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A clinically accessible small multimodal
radiology model and evaluation metric for
chest X-ray findings
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Mahmoud Khademi1, Ziyi Yang1, Hany Awadalla1, Julia Gong 1, Houdong Hu1,
Jianwei Yang1, Chunyuan Li1, Jianfeng Gao1, Yu Gu1, Cliff Wong1, Mu Wei1,
Tristan Naumann 1, Muhao Chen 5, Matthew P. Lungren1,2,6,
Akshay Chaudhari 2, Serena Yeung-Levy 2, Curtis P. Langlotz 2,
Sheng Wang 3 & Hoifung Poon 1

Large foundation models show promise in biomedicine but face challenges in
clinical use due to performance gaps, accessibility, cost, and lack of scalable
evaluation. Here we show that open-source small multimodal models can
bridge these gaps in radiology by generating free-text findings from chest
X-ray images. Our data-centric approach leverages 697K curated radiology
image-text pairs to train a specialized, domain-adapted chest X-ray encoder.
We integrate this encoder with pre-trained language models via a lightweight
adapter that aligns image and text modalities. To enable robust, clinically
relevant evaluation, we develop and validate CheXprompt, a GPT-4-based
metric for assessing factual accuracy aligned with radiologists’ evaluations.
Benchmarked with CheXprompt and other standard factualitymetrics, LLaVA-
Rad (7B) achieves state-of-the-art performance, outperforming much larger
models like GPT-4V and Med-PaLM M (84B). While not immediately ready for
real-time clinical deployment, LLaVA-Rad is a scalable, privacy-preserving and
cost-effective step towards clinically adaptable multimodal AI for radiology.

Foundation models, trained on massive amounts of unlabelled data
using self-supervised learning, enable rapid adaptation to various
downstream tasks with minimal requirement for task-specific labeled
data1–3. Due to the high cost of annotating biomedical data4,5, foun-
dation models are poised to become a new paradigm in biomedicine,
achieving state-of-the-art results on many applications, including
medical question answering2,6 and medical image classification7,8.
Recently, multimodal generative artificial intelligence (AI) has
emerged as an exciting frontier in the biomedical domain, expanding

the application scope from single-modality tomulti-modality (e.g., text
and image), such as visual question answering and radiology report
generation6,9,10. While existing models are still largely evaluated on
artificial biomedical benchmarks, their promising performance
demonstrates their potential in clinical applications.

However, there are still major bottlenecks hindering the use of
foundation models in real-world clinical settings. First, sharing patient
data with large foundation models hosted on the cloud is subject to
privacy concerns11. Therefore, clinicians may prefer to run inference
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and fine-tuning locally. Second, existing state-of-the-art models are
often very large and resource-intensive, which makes local deploy-
ment challenging. Smaller models incur smaller carbon footprint12 and
offer reduced serving costs and latency, which is of particular impor-
tance in resource-constrained settings outside of data centers13.
However, while small language models have shown success in text
domains14–16, small multimodal models (SMMs) still have significant
performance gaps compared to largermodels6,10. Third,many state-of-
the-art models are inaccessible13, necessitating the development of
effective open-source models for biomedicine. Finally, even the best
models are still subject to errors such as hallucination, and existing
automated evaluation methods of factual correctness exhibit limited
correlation with expert assessments17. Hence it is crucial to develop
reliablemethods to evaluate the correctness ofmodel outputs at scale,
especially in the specialized field of biomedicine18.

We focus our study on identifying key findings from chest X-ray
(CXR) images, the most commonly performed medical imaging
examination. Automatically drafting high-quality radiology reports is a
challenging but clinically meaningful task that could directly increase
radiologist productivity and potentially improve communication and
decreaseburnout19. Existing frontiermodels suchasGPT-4V still have a
large performance gap even on such a fundamental medical applica-
tion. To bridge this gap between existing medical foundation models
and real-world clinical applications, we have developed LLaVA-Rad, a
SMM that attains state-of-the-art performance in standard radiology
imaging tasks (Fig. 1), in addition to CheXprompt, an automated
scoring metric for factual correctness. To develop LLaVA-Rad, we
adopt a modular approach by incorporating state-of-the-art open-
source pretrained models for image and text modalities, and focusing
on training a lightweight adapter to ground each modality to the text
embedding space.

For training, we assemble a large dataset comprising 697,435
radiology image-report pairs from 7 diverse sources. Some data

sources only contain structured labels of key findings, inwhich casewe
use GPT-4 to synthesize the report based on the ground-truth labels.
For evaluation, we report standardmetrics such as n-gram-based BLEU
and ROUGE, as well as factuality checks based on CheXpert and
RadGraph20,21. Additionally, we propose CheXprompt, a factuality
evaluation method based on GPT-4. Compared to existing automated
metrics, we show that CheXprompt is more consistent with error
quantification by practicing radiologists, thus demonstrating the
potential of using GPT-4 for evaluation in a manner that is both scal-
able and highly relevant to medical practice. To establish best prac-
tices for biomedical multimodal learning, we conduct a systematic
ablation study on various choices in data engineering and multimodal
training.

The resulting LLaVA-Rad (7B)model attains state-of-the-art results
on standard radiology tasks such as report generation and cross-modal
retrieval, even outperformingmuch largermodels such as GPT-4V and
Med-PaLM M (84B)6. LLaVA-Rad inference is fast and can be run on a
single V100 GPU in private settings, offering a promising state-of-the-
art tool for real-world clinical applications. In addition, LLaVA-Rad
training is also very efficient, taking just one day on over 697 thousand
image-text pairs using a standard 8-A100 cluster. This means that
clinicians can further efficiently fine-tune the model as needed using
their private data. By examining the model weights, we found that
LLaVA-Rad can ground key regions of abnormalities to generated
words in the output report, which signifies future opportunities to
synergize with the latest progress in biomedical segmentation and
grounded report generation.

In summary, we develop LLaVA-Rad, a lightweight yet high-
performing radiology multimodal model for clinical applications. The
promising performance of LLaVA-Rad shows that its underlying
modular approach can effectively and efficiently bridge the multi-
modal performance gap in existing frontier models, enabling clinical
access with limited computational resources.
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Fig. 1 | LLaVA-Rad overview. a To train LLaVA-Rad, we assemble a large dataset
with over 697 thousand chest X-ray image-text pairs; GPT-4 is used to synthesize
reports from labels, translate reports from Spanish, and process and structure the
corresponding radiology reports. b We adopt a modular three-stage approach to
train LLaVA-Rad, comprised of pre-training, alignment and fine-tuning. c A quali-
tative visualization of the model’s attention during its generative process. d For

evaluation, we alsopropose a novel factual error scoring approach usingGPT-4 and
demonstrate its parity with expert evaluation. e LLaVA-Rad outperforms much
larger generalist and specialized models like GPT-4V and Med-PaLM M on prior
standard report evaluationmetrics.MLPmulti-layerperceptron. The example chest
X-ray image inb is obtained from ref. 27 with permission for reproduction from the
authors.

Article https://doi.org/10.1038/s41467-025-58344-x

Nature Communications |         (2025) 16:3108 2

www.nature.com/naturecommunications


Results
Overview of LLaVA-Rad
LLaVA-Rad represents an emerging paradigm in exploring SMMs, fol-
lowing the proliferation of small languagemodels (Fig. 1). Our intuition
for designing LLaVA-Rad is that a lightweight, specialized SMM can be
efficiently developed by decomposing training into unimodal pre-
training on individual modalities followed by lightweight cross-modal
learning focusing on a small adapter to ground a non-text modality to
the text embedding space.

LLaVA-Rad can generate radiology report findings given a CXR
image. Its training comprises three stages: a pre-training stage, an
alignment stage, and a fine-tuning stage. In the first stage of pre-
training, we train a domain-specific vision encoder (BiomedCLIP-CXR)
by using 697 thousand pairs of CXR images and associated radiology
reports from 7 diverse datasets22–28. These de-identified image-text
pairs were sourced from approximately 258,639 patients. Since CXR
images are often published with a limited number of associated find-
ings or image labels instead of a complete report, we used GPT-4 to
synthesize a report based on annotated image labels. Alternatively,
reports may be available in other languages, such as the PadChest
reports, which are available in Spanish, for which we leverage GPT-4 to
translate them into English. We also exploit GPT-4 to extract findings
from reports when the finding section cannot be reliably extracted
using existing rule-based heuristics27. For examinations where only the
CXR images are available, we studied the quality of these synthetic
reports by measuring their alignment with their corresponding image
using CXR-specific vision language models (Supplementary Table 1).
We found that GPT-4-generated synthetic reports show significantly
higher alignment compared to random, particularly in datasets with
more granular labels (i.e. PadChest, VinDR, CheXpert, and Brax).
Alternatively, for CheXpert reports -released after our model training-
we found that while synthetic reports exhibit high overall similarity to
their reference (cosine similarity 0.73), they contain on average 3.78
total errors (Supplementary Table 2). Finally, when comparing GPT-4
extracted findings to rule-based extraction, we found that GPT-4
findings exhibit high similarity (cosine similarity 0.93) and minimal
error counts (0.20 average total errors).

In the second stage of alignment, we align the pre-trained vision
encoder BiomedCLIP-CXR with a language model. In this alignment
stage, we train a conditional generative decoder model that generates
radiology report findings given an input CXR. We provide a CXR as the
input, without any associated contexts such as clinical instructions or
patient information. As noted by other works9,29 and also demonstrated
by our ablation studies, this strategy can substantially improve the
alignment by forcing the decoder model to focus on the image alone. In
the third stage, we fine-tune the model to generate the findings given
both the indication for the exam and the image, more closely reflecting
the real-world setting. LLaVA-Rad exploits an efficient technique LoRA30

for fine-tuning, thus substantially reducing the computational time
required for this stage. We further reduce the computational time by
only using MIMIC-CXR training data instead of the entire 697 thousand
image-text pairs in the second and third stages, since reports in MIMIC-
CXR are of higher quality. The three stages of LLaVA-Rad can be finished
in 8 hours, 4 hours, and 16 hours, respectively, using 8 A100 GPUs. We
studied the effects on generalizability of our fine-tuning process using
MT-bench, a general domain evaluation of languagemodel capabilities31.
Overall, we found minimal impact of our training regime on underlying
language model capabilities (Supplementary Fig. 1). LLaVA-Rad showed
moderate improvements in reasoning, at the expense of slightly lower
quality of text extraction.

Evaluating LLaVA-Rad using existing report generation
benchmarks
We evaluated LLaVA-Rad on the test set of the widely used radiology
report generation benchmark MIMIC-CXR using metrics assessing

lexical similarity and factual accuracy (Fig. 2, Supplementary Fig. 2). In
particular, lexical similaritymetrics, such asBLEU andROUGE, areused
in traditional natural language processing to assess the model’s ability
to produce contextually and stylistically aligned output. On the other
hand, factual accuracy metrics, including CheXbert-based and
RadGraph-based F1 scores20,21 aremore clinically relevant because they
gauge the extent to which the generated reports accurately reflect
imaging findings.

We found that LLaVA-Rad achieved superior performanceonboth
groups of metrics (Fig. 2a–d). When compared to other models of
equivalent size (7B parameters), such as LLaVA-Med9, CheXagent32 and
MAIRA-133, LLaVA-Rad demonstrates significant advancements in per-
formance across all evaluated metrics. Furthermore, LLaVA-Rad is
more efficient than the current overall leading model, Med-PaLM M6,
despite having an order of magnitude fewer parameters. This effi-
ciency does not come at the cost of effectiveness; LLaVA-Rad outper-
forms Med-PaLM M in the most important existing lexical similarity
and factual correctness metrics for radiology text (ROUGE-L and F1-
RadGraph34, with a relative improvement of 12.1% and 10.1% respec-
tively). Amoredetailed evaluation (Supplementary Table 3) shows that
Med-PaLM M marginally surpasses LLaVA-Rad by F1-5 CheXbert
metrics, which assess only a small subset of 5 potential abnormalities,
and the performance gap isminimal (<1% relative improvement). Most
of these competing models also use MIMIC-CXR for training (with the
notable exception of LLaVA-Med). We attribute the promising per-
formance of LLaVA-Rad to its modular design, which is more data
efficient. The efficiency and the high degree of factual and lexical
precision of LLaVA-Rad demonstrate its potential in real-world appli-
cations where large models are computationally too costly.

We studied the performance of LLaVA-Rad on other held out
datasets: CheXpert22, Open-I35, andUS-CXR, a private collection of 1,751
CXRs and reports sourced from various hospitals in the United States.
Notably, only the CheXpert training images were used for pretraining
the image encoder, while Open-I and US-CXR were entirely new to the
model, allowing us to study its robustness and adaptability. We report
summary statistics for each dataset in Supplementary Table 4, illus-
trating the varying prevalence of common findings in CXRs across
datasets. Similar to the evaluation on MIMIC, We also employ CheX-
bert-14, F1-RadGraph, and ROUGE-L to assess the factual accuracy and
lexical similarity of the reports on CheXpert, Open-I, and US-CXR. As
illustrated in Fig. 3, LLaVA-Rad significantly outperforms LLaVA-Med,
LLaVA, and GPT-4V across all metrics on these datasets, revealing that
LLaVA-Rad’s superior performance is consistent across various
settings.

Finally, to verify the effectiveness of our approach in generating
aligned vision and language representations, we examined the learned
image encoder in LLaVA-Rad by comparing the performance of using it
for retrieval against the image encoders from LLaVA and LLaVA-Med.
We observed that BiomedCLIP-CXR attained the best results on both
image-to-text and text-to-image retrieval, indicating the high quality of
its image encoder by training on 697 thousand text-image pairs
(Fig. 2e). Moreover, LLaVA-Med performed better than LLaVA, sug-
gesting that better performance can be gained as increasing domain
specialization is performed.

Evaluating LLaVA-Rad using CheXprompt, a GPT-4-based
evaluation system
It is well known that existing n-gram and findings-based automated
report evaluation methods might be biased to pre-defined conditions
and have limited correlation with expert assessments17. We thus
explore the utility of an large language model-based evaluation sys-
tem, which has shown success in other domains36–38. Specifically, we
employGPT-4 as an evaluator to count howoften the generated report
contains errors in eachof the following six categories, as per a previous
study17: false positive finding, omission of finding, incorrect location/
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position of finding, incorrect severity of finding, mention of compar-
ison that is not present in the reference report, omission of compar-
isondescribing a change fromaprevious study. For each error type,we
further instruct GPT-4 to distinguish clinically significant and clinically
insignificant errors.

We first assessed the rigor of CheXprompt by examining its con-
sistency with expert scoring. To this end, we exploited the ReXval

dataset39, which contains annotations from 6 board-certified radi-
ologists on 200 pairs of ground-truth reports fromMIMIC-CXR and AI-
generated reports. In ReXval, each radiologist counts each of the
aforementioned errors in the generated report, also discriminating
between clinically significant and insignificant errors. We found that
GPT-4-based evaluationswere highly correlatedwith expert scoring by
achievingKendall’s Tau-b correlations greater than0.75 for total errors
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and greater than 0.70 for clinically significant errors (Fig. 4b). In con-
trast, none of the existing preferred metrics (ROUGE-L metric, Rad-
Graph-F1, and RadCliQ) obtained a correlation greater than 0.57.
Moreover, we found that a similar evaluation system using GPT-3.5
Turbo, a less capable model compared to GPT-4, attains a much lower
association with expert scoring due to an overestimation of the num-
ber of total and clinically significant errors, demonstrating the diffi-
culty of automatically scoring radiology reports.

Beyond correlation, we performed a head-to-head comparison of
the calculation of total errors as determined by GPT-4 Turbo with
manual radiologist ratings in a leave-one-rater-out fashion. Fig. 4a
summarizes the results of this comparison, which on average shows a
mean absolute difference (MAD) of 0.71 between the left-out human
rater and the average of the remaining ones, whereas GPT-4 Turbo has
on average 0.55 MAD. We find that the MAD between GPT-4 Turbo
CheXprompt score and the left-in expert average is smaller compared
to the left-out expert in 3 out of 6 cases (P <0.001), and not sig-
nificantly different (P >0.05) in the remaining 3 out of 6 cases. Alto-
gether, we find that GPT-4 Turbo is indistinguishable from expert
raters in calculating the total number of errors, increasing our con-
fidence in using this proposed automated metric as an evaluation
method that directly aligns with expert opinions.

After assuring the effectiveness of the GPT-based metric, we
evaluated the performance of LLaVA-Rad on the held-out MIMIC-CXR
test set using CheXprompt(Fig. 4c, d). In line with our observation
using existing metrics, LLaVA-Rad outperforms publicly available
report generation models, generating fewer clinically significant and
total errors compared to GPT-4V and CheXagent. Moreover, by com-
paring models within the LLaVA family (e.g., LLaVA-Rad, LLaVA-Med,
LLaVA), we observed that fewer errors are made in the generated
reports as increasing domain specialization is performed. In particular,
LLaVA-Rad generates fewer errors than LLaVA-Med, a LLaVA model
tailored to medicine, and LLaVA-Med generates fewer errors than the
general-domain model LLaVA. This suggests a trade-off between
domain-specific performance and broad applicability, supporting our
intuition of developing LLaVA-Rad by continual pretraining of a gen-
eral model using large amounts of domain-specific data.

Finally, to determine the clinical utility of LLaVA-Rad, we explore
using the percentage of error-free reports to track the overall perfor-
mance of report-generation models. A higher percentage of error-free
reports increases the utility of a report generation model, given that it
directly reflects the number of reports that require little to no radi-
ologist modification following automated generation. Notably, LLaVA-
Rad has the highest percentage of error-free reports, with 6.79%
reports free of clinically significant errors, and 2.58% free of errors
(Fig. 3c). The same trend of improved performance of LLaVA-Rad was
observed in the external validation datasets (CheXpert, Open-I, and
US-CXR), where LLaVA-Rad demonstrated fewer clinically significant
and total errors (Fig. 3b, d), with up to 26% error-free reports. While
this stringent metric allows us to estimate overall proportion of error-
free reports, we find that when studying the percentage of error-free
reports as determined by each of the six CheXprompt error types,
LLaVA-Rad can achieve >50% error-free reports across the majority of
error types (Supplementary Table 5). To further understand types of
errors made by LLaVA-Rad, we report sensitivity and specificity values
for common CXR findings in Supplementary Table 6, which overall

show that LLaVA-Rad favors high specificity for common findings, at
the expense of varying levels of sensitivity. This observation applied to
all four evaluation datasets, and is is in line with granular error counts
as determined by CheXprompt, reported in Supplementary Table 5,
which show that themost common formof error is clinically significant
false negatives, followed by incorrect assessments of severity. Overall,
CheXprompt illustrates that while there undoubtedly remains room
for improvement in fully automated CXR radiology report generation,
the improvement demonstrated by our model is promising.

Analyzing components of LLaVA-Rad using ablation and case
studies
Conducting thorough ablation studies for large language and multi-
modal models is often intractable due to the costly training of multiple
variants. In contrast, the small size of LLaVA-Rad enables us to efficiently
conduct ablation studies that explain the promising performance of
LLaVA-Rad and potentially inform design choices for larger models. We
compared LLaVA-Rad with 8 variants described in Supplementary
Table 8. In particular, we investigate two key technical ideas used in
LLaVA-Rad: the effect of pre-training a domain-specific image encoder
using 697 thousand diverse CXR image-text pairs (Fig. 5a) and the effect
of using GPT-4 to augment and organize the data (Fig. 5b). First, to
understand the effect of pre-training an image encoder, we compare
LLaVA-Rad with three increasingly domain-specific variants: an image
encoder fromOpenAI CLIP, an image encoder usingBiomedCLIP, and an
image encoder from BiomedCLIP but continually pre-trained using the
only the training split ofMIMIC-CXR (Fig. 5a).We did not find noticeable
overlap betweenMIMIC-CXR training split and the PubMed data used to
pre-train BiomedCLIP. We found that the MIMIC-CXR-based image
encoder (BiomedCLIP-MIMIC-CXR) outperforms the other two variants,
indicating the effectiveness of training a domain-specific image encoder.
In addition, BiomedCLIP-CXR outperforms BiomedCLIP-MIMIC-CXR,
illustrating the advantage in pre-training using more diverse CXR image
datasets and their corresponding synthetic reports. Second, we studied
the effect of usingGPT-4 to process and augment theMIMIC-CXR report
data (Fig. 5b). The data used to train our model in the second and third
stages is a combination of rule-based and GPT-4 structured data, as
summarized in Supplementary Table 7. We compare LLaVA-Rad with a
variant that only uses rule-based data and a variant that only uses GPT-4-
structured data. We found that LLaVA-Rad attains a better performance
than both variants, indicating the effectiveness of GPT-4 data augmen-
tation. The variant that only uses GPT-4-structureddata outperforms the
one that only uses rule-based data on factual accuracy metrics, con-
firming the effectiveness of GPT-4-based structuring in generating
clinically precise reports (Supplementary Table 8). Finally, it is expected
that rule-based variant outperforms GPT-4-structured variant on n-gram
lexical metrics, because the test data is also from rule-based data. These
ablation studies support our intuition that domain-specific data can help
us build a small but effective domain-specific model, and help inform
best practice in training larger models.

We also developed a method to investigate how LLaVA-Rad’s
attention map on the input image correlates with a given generated
word in the report (Fig. 5c), which demonstrates the model’s ability to
focus on relevant image regions for the generation. A detailed exam-
ination reveals a significant variability in attention across different
layers and attention heads, with different configurations gravitating

Fig. 2 | Quantitative and qualitative evaluation of LLaVA-Rad using existing
report generation benchmarks on MIMIC-CXR. a Comparison between LLaVA-
Rad and open-source models according to existing factual correctness (F1-CheX-
bert-14, F1-RadGraph) and lexical similarity (ROUGE-L) metrics. b Comparison
between LLaVA-Rad and closed-source models according to existing factual cor-
rectness and lexical similarity metrics. c Comparison between model size and
factual correctness shows that LLaVA-Rad is both smaller and more factually cor-
rect compared to existing approaches. d Illustration of a sample generated report

from LLaVA-Rad compared with that of LLaVA and LLaVA-Med. LLaVA-Rad’s gen-
erations that match reference findings are highlighted. e Comparison of the per-
formance on cross-modal retrieval demonstrated by LLaVA-Rad, LLaVA-Med and
LLaVA. In a–e values correspond to mean statistic in MIMIC-CXR test-set (n = 2461
image-report pairs) with the exception of MAIRA-1 and Med-PaLM M which are
derived from their original publications. In a, b error bars correspond to 95%
bootstrap confidence intervals derived from 500 samples. Source data are pro-
vided as a Source Data file.
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a b

e f

c d

Fig. 3 | External validation results for LLaVA-Rad on held-out datasets. Open-I
(a,b) CheXpert (c,d) andUS-CXR (e, f). LLaVA-Radoutperforms baselines across all
external validation datasets, as assessed by traditional factual correctness metrics
(F1-CheXbert-14, F1-RadGraph) and lexical similarity (ROUGE-L). CheXprompt eva-
luation (b, d, f) further demonstrates that LLaVA-Rad produces fewer clinically

significant and overall errors compared to baselines. Each dataset sample consists
of image-report pairs (Open-I: n = 2163; CheXpert: n = 61; US-CXR: n = 1751). Values
represent mean metric scores for each dataset, and error bars indicate 95% boot-
strap confidence intervals derived from 500 resampling iterations. Source data are
provided as a Source Data file.
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The inferior sternotomy wire is fractured but unchanged. Surgical clips and vascular markers in the thorax are related to prior
CABG surgery. 
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Fig. 4 | Evaluating LLaVA-Rad using CheXprompt. aGPT-4 based CheXprompt is
more similar to average left-in radiologists in total error quantification, compared
to the left-out radiologist (mean absolute difference 0.55 vs 0.71). b Comparison
between CheXprompt and existing metrics in terms of agreement with radiologist
error quantification. c Comparison between LLaVA-Rad and competing methods
using CheXprompt on the MIMIC-CXR test set. d Illustration of how

CheXprompt can be used to evaluate a report generated by LLaVA-Rad, with errors
highlighted. GPT-4T stands for GPT-4 Turbo. In a p values correspond to two-sided
paired t-test. Inb, c values representmeanmetric scores and error bars correspond
to 95% bootstrap confidence intervals. Source data are provided as a Source
Data file.
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towards distinct regions of the image (Supplementary Figs. 3, 4, 5, 6, 7).
Our evaluation also identifies that the aggregation of attention, parti-
cularly through averaging the outputs of all heads within the 20th
layer, generally yields the most coherent and relevant focal points
across a wide array of scenarios. However, this approach does not
uniformly apply, as deviations in alignment were observed in certain
instances. Conversely, an alternative strategy of taking the maximum

across all layers, coupledwith an average across heads, demonstrates a
consistently high correlation with pertinent image regions. Our pro-
posed attention visualization indicates a strong alignment between the
model’s attention and the specific image regions relevant to the gen-
erated words. This alignment underscores the model’s efficacy in
synthesizing contextual information from visual cues to ground its
linguistic output.

ba

c

Fig. 5 | Analyzing the performance of LLaVA-Rad using ablation studies and
attention visualization. a Comparison of using different image encoders (Bio-
medCLIP-CXR from LLaVA-Rad, BiomedCLIP continually pre-trained on MIMIC-
CXR, BiomedCLIP, and OpenAI CLIP) to start the alignment and fine-tuning stages.
b Ablation study on only using rule-processed MIMIC-CXR training data or GPT-4
processed training data in alignment and fine-tuning stages. c Attention

visualization qualitatively demonstrates the appropriate grounding of LLaVA-Rad
in-specific image regions when generating a word (bold text) as part of a specific
finding (bottom row). In a, b values represent mean metric scores and error bars
indicate 95% bootstrap confidence intervals derived from 500 resampling itera-
tions. Source data are provided as a Source Data file.
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Discussion
To address the significant challenges of developing foundationmodels
for real-world clinical settings, our work introduces LLaVA-Rad, a
lightweight radiology SMM that offers open-source accessibility while
attaining state-of-the-art results in the domain of CXR report genera-
tion. By curating a dataset of 697 thousand CXR images paired with
radiology reports from diverse sources, using GPT-4 for generating
synthetic data, coupledwith amodular three-stage curriculum training
method, we have developed a model that outperforms its larger
counterparts, such as GPT-4V and Med-PaLM M, and demonstrates
exceptional proficiency in generating accurate and lexically similar
radiology reports on the evaluation datasets. Through our attention
visualization techniques, LLaVA-Rad offers deep insights into how it
prioritizes key regions in chest X-rays, correlating them with specific
findings in the generated reports. Furthermore, our work introduces
CheXprompt, which successfully resolves a major bottleneck in the
automated evaluation of factual accuracy of generated radiology
reports, by not only demonstrating a closer alignment with manual
expert scoring compared to traditional metrics, but also exhibiting
performance on par with expert radiologist annotators. This improved
evaluation further illustrates LLaVA-Rad’s superiority in clinical report
generation.

The landscape of AI-driven radiology report generation has
evolved significantly with the advent of transformers and large multi-
modal models, ushering in a new era of more sophisticated and
accurate models33,40–45. R2Gen stands out as a pioneering effort in
leveraging memory-efficient transformers for report generation46. A
notable leap forward is CheXagent32, which leverages an instruction
fine-tuned foundation model trained across 28 publicly available
datasets, demonstrating an enhanced capability for analyzing and
summarizing CXR images. Concurrently, Flamingo-CXR fine-tuned the
Flamingo vision languagemodel47 and incorporated regularization and
adaptation techniques to tailor their applications to the nuances of
radiology report generation10. Med-PaLMMpushed the boundaries by
creating a versatile 84-billion-parameter biomedical AI system capable
of addressing multiple tasks across various medical modalities6. In
contrast to these advancements, our method, LLaVA-Rad, distin-
guishes itself by not only achieving superior performance across sev-
eral benchmark metrics but also by being comparatively lightweight.
We refer to LLaVA-Rad as a highly performant SMMdue to its small size
compared to other large language model approaches with tens of
billions of parameters and its ability to run on local hardware such as
V100 GPUs. This attribute is particularly important, as it offers a more
accessible and efficient solution for scaling radiology report genera-
tion, addressing both the need for factual correctness and the practi-
cality of deployment in clinical settings. Furthermore, the data-centric
focus of our work distinguishes our approach from prior models.

In line with the growing recognition of the importance of data-
centric AI, our study emphasizes the systematic engineering of high-
quality data as a key element in building robust AI systems. Specifically,
we introduce: (1) a paradigm for creating synthetic radiology reports
for datasets lacking publicly available reports, addressing a major
limitation in publicly available CXR data, and (2) the use of a large
language model (GPT-4) to automate the parsing of radiology reports
into standardized sections while removing references to prior images.
These data-centric contributions enable us to effectively train
BiomedCLIP-CXR and LLaVA-Rad, building on the successful frame-
works of Biomed-CLIP and LLaVA. Our ablation study (Fig. 5, Table 8,
variants 1, 6–8) validated the effectiveness of this pre-training strategy,
showing a 5-10% relative improvement in performance across multiple
evaluation metrics compared to various baselines. Our analysis of the
quality of generated reports (Supplementary Table 1 and 2) indicates
that GPT-4-generated synthetic reports exhibit significantly higher
quality than random reports, particularly in datasets with granular
labels such as PadChest, VinDR, CheXpert, and BraX. However,

comparison of our synthetic reports to ground-truth reports on the
CheXpert dataset, showed that while the synthetic reports have high
similarity, they still may contain errors, likely due to the non-
exhaustive label availability and inherent limitations of synthetic
label-based descriptions that lack localization and other nuanced
details. These evaluations illustrate the added value and limitations of
synthetic GPT-4 generated reports, which improve overall model
performance, particularly in identifying common findings in CXRs. By
utilizing models like GPT-4 to synthesize high-quality large-scale pre-
training data, our approach advances automated CXR report genera-
tion and may be useful in other medical domains.

Generative models are subject to producing inaccurate state-
ments, an important concern in a factuality-focused domain such as
radiology. Our work proposes methods to identify and mitigate
potential errors in generated radiology reports. For identification, we
developCheXprompt,whichcan identify various kinds of inaccuracies,
such as falsepositive or false negativefindings.While CheXprompt can
quantify such errors, its flexibility also allows us to understand the
types of errors most frequently observed (Supplementary Table 5).
Furthermore, tomitigate the ocurrence of sucherrors in thefirst place,
we leverage the GPT-4 processing of reports, in which we remove
references to prior examinations. Despite this removal, since our
training datasets comprise both GPT-4 processed and rule-based
processed reports (which include references to prior images), LLaVA-
Radmay still produce such comparison errors. Our results show these
occur relatively infrequentlywhen compared to the rule-based ground
truth (for significant and insignificant errors, on average 0.01 and 0.05
false positive comparisons per report, corresponding to 99.3% and
95.1% of reports without false positive comparisons). Altogether, our
synthesis of training data and CheXprompt enable error minimization
and detection.

Overall, LLaVA-Rad and CheXprompt provide opportunities to
enhance automated generation of draft CXR findings. We anticipate
that models such as LLaVA-Rad can help draft the bulk of the report,
and such drafts can be quickly edited by specialists, or alternatively
compared with draft radiologist reports to identify potential dis-
crepancies. LLaVA-Rad favors specificity over sensitivity, suggesting its
potential use as a confirmatory diagnostic tool during CXR report
generation. Furthermore, CheXprompt can be used to uncover and
quantify potential errors in draft reports, allowing the development of
interfaces that highlight errors, facilitating both model development
and human-in-the-loop applications.

While LLaVA-Rad represents a substantial advancement in radi-
ology multimodal models, our research acknowledges several areas
for future exploration and improvement. First, the current scope of
LLaVA-Rad is limited to CXRs.While CXR is themost commonmedical
image examination, future iterations should evaluate the feasibility of
our method on alternative anatomies (e.g., abdomen or extremities)
andmodalities (e.g., computed tomography or ultrasound) to enhance
the model’s applicability and utility across diverse application sce-
narios. In addition, while our ablation studies enable us to understand
the importance of training a specialized image encoder, and examine
the impact of various types of training data, image encoders, and input
resolutions, it is possible that other language model sizes or pre-
training strategies may further benefit domain-specific performance.
While text-only evaluations have studied the strengths and limitations
of varying language model sizes and pre-training data14,48, further
exploration of SMMs appropriately controlling for language model
pre-training data, number of parameters, and compute could further
clarify the role of the underlying language model in multimodal per-
formance. Regarding model interpretability, attention-based attribu-
tion methods have been found to be more effective at explaining
model decisions and to be more useful by radiologists49, and our
attention visualization technique does appear to highlight sensible
patterns. However, alternative saliency-based methods for CXR
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interpretation algorithms such as Grad-CAM have been shown to have
limited correlation with expert assessments and limited robustness to
input perturbations50,51. There is a pressing need for amore exhaustive
evaluation of such grounding strategies. These would further improve
the model’s explainability and interpretability, making it more trans-
parent and trustworthy for clinical use. Another consideration is the
inherently multimodal nature of modern medical practice, which
integrates various patient information streams, including historical
medical images, medical records, lab tests, and vital signs. Integrating
these diverse and longitudinal data sources into medical multimodal
models like LLaVA-Rad could significantly enrich the model’s under-
standing and analysis, leading to more nuanced and holistic patient
assessments.

LLaVA-Rad illustrates the potential of SMMs in significantly enhan-
cing CXR interpretation by improving diagnostic accuracy and poten-
tially providing radiological expertise in underserved regions. However,
its use raises important concerns around biases and limitations. Biases
present in the training data, such as underrepresentation of specific
demographics, may result in disparities in performance across different
population groups. To address this, we included diverse, publicly avail-
able datasets during model pre-training. Additionally, the model’s gen-
eralizability may vary when applied to populations outside its training
scope, as indicated by our external validation results. An important
contributing factor to the observed variability in the number of errors
across datasets is the varying prevalence of disease in underlying eva-
luation populations (critically ill or hospitalized patients in MIMIC-CXR
and CheXpert, compared to other populations including outpatients in
OPEN-I and US-CXR). This further enhances the need to consider the
potential differences in performance of LLaVA-Rad based on the
deployment population. Another consideration is the risk of automation
bias, where over-reliance on AI systems could reduce critical oversight
by human clinicians. Therefore, ethical considerations–including trans-
parency, accountability, and adherence to regulatory standards–are
essential for responsible deployment. LLaVA-Rad is designed as a sup-
portive tool to assist clinicians by generating draft CXR findings, and is
not meant for replacing human expertise.

LLaVA-Rad exemplifies a significant leap towardmaking advanced
diagnostic capabilities accessible with limited computational resour-
ces, thus paving the way for broader clinical applications and impact.
The pursuit of open-source, lightweight, high-performing models that
not only extends to various medical imaging types but also incorpo-
rates multimodality and interpretability, embodies the next frontier in
medical multimodal model development. Such advancements will
bridge the gapbetween current technological capabilities and the real-
world demands in clinical applications, moving us closer to achieving
meaningful improvements in patient outcomes.

Methods
Ethics Statement
This study utilized both public datasets and private de-identified data
sources. The research was exempt from institutional review board
oversight under relevant institutional and federal guidelines. All data
were handled in accordance with rigorous ethical standards, including
full adherence to applicable data use agreements and licensing
requirements. As this study did not involve direct human participant
recruitment, participant compensation and informed consent were
not applicable.

Sex or gender information are available in the corresponding
demographic reporting of each of the MIMIC-CXR, CheXpert, and
Open-I datasets.However, these datawerenot used in the studydesign
or analysis, as the primary objective was to evaluate the overall quality
of model-generated findings across diverse datasets, rather than to
assess subgroup differences. The US-CXR dataset does not contain sex
or gender information, as it has been fully de-identified in accordance
with privacy regulations.

Details of the dataset
CXR-697K: We compiled a comprehensive dataset comprising 697
thousand pairs of CXR images, each accompanied by its correspond-
ing radiology report, for pre-training the image encoder of LLaVA-Rad.
This dataset amalgamates data from seven publicly available datasets
as summarized in Supplementary Table 9. To maintain transparency
and reproducibility, we adhere to the original train/val/test splits
provided by each contributing public dataset, using only the train split
for pre-training the image encoder.

The CheXpert dataset22 consists of retrospectively collected chest
radiographic studies conducted between October 2002 and July 2017,
encompassing both inpatient and outpatient centers at Stanford
Hospital. BraX23, obtained from chest radiography studies at Hospital
Israelita Albert Einstein in S~ao Paulo, Brazil, was labeled for 14 radi-
ological findings using the CheXpert Label Extraction Algorithm22,
which was adapted to detect findings in Portuguese for this dataset.
CandidPTX24 encompasses data acquired between January 2010 and
April 2020 fromDunedin Hospital in New Zealand. This dataset’s chest
radiographs were manually annotated by radiology trainees and radi-
ologists with respect to pneumothoraces, acute rib fractures, and
intercostal chest tubes. VinDR25 was gathered from HMUH and H108
hospitals in Vietnam between 2018 and 2020, with images labeled for
six diagnoses by multiple experienced radiologists from these insti-
tutions. JF Healthcare26 data was collected from approximately 300
township hospitals in China and manually annotated by multiple
radiologists to identify foreign objects within the lung field on CXRs.
The aforementioned datasets are comprised of images and associated
binary labels that indicate whether common disease entities such as
pneumonia, or pneumothorax are present in the image. However, they
lack free-text reports. Thus, to enable pre-training of our image
encoder using image and text methods, we create synthetic reports
grounded on the labels provided. Detailed templates used for this
synthetic rule-based generation can be found in Supplementary
Table 10.

PadChest28 encompasses CXRs interpreted and reported by 18
radiologists at the Hospital Universitario de San Juan, Alicante (Spain),
covering the period from January 2009 to December 2017, alongside
their corresponding reports in Spanish. For this data, we harness the
capabilities of GPT-4 to translate these reports into English, ensuring
linguistic consistency. MIMIC-CXR comprises images and their corre-
sponding radiology reports sourced from radiographic studies con-
ducted at the Beth Israel Deaconess Medical Center in Boston, MA,
spanning the years 2011 to 201627.

MIMIC-CXR free-text reports are utilized for training the text-
generation component of LLaVA-Rad. For each report, we extract the
Indication, Findings, and Impression sections. To do so, we employ
rule-based heuristics as supported by the official MIMIC code
repository.

Extracting reports in this rule-based manner poses two chal-
lenges. First, report structure varies within the dataset, with use of
different section headers, merging of findings and impression into the
same section, etc., which limits the availability of reports with findings
available. Second, reports often contain references to prior examina-
tions, such as “heart size remains unchanged". This poses a challenge
for training report generation systems which often hallucinate refer-
ences to prior examinations that are not available at inference time52.
To mitigate these challenges, we leverage GPT-4 to extract the reason
for exam, findings, and impression sections in the free-text reports
from MIMIC-CXR. Prompt templates used to instruct GPT-4 for the
organization are elaborated in Supplementary Table 11. Compared to
the standard MIMIC-CXR rule-based extraction method, GPT-4
demonstrates proficiency in enhancing report quality by addressing
issues like grammar errors, broken words, and synonymous section
headers, while at the same time eliminating redundant phrases and
references to previous exams. Supplementary Table 12 showcases
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examples of sections structured by GPT and those extracted through
rule-basedmethods. The use of GPT to extract sections augments rule-
based data by an additional 237, 073 image-text pairs for the training
split and 1, 952 for the validation split, as summarized in Supplemen-
tary Table 7.

Modeling approach
Image encoder. The first stage of training LLaVA-Rad consists of pre-
training the image encoder. Within the LLaVA framework, the image
encoder plays a pivotal role in extracting complex image representa-
tions, crucial for tasks such as automated medical report generation
where standard vision transformer models often do not capture the
necessary detail and nuanced representations (Supplementary
Table 13). To overcome this, we pretrain a domain-specific vision
encoder, named BiomedCLIP-CXR, and integrate it into LLaVA to bol-
ster its medical image analysis capabilities. Our method includes sev-
eral key enhancements: firstly, we increase the image input resolution
to 518px, substantially higher than the 224px or 336px resolutions
typically used in LLaVA-Med, to capture more detailed image features.
Secondly, we compile the CXR-697Kdataset, an extensive collection of
over 697 thousand CXR images from various sources, providing a rich
foundation for pretraining. Lastly, we employ the BiomedCLIP recipe
for training BiomedCLIP-CXR, which involves contrastive vision-
language training with PubMedBERT, a text encoder specialized for
the medical domain53. The initialization of our vision encoder uses a
DINOv2 model checkpoint, benefiting from its extensive training on a
diverse set of 142 million general-domain images54.

Small multimodal model. LLaVA-Rad leverages the capabilities of a
pre-trained image encoder and a pre-trained languagemodel to create
a SMM.WechooseBiomedCLIP-CXRasour image encoder andVicuna-
7B-v1.555 as our language model. A multi-layer perceptron (MLP) is
introduced to project image features extracted by the image encoder
into the word embedding space of the language model. Conditioned
on the projected image features (visual tokens) and textual tokens,
LLaVA-Rad generates text in an autoregressive manner. We refer the
reader to LLaVA29,56 for a more in-depth description of the model
architecture.

Training strategy. Due to the introduction of our domain-specific
image encoder, BiomedCLIP-CXR, LLaVA-Rad is not initialized with the
pre-trained LLaVA weights. Instead, we initialize LLaVA-Rad with the
pre-trained image encoder BiomedCLIP-CXR, the pre-trained language
model Vicuna-7B-v1.5, and a randomly initialized MLP.

The second and third stages for training LLaVA-Rad are carried
out similarly to LLaVA and LLaVA-Med, consisting of feature alignment
and end-to-end fine-tuning, respectively. Given a set of training
examples, where each example consists of a CXR Xv and the corre-
sponding indication section Xi and finding section Xf from the pro-
cessed report, the training procedure is described as follows:

In stage two (feature alignment), we freeze the image encoder and
the languagemodel, and only update theMLP projection layer. Given a
CXR Xv, we train LLaVA-Rad to generate the corresponding findings
section Xf. Note that the indication section Xi is not used in this stage.
No text prompt is used, and the image is the only input. Our goal is to
align the image features with word embeddings of the languagemodel
via the learning of the projection layer. In this stage, we train LLaVA-
Rad on the training split of MIMIC-CXR for 1 epoch.

In the third stage (end-to-end fine-tuning), we train both the MLP
projection layer and the languagemodel. However, unlike themajority
of existing work that fully fine-tunes the languagemodel, we apply the
parameter-efficient fine-tuning method LoRA30, which has recently
been shown to achieve comparable performance to full fine-tuning
while significantly reducing the training cost57,58. Given a CXR Xv and
the corresponding indication section Xi, we train LLaVA-Rad to

generate the finding section Xf, using the training split of MIMIC-CXR.
Similar to the approaches taken by LLaVA and LLaVA-Med, our training
process utilizes cross-entropy loss, applied in an auto-regressive
manner, to optimize the generation of reports.

Model evaluation
Our model evaluation consists of cross-modal retrieval evaluation,
where we evaluate the quality of alignment between LLaVA-Rad’s CXR
their corresponding reports, attention visualization, which illustrates
the level of grounding the model’s text predictions with regions of the
input image, and the automated report evaluationwhich studied factual
correctness and lexical similarity metrics and their alignment with
radiologist error quantification. To ensure a thorough evaluation, the
model is tested not only on a held-out subset of theMIMIC-CXRdataset,
but also on a held-out subset of the CheXpert (n = 61)59, Open-I (n =
2163)35, and US-CXR (n = 1757) datasets. US-CXR corresponds to a pri-
vate collection of CXRs and de-identified reports sourced from a mix-
ture of inpatient and outpatients from a variety of hospitals across the
United States. Notably, CheXpert CXRs from the training set were used
alongside synthetic label-derived reports to train the image encoder,
but the held-out evaluation set, derived from the CheXpert validation
split, contains CXRs and radiologist reports that were not available
during training. Alternatively, the Open-I and US-CXR datasets were
fully held out during model development. Altogether. the inclusion of
CheXpert, Open-I, and US-CXR tests the external generalizability and
adaptability of themodel across different datasets with varying degrees
of familiarity and complexity. We compare LLaVA-Rad with both open
and closed-source vision language models, including those specialized
for CXR findings generation32,33,60 and other more general ones9,56,61–64.

Image-text alignment
Cross-modal retrieval evaluation: This task consists of matching radi-
ology reports to their corresponding radiology images (text-to-image)
and the reverse (image-to-text), thus evaluating the model’s ability to
identify corresponding CXRs and reports by calculating similarity
scores between images and text. We compared the performance of
LLaVA-Rad, which uses the specialized BiomedCLIP-CXR, with more
general image encoders used for LLaVA-Med and LLaVA, namely Bio-
medCLIP and OpenAI CLIP models. We used the official MIMIC-CXR
test set for evaluation, quantifying performance using recall at K, a
commonly used retrieval evaluationmetric thatmeasures the share of
relevant items captured within the top K positions.

Attention Visualization: To qualitatively examine how well LLaVA-
Rad’s image and text align, we develop a method to visualize the
model’s attention mechanisms during its generative process. Specifi-
cally, we focus on analyzing LLaVA-Rad’s attention to each image token
while generating words. This analysis enables us to understand how
well each generated word aligns with relevant regions within the
image. To achieve this, we conduct an in-depth examination of a fully
trained LLaVA-Rad model across all its 32 layers and 32 attention
heads. Furthermore, to provide a clearer insight into the model’s
attention patterns, we calculate either the mean or maximum values
(or both) across all layers and heads. For visualization purposes, we
reformat the attention matrices into a 37 × 37 grid to mirror the ori-
ginal spatial dimensions of the image tokens.

A protocol was not prepared for this study, nor was it registered.
No patients of the public were involved in the design, conduct,
reporting, interpretation or dissemination of this study.

Quality of generated reports
Existing evaluation metrics. We employ a suite of automated eva-
luation metrics to determine the quality of generated reports. We
report commonly used lexical similaritymetrics (ROUGE-L, BLEU-4) for
the sake of comparison with prior methods. However, we focus our
model development and analysis on factual correctness metrics,
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employing commonly used metrics such as F1-CheXbert and F1-Rad-
Graph, as well as proposing an automated language model scoring-
based metric, CheXprompt. The F1-CheXbert metric65 corresponds to
the F1 score of extracted disease labels of a generated report com-
pared to the reference, as determined by theCheXbert labeler20. In line
with prior work, we report F1-CheXbert for all 14 CheXbert classes, in
addition to 5 classes that represent the most common findings in real-
world CXR reports (atelectasis, cardiomegaly, consolidation, edema,
and pleural effusion). The F1-RadGraphmetric66 broadens the scope of
the factual correctness evaluation by comparing the agreement of
anatomy and observation entities extracted from the candidate report
with that of the reference. Prior to this work, the F1-RadGraph metric
was considered as a reference for the evaluation of factual correctness
in radiology reports. However, it has limited correlation with manual
error scoring as performed by radiologists, which has led to the pro-
posal of composite metrics such as RadCliQ that aim to better reflect
human evaluation of factual correctness17.

CheXprompt. Given the limitations of existing report evaluation
methods and the challenge of accurately evaluating generated reports
at scale, we explore the utility of a language model-based scoring
system,whichhas shown success in other domains36–38. Specifically, we
employ a large language model as an evaluator that quantifies the
presence of the following six error types, as per17: false prediction of
finding (false positive), omission of finding (false negative), incorrect
location/position of finding, incorrect severity of finding, mention of
comparison that is not present in the reference (false positive com-
parison), omission of comparison describing a change from a previous
study (false negative comparison). We instruct the model to quantify
the number of errors of each of the six error types, keeping a separate
count for clinically insignificant and significant errors. We refer to a
clinically significant error as one that likely affects treatment, man-
agement, or outcomes, and include this distinction in line with the
RADPEER system, the most widely accepted peer evaluation frame-
work in radiology67. In each rating prompt, we include afixed set of five
example report evaluation pairs alongside mean error counts for each
type to enable themodel to leverage in-context examples thatquantify
errors as requested. We evaluate the validity of the proposed CheX-
prompt using the ReXval dataset39, which is comprised of error
annotations from 6 board-certified radiologists on 200 pairs of can-
didate and ground-truth reports, where each radiologist provides
counts of each of the 6 aforementioned error types, also discriminat-
ing between clinically significant and insignificant errors.

For comparison, we evaluate the performance of three types of
GPTmodels: GPT-3.5 Turbo (GPT-3.5T), GPT-4, and GPT-4 Turbo (GPT-
4T, i.e. GPT-4-1106-preview). We quantify the alignment between
errors quantified by radiologists with that of existing report evaluation
methods, in addition to CheXprompt, using Kendall’s Tau b rank cor-
relation coefficient. Further, we directly compare the performance of
CheXprompt based on GPT-4T with that of each radiologist in a leave-
one-rater-out fashion. For each comparison with a rater, the mean of
the remaining left-in radiologist raters was calculated. The paired
interobserver difference between the held-out radiologist rater and
the mean was compared to the paired interobserver difference
betweenCheXprompt and themean. Themean absolute interobserver
difference (MAD) for each left-out radiologist was compared with that
of CheXprompt.

Finally, we use the GPT-4T version of CheXprompt to quantify the
total number of clinically significant and overall errors in each gener-
ated report in the evaluation datasets. We quantify these totals in
reports from publicly accessible models, enabling us to compare
LLaVA-Rad with LLaVA-Med, LLaVA, CheXagent, and GPT-4V. Further,
we study the overall proportion of error-free reports in the evaluation
datasets, reflecting the potential of each model in directly impacting
radiology workflows.

Study of language model generalizability
While our primary goal is to optimize LLaVA-Rad for CXR report
generation, we perform an evaluation to examine whether model
specialization affects the general language capabilities of the
underlying language model (Vicuna-7b-v1.5). To do so, we utilize the
MT-bench evaluation, a widely recognized benchmark for assessing
language models across multiple dimensions in multi-turn, open-
ended question answering31. In MT-bench, response quality is rated
on a 1–9 point-based scale, with GPT-4 serving as an evaluator, as
previously validated in MT-bench to be closely aligned with crowd
annotator quality.

Synthetic report evaluation
To evaluate the quality of synthetic reports, we employ different
strategies depending on the availability of ground truth reports.
For synthetic reports without reference ground truths, we use a
similarity comparison (cosine similarity) between the embeddings
of corresponding CXR images and synthetic reports, as determined
by BiomedCLIP-CXR and BioViL-T68. For each of the datasets
described in CXR-697k, we compare the similarity between corre-
sponding pairs with that of randomly assigned pairs from the same
dataset. For datasets with available reference ground truth reports,
such as MIMIC-CXR and the CheXpert Plus reports, we assess the
similarity between synthetic and original reports using
GatorTron69, and identify potential errors in synthetic reports using
CheXprompt. We report results for similarity and CheX-
prompt metrics for the MIMIC-CXR test set, and a subset of 2000
reports with findings sections sampled from the training split of the
CheXpert Plus dataset.

Statistics and reproducibility
No formal sample size calculations were carried out for this study.
Instead, publicly available datasets containing CXR images, labels, and
reports (when available) were curated to assemble the CXR-697K
dataset formodel training. For evaluation,we usedheld-out test sets as
described in Model Evaluation. All images meeting the inclusion cri-
teria (frontal view, presence of a Findings section) were included in the
evaluation, while studies were excluded if they did not meet either of
these criteria. Performance metrics for report generation were eval-
uated using existing standard metrics and CheXprompt, with 95%
bootstrap confidence calculated using 500 resampling interations.
MAD comparison for CheXprompt and left-out radiologist ratings
using left-in radiologists as reference was carried out using two-sided
paired t-tests. Synthetic report quality cosine similarity values were
compared with random similarity scores using a permutation test with
1000 permutations. A significance threshold of 0.05 was applied to all
statistical comparisons.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GPT-4 and rule-based pre-processed MIMIC-CXR reports are pub-
licly available as the LLaVA-Rad MIMIC-CXR Annotations at https://doi.
org/10.13026/6ey5-df78, subject to credentialing and completion of an
appropriate course for handling human participant data. The Open-I
dataset35 is publicly accessible at https://doi.org/10.1093/jamia/ocv080.
The CheXpert CXR images and reports are publicly accessible at https://
doi.org/10.71718/6nvz-pm34. The US-CXR dataset is a private collection
of images and reports and cannot be made publicly available due to
privacy restrictions. Interested parties should contact Segmed, Inc
(https://segmed.ai) to inquire about access to the dataset, subject to
Segmed’s applicable ethical and legal requirements. Source data are
provided with this paper.
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Code availability
LLaVA-Rad is fully available at https://aka.ms/llava-rad, including the
model weights and relevant source code for training, inference, and
evaluation. A permanent version of the code including detailed
methods and implementation steps to facilitate independent replica-
tion is available at https://doi.org/10.5281/zenodo.14897681. CheX-
prompt is publicly available at https://github.com/microsoft/
chexprompt with a permanent version available at https://doi.org/10.
5281/zenodo.14861615.
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