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Development of N-centered radical
scavengers that enables photoredox-
catalyzed transition-metal-free radical
amination of alkyl pinacol boronates

Changlei Zhu1, Jiaxin Lin2,3, Xiaoguang Bao 2,3 & Jingjing Wu 1

In recent years, amination of alkylboronates through ionic copper catalysis or
boron-ate complex 1,2-metalation has been well established, but com-
plementary radical processes remain less studied before. Herein, based on
rational design, we develop several imine-type N-centered radical scavengers
and apply them to the radical amination of alkylboronates. The reaction pro-
ceeds under mild photoredox-catalyzed transition-metal-free conditions and
features excellent functional group tolerance. It also enables the preparation
of a range of medicinally valuable amine derivatives from complex natural
products. Further application of this reagent in C-H amination, deoxygenative
amination, decarboxylative amination and three component tri-
fluoromethylative/sulfonylative aminations are also realized. Further
mechanistic studies and DFT calculations are conducted to provide detailed
evidence for the mechanism.

Organoboron compounds are some of the most useful compounds
in synthetic chemistry because of the versatile reactivity of
carbon–boron bonds1–4. Among them, boronic acid pinacol esters
have received a great deal of attention from the synthetic commu-
nity due to their stability, which facilitates their handling and allows
them to be used for a broad range of reactions. Amines and other
nitrogen-containing functional groups are highly important and can
be found in many bioactive alkaloids, small molecule pharmaceu-
ticals, and agrochemicals5. Thus, transformations of pinacol bor-
onates to corresponding amines are highly valuable, especially for
medicinal chemistry.

Since 1964, amination of organoboranes (such as trialk-
ylboranes, dichloroboranes, and dialkylborinates) has been well
studied6. But until recent decades, the amination of bench-stable
boronic acids or boronic esters has been reported. Among them,

since 1998, the copper-promoted C-N bond formation of arylboronic
acids with amines and amides (Chan–Lam coupling) is an attractive
method7–11. Later, the substrate scope has been expanded to aryl-
boronates, alkyl boronic acids, alkylboronates and potassium
organotrifluoroborates12–17. Besides copper catalysis, an alternative
strategy is the conversion of a boron reagent to a boron ‘ate’ com-
plex, mediated by the aminating reagent, followed by a 1,2-metalate
rearrangement that establishes a C-N bond and yields the amination
product.18–24. Those aminations are generally transition-metal-free
and stereospecific. From 2012, the groups of Morken19,21,23, Kürti20,
and Liu22,24 have made great contributions to this area. Very recently,
an enzymatic process has also been reported25.

Ionic amination of alkylboronates usually requires high tem-
perature for copper catalysis or a strong base (e.g. n-BuLi, t-BuOK
etc.) for boron-ate complex formation, which has resulted in limited
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functional group compatibility. A radical protocol through photo-
redox catalysis may provide an alternative milder pathway. However,
the development of such a protocol is not straightforward due to the
challenges in achieving single-electron oxidation of alkylboronates,
so further activation is necessary. In 2017, the Ley group reported
that a weak Lewis base could act as an activator to promote this
process (Fig. 1a), but this protocol is limited to benzylic boronates
and α-heteroatom-substituted primary alkyl boronates26. Soon after,
the Aggarwal group realized the activation of general alkyl boronic
esters with PhLi as the activator27–30, and recently the Liu group
reported single-electron oxidation of alkylboronates with NaOMe or
NaOH as the activator, however strong bases were required31. In
contrast, in 2022, Maier reported a milder amino radical transfer
(ART) activation strategy, where alkylboronates could be activated
by an in situ generated amino radical32. Recently, the Studer group
also applied this strategy to generate alkyl radicals, and further
pointed out that this process proceeded through a nucleohomolytic
substitution mechanism (Fig. 1a)33. Since no further activation step
was required, and the boronic esters could be activated by the amino
radical generated from a weak organic base34–36, we decide to apply
this strategy into our transformations.

In recent years, radical amination has attracted much attention.
Several different strategies for radical C-N couplings have been
reported37–40, for example, the reaction of N-centered radical addition
to olefins and aromatics has been well established, whereas the
development of transition-metal-catalyzed strategies and radical-
radical coupling strategies have been fast growing38–40. However, the
research field of N-centered radical scavengers has suffered from slow
development41. Although different reagents (Fig. 1b), such as nitric
oxide41, azodicarboxylates42–46, diazonium salts47–49, diazirines50,
nitrosoarenes51 and sulfonyl azides52,53, have been used as N-centered
radical scavengers for many years, there are only few reagents devel-
oped in the recent 20 years, such as α-diazoacetates54–56 and sulfonyl
triazoles57–59. After carefully analysis, we note that most of these
reagents contain N–N or N–O multiple bonds, so that subsequent
reduction is required to obtain the free amine, which reduces the
redox economy of the process. Until 2010, the Studer group applied
stannylimine as the scavenger to give an imine as the final product,
which only requires hydrolysis to give the corresponding amine60. This

synthetic approach is redox-economical, but due to thehigh toxicity of
stannylimine, further application is limited. Very recently, the research
groups of Cho61,62, Glorius63–69, Prieto70 and others71–74 have developed
an oxime ester derivative as the amination reagent. For this reagent,
through photoinduced triplet energy transfer (EnT) pathway, a per-
sistent iminyl radical was generated as the N-centered radical
scavenger.

In this study, inspired by the works of Studer60,75, Cho61,62 and
Glorius63–69, we decide to develop an imine-type N-centered radical
scavenger that benefits from stability, convenient scale-up prepara-
tion, and properties that traditional reagents lack, such as non-
explosivity (compared to azide reagents) and low toxicity (compared
to stannylimines). We also want the resulting imines to be easily
hydrolyzed to access free amineswhile theby-productketone couldbe
recovered and recycled (Fig. 1c). Based on the development of this
reagent, we would then investigate the visible-light photoredox-cata-
lyzed radical amination of alkyl pinacol boronates, and application of
this method in the synthesis of several functionalmolecules. Once this
is successfully achieved, we aim to show the generality of the devel-
oped reagent in more challenging C-H aminations, deoxygenative
aminations and some other transformations.

Results
Reaction development
We began our studies by rational design and synthesis of imine deri-
vatives as potential N-centered radical scavengers. Firstly, we synthe-
sized 2a and 2b61. Our hypothesis is that if the photo-oxidation step to
generate an alkyl radical is quicker than triplet energy transfer (EnT),
the newly formed radical will add to 2a/2b to generate a more ther-
modynamically stabilized radical intermediate INTa/INTb, which will
promote the progression of the reaction. Then, considering the
polarity of the C=N bond in imines, N is more electronegative than C,
so any (partial) negative charge would localize on the N atom. Asmost
alkyl radicals are nucleophilic radicals, which prefer addition to elec-
tropositive sites, thus umpolung natural polarity of the imines is
required to revert its reactivity (Fig. 2a). Inspired by the creative work
from Kurti76, oxime tosylate 2c was synthesized. We then synthesized
2d and 2e with two aromatic rings to help stabilize the anticipated
radical center and a ketone to induce umpolung. Similarly, oxime
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derivatives with a sulfone group 2f, 2g and 2h were synthesized
(Fig. 2b). It should be noted that, putting an electron-withdrawing
group on the carbon side of the imines would not only invert the
polarity of the C=Nbond, but alsomake themolecules redox-active. As
traditional oxime derivatives (like 2a/2b) are well known for EnT acti-
vation to generate a persistent iminyl radical for radical-radical cou-
pling reactions; our newly developed reagent 2d to 2hwould bemuch
easier for single-electron transfer (SET) activation to generate corre-
sponding persistent iminyl radicals77–80.

With these potential scavengers in hand, we proceeded to inves-
tigate the reactivity of aminating reagents 2with alkyl boronic ester 1a.
Unsurprisingly, 2a and 2b failed to give any desired product (Fig. 2c,
entry 1). Scavenger 2c also showed no reactivity (entry 2). Delightfully,
employing 2d gave the desired product in 27% yield (entry 3), whereas
2e resulted in a slight improved yield (entry 4).Much toour surprise, 2f
showedno reactivity (entry 5), butwhenwe switched to2g, the desired
product was obtained in excellent yield (entry 6), whereas reagent 2h
gave a much lower yield (entry 7). Whenmorpholine was reduced to 2
equivalents, the yield decreased significantly (entry 8). Using 1mol%
Ir[(dFCF3ppy)2(dtbbpy)]PF6 instead of 4-CzIPN as the photocatalyst
resulted in a significantly lower yield (entry 9). Switching the solvent to
DMF resulted in a decreased yield (entry 10). Interestingly, irradiation
without a photocatalyst in DMF also afforded the desired product in
12% yield, but in contrast, when MeCN was used as the solvent under
photocatalyst-free conditions, nodesiredproductwasobtained,which
could be due to poor solubility (entry 11). Further optimization results
showed that irradiation with 390nm LEDs in DMF without a photo-
catalyst could give the desired product in 28% yield (entry 12). How-
ever, we could not obtain any better results under photocatalyst-free
conditions.

Substrate scope
With the optimized conditions in hand, we investigated the scope of
the deboronative amination (Fig. 3). Cyclic secondary alkyl-Bpin
(1a-1f) were converted effectively and delivered the corresponding
imines in moderate to good yields. Interestingly, we found that sub-
strates with a non-strained 6-membered or 5-membered ring (1a-1d)
could give the desired product in good yield, however much lower
yields were obtained from substrates with a 4-membered or 12-
membered ring (1e, 1f). Acyclic substrates (1g-1m) were also effi-
ciently transformed to the desired products. It should be noted,
substrates with a cyclic ether (1c), Boc-protected amine (1d), acetate
(1i), ester (1j), alkyne (1l) or nitrile (1m) all gave the desired products
in good yields, demonstrating excellent functional group tolerance.
However, the substrate with an amide group (1k) resulted in a lower
yield. Primary alkyl-Bpin (1n-1v) were smoothly transformed into the
desired alkyl imines (3n-3t) in moderate yields. A range of functional
groups were tolerated, including bromide (1o), silyl ether (1p), ketal
(1q), indole (1t), carbazole (1u) and sulfonamide (1v). Much to our
surprise, under the standard conditions, tertiary substrates (1w-1y)
could not give the corresponding imine products but instead
afforded saturated amines in moderate yields. We believed these
saturated amines were produced from further reduction of the cor-
responding imines by the excess morpholine under the photoredox-
catalyzed conditions81. Notably, derivatives of drug molecules and
natural products, such as gemfibrozil (3y), cedrol (3z), dehy-
droabietic acid (3aa), santonin (3ab), diosgenin (3ac), vespertilin
(3ad), andoleanolic acid (3ae) couldbeobtained inmoderate togood
yields, demonstrating that this method can be used for late-stage
installation of C-N bonds from corresponding boronic esters in
complex molecules.
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Mechanistic studies and DFT calculations
Mechanistic studies were conducted to provide evidence for the pro-
posed radical pathway. Radical clock experiments with substrate 1af
provided the corresponding ring-opening product 3af in 43% yield,
indicating that a cyclopropylmethyl radical intermediate was involved
in the reaction (Supplementary Fig. S1a). Then, a series experiments of
2g with different photocatalysts were conducted to investigate how
much starting material would remain (Supplementary Fig. S1b). We
chose four photocatalysts which differs in both triplet energies and
reduction potentials82–87. DFT calculations indicated that the triplet
energy of 2g was 43.6 kcal/mol, while the excited energy of 4-CzIPN is
59.7 kcal/mol, which means triplet 4-CzIPN is strong enough to con-
sume 2g in the absence of a reductant. However, our experiments
showed that most of the startingmaterial remained in each case for all
four photocatalysts. Although through these experiments we cannot
completely rule out the triplet EnT pathway, however, it does indicate
that an EnT pathway is not likely to be the major pathway. Another
strong evidence is that, in DMF, 12% yield of desired product was still
obtainedwithout a photocatalyst (Fig. 2c, entry 11). In this case, as blue
light could not excite 2g directly, a triplet EnT pathway could be ruled
out, and we believe that, in the absence of a photocatalyst, there may
be an EDA complex that initiates the reaction. This was further con-
firmed by UV-Vis experiments (Supplementary Fig. S1c). Besides, the
quantum yield of our deboronative amination reaction under the
standard conditions with 1a was determined to be 0.674, indicating
that radical chain processes are not supported (see Supplementary
Information for details).

To gain further understanding of the mechanism, DFT calcula-
tions for the deboronative imination reaction were performed

(Fig. 4). Firstly, morpholine INT1 could be oxidized by the excited
photocatalyst through a SET process to give a radical cation species
INT2 and the reduced PC.- species. Next, INT2 could be converted to
an N-centered radical INT3 via proton transfer with another mor-
pholine molecule. Then, the yielded N-centered radical INT3 could
attack the B-site of 1a via TS1 to generate a cyclohexyl radical INT4.
The predicted activation barrier for this step is 8.5 kcal/mol relative
to 1a + INT3. Subsequently, the yielded cyclohexyl radical INT4 could
attack the C=N moiety of 2g. Computational results show that it is
more likely for INT4 to attack the N-site of 2g via TS2a, than the
C-site via TS2b, to afford the radical adduct INT5. For the following
transformations, there are two possible pathways. In pathway a
(black in Fig. 4), INT5 is further reduced by the reduced photo-
catalyst to form the anionic intermediate, which undergoes
β-elimination through transition state TS3a to give desired product
3a. Alternatively, in pathway b (red in Fig. 2), INT5 could undergo β-
scission directly through transition state TS3b to give 3a and release
the radical intermediate INT6b, which could be further reduced by
the reduced photocatalyst to give a tosylate anion. The transition
state energy barrier for the β-elimination step (TS3a) is 1.3 kcal/mol
lower than that for the β-scission step (TS3b), indicating that path-
way a is more favorable. On the other hand, the reduced PC.- species
might undergo SET with 2g to give the corresponding radical anion.
The predicted energy barrier for this SET process is 6.9 kcal/mol
(Supplementary Fig. S2). Next, a β-elimination step could follow via
TS-S1 to give an iminyl radical and tosylate anion. The calculated acti-
vation barrier for this step is only 5.8 kcal/mol. The cross-coupling
between the iminyl radical and the cyclohexyl radical could also give the
desired product 3a, so may not be ruled out.
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One may wonder whether an EnT pathway is feasible for this reac-
tion. The predicted singlet-triplet energy gap of 2g is 43.6 kcal/mol.
Nevertheless, the excited 2g* needs to overcome a barrier of
10.1 kcal/mol to undergo homolytic cleavage to give the iminyl
radical (Supplementary Fig. S2), which is less favorable than the SET
process.

Based on themechanistic studies and DFT calculations, a possible
mechanismwasproposed (Fig. 5). Firstly,morpholine is oxidized by an
excited photocatalyst (PC*) and undergoes deprotonation by another
morpholine molecule to generate radical A. Radical A then activates
substrate 1a through nucleohomolytic substitution to generate
cyclohexyl radical B, which in turn adds to aminating reagent 2g and
give intermediateC. ThenC is reducedby the reducedphotocatalyst to
give anionic intermediate D, which undergoes β-elimination to give
the desired product 3a. Also, there is another possible mechanism
(Fig. 5, pathway II), where after cyclohexyl radical B is generated, 2g
could be further reduced by the reduced photocatalyst to give
intermediate E. This in turn generates iminyl radical F after
β-elimination of a tosylate anion. Finally, cyclohexyl radical B under-
goes cross coupling with the iminyl radical F to give desired product
3a. Since reagent 2g is present in large excess, whereas iminyl radicalF
is generated in low concentration in the reaction system, we still

believe that pathway I ismore probable thanpathway II, but we cannot
rule out the latter.

Application in functional molecules syntheses and other
transformations
The excellent functional group tolerance of the mild reaction condi-
tions further encouraged us to apply our method in the synthesis of
functional molecules. In recent years, the cedrol derivatized amine 8
was found to have interesting anti influenza virus activity88. But start-
ing from cedrene (4), the traditional synthetic route required 4 steps
(Fig. 6a), including hydroboration-oxidation to give alcohol 5, then
oxidation to give ketone 6, followed by further transformation into
oxime 7, and finally reduction to give amine 8. It is worth noting that,
unfortunately, this route affords product 8 as an inseparable mixture.
Recently, the Shu group reported an improved synthesis of 8, through
direct radical hydroamination of cedrene (4), where the desired pro-
duct 8 could be obtained in a single step with 95% yield89. Unfortu-
nately, with his method, 8was still obtained as an inseparable mixture
(d.r. = 1.6:1).Now,usingourmethod,wehavedemonstrated that it only
requires 2 steps (hydroboration and deboronative amination) to syn-
thesise the desired product 3z as a single diastereomer. After hydro-
lysis, the desired free amine 8 was obtained as a single diastereomer
with a yield of 68%. We then applied our method into the synthesis of
(S)-phenibut, starting from boronic ester 9. Previously, the Yun group
transformed the pinacol boronate into dichloroborane 1090, and then
reacted it with benzyl azide to obtain protected phenibut 11. Through
our method, pinacol boronate 9 could be transformed into protected
phenibut 12 in a single step, with 100% es. Our method was further
applied to the synthesis of a chiral amino alcohol91. Starting from
boronic ester 13, desired product 14 was obtained with good es.
Interestingly, in this reaction we also obtained side-product 15, possi-
bly through a radical 1,2-aryl migration process.

To further demonstrate the generality of this developed reagent,
more challenging transformations (such as, deoxygenative amination,
C-H amination and three-component radical relay aminations) and
other radical precursors (such as carboxylic acid, boronic acid, and
potassium organotrifluoroborate) were tested (Fig. 7). Delightfully,
under slightly optimized conditions (see Supplementary Information
for details), the use of an NHC activation strategy developed by the
MacMillan group92–95 enabled the conversion of alcohol 16 into imine
3d in 15% yield (Fig. 7a). Additionally, cyclohexane 17 could be trans-
formed into imine 3a in 19% yield (Fig. 7b). Starting from carboxylic
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acid 18, the corresponding decarboxylative amination product 3a was
obtained in 44% yield (Fig. 7c). With our standard conditions, boronic
acid 19 could be converted into imine 3ag in 89% yield (Fig. 7d). With
slightly optimized conditions, potassium trifluoroborate 20 could be
transformed to imine 3r in 33% yield (Fig. 7e). Also, three-component
trifluoromethylative amination96 of unactivated olefin 21 could deliver
the desired difunctionalized product 22 in 45% yield (Fig. 7f), and
three-component sulfonylative amination of styrene 23 successfully
afforded desired product 24 in 50% yield (Fig. 7g).

In order todemonstrate the accessibility of the aminating reagent,
we performed a large scale synthesis of 2g in single sequence and
obtained 19.4 g of reagent 2g (Fig. 8a). To demonstrate the practical
use of our deboronative amination reaction, we also carried out a scale
up experiment, starting from 841mg (4mmol) boronate 1a, where
desired product 3a was obtained in 53% yield (Fig. 8b). It should be
highlighted that our imine products can be treated as protected
amines, which can be easily converted into the corresponding amines
through simple hydrolysis. In order to demonstrate the advantage of
our method (Fig. 8c), we hydrolyzed product 3b with HCl to provide

amine-HCl salt 25 in 55% yield, meanwhile recycling ketone 26 in 79%
yield. After neutralizing 25 with NaOH, free amine 27 was obtained in
75% yield. The recycled ketone 26 could be further transformed into
aminating reagent 2g.

Discussion
In conclusion, based on rational design, we have developed several
imine-type N-centered radical scavengers and successfully applied
them in visible-light photoredox-catalyzed transition-metal-free radi-
cal amination of alkyl pinacol boronates. The reaction proceeds under
mild conditions, features excellent functional group tolerance, and
enables the preparation of medicinally valuable imine derivatives of a
range of complex natural products. Detailed mechanistic studies and
DFT calculations has shown that a photoinduced EnT process is unli-
kely to be the major pathway; this reaction most likely proceeds
through a photoredox-catalyzed SET process. Furthermore, DFT cal-
culations support a radical addition, reduction, then anionic
β-elimination pathway rather than a radical addition, β-scission path-
way. To demonstrate the generality of these developed reagents,
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further application in C-H amination, deoxygenative amination, dec-
arboxylative amination and three component trifluoromethylative/
sulfonylative aminations were also realized. Given the importance of
amination of organoboron compounds, we believe our radical process
will be an important addition to this research area.

Methods
General procedure for deboronative amination reactions
An oven-dried vial (12mL) equipped with a magnetic stirrer bar was
sequentially charged with alkyl pinacol boronate (0.2mmol,
1.0 equiv.), 2 (0.4mmol, 2.0 equiv.), 4-CzIPN (4.0mg, 0.01mmol,
0.05 equiv.). The vialwas evacuated andback-filledwith nitrogen three
times before CH3CN (1.0mL, 0.2M) and morpholine (52.3mg,
0.6mmol, 3.0 equiv.) were added. Then, the vial was irradiated under
blue LEDs for 16 h. After the reaction was completed, the solution was
concentrated under reduced pressure. The residues were directly
purified by column chromatography to give the desired product
(notably, the silica gel used here was pre-neutralized with 5% triethy-
lamine in petroleum ether solution prior to the usage, in order to
minimize the product loss).

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its Supplementary Information files.
Should any raw data files be needed in another format they are avail-
able from the corresponding author upon request. Source data are
provided with this paper.
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