles or protein
expression of defined cell types. Four major groups of cell types
(lymphoid cells, myeloid cells, keratinocytes, and other non-immune
cells) were identified and further clustered in subsequent rounds of
feature selection, embedding, visualization and clustering. To gen-
erate cell-type-specific programs, we first identified genes specifically
expressed in one cell type compared to other cell types inHCor AD sc-
RNAseq datasets. To generate disease progression programs, we
identified differential expression between cells of the same type in AD
vs. HC datasets.

Gene-program enrichment analysis
We adapted MAGMA v1.09b to evaluate the association of disease-
association statistics with the cell-type-specific gene programs and
disease progression gene programs. In step 1, we performed a gene-
level analysis based on a multiple linear principal components
regression model to aggregate the association statistics of multiple
markers to each gene associated with the AD phenotype. For each
gene g the gene p-value pg from step1 was converted to a Z-value zg
with the probit function. In step 2, we tested whether the genes in a
gene-set are more strongly associated with the phenotype of inter-
est than other genes. The competitive gene-program analysis tested
whether the genes in the cell-type-specific and disease programs are
associated with a particular cell type. The p-values from gene-
program analysis were transformed to values between 0 and 1 using
the min-max normalization resulting in a relative weighting of genes
in each program. We corrected for multiple testing by cell type and
disease program to identify significant program-cell-type enrich-
ment (Benjamini–Hochberg FDR < 0.05). Clustering of gene pro-
gram scores was performed for the 146 AD GWAS genes from the
gene-level analysis that passed a more stringent multiple testing
correction for all genes in the genome (Bonferroni P < 2.7E
−06 = 0.05/18,471 genes) using the R program pheatmap with Pear-
son correlation (complete) as the clustering distance method for
both rows and columns.

Determination of QTL-AD-GWAS colocalized loci
To investigate possible associations between cis-genetically regulated
molecular phenotypes (QTLs) and Atopic Dermatitis (AD), we

compiled an exhaustive QTL map collection and employed a coloca-
lization approach.

Compilation of QTL full-summary statistics maps
To maximize the expectation of identifying Atopic Dermatitis
putatively causal molecular links, we compiled an exhaustive col-
lection of cis quantitative trait loci (QTL) mappings (maps) derived
from several molecular phenotypes (MPs): gene (eQTLs), splicing
phenotypes (sQTLs), DNA methylation (mQTLs) and protein abun-
dance (pQTLs).

The QTLs originate from widely different contexts, i.e., tissue and
cell types, stimuli, and developmental states; we considered a total of
297 cis QTL maps with full statistics available and genome-wide
molecular phenotype tests. The majority (94%) of QTL maps are
derived from gene expression or splice phenotypes (e/sQTLs), 4% are
derived from DNAmethylation (mQTLs) and 2% from protein (pQTLs)
abundances. Details of QTL maps are provided in Supplementary
Data 6. A total of 157 eQTL maps were obtained from bulk-tissue or
isolated cells, 127 of which from 31 different studies included in the
eQTL Catalogue60 ([https://www.ebi.ac.uk/eqtl/], version 5, April
2022). Thirty additional bulk-tissue and isolated-cell eQTL maps were
obtained from additional sources: two meta-analyzed eQTL maps
derived from blood (eQTLGen61, [https://eqtlgen.org/cis-eqtls.html])
and induced pluripotent stem cells (iPSC) (i2QTL62, [https://doi.org/10.
5281/zenodo.4005576]), and 28 maps derived from isolated immune
cells (ImmuNexUT63, [https://humandbs.biosciencedbc.jp/en/
hum0214-v8#E-GEAD-420]). In addition, 14 immune cell eQTL maps
derived from single cell RNA-Seq (sc-eQTLs) were obtained (OneK1K47,
[https://onek1k.org/]). Considering splicing phenotypes, we included
109 sQTLmaps derived from transcript abundances included in the v5
eQTL Catalogue60. Considering DNA methylation, a total of 11 mQTL
maps were obtained. We included 9 maps from eGTEx sources: breast
mammary tissue, colon transverse, kidney cortex, lung, muscle skele-
tal, ovary, prostate, testis, and whole blood (eGTEx30,64, [https://
gtexportal.org/home/downloads/egtex]), one additional muscle ske-
letal (FUSION65, [https://www.ebi.ac.uk/birney-srv/FUSION/]) and one
brain (ROSMAP66, [http://mostafavilab.stat.ubc.ca/xQTLServe/]) cis
mQTL maps. Considering protein abundance, we included six pQTL
maps from plasma (SomaScan deCODE 202167, [https://download.
decode.is/form/folder/proteomics], SomaScan Sun et al. 68, [https://
www.ebi.ac.uk/gwas/downloads/summary-statistics]; SomaScan and
Olink FinnGen [https://www.finngen.fi/en/access_results]; ARIC EUR
and AFR SomaScan 202269 [http://nilanjanchatterjeelab.org/pwas]).

Colocalization of AD GWAS loci with QTLs
For each of the 100 AD-associated loci not overlapping with the MHC
region, we identified overlapping (>1 bp) molecular phenotype (MP)
cis-region loci from each QTL map, considering GWAS and molecular
phenotype cis-QTL analyzed variants. For each overlapping MP-GWAS
region pair, we applied coloc v5.52 to QTL along with GWAS summary
statistics, only if the locus contained >=1 variant with nominal QTL
P < 1e−05 and GWAS P < 5e−08. Prior probabilities of a variant yielding
a) aQTL association (p1), b) aGWAS association (p2) and c) aQTL and a
GWAS association (p12) were set to p1 = 1e−04, p2 = 1e−04, p12 = 1e
−06. Only the regions with at least 50 variants in common between
the GWAS and MP loci were tested for colocalization. Both for QTLs
and GWAS statistics, colocalization was performed on effect size
(effect size) and associated standard error (effect size s.e.) values,
except for ImmuNexUT eQTLs; colocalization was performed on
p-values and minor allele frequency (MAF) values. We defined sug-
gestive support for QTL-AD-GWAS colocalization at posterior prob-
ability PP4 > 0.75. For mQTLs, CpG probe identifiers were mapped to
genes according to regulatory region annotations from EPIC.hg38.-
manifest.tsv.gz and HM450.hg38.manifest.tsv.gz [https://zwdzwd.
github.io/InfiniumAnnotation].
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Variant-to-gene mapping and prioritization of high-
confidence genes
Given GWAS hit loci, candidate genes per locus can be prioritized by
combining evidence acrossmolecular resources70. Herewe performed
variant-to-gene mapping and aggregated functional annotation from
various sources to generate scores that aim to represent the likelihood
of a gene to be causally involved in AD. Genes with the highest
aggregated score are named ‘prioritized genes’. Variants weremapped
to genes using the combination of multiple methods: nearest gene,
Open Targets Variant-to-Gene (V2G), DEPICT, fine-mapping and colo-
calization. Nearest gene for each genome-wide significant loci was
annotated by GREAT (v4.0.4)71,72 using the lead variant, association
rule: Single nearest gene: 1,000,000bp max extension. Open Targets
Variant-to-Gene (V2G)73 was used to assign lead variants to genes by
selecting the genewith highest overall V2G score. DEPICT (Data-driven
Expression-Prioritized Integration for Complex Traits)74 was run on all
variants with P < 5e-08 using 1KG EUR LD reference panel to prioritize
most likely causal genes at associated loci based on functional anno-
tation. We identified 102 genes with significant (FDR <0.05) DEPICT
score, across 59 loci. VEP (v110) annotation of fine-mapped credible
sets identified 9 genes with moderate or high impact coding variants
(Supplementary Data 4). And we utilized VEP to annotate 60 genes
containing coding variants in LD (r2 > 0.6) with corresponding GWAS
locus lead variant from the MULTI and EUR GWASmeta-analyses (1KG
EUR LD reference) and the ASN GWAS meta-analysis (1KG EAS LD
reference) (Supplementary Data 5). Considering colocalization results
per GWAS locus, we annotated all genes with at least one significant
colocalization (PP4 >0.75, as described in above colocalization meth-
ods) derived from sQTL, eQTL and pQTL maps (Supplementary
Data 7). Considering deCODE and FinnGen trans pQTL summary sta-
tistics (SomaScan deCODE 202167, [https://download.decode.is/form/
folder/proteomics]; SomaScan and Olink FinnGen [https://www.
finngen.fi/en/access_results]) corresponding to GWAS loci lead var-
iants, we annotated genes with trans pQTL signal (Supplementary
Data 8). That is, if lead variant of GWAS locus 1 had a nominally sig-
nificant (P < 5e-08) trans pQTL signal associated to a protein encoded
in GWAS locus 2, the GWAS locus 2 gene encoding such protein would
be annotated with trans pQTL signal.

All genes implicated by any of the above strategies were then
annotated with OMIM entries associated with reported phenotypes
involving the skin or immune system involvement (Supplementary
Data 8). With this approach, we annotated 57 genes with a potential
role in skin or immune processes. Additionally, genes reported in lit-
erature with coding variants in AD patients were compiled and anno-
tated against the gene list (see reference publications in
Supplementary Data 12) And finally, genes with significant differential
expression (False Discovery Rate, FDR ≤ 5% and |log2(Fold Change)|≥1)
from Tsoi et al. 33 comparisons of AD lesional skin to control (healthy)
skin bulk RNAseq were annotated (n = 3264 DEGs, see Supplementary
Data 13). The amount of evidence across all sources was added in an
unweighted fashion to generate aggregated scores for 498 unique
genes across 101 GWAS loci (Supplementary Data 8).

Selection and prioritization of AD keratinocyte-linked gene
candidates
We selected genes with =>1 s/eQTL colocalization signal (PP4 >0.75),
where the AD risk allele increases the expression of the gene or tran-
script in at least one s/eQTL endpoint. We integrated skin cell enrich-
ment metrics (Supplementary Data 2 of Dusart et al.75) and narrowed
down this set by selecting genes with evidence of correlation with
keratinocyte-representative transcripts, e.g. with mean correlation
with keratinocyte reference transcripts > 0.30, and that being higher
than the mean correlation with any non-keratinocyte reference tran-
script set. The selected set is composed of 22 genes: AQP3, NAB1,
CEBPA, IL2RB, RORA, GRID2IP, RGS14, RTF1, LIME1, ZFYVE21, SLC2A4RG,

SCAMP3, IL22RA2, WNK1, CLIP1, KIAA2013, LMAN2, MAP3K14, NDU-
FA4L2, ANK3, CHRAC1, PCDH1. We refer to this set as “AD keratinocyte-
linked gene candidates”; genes that are candidates to play a causal role
in Atopic Dermatitis through a pathogenic effect in keratinocytes.

Characterizationof keratinocyte subtype specificity signal using
a cross-body sc-RNA-Seq skin dataset
To assess the robustness of the keratinocyte-specific gene expression
of the keratinocyte-linked colocalized genes, we generated a sc-
RNAseq dataset composed of disease unaffected epidermal samples
from96 skin biopsies: 18 frompublished datasets, with processed data
available at GEO under accession IDs GSE173706 and GSE249279 and
78 from newly generated datasets. Raw data for all 96 samples is
available at SRA under accession id PRJNA1054546. The Seurat object
derived from the harmonized RNAseq dataset, and curated cell-type
signature genes utilized to define cell types, are available at Figshare
[https://doi.org/10.25452/figshare.plus.c.7282969]. For all included
samples, detailed biopsy sample and protocol details are described at
Figshare [https://doi.org/10.25452/figshare.plus.c.7282969. Overall,
biopsies originated from seven body sites (face, scalp, axilla, palmo-
plantar, arm, leg, and back). Skin biopsies were taken from the unaf-
fected tissueof skin diseasepatients andhealthydonors.Generationof
single-cell suspensions for scRNA-seq was performed as follows: skin
biopsies were incubated overnight in 0.4% dispase (Life Technologies)
in Hank’s Balanced Saline Solution (Gibco) at 4 °C. Epidermis and
dermis were separated. Epidermiswas digested in 0.25% Trypsin-EDTA
(Gibco) with 10U/mL DNase I (Thermo Scientific) for 1 h at 37 °C,
quenchedwith FBS (Atlanta Biologicals), and strained through a 70μM
mesh. Dermis was minced, digested in 0.2% Collagenase II (Life Tech-
nologies) and 0.2% Collagenase V (Sigma) in plain medium for 1.5 h at
37 °C and strained through a 70μM mesh. The epidermal and dermal
cells were combined in 1:1 ratio. Libraries were then sequenced on the
Illumina NovaSeq 6000 sequencer to generate 150 bp paired-end
reads. Data processing including quality control, read alignment
(hg38), and gene quantification was conducted using the 10X Cell
Ranger software. The samples were then merged into a single
expression matrix using the cellranger aggr pipeline. In total, across
body sites, 274,834 cells were profiled, including 96,194 keratinocytes.
Seurat v3.0. was utilized to normalize, scale, and reduce the dimen-
sionality of the data. We filtered out low-quality cells containing less
than 200 genes per cell as well as greater than 5000 genes per cell.
Cells containing more mitochondrial genes than the permitted quan-
tile of 0.05 were removed. We removed ambient RNA using R package
SoupX v1.6.2. Doublets were removed using scDblFinder v1.12.0.
Principal components (PC) were obtained from the topmost 2000
variable genes, and the Uniform Manifold Approximation and Projec-
tion (UMAP) dimensional reduction technique was applied to the 30
topmost variable PC-reduced dataset. Batch effect correction was
performed utilizing harmony v1.0, using donor as batch. After batch
correction, cells were clustered using shared nearest neighbor mod-
ularity optimization-based clustering. Cluster marker genes were
identified with FindAllMarkers; cluster corresponding cell type was
identified by comparing marker genes to curated cell-type signature
genes (Supplementary Fig. 6). Differential expression by keratinocyte
subtype was performed with Seurat (v4.3.0) FindMarkers function by
comparing keratinocyte subtype to non-keratinocyte clusters. The log
fold-change of the average expression between a keratinocyte subtype
cluster compared to the rest of clusters is utilized as keratinocyte-
subtype gene expression statistic.

Characterization of keratinocyte-differentiation gene expres-
sion signal using 3-D human epidermal tissue cultures
We investigated the gene expression patterns of the keratinocyte-
linked colocalized genes in keratinocyte differentiation occurring in
the formation of 3-D human epidermal raft cultures. Normal human
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epidermal keratinocytes were isolated from epidermis (n = 3) and
grown using J2-3T3 mouse fibroblasts as a feeder layer originally
described by Rheinwald and Green76. 3-D human epidermal raft cul-
tures seeded in collagen hydrogels were prepared using three distinct
donor pools as described previously77 and grown at an air-liquid
interface for 12 days in E-Medium (DMEM/DMEM-F12 (1:1), 5% Fetal
Bovine Serum, adenine (180 µM), Bovine pancreatic insulin (5 µg/ml),
Human apo- transferrin (5 µg/ml), triiodothyronine (5 µg/ml),
L-Glutamine (4mM), Cholera toxin (10 ng/ml), Gentamicin (10 µg/ml),
Amphotericin B (0.25 µg/ml)). At day 9 at an air-liquid-interface to
allow for epidermalmaturation, the epidermal rafts (RHE)were treated
with0.1%BSA/phosphate-buffered saline (SigmaAldrich, St Louis,MO)
for 72 Hrs. Epidermal tissues were separated at the stages from Sub-
confluent stage to 3-D raft on day 12 (Sub-confluent, Day 0-Confluent,
Day 3-Confluent, Day 3-Raft, Day 6-Raft, Day 9-Raft, Day 12-Raft) from
the collagen scaffold and lysed in QIAzol for RNA isolation. RNA
samples were sent to the University of Michigan Advanced Genomics
Core for RNA sequencing. Libraries for RNA-Seq were generated from
polyadenylated RNA and sequenced at six libraries per lane on the
Illumina Genome Analyzer IIx. We used Tophat278 to align RNA-seq
reads to the human genome, using annotations of GENCODE as gene
model79. HTSeq was used to quantify gene expression levels80. Nor-
malization was performed by DESeq281. The processed RNA-Seq data
can be found in Figshare [https://doi.org/10.25452/figshare.plus.c.
7282969]. Differential expression by timepoint was performed with
limma82 on FPKM values on non-lowly expressed genes (zFPKM> -3, in
at least 2 timepoints). Timepoint was modeled as a quantitative vari-
able (Sub-confluent=1, Day 0-Confluent=2, Day 3-Confluent=3, Day 3-
Raft=4, Day 6-Raft=5, Day 9-Raft=6, Day 12-Raft=7), and the function
duplicateCorrelation was utilized to model technical replicate effects.
The estimated log-fold change attributable to timepoint is utilized as
keratinocyte-differentiation gene expression statistic.

Characterization of candidate gene silencing in IL-13 and IL-22
pathways
To characterize the effects of silencing AD keratinocyte-linked genes
on IL-13 and IL-22 pathways, which are implicated in AD
pathogenesis43,83, we knocked-out (KO) candidate genes with silencing
RNAs (siRNA) in N/TERTs84 immortalized keratinocytes cells, and
evaluated the expression of interleukin pathway proxy genes S100A9,
S100A8, S100A7 (IL-22) and CCL26, CISH, HSD3B1 (IL-13). Keratino-
cytes were plated in 96 well plate (20,000 cells/well) and incubated at
37 °C with 5% CO2 overnight. 100μM Accell siRNAs for AD
keratinocyte-linked gene candidates (Supplementary Data 9) were
prepared in 1x siRNA buffer (Dharmacon# B-002000-UB-100). 1μl of
100μM siRNA was diluted with 100μl accel delivery medium (Dhar-
macon#B-005000) for eachwell of 96well plate. The growthmedium
was removed from the cells, 100μl of the deliverymix with siRNAswas
added to each well, and the plate was incubated at 37 °C with 5% CO2.
Accell Non-targeting Control siRNA (Dharmacon # D-001910-01-05)
was used as a negative control. After 24 h, cells were either stimulated
with 10 ng/ml of IL-13 (R&D Systems # 213-ILB), 20 ng/ml of IL-22 (R&D
Systems # 782-IL) or co-stimulated with IL-13 (10 ng/ml) and IL-22
(20 ng/ml). After 24 h of stimulation, cells were harvested for RNA
preparation. RNAs were isolated from cell cultures using Qiagen
RNeasy plus kit (Cat # 74136). Reverse transcription was performed
using a High-Capacity cDNA Transcription kit (ThermoFisher #
4368813). qPCR was performed on a QuantStudio 5 Real-time PCR
system (Applied Biosystems) with TaqMan Universal PCR Master Mix
(ThermoFisher # 4304437) using TaqMan primers. RPLP0 (Thermo-
Fisher # Hs99999902_m1) was used as a loading control. Three tech-
nical replicates were considered. Knockdown efficiency was validated
by the TaqMan primer of each of the siRNA target genes (Supple-
mentaryData 14). KOefficiency values are illustrated in Supplementary
Fig. 9. The protocol failed for LIME1 and MAP3K14, which were not

considered in further analyses. The differential expression of proxy
genes between the presence or absence of siRNA targeting corre-
sponding gene candidate was evaluated in each condition by t-test,
considering the three technical replicates, and derived standardized
mean difference (SMD) effect size and corresponding sampling var-
iancewere generatedwith f(x) ‘escalc’ from ‘metafor’ v.4.0. SMDvalues
were meta-analyzed across markers per pathway, considering results
from IL-13 + IL-22 treatment, with metafor::rma function.

Mapping of keratinocyte eQTLs
We mapped eQTLs in keratinocyte cell lines stimulated with IFNa
(5 ng/ml), derived from N = 50 subjects, for which RNA-Seq profiles
and genotype data were generated85. Gene expression values were
first normalized by DESeq2, and PEER was used to account for latent
confounding factors. The genotype data was generated by the Illu-
mina InfiniumCoreExome array, and imputationwas performedusing
1000 Genomes Project (GRCh37/hg19) as reference panel. Cis (±1Mb
from gene transcription start site) eQTL were mapped using FastQTL
v2.0 by fitting a linear regressionmodel (p∼ g +C) where p is the gene
expression vector, g is the genotype vector, and C is a matrix of 10
PEER factors derived from gene expression; eQTLs signal was asses-
sed by the effect size corresponding to the term g. Full summary
statistics are provided [https://doi.org/10.25452/figshare.plus.c.
7282969]. The eQTL mappings restricted to 22 variant-gene pairs
corresponding to AD keratinocyte-linked gene candidates - 20 AD
GWAS loci and 22 genes - are provided in Supplementary Data 9.
These eQTL effects were estimated considering the index variant of
the AD GWAS hit corresponding to the keratinocyte-linked
colocalized gene.

Correlation of keratinocyte assays’ readouts with candidate
priority status
The set of 22 keratinocyte-linked genes was profiled by four different
functional assays in keratinocytes (see correspondingMethod sections
above). We hypothesized that keratinocyte-linked gene candidates
prioritized as more likely to be causal would yield more signal across
assays, indicative of their active role in key keratinocyte pathways. To
test this hypothesis, we first classified 5/22 candidates (AQP3, CEBPA,
RORA, RGS14, ANK3) as ‘prioritized’, by having top aggregated scores
per locus and accounting for more than half of eQTL colocalization
instances per locus (Supplementary Data 9, Fig. 5). We then compared
aggregated corresponding assay readouts with the remaining 17/22
non-prioritized candidates (Supplementary Fig. 7) and assessed sig-
nificant differences in statistics distribution by means of
Mann–Whitney test. Indeed, the statistics for prioritized genes are
significantly larger than for non-prioritized genes in all assays: in IL-13
and IL-22 pathways gene silencing assays (Mann–Whitney P =0.01 on
absolute SMD values), in keratinocyte eQTLs (Mann-Whitney P = 3.58e
−15 on absolute eQTL effect size values), in keratinocyte-
differentiation gene expression signal (Mann–Whitney P = 1.18e−03
on absolute log-fold change values) and in keratinocyte subtype spe-
cificity signal (Mann–Whitney P = 2.82e−06 on absolute log-fold
change values).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We have placed data to perform main analyses, and to generate fig-
ures, at https://doi.org/10.25452/figshare.plus.28385684. The raw skin
sc-RNAseq data is available at SRA under accession id PRJNA1054546,
including 18 biopsies from published datasets, with processed data
available at GEO under accession IDs GSE173706 and GSE249279 and
78 from newly generated datasets. Bulk ATAC-seq data for cell-type
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enrichment analysis is available at GEO under accession ID GSE118189.
The Seurat object from the processed sc-RNAseq dataset, cis eQTL
summary statistics from keratinocyte cell lines, and gene expression
changes from 3-D epidermal raft cultures are available at https://doi.
org/10.25452/figshare.plus.c.7282969. Full GWAS summary statistics
are available at the GWAS Catalog under accession IDs:
GCST90503108, GCST90503109, GCST90503110, GCST90503111.

Code availability
The code to perform analyses, and to generate figures, is available at
Figshare repository https://doi.org/10.25452/figshare.plus.28385684
and corresponds to the v.1.0 release of the github repository https://
github.com/AbbVie-ComputationalGenomics/AtDermQTLGWAS_
manuscript/releases/tag/AtDermQTLGWAS_manuscript.
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