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The RAS/ERK pathway plays a central role in diagnosis and therapy for many
cancers. ERK activity is highly dynamic within individual cells and drives cell
proliferation, metabolism, and other processes through effector proteins
including c-Myc, c-Fos, Fra-1, and Egr-1. These proteins are sensitive to the
dynamics of ERK activity, but it is not clear to what extent the pattern of ERK
activity in an individual cell determines effector protein expression, or how
much information about ERK dynamics is embedded in the pattern of effector
expression. Here, we evaluate these relationships using live-cell biosensor
measurements of ERK activity, multiplexed with immunofluorescence staining
for downstream target proteins of the pathway. Combining these datasets with
linear regression, machine learning, and differential equation models, we
develop aninterpretive framework for immunofluorescence data, wherein Fra-
1 and pRb levels imply long-term activation of ERK signaling, while Egr-1 and
c-Myc indicate more recent activation. Analysis of multiple cancer cell lines
reveals a distorted relationship between ERK activity and cell state in malig-

nant cells. We show that this framework can infer various classes of ERK
dynamics from effector protein stains within a heterogeneous population,
providing a basis for annotating ERK dynamics within fixed cells.

The RAS signaling pathway directs multiple cellular behaviors and
regulates tissue homeostasis'. Its terminal kinase, Extracellular Signal-
Regulated Kinase (ERK), is essential for cellular decisions to enter the
cell cycle, migrate, or differentiate. In cancer and other diseases,
changes in the quantitative strength and timing of ERK signaling play a
critical role in disease progression and treatment. For example, indi-
vidual cell fates can be altered by short interruptions in ERK activity®™*,
while residual ERK activity following targeted kinase inhibitor treat-
ment enables re-entry to the cell cycle’® and determines therapeutic
efficacy’. Therefore, accurate measurement of ERK pathway activity
has substantial clinical applicability. However, current methods to
assay ERK activity in situ are limited and have not been highly suc-
cessful as diagnostic markers®.

Measuring cellular ERK activity is complex because the timing,
duration, localization, and amplitude of ERK activation vary widely
between cells’™. These differences have functional importance
because they influence the expression of numerous effector proteins
encoded by ERK target genes (ETGs), including the Immediate Early
Genes (IEGs) FOS (encoding c-Fos), FOSL1 (Fra-1), MYC (c-Myc), and
EGR1 (Egr-1)*". The amplitude, duration, and frequency of ERK
activity interact with ETG expression by increasing transcription rate,
by stabilizing protein products, and by activating negative feedbacks
on expression'®. These effects vary from gene to gene, and conse-
quently some gene products (e.g., Fra-1) integrate ERK activity over
time, whereas others (e.g., c-Fos, Egr-1) respond maximally to pulsed
ERK activity at intermediate frequencies 2. Correspondingly, cellular
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phenotypes are responsive to ERK dynamics; pulsatile activation cor-
relates with proliferation and protection from apoptosis in some sys-
tems, while sustained activity correlates with cell cycle arrest™?.
Advances in live-cell imaging and CRISPR-based tagging have allowed a
higher-resolution view of how patterns of activation and deactivation
(ERK dynamics) correlate with ETG expression'>*’. However, at the
single-cell level, the correlations in these studies appear modest, and
the ETG responses are not reliably predictable. This uncertainty is not
necessarily random and could arise from various features, including
systemic non-linearities and unmeasured factors. Therefore, it remains
important to ask whether the dynamic pattern of ERK activity in an
individual cell reliably determines the expression of multiple ERK tar-
gets. Conversely, can the expression state of ERK target genes reveal
information about the prior history of ERK activity dynamics in the
cell? Such questions motivate the need for further quantitative ana-
lyses and modeling.

A quantitative framework connecting ERK dynamics to ETG
expression states would have several notable uses. First, it would help
elucidate the cell state landscape that is accessible through growth
factor pathway modulation. Transcriptome-based single-cell state
measurements have become widely available, but how non-
transcriptional events in upstream signaling pathways drive cell state
decisions and transitions remains a pressing question. Second, it
would provide a comparison of how different fixed markers reflect
actual ERK activity. Currently, RAS/ERK activity is assayed using anti-
bodies for phosphorylated ERK (pERK)**?* or for proteins that are
induced by ERK activity, such as c-Fos or DUSP6, which persist for
longer than ERK phosphorylation®*, Knowing how different markers
respond to ERK activity could help in choosing the best activity marker
under different circumstances and would be of particular interest in
assessing the efficacy of cancer treatments targeted to the pathway.
Finally, oncogene-induced ERK activation is distinct from normal
physiological patterns generated by endogenous growth factors and is
often sustained or stochastically fluctuating”. Knowledge of the
dynamic patterns of ERK signaling found in a tissue can therefore be
informative about the source of ERK hyperactivation.

In addition to ERK activity biosensors, previous work has
demonstrated that synthetic ETGs can detect ERK dynamics?. While
such genetically encoded tools are impractical clinically, it is possible
that similar information could be derived from endogenous ETGs,
which range in their sensitivity and timing in response to dynamic ERK
activity?>”, In principle, the history of cellular ERK activity could be
inferred using fixed-cell measurements alone and used to evaluate the
dynamic nature of ERK activity within biopsies of tumor tissue.

Here, we develop such an interpretive framework, using a live-cell
biosensor of ERK activity in combination with cyclic immuno-
fluorescence for ETG-encoded proteins and other proteins regulated
by ERK, including Egr-1, Fra-1, cJun, c-Myc, and c-Fos, and phos-
phorylated proteins such as pERK, pc-Fos, and pRb (a downstream
marker of ERK-dependent cell cycle entry; for convenience we col-
lectively refer to all of these measurements as ETGs). Because of the
well-established interdependence of protein stability and ERK-
mediated phosphorylation that modulate ETG expression®, we hypo-
thesized that this panel would provide the best assessment of ERK
activity available through immunofluorescence. Using statistical
models and machine learning to predict ERK activity features based on
the expression of each marker, we characterized how various ETGs
report ERK history with varying memory span. The characteristics of
Fra-1 and pRb as long-term integrators and Egr-1, c-Fos, or c-Myc as
short-term responders provided significant predictive capacity in our
models. We further expanded on these models by experimentally
examining multiple cancer cell lines and by computationally simulat-
ing ERK-driven gene expression, demonstrating that fixed-cell analysis
of ETGs can be broadly useful in revealing the dynamic history of ERK
activity.

Results

A dataset linking live-cell ERK activity to ERK target
immunofluorescence

We generated a dataset that enables correlation of ERK activation to
downstream target expression and modification by first collecting live
ERK activity measurements under differential activation states of the
RAS/ERK pathway. In MCFI0A mammary epithelial cells, we used
EKAR3.], a calibrated FRET-based biosensor that measures the balance
between phosphorylation by ERK activity and dephosphorylation by
competing phosphatases (Fig. 1a, Supplementary Fig. Sla-d). ERK
activity was stimulated in a dose-dependent manner with varying Epi-
dermal Growth Factor (EGF) concentrations (Fig. 1b, Sle). To increase
the temporal diversity of activity patterns, we added MEK inhibitor
(MEK:i) at varying times after EGF stimulation and included treatments
where EGF was added at different timepoints of the experiment (Fig. 1c,
Supplementary Fig. Sle, Supplementary Table 1). These treatments
generated a wide range of ERK signaling patterns, including sustained
and pulsatile activity with varying duration and magnitude (Fig. 1d).
Consistent with previous studies®*°, we found that ERK activation is
heterogenous from cell to cell within each stimulation condition.

Immediately following live-cell data collection, we fixed the cells
and conducted cyclic immunofluorescence staining to measure levels
of eight targets downstream of ERK (Fig. 1a, e, Supplementary Movie 1).
This protocol (4i) was adapted from Gut et al.* and validated for our
96-well plate experiments (Supplementary Fig. S2a-e). After quanti-
fying nuclear antibody staining intensities, we found that most targets
were dose-responsive to EGF and suppressed by MEKi treatment,
except c-Jun (Fig. e, f, Supplementary Fig. Sle). c-Jun increased mod-
erately with both MEK inhibition and EGF concentration, suggesting
that its expression is not directly regulated by ERK activity in MCF10A.

We then analyzed the correlation between ERK activity and the
expression of each target. To link live-cell ERK activity measurements
with the respective 4i data for each cell, we aligned the corresponding
image datasets and generated a heatmap ordered by the mean ERK
activity measurement in each cell (Fig. 2a). While both ERK activity and
4i targets were variable across the data set, most of the 4i targets
exhibited some correlation with mean ERK activity. We calculated the
Pearson correlation between ERK pulse features, such as Frequency,
for each cell and each ETG measurement (Fig. 2b, c¢). The strongest
correlations were between the Sum of duration and Fra-1 or pRb.
Interestingly, Egr-1 was uniquely correlated with Average derivative of
ERK activity, supporting the previous notion that Egr-1 selectively
decodes pulsatile ERK activation”. Notably, c-Jun had a weak correla-
tion with any ERK feature and therefore serves as a useful negative
control in our analyses, providing baseline correlation values for pro-
teins unregulated by ERK.

We performed a more granular time-sensitive analysis by calcu-
lating the Pearson correlation between each ETG and the EKAR3.1 FRET
measurement at each live-cell timepoint (Fig. 2d). Correlations to Fra-1
and pRb were distributed across the time series (r = ~0.5, 0.4, respec-
tively) after the initial stimulus, apart from a period where ERK activity
is weakest, about 2 to 4 hours after EGF addition. In contrast, c-Myc, c-
Fos, and pc-Fos mildly correlated to ERK activity from 2-5 hours prior
to fixation (r =~0.3) and at their highest levels (r =~0.55) during the last
hour before fixation. pERK staining was most correlated to ERK activity
immediately prior to fixation (r = ~0.6), consistent with its rapid time-
varying nature. Finally, Egr-1 correlated only to ERK activity 30 minutes
to 1 hour prior to fixation (r: ~0.5).

To visualize spatial correlations of ERK-ETG signaling within the
dataset, we plotted a spatial heatmap of signaling and gene expression,
where cells within a single image are clustered in a heatmap visuali-
zation by proximity to one another (Fig. 2e). This analysis shows ERK
activation within clusters of neighboring cells (5-30 cells) throughout
the experiment. Consistent with its correlation to recent ERK activity
(Fig. 2d), Egr-1 expression is higher in these clusters of cells subject to
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locally synchronized ERK activity bursts near the end of the time-lapse
imaging phase (Fig. 2f).

Neural network-based models reveal non-linear time depen-
dence of ETGs on ERK dynamics

To look beyond linear correlations and identify potential non-linear or
complex relationships between live ERK activity and ETGs, we trained a

convolutional neural network (CNN) to use the ERK activity time series
to predict expression levels of each ERK target in individual cells
(Fig. 3a, top). As a comparison to the CNN, we fitted linear regression
models using the values at each timepoint of the ERK time series as
individual variables to predict final ETG levels (denoted TS linear). We
also compared the performance of these time series-based models
with that of feature-based models, using nine ERK activity features (as
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Fig. 1| ERK activity and target genes are dose-responsive to Epidermal Growth
Factors. a Schematic of the experimental method. Live cells were imaged in 96-well
plates for 19 hours and immediately fixed following the end of the time-lapse
measurements. Plates were subsequently stained for antibody-based measure-
ments. b Condition average response measurements for live-cell ERK biosensor
(EKAR signal, shown in arbitrary units) with increasing concentrations of EGF. Data
are presented as the mean of each condition (Nyepiicates = 3 for all conditions).

¢ Condition average response measurements depicted as a heatmap. Each row
represents the average EKAR FRET measurement for a condition, indicated by the
color scale (yellow, high ERK; blue, low ERK). EGF concentration is indicated by
colored triangles as in Fig. 1b. MEKi = MEK inhibitor PD0325901 (100 nM) (see
Supplemental Table 1 for Nepjicates fOr €ach condition). d Plots of single-cell EKAR

signals (in arbitrary units) for five representative cells in each indicated condition.
Bold lines indicate the mean of all cells in one well of the condition. Red lines
indicate the time points where treatments were added. e MCF10A cells immuno-
stained with cyclic immunofluorescence. Each row depicts the same group of cells.
Scale bar = 100 pum. f Nuclear quantification of cyclic immunofluorescence mea-
surements from listed EGF condition. Plots indicate the median (bar), 25th/75th
percentiles (box), and range of the data (whiskers). The dashed line indicates the
median of vehicle control (Imaging Media). Variance-corrected t-tests (two-sided)
were conducted by comparing each EGF-treated condition to control. Nyepjicates = 3.
P values, relative to the O EGF condition, are shown on each distribution.
Throughout the study, Nrepiicates is used to denote independent experimental
replicates performed on different days.

shown in Fig. 2b; denoted Featurized linear). We found that the CNN
achieved the highest performance in predicting all ERK targets, except
for pERK (Fig. 3b). To account for overfitting, we calculated the mean
squared error (MSE) on unseen data (test set); the CNN exhibited the
least error for all targets, again except for pERK (Fig. 3b bottom).
Though the CNN performed best for most targets, significant variance
remained uncaptured (Fig. 3c). The improvements in variance
explained were significant only for Egr-1 and pRb, suggesting non-
linear responses to ERK activation. For many 4i targets, the featurized
linear models underperformed both methods in R2 and test set error,
showing that a priori featurization can miss key signal aspects.

We then used CNN model parameter weights (feature impor-
tance) to identify specific timepoints influencing target expression.
Initially, we found that feature importance was overshadowed by the
initial stimulus response, likely reflecting cellular biases rather than
direct biochemical regulation of ETGs (Supplementary Fig. S3).
Therefore, we limited the model to timepoints greater than 5 hours
after treatment, with minimal decrease in CNN performance. A CNN
trained on these time points was broadly consistent with the linear
Pearson correlation analysis (Fig. 2d), but with less disperse feature
importance spread over time, especially in the case of pRb (Fig. 3d).
The CNN for Fra-1 expression is influenced by a broad time span,
peaking 12 hours prior, with minimal effect from the last two hours.
c-Fos and pc-Fos are influenced over six hours but focus on the last two
to four hours. The Egr-1 model is strongly affected by ERK activation in
the last two hours, while pERK, c-Myc, and pRb are influenced mainly in
the final hour. This approach confirms that each ETG has a distinct
sensitivity to ERK timing, with a non-linear relationship in some cases.

Regression modeling provides backward inference of ERK
dynamics

While the preceding models consider whether ERK dynamics can
predict the expression strength of ETGs, a model of the reverse rela-
tionship - i.e., inference of ERK dynamics based on the pattern of ETG
expression - would be of significant value because live-cell measure-
ments are often unavailable. To explore such models, we performed
cross-validated linear regression using the 4i ETG measurements as
predictors and FRET-measured dynamic ERK features as output vari-
ables. We restricted our analysis to our existing feature set (Fig. 2b),
which provided a convenient and intuitive means to develop such
models, but our approach would remain applicable to other featur-
izations of ERK activity dynamics. Our analysis considered both single
ETGs as predictors (Fig. 4a, b) and multiple linear regression (MLR)
models using all 4i measurements from each cell (Fig. 4a, c). The top
single ETG predictor based on variance explained (R? was Fra-1 for
Sum of ERK duration (R>=0.42). MLR models improved the predic-
tions for all features, with the Sum of duration still the best-predicted
feature (R>=0.53). In comparison, amplitude characteristics of ERK
activity, like Max or Average peak height, and features related to pul-
satile ERK behavior, such as Average duration and Frequency, were
poorly predicted by individual parameters (R?<0.15) or by
MLR (R*<0.2).

For all ERK features, we found that near-maximal R? values could
be achieved with 2 to 3 predictor ETGs (Fig. 4d, Supplementary
Fig. S4). Fra-1 and pRb were the primary contributors to aggregate-
based features (Mean, Sum of duration, Sum of peak height), and Egr-1
and pRb the main contributors to dynamics-related features (Average
derivative, Average inter-pulse interval, and Frequency; Fig. 4d).
Effectively, Fra-1, Egr-1, and pRb alone capture >90% of the predictivity
achieved by the full ETG panel in this dataset. Pairwise correlations
between ETGs indicated shared mutual information (Supplementary
Fig. S4c), explaining why relatively few are needed for optimal models.

While R? values for single-cell models were modest, strong pre-
dictions of all features were achieved when using the average ETG
values for each condition to predict average features (Fig. 4e, f); R?
values ranged from 0.72 to 0.98 across MLR models of all features. Fra-
1 and pRb were consistently strong individual predictors for all fea-
tures (R?>>0.7) except Frequency, where Egr-1 was the top predictor.
While Frequency remained the most difficult feature to predict, its
MLR R? rose from 0.08 at the single-cell level to 0.39 in the average
model. Overall, the population average models reconcile the modest
predictive power of the single-cell models and confirm the classical
view that, on average, ERK strongly determines ETG expression levels.

Notably, pERK performed poorly as a predictor of ERK activity, in
both forward (Fig. 2) and reverse (Fig. 4) modeling approaches. This
weak relationship arises partly from conditions where MEK inhibition
following EGF quickly diminishes the pERK signal (see Fig. 1). Remov-
ing these treatments improved regression models for pERK and
slightly for other 4i measurements. (Supplementary Fig. S4d). These
results indicate that pharmacological inhibition renders pERK an
unreliable predictor of ERK activity histories and that relying solely on
pERK staining can lead to misinterpretations of pathway activation. In
contrast, Fra-1 and pRb measurements remain robust to MEKi treat-
ments and better predict long-term ERK activation.

Cancer cell lines differ in the relationship between ERK dynam-
ics and ETG state

To establish the generality of the modeled relationships, we next
expanded our investigation to additional cell types, multiple mitogenic
stimuli (EGF or bovine serum), and additional candidate ETG stains. We
generated stable MCF7 (breast adenocarcinoma), HCC827, and A549
(both lung adenocarcinoma) cell lines carrying EKAR3.1. These lines
were subjected to a similar live- and fixed-cell analysis. Additional
immunofluorescence stains, including phospho-EGFR, phosho-4EBP1,
phospho-p70S6K, NF-1, DUSP1/4, EZH2, FoxOl, RSK1, GSK3p, and
E-Cadherin were added, to expand the panel to 19 signaling-related
proteins (Supplementary Figs. S5-S7, Supplementary movies 2-4). We
first noted distinct overall ERK activity patterns for each of the cell
lines. HCC827 cells featured high average ERK activity regardless of
EGF stimulation conditions, consistent with their EGFR mutant (E746-
A750 deletion) status (Fig. 5a). This activity was highly variable and
disorganized at the single-cell level (Fig. 5b). In KRAS-mutant (G12S)
A549 cells, ERK activity had a higher baseline relative to full inhibition
and was more responsive to EGF, but individual cells lacked pulsatile
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ERK activity, unlike the other cell lines (Fig. 5a, b). MCF7 cells (estrogen
receptor positive, PIK3CA mutant) showed a strong but brief response
to a high concentration of EGF and a more sustained response to lower
EGF in the population mean (Fig. 5a). In individual MCF7 cells, ERK
activity occurred in discrete pulses, similar to MCF10A cells. Overall,
this panel of cells provides a diverse set of ERK activity profiles that
widens the scope of gene regulatory behaviors to be observed.

In general, ETG correlations with ERK activity time points (r) were
lower in cancer cells than in MCF10A cells (Fig. 2d), with MCF7, in
particular, showing no correlations above 0.15 (Fig. 5c). However, a
number of features remained similar to the MCF10A dataset; Fra-1 was
among the ETGs most highly correlated with ERK activity over a wide
range of time points for HCC827 and A549 cells (Fig. 5¢). Also as in
MCF10A, for all 3 cell lines, Egr-1, and pERK were most correlated with
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Fig. 2 | ERK target gene expression moderately correlates with features of ERK
dynamics. a Single-cell heatmap for EKAR FRET measurements and corresponding
ETG intensity, each row represents one cell (Ncejis = 97,960, Nrepiicates = 3). ETG
expression colored by intensity of immunofluorescence (IF) measurements (log;o).
b Schematic of ERK dynamic features used for analysis. Frequency was calculated
by estimating the mean normalized frequency of the power spectrum of the EKAR
FRET measurement time series for each cell. ¢ Pearson correlation (r) between each
ERK feature and each cyclic IF measurement, where single- cell values were used.
d Pearson correlation (r) between single-cell ETG measurements and the EKAR
FRET measurement at each timepoint from the live-cell experiment. e Spatial
heatmap of EKAR (left) and ETG (right) measurements from a single well (control

condition). Heatmap is organized by proximity of cells to each other so that
neighboring cells in the well are plotted closer to each other in the heatmap. ETG
colormap indicates the relative log intensity of data within each column; outliers in
PERK column skew colormap towards red. (black = NA). Magenta box indicates cells
pictured in f. White arrows indicate additional cells that recently activated ERK,
which resulted in higher Egr-1 expression (right). f Images corresponding to the
cells plotted within the magenta box in e, representing an example of an association
that was observed consistently across all 3 experimental replicates. All panels
shown are registered images of the same cells, with the scale bar indicating 50 pm
shown in the Hoechst-stained image.
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ERK activity in the 1.5 hours prior to fixation. Some cell line-specific
differences were noted; pc-Fos showed elevated correlations across
the time points only in HCC827, while pp-70S6k showed a strong late
time point correlation in A549. Unlike in MCF10A, some ETGs such as
¢c-Myc and c-Fos showed very weak time series correlations with ERK
activity in all three cancer cell lines, while c-Jun showed a higher degree
of correlation only in A549. Additional features emerged as moderate
correlates of long-term ERK activation when per-condition averages
were considered, such as Fra-1, RSK1, and DUSP6 in MCF7 cells

(Supplementary Fig. S8). Interestingly, pRb showed a low correlation
with ERK activity across all conditions for all three cancer cell lines,
despite being one of the strongest correlates with ERK activity in
MCF10A cells.

Consistent with the lower correlation values observed for the
cancer cell lines, regression models of ERK activity features based on
ETG measurements were somewhat less predictive of cell-to-cell var-
iance than the corresponding models for MCF10A (Fig. 5d, Supple-
mentary Fig. S8a). While averaging values for each condition improved
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Fig. 4 | ERK target gene expression predicts history of ERK activation. a Single-
cell regression showing the coefficient of determination (R2) of linear regression
models that use ETGs to predict each ERK feature. 10-fold cross-validation was
conducted to retrieve the best test-set model. This model was then fit on the full
dataset. “All” indicates multiple regression models using all ETGs as predictors.

b Scatter plots of single-cell regression models showing line of best fit. Color
indicates relative density of the data. ¢ Scatter plot showing each cell’s predicted (x-
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predictions (Supplementary Fig. S8c), correlations remained below
those observed for MCF10A cells. Altogether, while some dynamic
features of ETG induction by ERK are conserved across the cell lines,
there is a strong general trend toward lower correlations and sig-
nificant variation among cell lines as to which features are most highly
correlated. We interpret these differences as an indication that in the
tumor cell lines examined, ERK is active but its linkage to downstream
regulation of gene expression and other processes is dysregulated.

Interestingly, we also noted that while the cell cycle marker pRb is well
correlated with the ERK-related markers c-Myc and Fra-1 in MCF10A
(Supplementary Fig. S4c), pRb is correlated strongly with c-Myc but
poorly with Fra-1 across all three cancer cell lines (Supplementary
Fig. S8d). Given that Fra-1 remains the best-correlated marker of ERK
activity in these lines, this result suggests that cell cycle regulation has
become unlinked from ERK activity in these cells. In accord with this
the percentage of pRb-positive cells, a reliable indicator of cell cycle
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Fig. 5 | Cancer cell types display deficiencies in processing ERK dynamics.

a Condition average responses for live-cell ERK biosensor (EKAR) under four
conditions. Data are presented as the mean of each condition (Nyei replicates = 3)-
b Single-cell response plots to indicated condition. The bold line indicates the
average of all cells in one well of the condition. ¢ Pearson correlation (r) between
single-cell protein measurements and the EKAR FRET measurement at each time-
point from the live-cell experiment. d Single-cell regression showing the coefficient
of determination (R?) of linear regression models that use protein levels to predict

[V

0.93 | HCC827 0.93 | A549 0.93 I MCF7 10 ng/ml EGF
_ | I | 0.1 ng/ml EGF
S 0.92 0.92 | 0.92 | == Imaging Media
L | | == 100nM MEKi
2
= 091 [ 0.91 | 0.91 |
o
@ | - |
& |
Z 09 0.9 0.9

| I |
0.89 L 0.89 L 0.89 L
0 2 4 6 8 10 12 14 Time(ry 0 2 4 6 8 10 12 14 Tmethry 0 2 4 6 8 10 12 14 Time (hr)
b HCC827 C r HCC827 d HCC827 R?
0 ng/ml EGF 0.1 ng/ml EGF 0.6 [ IGE 0.04 0.03 | 0.02 ' 0.03
ngRK"UC 0.01 0.17 | 0.09 KK
W W““‘'J\\/\;\I\/\/\N\/W]\/\f Jedun G 001 001 0
0.4 1 c-Mycne 001 0 001 0 0 001
[ [ c 4 pc-Fos™e 002 0 003 001 0
— jﬂ A e T [T S IS 0 o0 o 001 001
E] To02 {pRbne 0 0 [002 001 0.01
s [ A r © {DUSP1™e IR 001 0
= £ {p4EBP 1 [l 001 0.01
%‘ F W 8 o 1 Fra-qne 001 0 002 0.01
5 |, /\MAF\ANV\J\\I,\ R 1S 7F%X01m Ll
e e AEICIGN 001 001 O
; f,\ TM 502 RGN 0 0 001
o [ [ ol 1 EZH2me 0.02 0,03 0
w (V\M“W VN'U“”\N”\//\/\/ o ARSI 001 002 002
-0.4 1 pp-70S6k 0.02 001
0.94+ - {NF-for 003 003 002
{E-Cad 0.02 0.01 0
0.9 -0.6 b DUSPGCX” 0 0 0
. - 0 10 15 Ti [k 0.15 [ 0.17 |
0 5 10 Time (hr) 5 10 15 Time (hr) Mean Max Drv. Ht. IPl Dur.
9 r A549 A549 R?
10 ng/ml EGF 0.1 ng/ml EGF 0.6 JEgr-1ne 0 002 002 0 001 0 001 004
SPN=UCEI 002 003 002 0 [003 001 002
P | T 1 c-Junme 0 o 001 001
- M 0.4 4 c-Mycme 0.02 0 0 002 0
[ [ c 1 pc-Fosme 0.01 1 0.02 0 002 001 002
~ |~ T e S {c-Fosme 0 0 0 0
S © 0.2 1 pRb™e 0 002 X I 0 001 001
S [ [ [ 1DUSPqme 0 1002 001 001 001
- I ot [ N e P | pAEBP 1 0.01 00
g O 0 1 Fra-1ne 0. 0.01 0.01
2 T r c {FoxO1me 003 001 001 001
® T e d $ {RSK1me 0 001 001 0
v ™ £02 | GSKabme 002 002
¥ [ r 5] {EZH2me
w W{\‘—MAN\N fond A ] o {pEGFR"
N 1 pp-70S6k™
0.94 - 04 4 NF-1ot X X 0 001
N~ {E-Cadt 003" 002 001
- - -06 1DUSPE o 0 0 0
0.89 0 10 15 T All | 0.08 | 0.09 |
0 5 10 Time(r) 5 10 15 Time (hr) I
MCF7 r MCF7 MCF7 R?
10 ng/ml EGF 0.1 ng/ml EGF 0.6 E 1 Egr-1ne
AN o
1 c-Jun™e
[19% R VY WY f 04 1.
[ [ W s 4 pc-Fos™e
—_ 2 1c-Fos™e
3 L AU F0.2 1 pREme
ST [ Flwes | ol
£ 1p o
%‘ \/WMW " 8 0] 1 Fra-1ne
s [ B c 1FoxO1me
8 bt e ”MMAJ\/M 8 138K
v Pt s 502 1GSK3b™e
x [ B o} 1EZH2Me
S O TP RN | B e |pECERS
fi N 4 pp-70S6k™
0.94F" - 04 1R en
{E-Cadt
0.89 N~ - 06 1 DUSPGCX |
-9 ) 0 5 10 15 Ti
0 5 10 Tmeer) 5 10 15 Time (hr) Mean Max Drv. Ht. IPI Fra.
e Estimated Percent of Cycling Cells
100 *xk *

2 go [ Imaging Media

2 I MEKi

§ 60 =3 10 ng/ml EGF

é 40 [ 10% Serum

20

ES

0

HCC827 A549

MCF10A

MCF7

each ERK feature. 10-fold cross-validation was conducted to retrieve the best test-
set model. This model was then fit on the full dataset. “All” indicates multiple
regression models using all proteins as predictors. e Percentage of cells classified
as pRb-positive or pRb-negative; intensity thresholds identified individually for
each cell line. Independent t-tests (two-sided) were conducted by comparing each
condition to the Imaging Medium control. neepjicates = 3. p-vals (left to right):
0.000527, 0.000002, 0.033124, 0.020208, 0.001571. Error bars: standard devia-
tion; a.u., arbitrary units.

Nature Communications | (2025)16:4721


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58348-7

progression, was insensitive to MEK inhibition in all three cancer cell
lines (Fig. 5e). Further, using UMAPs to visualize ETG expression across
cell lines, we observed that cycling cells (pRb-positive) consistently
clustered together (Supplementary Figs. S2f, S5e, S6e, S7e). Among the
ETGs, c-Myc was uniquely associated with cycling cells, while other
ETGs were variably expressed in both cycling and non-cycling popu-
lations. The retained correlation of pRb with c-Myc may reflect the role
of c-Myc in translation regulation, as protein synthesis rate is a key
factor regulating cell cycle entry independently of ERK activity’.

Classification models uncover prototypical patterns of ERK
signaling with distinct gene expression profiles

We next explored how the combined live-cell/immunofluorescence
datasets could be used to augment immunofluorescence-only data-
sets, by developing a method to provide concise visual annotations of
inferred ERK activity history for immunofluorescence data. We first
used k-means clustering to group cellular ERK activity time series into
similar response classes, or prototypes (Fig. 6a). To facilitate intuitive
annotations, we chose five clusters, which represented moderate
activity with recent inactivation (cluster 1), consistently low activity
(cluster 2), recent activation (cluster 3), mid-term activation (cluster 4),
and high long-term activation (cluster 5). Analysis of the ETG expres-
sion levels in each cluster was consistent with our previous statistical
models (Fig. 6b). Most ETG stains were highly expressed in clusters 3
and 5, and to alesser extent in cluster 1, with varying enrichment across
stains, offering potential for class distinction. Clustering in cancer cell
lines revealed differential expression in pERK, pp-70SK6, and other
ETGs, which could provide a basis for discriminating similar clusters in
these lines (Supplementary Fig. S9).

We next trained ensemble-based classifiers to predict these
prototypes of ERK signaling history using ETG staining levels
(Fig. 6¢, d). The overall prediction accuracy of our model was ~60%
(compared to 20% for random selection), while individual class
predictions varied in accuracy. Long-term high activity class predic-
tions were the most accurate (83%), and moderate activation classi-
fications were the least accurate (33%). The classifier's residual
confusion reflects poor separation of some classes due to wide intra-
class variation in ERK activity among individual cells (Fig. 6¢). In this
classification, pRb and pc-Fos were found to be the most important
predictors, followed by Fra-1 and cMyc; Egr-1 was of relatively low
importance (Fig. 6d). This result indicates that while pc-Fos may not
explain a high amount of variance in the ERK history, it carries par-
ticularly useful information for distinguishing among the five classes
identified here.

Because our other models performed more effectively on
averages of multiple cells (Fig. 4e), we asked whether using ETG
measurements from groups of adjacent cells could improve the
prediction of ERK histories. We grouped cells within each image into
hexagonal regions (radius = 50 um; each containing from -5 to -30
cells) and calculated the average ERK activity time course and ETG
expression values for each region. We then repeated the generation
of clusters and training of classification models. To carry this
approach to its practical limit, we also performed the same analysis
on whole images (500-1000 cells). We then compared models gen-
erated with each approach, across all four cell lines (Fig. 6e). For all
cell lines, the regional model improved model accuracy, in some
cases dramatically (e.g. from 59% to 79% for MCF10A or 31% to 56%
for MCF7 cells). Whole-image models, however, did not consistently
outperform regional models, likely due to training on only a small
number of samples, when each image only provides one data point.
Finally, we overlaid markers of the spatiotemporal histories inferred
by the single-cell or regional models on images from the immuno-
fluorescence dataset (Fig. 6f). These images demonstrate both var-
iegated spatial distribution of ERK of history and inhibitor-driven
shifts in predominant ERK profiles.

Dynamical systems modeling of ERK-driven gene expression
To investigate the theoretical limits of predicting ERK dynamics from
ETG levels, we extended an ordinary differential equation (ODE) model
representing the regulation of ETGs"?’ (Fig. 7a). For a given ERK
activity time series, the model simulates the mRNA and protein levels
of a hypothetical ERK-responsive gene (sim-ETG). We constructed
1000 hypothetical sim-ETGs by randomly assigning each one with
different values for 6 critical parameters: mRNA degradation rate,
protein degradation rate, phosphorylated protein degradation rate,
protein dephosphorylation rate, negative feedback half-max con-
centration, and fractional expression at baseline (Fig. 7c, Supplemen-
tary Table 2). These 1000 configurations survey the parameter space,
allowing us to identify sim-ETGs that capture different aspects of ERK
signaling. Using 10,000 randomly selected live-cell ERK activity mea-
surements from our experimental data, we simulated responses of all
1000 sim-ETGs for each cell (Fig. 7b, Supplementary Fig. S10a). The
end point sim-ETG protein values (representing a fixed-cell 4i mea-
surement of the hypothetical protein) were examined with single
variable regression modeling to characterize each sim-ETG’s capacity
to predict ERK dynamics features. We found that 49% of sim-ETGs
could predict average ERK activity with an R* above 0.5, and more than
1% were excellent predictors (R*>0.8) (Fig. 7d, Supplementary
Fig. S10b). However, only 12% of sim-ETGs could predict maximum
activation or average pulse height with an R? above 0.5, with a max-
imum R? around 0.6 (Supplementary Fig. S10c¢). Models for predicting
dynamic ERK features like Frequency or Average derivative were
overall worse than integrative features like the mean or sum of dura-
tion, reflecting that sim-ETGs under this model are variations on an
integrator of ERK activity (Supplementary Fig. S10c).

To visualize simulated gene expression responses, we plotted a
single cell's ERK signal along with the response of the top five pre-
dictors of the mean (Fig. 6f), which included both genes activated by
and inhibited by ERK. While our experimental ETG measurements were
selected based on known positive responders to ERK, 20% of sim-ETGs
were negatively regulated by ERK (Supplementary Fig. S10b); there-
fore, experimental prediction of ERK activity would likely be improved
by including genes that are inhibited by ERK*’. We then analyzed which
parameters most influence how well an individual sim-ETG predicts
mean ERK activity by examining the weights from an MLR model of
sim-ETGs (Supplementary Fig. S10d,e). We found that low mRNA and
phosphorylated protein degradation rates were generally associated
with accurate recording of average ERK activity, which is consistent
with the measured parameter values and behavior of Fra-1°,

We next used sim-ETGs to examine the distinction between genes
that reflect long-term history (e.g. Fra-1) and those responsive to
recent ERK activity (e.g. Egr-1and c-Myc). We calculated the correlation
between the ERK activity at each timepoint and end-point protein
expression (analogous to the experimental data in Fig. 2e). As expec-
ted, genes predicting mean ERK activity are correlated with ERK
activity over a broad time span, behaving like Fra-1. Genes are less
effective at predicting mean correlate with recent activation, similar to
Egr-1 or c-Myc (Fig. 7e). Notably, No sim-ETG in this model specifically
predicted intermediate activation timescales (5-10 hours before fixa-
tion), indicating that such behaviors are rare in the system topology we
studied.

Finally, we investigated how increasing the number of ETG mea-
surements affects the ability of MLR models to predict ERK activity
features (Fig. 7g). Overall, the predictability of ERK activity features
showed similarities to our experimental findings. Some features
(Mean, Sum of duration) were well predicted with only a few sim-ETGs,
while others (Average inter-peak interval, Average duration) were
poorly predicted regardless of the number of sim-ETGs. However, in
some cases (Average derivative, Frequency), high predictability was
feasible, but only with a larger set of 5 - 20 sim-ETGs (Fig. 7g inset).
These results were not obtained through overfitting, as the test set
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Fig. 6 | Inferring spatiotemporal ERK patterns using classification models.

a Average ERK activity in each cluster identified by k-means clustering of EKAR time
series data in single cells. b Box plot showing median, 25th/75th quartiles, and range
of ETG intensity in each cluster. One-way ANOVA test was conducted to compare
the means of each group to each other. nepjicates = 3. *pval < 0.05, compared to
indicated group(s). p-values indicated in Sup. Table 4. ¢ AdaBoostM2 algorithm was
trained to predict the cluster ID of each cell using its ETG measurements as pre-
dictors. The model with the best test-set performance, using 10-fold cross-valida-
tion, is shown. d Predictor importance estimates of each ETG in the model shown in
c. e Comparison of model performance as a function of region size. Red: Single-cell
models (as shown in a-d) for each cell line. Blue: Models for hexagonal regions
(radius = 50 pm) of cells, where clustering and AdaBoostM2 models were

performed on average ERK signaling and ETG expression values for each region.
Green: Models generated using the entire image (702 pm by 785 um), using a
similar training procedure, except a standard decision tree was used due to the low
sample size (Nsamples: MCF10Az4,, HCC8277;, A549;,, MCF74g). Error bars: standard
dev. of test-set accuracy across 10-fold cross-validation. Center of error bar: mean.
MCF10A models were trained with 8 predictors; cancer cell models were trained
with 19 predictors. f MCF10A images (Hoechst) overlayed with inferred signaling
histories using single-cell (top) or regional (bottom) models. Left: Cells treated with
EGF for 16 hours. Right: Cells treated with EGF for 12 hours, then treated with

100 nM MEK:i for 4 hours. Some cells remain unlabeled due to incomplete predictor
data. Legend: Bold lines indicate mean ERK activity in observed clusters (as in
Fig. 6a); shaded regions indicate 25th and 75th percentiles.
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error decreased with more sim-ETGs (Fig. S10f). Altogether, these
simulations suggest that predictions of some of the features in our
experimental models (e.g. Mean, Max, Average peak height; see
Fig. 4a), underperform their theoretical counterparts and could be
substantially improved with just one or two additional ETG antibodies
well suited for those parameters. Other features such as Average peak
duration will likely not improve greatly even with additional stains.
Average derivative and Frequency predictions could potentially be
improved, albeit with the considerable investment of identifying at
least several additional antibodies suitable for those features.

Discussion

Here, we report unique high-content datasets that make it possible to
assess how ERK activity relates to its downstream effectors at the
single-cell level. Our approach, combining live imaging followed by
multiplexed immunofluorescence and quantitative models, estab-
lishes proof of principle that single-cell ERK activity measurements and
endpoint ETG staining contain mutual information and can be mod-
eled bidirectionally, allowing the inference of key parameters in each
domain from observations of the other. Our data show that the rela-
tionship between activity dynamics and individual cell expression
states is significant, despite the inherent noisiness of signal transduc-
tion pathways at the single-cell level®.

Previous modeling efforts in this area have focused on single
ETGs"", on multiple genes at the mRNA level®”, or on the population
average of ETG proteins®. Our analysis offers the advantage of exam-
ining multiple ETGs while retaining single-cell relationships, enabling
models that account for both cell-to-cell variation and differences
between ETGs. In this type of dataset, cell-to-cell variation becomes an
asset rather than a limitation, where the thousands of individual cells
represent semi-independent trials that can be leveraged to establish
complex relationships, even when a relatively small number (-20) of
external conditions are provided. Our results quantitatively validate
the existing but imprecise concept that certain genes such as c-Fos or
Egr-1 represent markers of transient ERK activity, whereas others such
as Fra-1 are markers of sustained activity. Our data also place these
markers within the context of additional genes such as c-Myc, enabling
a more comprehensive model of how ETGs collectively compute
responses to dynamic ERK activity.

The approach of combining multiplexed live- and fixed-cell ana-
lysis on the same cells is finding increasing utility and has been used to
interrogate details of CDK-mediated cell cycle regulation®*, SMAD-
regulated stem cell differentiation®, and the dependence of calcium
signaling on gene expression state®. The modeling approaches we
develop here provide new capabilities for such datasets. We show that
combining fixed-cell measurements of these outputs can reliably
identify ERK signaling activity history in different cell lines, despite the
complication that these relationships vary somewhat between
cell lines.

Our models indicate that single-cell ETG measurements provide
reliable information about two main types of ERK behavior: long-term
history and short-term activation. However, the unexplained variance
in ERK activity in our single-cell models raises the question of which
other cellular parameters could improve ERK history predictions. Our
analysis of simulated ETGs demonstrates that additional ETG mea-
surements could more finely resolve signaling behaviors, especially for
features such as Frequency. These targets could be identified by
screening transcriptomic or proteomic datasets for their expression
responses to ERK". Additional information could also be obtained by
combining antibody measurements with multiplexed single-cell tran-
script measurements, such as MERFISH?. Our work also shows that
using expression data from groups of cells, rather than individual cells,
provides improved prediction of the average ERK activity for the
group. Grouping cells in this way makes sense because ERK activity is
often important for collective cell behaviors, such as generating

patterns of collective migration® or regulating cell death and survival
in proportion to cell density®. Finally, orthogonal markers of internal
cell state provide contextual information that improves signaling
prediction models®. It is feasible that such contextual markers,
including protein translation rates, organelle morphology, chromatin
state, or cell type identity, could improve predictions.

Several aspects of our analysis suggest that the quantitative rela-
tionship between pathway activity and gene expression evolves and
may be under selection for certain characteristics. The ETGs that we
measured in this study appear to be more biased toward control by the
duration of ERK activity (as opposed to amplitude, Fig. 4), than would
be expected per the ODE model and simulations (Fig. 7). Such an effect
could arise from several factors, including saturation of a particular
gene’s response to ERK. A key concern is that our ERK biosensor may
itself become saturated and fail to capture high ERK activation levels,
but we have directly accounted for this measurement issue by cali-
brating the reporter to provide a linear readout of ERK substrate
phosphorylation®. A remaining possibility is that the parameters of the
ETG response have been selected for sensitivity to duration rather than
to amplitude during evolution, which would be consistent with the
finding that the relative timing of biochemical events is an important
mode in gene regulation*’. Our data from cancer cells, in which ERK-
ETG response functions appear significantly weaker than in non-tumor
MCF10A cells, further imply the malleability of these quantitative
parameters. It is unclear what drives this change within the micro-
evolutionary setting of a tumor, as it appears to occur similarly across
the tumor cells examined. The loss of signaling regulation appears to
be independent of the driver mutation and may be a late development
in tumorigenesis, consistent with models that show initial dependence
on driver mutations, followed by dysregulated signaling after various
checkpoints are lost*’. Notably, however, MCF7 cells, which contain a
PIK3CA mutation, show the loss of correlation more strongly than lines
driven by ERK pathway mutations (A549, HCC827). More work is
needed to understand these differences and assess how they are
influenced by selective pressures.

In principle, models such as the ones generated here (Fig. 6) could
be used to determine important details of ERK signaling dynamics
within fixed tissue samples in a clinical setting. For example, the ability
to infer the long-term patterns of ERK activity in samples from patients
treated with RAS, MEK, EGFR, or other targeted pathway inhibitors
could provide a more reliable indication of the effectiveness of long-
term ERK activity suppression than current markers, helping to reveal
areas of drug resistance. It is also possible that such models could
assist in diagnosing the dominant mechanisms of cell signaling within a
tumor (or within sub-regions of a tumor), especially in cases where
analysis of genetic alterations is ambiguous (e.g., when variants of
unknown significance are present). By analogy, single-point measure-
ments of hemoglobin AIC provide a broadly reliable indication of a
patient’s time-averaged blood sugar that is useful in the clinical man-
agement of diabetes.

Our analysis of cancer cell lines adds needed depth to the ques-
tion of how ERK signaling differs between normal and tumor cells. We
find several key parallels between the cell lines examined here and
previous biosensor data. The sustained ERK activity found in RAS
mutant A549 cells is similar to the signaling phenotypes observed
when expressing oncogenic RAS or RAF in non-tumor epithelial cell
lines" or engineered mouse embryonic fibroblasts*. Similarly, the
highly sporadic pattern of ERK activity in EGFR mutant HCC827 cells is
similar to kinetics found in models of other EGFR- or receptor-driven
model systems?’. These parallels strengthen the case that ERK
kinetics cluster into similar forms according to the activating mutation
in the pathway. Furthermore, we found weaker ERK-ETG relationships,
consistent with the degradation of information transmission observed
in tumor cells?’. While this loss of correlation poses some challenges
for using the same models across different cell types, our data
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nonetheless support the utility of multiplexed immunofluorescence
datasets for capturing cell signaling states via histological methods.
For example, Fra-1 is consistently correlated with long-term ERK
activity, while Egr-1 and pERK correlate on the short term, across all
models tested. Combining these stains could potentially distinguish
cells with sustained ERK activity (e.g., RAS mutants*) or cells with
highly stochastic ERK activity (e.g., EGFR-driven cancer cells'*°) from
cells in which ERK is activated in an organized pattern (e.g., non-tumor
tissue***¢).

Notably, while all three cancer cell lines examined lack the pRb-
Fra-1 correlation seen in non-tumor cells, they retain the pRb-c-Myc
correlation. (Fig. S8d). Such changes suggest that c-Myc remains more
tightly coupled to proliferation than other ETGs and imply that tar-
getable tumor-specific pathway dependencies can be detected in fixed
histological samples. The disruption of c-Jun, Egr-1, and Cyclin-D1
regulation in cells with B-Raf mutations suggests additional such sig-
natures that could be detected”*. Furthermore, the coherence
between ETGs within the same cell, available in our datasets but not
explicitly explored here, could provide an indicator of transformed
signaling activity. Thus, our study supports the general feasibility of
inferring functionally significant features of activity dynamics from
fixed cell immunofluorescence. A significantly broader training set
across tumor samples and primary cells will be needed but would be
conceptually straightforward given the analysis framework developed
here. Further incorporation of multiplexed signatures of other dyna-
mically regulated pathways such as the cell cycle*® or metabolic and
stress response signaling could also support both generalized and
patient-specific models.

Signaling by receptor tyrosine kinase pathways is inherently a
multi-input, multi-output system, and here we explore only a limited
number of ligand inputs and a restricted set of signals and downstream
targets. While serum contains a mixture of ligands, a wider diversity of
stimuli needs to be considered to span the varying dynamics that can
be driven by receptors including FGFRs, IGFRs, PDGFRs, and TrkA/
B**44° 1t will also be important to consider parallel pathways such as
PI3K/AKT/mTOR and JAK/STAT and their target genes to fully char-
acterize the regulation of cell state by these receptors, as these path-
ways work in coordination to determine cellular phenotypes®®.
Another key caveat in our datasets is that EKAR3.1, like many ERK
biosensors, is partially sensitive to cyclin-dependent kinases (CDKs)
during mitosis*”. Although mitotic events are rarer than ERK activity
changes, some variation in EKAR measurements likely arises from CDK
activity, and thus some of the correlation between EKAR and pRb is
likely attributable to this cross-specificity. This point serves as a
reminder that co-variance or cross-talk among measurements will bias
these types of machine learning analyses, and should be carefully
evaluated. Finally, while datasets on cell lines are sufficient to generate
an initial framework, future models will need to be developed by col-
lecting data from primary tissue, patient-derived organoids, or other
in vivo systems, to extend these models toward physiological
relevance.

Methods

See Supplementary Table 3 for a list of reagents, materials, and soft-
ware used in the study.

Reporter cell line generation

The EKAR3.1 construct was produced from the EKAR3 plasmid by
excising the BamHI-Mfel fragment and replacing it with the annealed
oligos 5- gatccgctccagatgtecctagaactccagtggataaagcaaagetgteattccaa
tttccge and 5'- aattgcggaaattggaatgacagctttgcetttatccactggagttctaggg
acatctggagcg. This modification introduces an altered substrate
sequence with an alanine added between a serine-proline pair near the
ERK targeting region, removing a potential secondary phosphoryla-
tion site that would be detrimental to the linearity of the reporter

signal relative to ERK activity. Stable cell lines were created by elec-
troporating MCF10A (clone 5e), MCF7, HCC827, or A549 cells with the
EKAR3.1 construct on the piggyBAC transposase system’. Cells were
selected with neomycin (250 pg/ml 2 weeks) until they were resistant
to selection (-2 weeks).

Cell culture and media

MCFI0A cells (clone 5e)** were maintained in DMEM/
F12 supplemented with 5% horse serum, 20 ng/ml EGF, 10 pg/ml
Insulin, 500 ng/ml hydrocortisone, and 100 ng/ml cholera toxin.
HCC827 (ATCC, CRL-2868) and A549 (ATCC, CCL-185) cells were
maintained in RPMI supplemented with 10% Fetal Bovine Serum (FBS)
and 2.5 mM L-Glutamine. MCF7 (ATCC, HTB-22) cells were maintained
in DMEM supplemented with 10% FBS. 10 cm plates were passaged
approximately every four days and re-plated at a 1:10 dilution. Imaging
experiments were conducted in custom DMEM/F12 lacking phenol red,
riboflavin, and folate. This “imaging media” was supplemented with
500 ng/ml hydrocortisone, 17.5mM glucose, 1 mM sodium pyruvate,
2 mM glutamine, 50 pg/ml penicillin/streptomycin. Before plating cells
for imaging experiments, 5 pl of Rat tail collagen was added to the
middle of each well of a glass bottom 96-well plate (Cellvis) and
incubated for 45 mins at 37 °C. Cells were trypsinized, plated at 6000
cells per well, and then incubated at 37 °C for 45-60 mins. Growth
media was then added, and the plate was incubated overnight. The
next day, immediately before the imaging experiment, the plate was
washed 3x with imaging media, and the media was changed to imaging
media. The experiment began one hour after this media change. In
experiments containing cancer cells, HCC827, A549, and MCF7 cells
were plated in tandem, with each cell line plated on 1/3" of the avail-
able wells on the plate.

Live cell microscopy and data acquisition

Prepared 96-well plates were imaged on a Nikon Ti-E inverted micro-
scope with a stage-top incubator (37 °C, 5% CO,). Coordinates within
each well of the 96-well plate were imaged at 6 minute increments
which were automated by the Nikon Elements AR software. Images
were captured using an Andor Zyla 5.5 scMOS camera and a 20x/0.75
NA objective. Chroma #49001 (ET-CFP) and #49003 (ET-YFP) excita-
tion/emission filter cubes were used for mTurquoise2 and YPet mea-
surements, respectively. Further details are described in ref. 53.
Coordinates of each acquisition area were saved for future imaging of
immunostaining experiments.

Cyclic immunofluorescence

Immediately after the final acquisition of the live cell experiment, cells
were fixed in freshly prepared 12% paraformaldehyde for 10 min. Cells
were then permeabilized with fresh, cold methanol for 10 mins (2 times
total). Cells were then ready for iterative rounds of staining (4i) using a
protocol adapted from ref. 31. Briefly, the iterative protocol involves
rounds of elution, blocking, primary staining, secondary staining,
Hoechst staining, and finally image acquisition in a specific imaging
buffer. Recipes for buffers are as follows: Elution buffer (0.5 M Glycine,
3 M Urea, 3M Guanidinium Chloride, 70 mM TCEP), Blocking buffer
(200 mM NH4CI, 300 mM Maleimide, 2% BSA in PBS), primary/sec-
ondary staining buffer 200 mM NH,CI, 2% BSA in PBS), Hoechst-33342
stain (1:10,000 in PBS), and 4i imaging buffer (700 mM N-Acetyl
Cysteine). Antibodies were incubated for 24 to 48 hours from varying
concentrations recommended by the manufacturer. For the MCF10A-
only experiments, the protocol was validated during the first replicate
experiment to ensure that antibodies were eluted, data is shown in
Fig. S2b-d. For the second and third replicate experiments, a visual
inspection was completed prior to each round of staining to ensure
proper antibody elution. In the cancer cell experiments with additional
antibody stains, a visual inspection was conducted between rounds to
ensure proper elution.
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Phos-tag western blotting

MCF10A 5e cells were plated on 6-well dishes the day before lysing.
Cells were treated with EGF, PD0235901, or imaging media and lysed at
the indicated time points. This procedure involved rinsing each well
twice with ice-cold PBS, cell scraping, and lysis with RIPA buffer
(Sigma) witha Halt protease inhibitor cocktail and 1 pM DTT. Cells were
lysed at 80-90% confluency with 50 pl of lysis buffer per well. 2 pl of
each sample was then loaded in pre-cast phos-tag gels (Wako-Chem)
and ran at 100V for 3 hours. The gel was chelated two times with
transfer buffer and 10 mM EDTA for 15 minutes each and rinsed once
more with just transfer buffer. Proteins were transferred overnight at
50 V. The membrane was blocked with Li-COR Odyssey blocking buffer
and blotted with anti-GFP antibody (24 hr incubation). The membrane
was then blotted with Li-COR 800 anti-Mouse secondary antibody and
imaged using a fluorescent scanner (Sapphire-Azure Biosystems).
Intensities of the resulting phosphorylated EKAR3.1 reporter and total
EKAR3.1 bands were measured in Image).

Image processing

Imaging data were saved as .nd2 files and accessed using the Bio-
Formats toolbox for MATLAB (available from www.openmicroscopy.
org/bio-formats), and processed with a custom MATLAB cell segmen-
tation pipeline”. The procedure identified each cell’s nucleus using
either EKAR3.1 (live-cell) or Hoechst 33342 (IF) as a nuclear marker. The
cytoplasm was defined as a ring around each cell’s nucleus. Background
signal intensity was measured by imaging a well with no cells, but
containing live-cell imaging media or 4i imaging buffer. Cell position
tracking and linking were performed using uTrack 2.0%. The resulting
single-cell data was filtered to remove cells with less than 15 hours of
tracking data. FRET measurements of ERK activity for each cell were
calculated with 1 - ((CFP/YFP) / Rp), where CFP and YFP are the inten-
sities of Cyan and YFP channels measured in each cell, respectively. R, is
the ratio of total power collected of CFP over YFP where the power of
each channel is the integral of the spectral product of excitation
intensity, filter transmittances, exposure time, fluorophore absorption
and emission properties, and quantum efficiency of the camera
(detailed in appendix of ref. 41). To link live-cell and fixed-cell data
together, X-Y coordinates of cells in each well were registered to align
cells across measurements. For wells with troublesome alignment
results, image registration was conducted to calculate the shift in
orientation between the images.

Batch effect correction

To correct for batch effects in the immunofluorescence measurements
across three replicates of MCF10A experiments, we scaled measure-
ments of each target to optimally align median values across identical
treatments. As many measurement distributions were sufficiently
long-tailed to bias even median values, the normalization was per-
formed in logspace. For each 4i target, we calculated the median value
for each treatment and matched identical treatments across replicates.
These treatments included all EGF doses at timepoint 30, MEKi at
timepoint 30, and imaging media control. We then took the log;o of
these values and fit a linear model (Eq. 1):

IntenSityreplicate3 =ﬁ1 (IntenSityrepIicaten> +ﬁ0 (1)

Where Intensityrepiicaren tepresents log;o median values for either
replicate 1 or replicate 2, Intensity epiicates represents the corresponding
log;o median values for the third experimental replicate, and 8, and ;
are the scaling factors. These scaling factors were then used to correct
all single-cell values for replicates 1 and 2. The corrected values were
then returned to the linear scale by exponentiating. The normalization
resulted in effective batch correction across all conditions. (Fig. S2c, d).
A similar method was conducted in cancer cell experiments; however,
since the three cell lines were plated in tandem and our goals was to

preserve cell-line differences, we computed normalization samples as
the median over all cell lines for each condition in each replicate. As
such, all cell lines in each replicate were scaled with the identical scaling
factor(f3;) per antibody. A visualization of these normalization results
for each cell line is shown in Fig. S5d, Sé6d, S7d. Nuclear and Cytosolic
measurements for each antibody stain were normalized individually.

EKAR3.1 Calibration

FRET measurements from MCF10A cells were calibrated to deliver a
quantitative linear readout of ERK activity, as described previously*;
refer to the Appendix of this past study for a detailed derivation of this
method. Briefly, we used Phos-Tag immunoblotting to quantify the
fraction of the EKAR3.1 reporter that is phosphorylated in 3 con-
centrations of EGF (15mins), phosphorylation inhibited (MEKi for
2 hours), and control conditions (Supplementary Figs. S1b and S11).
These values were then linearly fit against the average EKAR3.1 signal
for the same conditions (Eq. 2).

EKAR®
2
ar) EKART @

EKAR" _
KA K

Here, EKAR/EKAR" represents the phos-tag ratio between phos-
phorylated and total reporter. The EKAR3.1 signal is pre-processed to
estimate the fraction of EKAR molecules in an “associated” con-
formation (f, or EKARY/EKAR"),i.e..f,= % =1_la 2 /Rp, where Icgp
and /,p refer to the measured intensity of the cyan (donor) and yellow
(acceptor) channels, respectively, and R, refers to the corresponding
ratio of imaging power in each of these channels. K, and K prepresent
the fractions of EKAR in the “associated” state when completely
unphosphorylated and when completely phosphorylated, respec-
tively. Single-cell FRET measurements (i.e. f4) were then used to esti-
mate the concentration ratio of active ERK to the competing
phosphatase(s) (Eq. 3). This ratio is the quantitative measure of ERK
activity in a cell (ERK"/PPASE").

ERK" _fa— Kuw

= 3)
PPASE®  Kup— fa

Data analysis and regression modeling

Cells with less than 15 hours of data were removed prior to analysis,
and cells out of the expected range of the FRET measurements were
removed. FRET measurements were then adjusted using the reporter
calibration model created from the phos-tag experiments. Thus, sta-
tistical models were created on cells that had complete EKAR and ETG
measurements. Models were created using 10-fold cross-validation.
The data were randomly assigned to 10 groups, with the 10" group
held out of the model fitting procedure. The model was then tested
against the 10™ group (test-set) to collect the test error (residual mean
squared error, RMSE). This procedure is repeated for a total of 10 times
to collect RMSE values from 10 test sets. The model that produced the
lower test-set error was then refitted to the entire dataset to calculate
the reported RMSE values.

Pulse analysis and peak detection

The findpeaks function in MATLAB was used to find local maxima
(peaks) for each cell’s ERK activity. Pulse features were then calculated
based on the identified peaks. Frequency was calculated using
the meanfreq function in MATLAB.This function estimates the mean
normalized frequency of the power spectrum of each ERK
activity trace.

Statistical tests
For single-cell immunofluorescence data, each statistical comparison
was made by t-test with unequal variances, and false discovery rate was
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controlled within each dataset via the Benjamini and Hochberg Step-
Up procedure (a=0.05). The variance for each experiment was
determined from single-cell samples and added to the variance across
experiments. This corresponds to a linear error model: & = €cei + Eexp,
where the error (from the mean) of an individual cell ; equals the sum
of the errors arising from cell-to-cell variation €. and from experi-
ment variation €exp.

Spatial heatmap generation

Each cell’s time-averaged coordinates were used to calculate the
average Euclidean distance between each pair of cells within each well
of the 96-well plate. Hierarchical clustering was performed on this
distance matrix. The optimal leaf order was calculated by maximizing
the sum of the similarity between adjacent leaves by flipping tree
branches and without dividing the clusters. This order was then used
to sort and display the live-cell and fixed-cell data.

ETG prediction models and evaluation

CNN models consisted of 1) a feature learning module and 2) a pre-
diction module. The feature learning module consists of 2 convolu-
tional layers (16 channels and kernel size of 16) followed by an FC layer
with a size 0f 192 to match the initial input size. The prediction module
consists of 2 FC layers (each size of 64 with relu activations) followed
by a final linear FC layer that outputs a single ETG prediction. We
performed hyperparameter variation for the learning rate
([0.01,0.001,0.0001]) and L2-regularization ([0.1,0.01,0.001]) to com-
pare the average test prediction performance (MSE). While the per-
formance was robust across parameters, we chose a learning rate of
0.001 and L2-regularization of 0.01, which had the best overall per-
formance. We trained one model per ETG for 100 epochs using the
Adam optimizer with a learning rate of 0.001 and L2 regularization of
0.001. For the linear model, linear regression was implemented using
the sklearn python package with default parameters. The inputs were
either the raw or featurized ERK activity for the linear model or the
featurized linear model, respectively. Evaluation of the model was
performed by holding out 20% of the total data as a test set per fold,
then splitting the remaining data between the training set, consisting
of 64% of the total data, and the validation set consisting of 16% of total
data,.with each fold having roughly the same representation from each
well of origin and treatment.

To identify significant time points, we used feature attribution,
specifically Integrated Gradient™, to identify input time points that the
model considers significant tothe prediction of ETG. Integrated Gra-
dient was implemented using the Python package Captum®. Feature
attribution outputs score from each input time point to ETG per cell,
which was averaged across cells for summarized visualization in the
form of a heatmap.

To test the importance of the timepoints after the initial stimu-
lation, we trained new CNN models to only use timepoints 2 hours after
stimulation for ETG prediction. This model was trained on 14 hours of
ERK activity data. The model and training setup used is identical to the
setup used for the model with all the time points (19 hours of ERK
activity data).

While recurrent neural networks (RNNs) or sequence-based
models are typically better suited for time series data, they are
more difficult to train, especially for noisy continuous data. For our
simple regression task with the additional goal of identifying the
most informative time points, CNN was sufficient. Additionally,
RNNs would have a harder time modeling spikes from stimulus as it
cannot consider absolute time/position. While more advanced
sequenced models such as attention-based models could have been
used, the goal here was not necessarily to achieve the best predic-
tion possible but to identify significant time points. Therefore, we
chose to use CNN for our analysis with MSE and R? metrics for
evaluation.

Temporal ERK Signaling Classifier

EKAR time series data were clustered into five groups using k-means
clustering. Each group was assigned its class label. Because the
k-means algorithm clusters all cells into a respective class, individual
cells whose signal did not correlate with the mean of the class were
removed. To do so, we calculated the Pearson correlation (r)
between each cell and the mean of its class and enforced a minimum
threshold of r=0.7. Next, an ensemble learning method (AdaBoost
M2 with 500 learning cycles) was fit using antibody staining mea-
surements to predict the class labels of each cell. This was done using
MATLAB's fitcensemble function. 10-fold cross-validation was used
and the model with the lowest test set error was displayed. Predictor
Importance was estimated by summing the estimates over all
weak learners in the ensemble-MATLAB predictorlmportance(ens)
function. Regional and Whole-well models were trained
similarly, except that the data was first grouped into regional
neighborhoods or well averages. For whole-well models (Fig. 6e,
green bars), a standard decision tree classifier was used due to the
small sample size. MCF10A classification models used nuclear pERK,
Fra-1, c-Myc, c-Jun, (p)c-Fos, Egr-1, and pRb as predictors, whereas
cancer cell lines additionally used DUSP1™¢, DUSP6%", p4EBP1 ",
FoxO1 ™¢, RSK1 ™, GSK3p™¢, EZH2 ™, pEGFR®", pp70S6k™, NF-1%,
and E-Cadherin®".

Ordinary Differential Equation Modeling

The ODE model was adapted from Davies et al. *°. The model of ERK-
dependent gene expression (Eqgs. 4-7) was constructed from a mass
action approximation. This process is modeled in four steps (Eq. 4)
phosphorylation of a transcription factor by ERK (TF), (Eq. 5) tran-
scription of target mRNA (mRNA), (Eq. 6) translation of target protein
(P), and (Eq. 7) potential stabilization of target protein by ERK-
dependent phosphorylation (P*). A regulatory term is included in the
transcription process allowing negative feedback from the target
protein onto its own production. The model is formulated as a
delay differential equation to account for the effective lag times of
transcription and translation without explicitly addressing the com-
plex processes involved. For the purpose of simulating a set of specific
hypothetical ETGs, we selected a reduced parameter space from
which to sample (see Supplemental Table 2). Given the relative sim-
plicity of the model, the parameters to vary were chosen analytically,
avoiding direct correlations and minimizing the sampling space
dimension.

% TFP(¢)= ke * ERK (D) % (TFT - TF”(t)) —kgrx TFP () B
d k,+ k, *TFP(t — 1,)
amRNA(t): b~ “m M — K gy m * MRNA(?) 5)

v
(P(t—rm)I:DPP(t—rm)) +1

% P(0)= kp x MRNA(L — Tp) +kap % PP(O) — (K yp + k) £ P(©)  (6)

d

77 PPO= kop x ERK () P(0) - (k I kd,,> « PP(t) @)

UMAP projections

To embed the high-dimensional immunofluorecence data into 2
dimensions for visualization, we used the UMAP algorithm®*. UMAP
was run using the umap-learn python package. Default hyperpara-
meters were used: n_neighbors = 15, min_dist = 0.1, and n_components
= 2. UMAPs of MCF10A data were created with nuclear measurements
of Egr-1, Fra-1, c-Jun, c-Myc, c-Fos, pERK, pc-Fos, and pRb. UMAPs of

Nature Communications | (2025)16:4721

15


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58348-7

HCC827, A549, and MCF7 were created with nuclear measurements of
Egr-1, Fra-1, c-Jun, c-Myc, c-Fos, pERK, pc-Fos, pRb, DUSP1, p4EBP1,
FoxO1, RSK1, GSK3pB, EZH2, along with cytosolic measurements of
pPEGFR, pp-70s6k, NF-1, E-Cadherin, and DUSP6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All source data for figures, including all processed FRET and immu-
nofluorescence values for single cells, have been deposited in a Fig-
share repository and are available at this link: https://doi.org/10.6084/
m9.figshare.27047617. Due to the file size limitations for existing
repositories, raw microscopy image sets will be provided by the cor-
responding author upon e-mailed request.

Code availability

All custom MATLAB and Python code for model generation, data
analysis, and figure plotting are provided here: https://doi.org/10.
6084/m9.figshare.27047617.
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