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Nuclear phase retrieval spectroscopy using
resonant x-ray scattering

Ziyang Yuan 1,2,3,4,12, Hongxia Wang4,12, Zhiwei Li 5, Tao Wang5, Hui Wang5,
Xinchao Huang6, Tianjun Li6, Ziru Ma6, Linfan Zhu6, Wei Xu 7, Yujun Zhang 7,
Yu Chen7, Ryo Masuda8, Yoshitaka Yoda 9, Jianmin Yuan 10,
Adriana Pálffy 11 & Xiangjin Kong 1,2

Light-matter interaction is exploited in spectroscopic techniques to access
information about molecular, atomic or nuclear constituents of a sample.
While scattered light carries both amplitude and phase information of the
electromagnetic field, the latter is lost in intensity measurements. However,
often the phase information is paramount to reconstruct the desired infor-
mation of the target, as it is well known from coherent x-ray imaging. Here we
introduce a phase retrieval method which allows us to reconstruct the field
phase information from two-dimensional time- and energy-resolved spectra.
We apply this method to the case of x-ray scattering off Mössbauer nuclei at a
synchrotron radiation source. Knowledge of the phase allows also for the
reconstruction of energy spectra from two-dimensional experimental data
sets with excellent precision, without theoretical modelling of the sample. Our
approach provides an efficient and accurate data analysis tool which will
benefit x-ray quantum optics and Mössbauer spectroscopy with synchrotron
radiation alike.

X-ray scattering is a powerful tool for imaging or even ghost imaging1,2,
given the involved wavelengths which are commensurate with mole-
cular or interatomic distances3,4. Resonant x-ray scattering on the
other hand often involves atomic transitions of core electrons or
narrow resonances of Mössbauer nuclei3. The latter occur at x-ray
wavelengths and can be considered as ideal quantum systems with
high quality factors5. For instance, the most widely used Mössbauer
nuclear resonance is the transition between the ground state and the
first excited state of 57Fe, for which the energy resolutionΔE/E, defined
as the ratio of transition linewidthΔE and resonant energy E, is 3 × 10−13.

This energy resolution is even higher for other Mössbauer nuclei, like
45Sc (ΔE/E ~ 10−19)6 and 103Rh (ΔE/E ~ 10−24)7. Such nuclear resonances can
be very sensitive to their environment, providing sensitive information
in various fields such as physics, chemistry, biology or metallurgy.
Mössbauer nuclei have been used to determine the gravitational
redshift8–10, to study magnetically ordered materials11 and to investi-
gate the mineralogy of iron-bearing rocks and soils12. Meanwhile, with
the development of x-ray sources and detecting devices, Mössbauer
nuclei of exceptionally narrow resonances are treated as a promising
platform to implement quantumoptics or coherent control in the hard
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x-ray regime5,13. Nuclear resonances have been driven at both syn-
chrotron and x-ray free electron laser (XFEL) sources. In both cases,
x-ray intensities aremeasured, thus losing all information on the phase
of the outgoing electromagnetic field. Also, without prior knowledge
of the real or imaginary components of the nuclear resonance
response, the Kramers-Kronig relations cannot be applied to extract
these properties.

Synchrotron radiation (SR) has high brilliance and can be well
focused on micrometre-size samples. Typically, SR is used in time-
resolved nuclear forward scattering, removing the prompt off-
resonant response by time gating14. In order to obtain intensity spec-
tra in the energy domain, a Synchrotron Mössbauer Source can be
used15, which is however at present available only at few beamlines. An
alternative and generally accessible technique employs time-resolved
spectroscopy with an additional single-line reference sample, also
known as analyzer, which is mounted on a Mössbauer (Doppler) drive
and scans the nuclear transition frequencies by varying the velocity.
Delayed forward scattered photons are recorded and integrated over
time as a function of the detuning of the analyzer16,17. This time-
integrated spectroscopy (TIS) method recovers the energy spectrum
of the sample under investigation and was used in a number of recent
experiments18–22. However, its accuracy heavily relies on the integra-
tion window (imposed by the beamline working parameters) and the
analyzer thickness. Using a periodic time window, stroboscopic
detection has been used as alternative to time integration23–25. In a
different approach, a phase determination in the time domain (PDTD)
algorithm using the maximum likelihood estimation has been
developed26. A limiting requirement for PDTD is that the radiative
coupling between the analyzer and the target is negligible. In addition,
also PDTD is sensitive to the thickness of the used analyzer. Using this
method, the energy spectrum could be obtained by a Fourier trans-
formation using a truncated timewindow, at the expenseof the energy
resolution. Two recent experiments have extracted phase information
based on physical models for this scheme, where an evolutionary
algorithm has been performed using a Bayesian log-likelihood
method13,21. Also, a method based on a rapidly oscillating reference
sample has been proposed to measure both the amplitude and the
phase of the spectral response27.

Here, we demonstrate a method to recover both the amplitude
and the phase of the electromagnetic field scattered off an unknown
sample containing Mössbauer nuclei in the setup using an analyzer on
a Doppler drive. Our nuclear phase retrieval spectroscopy (NPRS)
method uses as input a full time- and energy-resolved data set pro-
vided by recording simultaneously the time of arrival and the corre-
sponding Doppler velocity of the Mössbauer drive for each x-ray
photon count. Depending on the choice of algorithm, ameasured time
spectrumof the analyzer alone can be used to increase the accuracy of
the retrieved energy spectrum. The retrieval occurs without any the-
oretical modeling of the sample itself, delivering robust and accurate
spectra. Since they are model-independent and data-based, all NPRS
algorithms could be integrated in the data acquisition and analysis
tools directly at SR and XFEL facilities.

Results
Experimental setup
The experimental setup and the NPRS input and output sets are illu-
strated in Fig. 1. A target containing 57FeMössbauer nuclei with the first
excited state at energy 14.4 keV and width Γ0 = 4.6 neV is probed by a
resonant but spectrally broad SR pulse with linear polarization. An
analyzer containing the same nuclei is mounted on a Mössbauer drive
that provides a periodic energy detuning. The motion of the Doppler
drive induces an energy shift for the analyzer transmission function,
with the magnitude of the shift determined by the drive’s velocity.
Both sample and analyzer contain enriched 57Fe. For the samplewe use
in the experiment α iron which presents hyperfine splitting of the

ground and excited nuclear states according to their spins Ig = 1/2 and
Ie = 3/2. The sample magnetization is oriented perpendicular to the
propagation and polarization directions of the input x-ray pulse. Due
to selection rules, in this geometry the SR should drive only the two
Δm = me − mg = 0 transitions, where me(g) are the nuclear excited
(ground) state spin projections on the quantization axis. Single x-ray
photons are detected by fast avalanche photodiode detectors
(APDs)28. The 8 element APDs record the counts of the photons as a
functionof time anddetuning. Thedelayedx-rayphotonsmayarrive at
the detector via three possible paths: scattered by the sample under
investigation, scattered by the analyzer, or scattered by both sample
and analyzer. The input data set is used by our NPRS method over
several iterations to reconstruct the complex energy-dependent
response of the sample.

Algorithms
We develop three different mathematical algorithms for the phase
retrieval procedure, all of them providing robust and accurate phase
spectra. The most accurate energy spectra are provided by an algo-
rithmusing as input the 2Ddata set togetherwith ameasured response
function of the analyzer alone and a theoretical model of the analyzer,
still without modelling of the unknown sample. The core of this algo-
rithm is a gradient-based phase retrieval reminiscent of methods used
to solve the phase problem in imaging3,29,30. In the following we will
refer to this version simply as NPRS algorithm. For the case a good
theoretical model for the analyzer is not available, we present an
alternative algorithm which uses only the input 2D data set and the
measured time spectrumof the analyzer alone as constraint to recover
the complex response functions of both sample and analyzer.We refer
to this algorithm as a constrained blind version of NPRS (CB-NPRS),
which is completely free of any theoretical modelling for sample or
analyzer. A third algorithm labeled as blind NPRS (B-NPRS) considers
the case that neither model nor measured spectrum of analyzer are
known. Both B-NPRS and CB-NPRS algorithms have as starting point
the Douglas-Rachford method known from ptychography31–36.

The advantages of the three NPRS algorithms are two-fold. First,
since they can actively extract information from all counts over the
entire temporal spectrum at every velocity value, they recover accurate
energy spectra. Here NPRS can provide finer details than the blind
B-NPRS and CB-NPRS versions. However, comparisons for several setup
examples show that all NPRS algorithms can provide more accurate
energy spectra than TIS and PDTD. Second and most importantly, the
NPRS algorithms provide reliable phase information for the scattered
field without introducing any physical model for the sample, or in the
case of B-NPRS and CB-NPRS not even for the analyzer. If required, the
response function of the analyzer can be measured separately prior to
the experiment and used for NPRS or CB-NPRS.

Mathematical modeling
The starting point of all three NPRS algorithms is the time- and energy-
dependent (measured) intensity I(t, ΔD), where ΔD is the Doppler
detuning which shifts the value of the frequency seen by the analyzer
foil moving with velocity v as ω0 =ωð1 + v=cÞ=ω+ΔD. Here, c stands for
the speed of light. We let R(Δ) denote the response function of the
sample under investigation and T(Δ − ΔD) the analyzer foil transmis-
sion, respectively, whereΔ is the x-ray photon frequency. The phase to
be retrieved refers to the phase of the complex sample response
function R(Δ). Themathematicalmodeling of the scattered intensity in
the setup of Fig. 1 is given by

Iðt,ΔDÞ=
1ffiffiffiffiffiffi
2π

p
Z 1

�1
RðΔÞTðΔ� ΔDÞe�iΔtdΔ

����
����
2

: ð1Þ

The component of the input pulse is not explicitly visible in the
expression above, since we consider a normalized constant incoming
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field Ein(Δ) = 1 corresponding to the δ(t) pulse in the time domain.
During the experiment, the photon counts Iðtk ,Δl

DÞ are measured at
tk ∈ E = {t1, t2, ⋯ , tK} under different Doppler detunings
Δl
D 2 Ω= fΔ1

D,Δ
2
D, � � � ,ΔL

Dg. If we discretize the energy range
½�Δmax,Δmax� by equally spaced nodes Δj with stepsize Δstep, and
define the vectors R = (R(Δ0), R(Δ1), ⋯ , R(Δn−1)),
Tl = ðTðΔ0 � Δl

DÞ,TðΔ1 � Δl
DÞ, � � � ,TðΔn�1 � Δl

DÞÞ, a discretized model
can be formulated as

Iðtk ,Δl
DÞ= ∣FH

:, kðR � TlÞ∣
2
+ ε, tk 2 E,Δl

D 2 Ω, ð2Þ

where F:, k =
Δstepffiffiffiffiffi
2π

p ð1, eiΔstep �tk , � � � , eiðn�1ÞΔstep �tk Þ, � is the Hadamard pro-
duct, (⋅)H represents the conjugate transpose, and ε is the error caused
by noise and discretization (see Supplementary Methods for details).

The NPRS algorithm takes as input I(t, ΔD) and T(Δ − ΔD) and
retrieves the complex response function R(Δ) of the unknown target.
Since the complex analyzer transmission function is not accessible in
experiments, a theoretical model for the analyzer is required. We

abbreviate Iðtk ,Δl
DÞ to I(k, l) which denotes the (k, l)th element of the

matrix I, and then estimate R from I by the Bayesian method, which
maximizes the log of the posterior conditional probability P(R∣I).

According to Bayes’ rule, we have PðRjIÞ /
ðaÞ

PðIjRÞ
ðbÞ

PðRÞ, where (a) is the

likelihoodwhichusually satisfies the Poissondistribution, and (b) allows
to introduce the prior knowledge of R. In practice, the physical model

forR is not always available. Here, we refrain frommaking use of (b) and
consider a more general case without using any prior information of R.
The optimization model to recover R from I is established as

minimize
R2Cn

‘ðRÞ=
XK
k = 1

XL
l = 1

FH
:, k ðR � TlÞ

��� ���2 � Iðk, lÞ log FH
:, kðR � TlÞ

��� ���2
� �� �

: ð3Þ

The expression above is a challenging non-convex optimization
problem since ℓ(R) is nonconvex and thus many local minima may
exist37,38. We develop a gradient-based algorithm combined with
momentum restart and adaptive reweighted modules, which recovers
both the amplitude and the phase of the response function (see
Methods and Supplementary Methods for details).

When the analyzer transmission T(Δ-ΔD) is partially or completely
unknown, for instance, when only the measured time spectrum is
available, or when no information on the analyzer exists, the optimi-
zation problem (3) becomes more ill-posed. In such cases, gradient-
based methods are empirically prone to stagnating at unsatisfactory
points. In the field of phase retrieval, the Douglas-Rachford method39,
as a type of reflection algorithm, usually outperforms gradient-based
methods40. Consequently, we reformulate (3) into a feasible problem
and develop the CB-NPRS and B-NPRS algorithms based on the
Douglas-Rachfordmethod to recover both the amplitude and phase of
the response function, as well as the analyzer, in the two scenarios
mentioned above (see Methods and Supplementary Methods for fur-
ther details).

Fig. 1 | Experimental setup and nuclear phase retrieval spectroscopy (NPRS)
algorithms’ sketch. Resonant monochromatized synchrotron radiation (SR) pas-
ses through the analyzer with transmission function T(Δ − ΔD) mounted on the
Mössbauer drive. The x-rays are then scattered off a 57Fe sample with response
function R(Δ). Single x-ray photons are detected by avalanche photodiods (APDs)

as a function of time and Doppler detuning. Our iterative NPRS algorithms are
applied to recover the spectrum (intensity and phase) from these registered
counts. Starting from a flat initialization, the algorithms iteratively improve the
spectrum up to the desired precision. Here the example of a magnetized 57Fe
sample with the SR pulse driving two nuclear hyperfine transitions is presented.
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Numerical simulations
Wehave first tested the three NPRS algorithms using simulated data for
four experimental scenarios of resonant nuclear x-ray scattering
demonstrated in the literature: normal incidence targets containing
α-57Fe with aligned and random magnetization orientations, forward
scattering combined with fast mechanical motion as in the setup
demonstrated in ref. 21, and thin-film cavities addressed in x-ray grazing
incidence as in ref. 18. A thorough discussion of the potential and
applicability of the NPRS algorithm and comparisons with other phase
or spectrum retrieval methods is presented in this Section for the case
of nuclear forward scattering with aligned magnetization introduced
above, forwhich experimental results are addressed in the next Section.
We focus first on the NPRS algorithm since a fairly accurate model for
the analyzer used in the experiment is available, providing a comparison
with the blind versions B-NPRS and CB-NPRS later on in the Experi-
mental Results Section, while results for all algorithms and all con-
sidered setups are included in the Supplementary Methods.

We consider a linearly polarized x-ray pulse irradiating an α-57Fe
target of (effective) thickness d = 2.3 μm in normal incidence as illu-
strated in Fig. 1. The simulated response function R(Δ) and analyzer
transmission function T(Δ − ΔD) are obtained using a numerical
implementation of the analytical expressions known for nuclear for-
ward scattering41. We consider a single-resonance K2Mg57FeðCNÞ6
analyzer with the effective thickness d ≈ 1 μmwhich coincides to what
has been used in our experiment. We then use Eq. (1) to generate the
2D transmitted intensity input data set, shown here in Fig. 2a.

In order to simulate the experimental conditions at the SR
beamline, the time range is set from3 ns to 165 ns. The signals before 3
ns are excluded since the prompt off-resonant component of the
incident x-ray pulse is very strong. The upper limit 165 ns corresponds
to the bunch separation of the E mode at the nuclear resonant

scattering beamline BL09XU of SPring-8 in Japan, where the experi-
ment discussed in the next Section was performed. The NPRS algo-
rithm is applied to the truncated data and delivers the transmission
∣R(Δ)∣2 and phase arg½RðΔÞ� spectra as function of detuning, shown in
Figs. 2e,f, respectively. Out of these, we can also reconstruct the 2D
intensity data set, which is presented in Fig. 2b.

Figures 2 e,f show for comparison the original simulated response
function R(Δ) as transmission and phase. The retrieved and original
simulated spectra display an excellent agreement; the algorithm
recovers even the sharp phase jumps at approx. ± 30Γ0. To quantify
this agreement, we define here the relative error as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Δ2O∣R̂ðΔÞeiθ � RðΔÞ∣2P

Δ2O∣RðΔÞ∣2

vuut , ð4Þ

where θ 2 arg min
θ2ð0, 2π�

∣R̂ðΔÞeiθ � RðΔÞ∣2, O is the region of interest, R̂ is

the estimation (the retrieved value), and R is the ground truth (the
input value from the numerical simulation, which is available in this
case). The relative error as a functionof theNPRS algorithm iteration is
presented in Fig. 2g. With increasing number of iterations, the relative
error drops to 10−2. This number quantifies the excellent agreement
visible in Figs. 2e,f.

A more general type of error is the so-called measurement error,
defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k = 1

PL
l = 1 Iðk, lÞ � ∣FH

:, kðR̂ � TlÞ∣
2� �2

PK
k = 1

PL
l = 1 I

2ðk, lÞ

vuuut :
ð5Þ

Fig. 2 | Nuclear Phase Retrieval Spectroscopy (NPRS) algorithm applied to
numerically simulated data for a nuclear forward scattering geometry. We
consider an α-57Fe sample of 2.3 μmwith an alignedmagnetization and an analyzer
of 1 μm effective thickness. a Input 2D time- and energy-dependent intensity data
set. The color code displays the natural logarithm of the signal. This set is then
reconstructed via b NPRS and c phase determination in the time domain (PDTD).

d Measurement error of NPRS as a function of iteration step. e NPRS spectral
intensity of the sample as a function of detuning. For comparison, we present here
also the PDTD and scaled time-integrated spectroscopy (TIS) spectra in arbitrary
units. f Recovered phase using NPRS and PDTD. g Relative error of the recovered
spectrum using NPRS as a function of the retrieval iteration step.
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The measurement error provides means to quantify the agreement
between input and retrieved data in an experiment, where
only intensity counts are available. For the present case, the mea-
surement error quantifies the comparison between the 2D spectra in
Fig. 2a and b. The result is presented in Fig. 2d, showing that the
measurement error drops down to 10−4 with increasing number of
NPRS algorithm iterations.

At this point we can also compare the performance of the NPRS
algorithm to other methods used in resonant nuclear x-ray scattering
suchasTISor PDTD. Starting from the same 2Ddata set (obtained for a
1 μm-thickness analyzer), we reconstruct the spectral intensity (phase)
via TIS and PDTD (just PDTD). For TIS, the retrieved spectra are very
sensitive to the integration window and the thickness of the analyzer.
The analyzer thickness for TIS is fixed by the 1 μm-value used for
generating the 2D data set. We then optimize the integration range to
obtain the best TIS fit of the original data. PDTD obtains the phase of
the nuclear sample by a three-parameter fit of the 2D intensity data set.
Once the complex time-dependent scattered field is retrieved, a
Fourier transform can deliver the phase and intensity spectra as a
function of energy, and the 2D spectrum can be reconstructed. Also
the accuracy of PDTD is dependent on the thickness of the analyzer.
We plot the obtained intensity and phase spectra (where available)
next to the NPRS results in Fig. 2e and f. Both TIS and PDTD miss the
prompt δ(t)-like non-resonant scattering and therefore do not access
the full response function of the sample. Nevertheless, recovered
nuclear forward scattering energy spectra present resonant peaks that
contain relevant information about the sample. Thus, in the energy-
dependent intensity spectrum, NPRS presents two dips, while TIS and
PDTD display two peaks at the same energies.

PDTD provides after several processing steps access to the phase
introduced by the target. The numerical results of the PDTD method
applied to the input 2D data set are presented in Fig. 2f and are com-
pared to the exact result and theNPRS retrievedphase.While theNPRS
phase is in perfect agreement with the original correct phase, the
PDTD phase provides a reasonable approximation only for negative
detunings in the interval [ − 100Γ0, − 30Γ0]. Using the phase informa-
tion, one can also use PDTD to reconstruct the 2D spectrum, which we
present in Fig. 2c. While the main features of the 2D spectrum are still
recognizable, most of the details are washed out. The calculated
measurement error for the PDTD spectrum is given in Fig. 2d and is
orders of magnitude larger than the NPRS error.

These comparisons demonstrate that the accuracy of the NPRS
algorithm can be superior to the one of TIS and PDTD for this nuclear
forward scattering setup. Further simulations and comparisons reach
the same conclusion for normal incidence targets containing α-57Fe
with different magnetization orientations, forward scattering com-
bined with fast mechanical motion as in the setup demonstrated in
ref. 21, and thin-film cavities addressed in x-ray grazing incidence as in
ref. 18 (see SupplementaryMethods and Supplementary Figs. 4-6). The
NPRS measurement error remains below 10−4 for all four setups on a
analyzer thickness rangeof [0.5, 5]μm,proving the robustnessofNPRS
(see Supplementary Fig. 12). This is in contrast to both TIS and PDTD
whose performances are strongly dependent on the analyzer thick-
ness, or even to Synchrotron Mössbauer Sources which also have
limited resolution (see comparison in Supplementary Fig. 13). For
simulated data sets which can provide sufficient number of points in
the 2D spectrum, the NPRS algorithm can retrieve the spectrum in
smallest detail, satisfying any practical purposes such as minute
hyperfine splittings. However, as with all other methods, the NPRS
algorithm is sensitive on the quality and range of the original 2D data
set. The sensitivity to noise has been checked by usingNPRS on 2D sets
with superimposed Poisson noise with signal-to-noise ratios of 20, 45
and 60 dB. The results show a remarkable stability of the retrieved
phase and a good recovery of the main features of the energy spectra
(see Supplementary Figs. 7-10).

Experimental results
Experiments were performed for the nuclear foward scattering setup
discussed above at the nuclear resonant scattering beamline BL09XU
of SPring-8 in Japan. The bunchmodeprovided a separation of 165.2 ns
between the x-ray pulses (mode E) and a 2/29-filling bunch train which
was blocked by the timing electronics. The pulse duration is deter-
mined by the length of the electron bunches in the storage ring and
amounts to about 40 ps. To measure the 2D intensity data, an event-
based data acquisition system was used to record temporal (time of
arrival) and spectral (Doppler drive velocity) information for each
signal photon separately. A single-line K2Mg57FeðCNÞ6 analyzer was
used, whose complex spectral response T(Δ − ΔD) was determined
from a measured time spectrum of the analyzer only (see Methods).
The effective thickness of the analyzer was deduced to be approx.
d ≈ 1 μm. A small external magnetic field was used to align the mag-
netization of the target such that only the two Δm = 0 transitions are
driven.

Themeasured 2D time- and energy-dependent spectrum is shown
in Fig. 3a. We have used the NPRS algorithm to retrieve the sample
spectral intensity and phase, which are presented in Fig. 3e and f. The
transmission spectrum of the α-57Fe sample presents the two dips
already encountered in the previous Section for the numerical simu-
lation, however here with more oscillations of the baseline. The
recovered phase is also very similar to the numerical simulation result
up to the sharp phase jumps which could not be recovered from the
experimental 2D data set. Based on the retrieved sample response
function, we have reconstructed the 2D data spectrum in Fig. 3b. In
order to compare quantitatively the reconstructed and measured 2D
spectra, we present the measurement error defined in Eq. (5) as a
function of algorithm iteration in Fig. 3d. With increasing iterations,
the measurement error drops below 10−1, demonstrating the good
performance of the NPRS algorithm. The measurement error remains
however much higher than the case of the numerical simulations, due
to the lower quality of the input 2D spectrum.

For further checks, an independent time spectrum of the sample
alone was also measured during the experiment. This gave us the
opportunity to obtain a fit of the response function based on a theo-
retical model of the sample. From the time spectrum fit presented in
Fig. 3g, we could deduce the sample thickness 2.289 μm, internal
magnetic field B = 32.537 T and magnetic texture coefficient 0.98542.
This allowed us to calculate the theoretical phase, and the time- and
energy-dependent intensity spectra of the sample. The theoretical 2D
spectrum thus obtained ispresented in Fig. 3c. Themeasurement error
using the experimental intensity values and the reconstructed sample
response based on the theoretical model fit is shown in Fig. 3d. We see
that for increased number of NPRS algorithm iterations, the mea-
surement error for the retrieval is even smaller than the theoretical
one, which in this case is however a consequence of overfitting the
experimental noise. The time-dependent spectrum retrieved by NPRS
is in excellent agreement with the measured data points (and their fit)
as shown in Fig. 3g.

A comparison between the NPRS algorithm results and the
simulated theoretical intensity and phase spectra based on the fitted
sample parameters is presented in Figs. 3e,f, respectively. While the
phases are in good agreement, up to the sharp phase jumps, the the-
oretical intensity displays (due to the fitted magnetic texture para-
meter not being equal to unity) four additional small peaks
corresponding to the Δm = ± 1 transitions between hyperfine levels.
Thus, the fit of the time-domain spectrum of the target alone indicates
that the magnetization geometry of the target is only approximately
matching the originally planned driving of the Δm = 0 transitions only.
NPRS recovers just the larger twoof the four additional peaks from the
experimental 2D spectrum, missing the other two minuscule ones.
Three aspects should be mentioned here when interpreting these
findings. First, the 2D data set has inferior count statistics and
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additional noise due to the Doppler drive compared to the time
spectrum data set. We have checked that NPRS would recover the full
six-peak spectrum from a simulated 2D data set with better count
statistics generated using the fitted sample parameters. Second, the
theoretical response function in Fig. 3e is not retrieved directly from
the experimental data. It is the plot of an analytical function obtained
using a nuclear forward scattering theoretical model for the sample
and fitted parameters, with no limitations in resolution. Third, the
NPRS algorithm uses no knowledge of the samplemodel—which could
in principle be added (when available) to increase the accuracy of the
retrieved spectra.

We now turn to the results retrieved via the two algorithms
B-NPRS and CB-NPRS which do not involve any analyzer model. Fig-
ure 4a and b shows the retrieved spectral intensities and phases,
comparing NPRS with B-NPRS and CB-NPRS. We notice that all three
methods are very robust in retrieving thephaseof the sample response
arg½RðΔÞ�. The spectral intensities retrieved via the blindmethods show
larger baseline oscillations compared to NPRS. For the considered
experimental sample, such oscillations render more difficult the
identification of the small features induced by the non-unity value of
the sample texture coefficient. Surprisingly, the measurement errors
are dropping below the theoretical values, see Fig. 4c, with B-NPRS
being the first to do so, despite the visible baseline oscillations in the
recovered energy spectrum. This phenomenon is attributed to over-
fitting. Since real measurements contain noise and bias, methods with
fewer constraints, specifically those that do not incorporate as much
information about the analyzer, tend to fit these errors.

In Figs. 4d-f we compare the independently taken time spectrum
of the sample alone with the calculated time spectra using the
retrieved sample response for NPRS, CB-NPRS and B-NPRS. Here, the
constrained blind version CB-NPRS has a better performance than B-

NPRS, especially for the late-time range. Overall our results show that
both the blind and the blind constrained versions of NPRS retrieve the
main features from the experimental 2D data set; especially, the
retrieved phase is equally accurate for all algorithm versions and is
superior to PDTD results (see also SupplementaryMethods for further
comparisons).

Discussion
For a nuclear forward scattering setup, the NPRS algorithm can accu-
rately retrieve phase and energy spectra from experimental data.
Further results for 2D experimental spectra measured in grazing inci-
dence geometry are presented in Supplementary Fig. 18 and discussed
in the Supplementary Methods. Together with the retrieved spectra
from numerically simulated 2D data sets for various resonant nuclear
x-ray scattering setups, these results demonstrate the strength of
NPRS for retrieval of reliable phase and energy spectra. Its particular
advantages are that accurate results can be achieved without any
physical model input for the sample response function and without
being limited in resolution by the analyzer thickness.

TheNPRS algorithmdelivers a superior performancecompared to
the traditional TIS and PDTDmethods. Compared to TIS, NPRS ismore
accurate, provides more information, is independent of integration
limits and less sensitive to the analyzer thickness. Compared to PDTD,
NPRS is demonstrably more accurate in phase retrieval and 2D spec-
trum reconstruction. In addition to these methods which have tradi-
tion for resonant nuclear x-ray scattering, one may consider also
ptychography43 as a candidate for obtaining the complex response
function of the sample. To the best of our knowledge, this has not been
performed so far for nuclear scattering. The conceptual similarities
between the two methods allowed us to implement and test several
ptychography algorithms for the four different setups of nuclear x-ray

Fig. 3 | Experimental and reconstructed results. a Measured 2D intensity spec-
trum. The data points were binned, and the color coding indicates the function
loge(# counts). Reconstructed 2D spectra using b the nuclear phase retrieval
spectroscopy (NPRS) algorithm and c the theoretical model based on sample
parametersfitted froman independentlymeasured time spectrum.dMeasurement
errors of NPRS and theoretical model. e, f demonstrate the recovered spectra with

intensity and phase as a function of detuning. The NPRS spectra (red dashed line)
are compared with the results of the theoretical model (green solid line).
g Independentlymeasured time spectrumof the sample only, theoreticalmodel fit,
and NPRS spectrum generated by a numerical Fourier transform from the recov-
ered amplitude and phase.
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scattering in discussion (see Supplementary Figs. 14–17). The com-
parisonof transmission andphase spectrademonstrates that theNPRS
algorithm is more efficient and can obtain the sample response func-
tion with the lowest measurement and relative errors at a smaller
computational time cost than several established ptychography
methods. Given the conceptual similarities between the NPRS algo-
rithm, ptychography and coherent modulation imaging phase
retrieval44, it is likely that the efficiency of the developed NPRS algo-
rithm could benefit also these other approaches.

The conceptual link to ptychography has been demonstrated
by implementing also the blind algorithm versions B-NPRS and CB-
NPRS, which do not require any theoretical modeling, neither for
the sample (this feature is shared also by NPRS), nor for the analy-
zer. Compared to the NPRS algorithm, the blind algorithms are
more challenging since both ambiguities of the solution as well as
the coupling between the variables complicate the retrieval. While
the retrieved spectral intensities capture the main features of the
spectra, baseline oscillations might obscure minuscule features

Fig. 4 | Blind algorithms applied to experimental data set. a, b The recovered
spectra with intensity and phase as a function of detuning. The blind nuclear phase
retrieval spectroscopy (B-NPRS, yellow line) and constrained blind nuclear phase
retrieval spectroscopy (CB-NPRS, green line) spectra are compared with the results
of the theoretical model (blue line) and the NPRS algorithm (red line).

c Measurement errors of B-NPRS, CB-NPRS, NPRS and theoretical model.
d–f Independently measured time spectrum of the sample only, theoretical model
fit, and the spectrum generated by a numerical Fourier transform from the
recovered amplitude and phase using d NPRS, e CB-NPRS and f B-NPRS.

Fig. 5 | Analyzer response function. a Fit of the analyzer time spectrum. b Transmission and phase of the fitted response function for ΔD = 0.
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thereof. However, the quality of the retrieved phase is very stable,
allowing for accurate results even in the absence of a good analyzer
model. This feature is unique and an important asset for the B-NPRS
and CB-NPRS methods.

While the resonant nuclear scattering energy spectrum of 57Fe can
be in principle measured at a Synchrotron Mössbauer Source, the field
phase is more difficult to access and relies on retrieval algorithms. The
overall NPRS method comes timely, as with the recent advances in
nuclear quantum optics, for instance coherent x-ray optical control of
nuclear excitons13, or the driving of nuclear transitions with the X-ray
Free Electron Laser (XFEL)6,45, phase-sensitive measurements are likely
to gain in significance as was the case for quantum optical setups at
optical frequencies46,47. Our NPRS algorithms have potential applica-
tions in x-raymetrology6,21,48, exploring x-ray quantumphenomena13,19,49,
or investigating novel topological effects in the x-ray frequency range.
As an accurate, efficient and model-free (as far as the sample is con-
cerned) phase retrieval method, all NPRS algorithms could be directly
integrated at x-ray beamlines at SR and XFEL facilities and have a sig-
nificant impact as analysis tool on future nuclear resonant x-ray scat-
tering experiments.

Methods
Algorithms
The core of the NPRS method is the vanilla gradient descent (GD)
algorithm, which is one of the most popular optimization algorithms
for non-convex problems50 and by far the most widespread method
used in deep learning51. By choosing a proper initializationR(0), themth
iteration takes the form

RðmÞ =Rðm�1Þ � μ
XK
k = 1

XL
l = 1

1� Iðk, lÞ
FH
:, kðRðm�1Þ � TlÞ

��� ���2
0
B@

1
CAðF:, k � TlÞðF:, k � TlÞ

H
Rðm�1Þ,

ð6Þ

where μ is the step size. Furthermore, the momentum with flexible
parameter restart52 and the adaptive reweighed53 techniques are uti-
lized to accelerate convergence and improve performance. The itera-
tions will not stop until ℓ(R(m)) is below some given error bound (more
details are shown in Supplementary Methods).

The core of our CB-NPRS and B-NPRS algorithms is the
Douglas–Rachford (DR) method, which serves as a classical algorithm
for solving feasible problems. Let us define
Ψð0Þ

l =Rð0Þ � ðClT
ð0ÞÞ, l = 1, � � � , L, where Cl is a sampling matrix. Then

the mth iteration of the DR method reads

ΨðmÞ
l =Ψðm�1Þ

l +PA 2PBðΨðm�1Þ
l Þ �Ψðm�1Þ

l

� �
�PBðΨðm�1Þ

l Þ, l = 1, � � � , L,
ð7Þ

where PAð�Þ and PBð�Þ are projection operators, and A and B are two
constraint sets. The last iterated values Ψ̂l , l = 1, � � � , L are achieved
when the measurement error falls below a given threshold. Subse-
quently, thefinal estimates R̂ and T̂ aredecoupled from Ψ̂l , l = 1, � � � , L
(more details are given in Supplementary Methods).

Analyzer response function
In order to obtain the transmission function T(Δ − ΔD), we fit a mea-
sured time spectrumof the analyzer alone (see Fig. 5). The isomer shift
of the analyzer had been previouslymeasured to be −0.1mm/s relative
to α-57Fe. The obtained fitted response function is

TðΔ� ΔDÞ= ð�0:54+0:81iÞe�
4:16Γ0 i

Δ�ΔD + 1:03Γ0 +0:5Γ0 i, where Γ0 is the sponta-
neous decay rate of 57Fe. As an example, the transmission and phase of
the analyzer for the case when ΔD = 0 is shown in Fig. 5b.

Data availability
The experimental data sets used here are available on the Zenodo
repository, see ref. 54.

Code availability
The NPRS algorithm script together with input data files are available
on the Zenodo repository, see ref. 54. Additional scripts are available
from the corresponding authors upon request.
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