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Identifying potential risk genes for
clear cell renal cell carcinoma with deep
reinforcement learning

Dazhi Lu 1,7, Yan Zheng 2,7, Xianyanling Yi3,7, Jianye Hao 2 , Xi Zeng1,
Lu Han1, Zhigang Li2, Shaoqing Jiao4, Bei Jiang 5, Jianzhong Ai 3 &
Jiajie Peng 1,6

Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal cell
carcinoma. However, our understanding of ccRCC risk genes remains limited.
This gap in knowledge poses challenges to the effective diagnosis and treat-
ment of ccRCC. To address this problem, we propose a deep reinforcement
learning-based computational approach named RL-GenRisk to identify ccRCC
risk genes. Distinct from traditional supervisedmodels, RL-GenRisk frames the
identification of ccRCC risk genes as a Markov Decision Process, combining
the graph convolutional network and Deep Q-Network for risk gene identifi-
cation. Moreover, a well-designed data-driven reward is proposed for miti-
gating the limitation of scant known risk genes. The evaluation demonstrates
that RL-GenRisk outperforms existing methods in ccRCC risk gene identifica-
tion. Additionally, RL-GenRisk identifies eight potential ccRCC risk genes. We
successfully validated epidermal growth factor receptor (EGFR) and piccolo
presynaptic cytomatrix protein (PCLO), corroborated through independent
datasets and biological experimentation. This approach may also be used for
other diseases in the future.

Renal cell carcinoma (RCC), one of the most common cancers
worldwide, is a type of kidney cancer that initiates in the lining of
the proximal convoluted tubule1,2. Clear cell renal cell carcinoma
(ccRCC) constitutes 80% of all RCC cases and is particularly
aggressive due to its high immune infiltration3–5. In addition, over
30% of ccRCC patients suffer from metastasis, which is a sig-
nificant factor leading to death in ccRCC patients6–8. Although
several drugs have been utilized for the treatment of ccRCC, the
efficacy is still limited due to the heterogeneity of ccRCC9–11.
Therefore, it is necessary to understand the pathogenesis and
identify risk genes of ccRCC, which may be beneficial for early
diagnosis and treatment of ccRCC12–14.

Cancer is a complex genetic disorder. Its occurrence and pro-
gression are associated with the accumulation of driver genetic
mutations that provide a selective growth advantage to cells15,16. Con-
sequently, one class of methods to identify cancer risk genes is based
onmutation data. In the past years, several cancer sequencing projects
have generated mutation data from thousands of cancer patients,
enhancing the identification of cancer risk genes15,17. Traditional sta-
tistical approaches focus on geneswith a highermutation frequency in
the patient cohort than the control cohort18. Youn et al.19 employed the
functional impact of mutations on proteins, variations in background
mutation rates among tumors, and the redundancyof the genetic code
in tumor genome sequencing data to identify key genes in non-small
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cell lung cancer. Methods like MuSiC20, OncodriveCLUST21, and
MutSigCV22 identified cancer risk genes by comparing the observed
gene mutations with the predefined background mutation frequency.
By now, frequency-based methods have identified many cancer risk
genes and enhanced cancer diagnosis and therapy23. However, the
genetic foundations of cancer are highly diverse. Except for genes
mutated across a large number of patients, some key genes in tumor
initiation and progression are observed to be mutated in only a few
patients24. For example, PIK3CA, which has been validated to be a
ccRCC risk gene by previous studies25–27, ismutated in nomore than 5%
of ccRCC patients27. It is difficult for purely frequency-based approa-
ches to identify these genes with lowmutation frequency but high risk.

To address the drawback of frequency-based methods, the
interactions among proteins are introduced for cancer risk gene
identification, since genes involved in the same signaling and reg-
ulatory pathways as well as protein complexes may interact to exert
their effects together. Muffinn28 identified cancer risk genes through
network propagation, taking into account mutations not only in indi-
vidual genes but also in their neighbors within the protein-protein
interaction (PPI) network. DiSCaGe29 calculated a genemutation score
using an asymmetric spreading strength based on the type of muta-
tions and the PPI network, then produced a ranking of prioritized
cancer risk genes. HotNet230 used an insulated heat diffusion process
to identify cancer risk genes by propagating heat through the PPI
network. nCOP31 employed a heuristic search method to select con-
nected subnetworks from the PPI network based on themutation data
of cancer patients, and then ranked cancer risk genes based on the
frequencies of genes appearing in these subnetworks. Both afore-
mentioned methods are unsupervised, which may suffer from the
highly diverse genetic foundations of cancer or the noise in the PPI
network32. Recently, several supervised methods have emerged as
potentially valuable tools for predicting cancer risk genes23,33–36. For
example, Agajanian Steve et al.34 trained a random forest classifier to
identify cancer risk genes based on the known cancer-driver muta-
tions. DeepDriver35 used gene mutation types as features, constructed
a K-nearest neighbor graph based on the Pearson correlation coeffi-
cient, and trained a convolutional neural network to identify cancer
risk genes. Nevertheless, different from unsupervisedmethods28,29,31,37,
supervised methods require a substantial amount of known high-
confidence risk genes as labeled data for model training23. Unfortu-
nately, the number of known high-confidence ccRCC risk genes is
currently limited38,39. For example, there are only 44 ccRCC risk genes
in the IntOGen database40. Owing to the reliance on labels, predicting
ccRCC risk genes using supervised methods is challenging.

To overcome the limitations of existing methods, we propose a
deep reinforcement learning-based approach for ccRCC risk gene
identification, named RL-GenRisk (Reinforcement Learning-based
GENe RISK). The reinforcement learning-based model leverages
environmental interactions for optimization41, tackling the challenge
of scant known risk genes. Specifically, RL-GenRisk models the PPI
network as the environment and utilizes a graph convolutional
network42 to learn state representations. It also incorporates the Deep
Q-Network (DQN)43 to combine reinforcement learning with deep
neural networks for ccRCC risk gene identification. Moreover, a data-
driven reward is designed to facilitate a straightforward method for
identifying ccRCC risk genes. By focusing on a sampled subgraph with
node features, the data-driven reward effectively leverages informa-
tion from both the PPI network and gene mutation data. This not only
ensures the accurate identification of genes with high mutation fre-
quencies but also enables RL-GenRisk to identify potential risk genes
with low mutation frequencies that functionally interact with genes
having high mutation frequencies. Extensive experiments demon-
strate that RL-GenRisk outperforms the existing methods in the iden-
tification of ccRCC risk genes. Furthermore, several potential risk
genes are revealed and validated in independent datasets. Specifically,

we validated two top-rank genes EGFR and PCLO through statistical
and biological experiments. Statistical analyses show significant
upregulation of EGFR at both bulk and single-cell levels among ccRCC
patients, with a significant association between overexpression of the
protein encoded by EGFR and poor survival in ccRCC patients. The
in vitro experimental results show that decreased EGFR expression
promotes ccRCC cell apoptosis as well as suppresses colony formation
and migration, and the use of the EGFR inhibitor erlotinib effectively
augments apoptosis and inhibitsmigration.Moreover, knocking down
PCLO expression in vitro significantly inhibited ccRCC progression.
Additionally, the in vivo experimental results show that both the
erlotinib and EGFR downregulation can significantly repress the
growth of ccRCC tumors in mice.

Results
RL-GenRisk framework
We propose a deep reinforcement learning-based approach to
identify ccRCC risk genes (Fig. 1), named RL-GenRisk. Funda-
mentally different from existing supervised deep learning-based
methods, RL-GenRisk incorporates the reinforcement learning
paradigm. Specifically, RL-GenRisk frames the ccRCC risk gene
identification as a sequence decision-making process, formulated
as a Markov Decision Process44. This enables RL-GenRisk to inte-
grate reinforcement learning algorithms seamlessly, thereby
effectively addressing the inherent challenge of scant known risk
genes. RL-GenRisk takes PPI network and gene mutation data as
input (Fig. 1A). The PPI network is represented as an undirected
graph, with nodes representing genes and edges representing
interactions between genes. Gene mutation data includes details
on the presence of mutations in ccRCC patients for each gene. RL-
GenRisk treats the PPI network with gene mutation information as
the environment. The state includes a sampled subgraph with
node features. The action is selecting a node directly connected
to the sampled subgraph and adding it to this sampled subgraph.
Thus, the risk gene identification is framed as a Markov Decision
Process of node selection within the PPI network.

Central to RL-GenRisk is a policy that is represented by a neural
network and interacts with the environment. The policy takes the
current state as input and predicts Q values, representing the prob-
ability distribution of all possible actions. The policy of RL-GenRisk
consists of two main components: a Graph Convolutional Network
(GCN) for learning state representation and a node evaluation network
for computing action probability (Fig. 1B top). To enhance state
representation, RL-GenRisk employs the GCN42, an inductive graph
representation learning method, to capture node representations in
the PPI network. Node initial features are derived from the PPI net-
work’s topology information and ccRCC patients’ mutation informa-
tion. The policy of RL-GenRisk is trained to select the optimal actions
by maximizing the reward. In this study, we designed a data-driven
reward that focused on the sampled subgraph, considering both
information from the PPI network and gene mutation data. The DQN
algorithm is employed to update the policy’s parameters. Throughout
the training, we employed the ϵ-greedy strategy to choose actions
based on Q values, thus boosting RL-GenRisk’s exploratory potential.
In the identification phase (Fig. 1B bottom), RL-GenRisk starts with an
empty subgraph, incorporates all nodes into the action space, and
utilizes the trained policy to calculate Q values for each node. Subse-
quently, ccRCC risk genes are ranked by Q values, with higher values
indicating greater risk. Further details about the RL-GenRisk can be
found in the “Methods” section.

RL-GenRisk shows superior performance for ccRCC risk gene
prioritization over existing methods
To assess the performance of RL-GenRisk, we utilized RL-GenRisk
and eight other existing methods to identify ccRCC genes with
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gene mutation data of ccRCC patients from The Cancer Genome
Atlas (TCGA)45 and five different PPI networks. Six of these eight
existing methods are specifically designed for cancer risk gene
identification, including nCOP31, DiSCaGe29, Hierarchical HotNet46,
HotNet230, Muffinn28, and MutSigCV22. The other two are SVM47

and Random Forest48, which are widely used supervised machine
learning methods. The implementation details of SVM and Ran-
dom Forest are provided in the Supplementary Materials. The PPI
networks used in our study included HPRD49, STRING50,
Multinet51, IRefIndex52, and HumanNet53. Known ccRCC risk genes
were retrieved from the IntOGen40 cancer-specific database, the
Network of Cancer Genes (NCG) database54, the Cancer Gene
Census (CGC) database55, and a cancer risk gene set extracted
from the recent and extensive study conducted by Bailey et al.56.
In particular, the ccRCC risk genes included in CGC and Baylei
et al. datasets are limited, containing only nine and twelve genes
respectively. Consequently, we evaluated different methods using
three datasets: IntOGen, NCG, and a “Merged” dataset that com-
bined data from IntOGen, NCG, Baylei et al. and CGC. The genes

included in these datasets are provided in Supplementary Data 1.
To assess the performance of the different methods, we used
discounted cumulative gain (DCG) as one of the primary evalua-
tion metrics, consistent with previous studies29,57. Specifically, the
DCG scores were calculated based on the top 100 genes identified
by each method. Moreover, the DCG curves of different methods
on the IntOGen, NCG, and the Merged ccRCC risk gene dataset
are shown in Fig. 2 and Supplementary Fig. 2. Following this, we
calculated the normalized DCG (N-DCG), the area under the DCG
curve (DCG-AUC), and the average precision (AP) to further
evaluate these methods’ performance (as shown in Fig. 2D–F, and
Supplementary Fig. 3). Evaluation results indicated that RL-
GenRisk outperformed the eight other established methods in
identifying ccRCC risk genes, achieving the highest DCG, N-DCG,
DCG-AUC, and AP on all used datasets (as shown in Supplemen-
tary Fig. 1). As anticipated, MutsigCV showed the lowest perfor-
mance among the six existing methods specifically designed for
cancer risk gene identification due to its reliance solely on
mutation data, lacking integration with biological network

Fig. 1 | Overview of workflow. A Input data of RL-GenRisk, including a Protein-
Protein Interaction (PPI) network and gene mutation data of ccRCC patients from
The Cancer Genome Atlas (TCGA). B Overview of the training and identification
process. During the training process, RL-GenRisk starts by selecting a node ran-
domly and appending this node to a sampled subgraph (indicated by the red
dashed circle). Nodes colored orange are included in the sampled subgraph. Nodes
interacting with the sampled subgraph are colored blue, indicating their inclusion
in the action space. The policy comprises two graph convolutional layers and a

node evaluation network. It takes the current state as input and selects an action
based onQ values of nodes in the action space. Subsequently, the state is updated,
and the reward is obtained. This process repeats until the sampled subgraph
reaches itsmaximum size. Following training, RL-GenRisk computesQ values for all
genes based on an empty subgraph, resulting in a ranking list of risk genes ordered
by Q values. C Experiment validation on external data for identified ccRCC
risk genes.
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insights. Muffinn performed well with STRING but showed infer-
ior performance with other PPI networks, highlighting its
instability across different PPI networks (Supplementary Fig. 3).
While nCOP and Hierarchical HotNet performed well across dif-
ferent datasets and showed more stability across various PPI
networks, their performance was inferior to RL-GenRisk (Sup-
plementary Fig. 1 and Supplementary Fig. 3). Additionally, SVM
showed the lowest performance among the compared methods.
Random Forest performed better than SVM and MutSigCV.
However, its performance was inferior to RL-GenRisk. RL-GenRisk
achieved the best performance on HPRD (as shown in Supple-
mentary Fig. 1). Therefore, the subsequent analyses were groun-
ded on the high-confidence risk genes (HRGs) identified by the
best-performing method, RL-GenRisk with the HPRD network.

Biological network facilitates the identificationof low-frequency
mutated ccRCC risk genes
Although gene mutation frequency is crucial for assessing cancer
associations, not all cancer-related genes have high mutation
frequencies58. Therefore, relying solely on mutation data might over-
look low mutation frequency, high-risk cancer genes. To evaluate the
capability of RL-GenRisk in identifying ccRCC risk genes with low
mutation frequency but high risk, we utilized the “maftools” package59

to analyze the mutation frequencies of the top 20 HRGs (Supple-
mentary Table 1) identified by RL-GenRisk in ccRCC patients from
TCGA (SupplementaryFig. 5A). Generally, 317 (77.13%) of the411 ccRCC
patients from TCGA exhibited somatic mutations in the top 20 HRGs.
Missense mutations were predominant, followed by frameshift muta-
tions, among the identified somatic mutation types. Notably, the

G

Fig. 2 | Performance comparison and perturbation analysis. A–C Discounted
Cumulative Gain (DCG) curves of the top 100 identified genes with RL-GenRisk and
other compared methods on the HPRD network, evaluated on the IntOGen, NGC,
and the Merged datasets. D–F Boxplot of Average Precision (AP) on different PPI
networks across different methods, evaluated on the IntOGen, NGC, and the
Merged datasets. Boxplots display the 25th, 50th (median), and 75th percentiles as
box bounds, with whiskers extending to minima and maxima within

1.5 × interquartile range. Each box includes 5 data points, corresponding to the
results on 5 different PPI networks. G, H Mutation frequency of the top 20 genes
identified by RL-GenRisk (G. Before perturbation; H. After perturbation.). Each dot
represents a gene. The dots in red indicate that the gene is included in the IntOGen
database, and the blue indicates that the gene is not included in the IntOGen
database. And the mutation frequency of the genes enclosed by the orange box is
less than 10%. Source data are provided as a Source Data file.
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mutation frequencies of four genes, includingVHL, PBRM1, SETD2, and
BAP, exceeded 10%. These genes are already recognized as ccRCC risk
genes and included in the IntOGendatabase. Geneswith highmutation
frequencies are more likely to be detected by methods that solely rely
on mutation data. However, it’s important to note that not all cancer
genes have high mutation frequencies58. Among the top 20 HRGs,
seven recognized ccRCC risk genes in the IntOGen database had
mutation frequencies below 5%. For example, only 5 of 411 ccRCC
patients carry mutations in PIK3CA, a known ccRCC risk gene in the
IntOGen database, indicating variable mutation frequencies among
cancer genes. To assess the contribution of the biological network in
RL-GenRisk for identifying low mutation frequency, high-risk ccRCC
genes, we progressively increased the percentage of edges randomly
swapped between node pairs from 25% up to 50%, 75%, and 100%.
Perturbing the PPI networkdisrupts its internal information,withmore
extensive perturbation causing greater information loss. As the per-
turbation ratio increased, the rankings of known ccRCC genes that
initially had high ranks and mutation frequencies below 5% gradually
dropped (as shown in Supplementary Fig. 5B). We then compared the
mutation frequencies of the top 20 HRGs identified by RL-GenRisk
before and after PPI network perturbation and created dot plots for
visualization (Fig. 2G, H). We found that after network perturbation,
three known ccRCC risk genes, TP53, PIK3CA, and SPEN, previously
identified in the top 20 with mutation frequencies below 5%, dropped
out of the top 20. This indicates that incorporating PPI network
knowledge improves the detection of low mutation frequency ccRCC
genes with significant risk implications.

Biological function analysis of high-confidence risk genes
To delve into the biological function of HRGs, we conducted pathway
enrichment analysis using the top 20 HRGs and the WikiPathways
database60, a comprehensive resource for pathway-based data analysis.
Enrichment analysis was performed using g:Profiler61. Figure 3. A illu-
strated the top 10 significantly enriched pathways (FDR p-value
< = 1.21e-4). The results demonstrated significant enrichment in various
cancer-related pathways, with “Clear cell renal cell carcinoma path-
ways” being the most prominently enriched (FDR p-value = 1.48e-8).
The Human Phenotype Ontology (HPO) database62, which provides a
standardized vocabulary of phenotypic abnormalities associated with
human diseases, highlighted “Renal neoplasm” and “Renal cell carci-
noma” as the most significantly enriched phenotypes (FDR p-value
< 4.05e-5, Supplementary Fig. 6). Furthermore, Gene Ontology (GO)
enrichment analysis indicated that top 20 HRGs were notably enriched
in various cancer-related biological processes, including “cell adhe-
sion” (FDR p-value = 2.69e-4), “regulation of cell population prolifera-
tion” (FDR p-value = 3.64e-4), “cell population proliferation” (FDR p-
value = 6.85e-4), and “cell migration” (FDR p-value = 2.39e-3). These
observations showed a comprehensive molecular landscape linked to
HRGswithin the scope of ccRCC, emphasizing the critical roles of these
genes in ccRCC-related mechanisms.

In addition, to further explore whether other top-performing
methods identified similar pathways albeit with different genes, we
performed an analysis based on the pathways enriched by the top 20
genes identified by top-performing methods, including RL-GenRisk,
nCOP, Hierarchical HotNet, HotNet2, DiSCaGe, Muffinn, and Random
Forest. We first calculated the Jaccard similarity coefficients63 between
the top 20 gene lists identified by these methods (pairwise compar-
isons among these 7 methods, totaling 21 pairs). The results showed
that 76% (16 out of 21 pairs) of method pairs have a Jaccard similarity
coefficient below 0.5 for their identified top 20 genes, indicating that
the top 20 gene lists identified by thesemethods do not exhibit a high
degree of overlap overall (Supplementary Fig. 22). After that, we ana-
lyzed the intersection of pathways enriched by the top 20 genes
identified by top-performing methods. The result revealed that two
pathways were significantly enriched (FDR p-value < 0.05) across these

methods, including “Clear cell renal cell carcinoma pathway” and
“Type 2 papillary renal cell carcinoma”. Notably, the top 20 genes
identified by RL-GenRisk exhibited the most significant enrichment in
the “Clear cell renal cell carcinoma pathway” among all thesemethods
(as illustrated in Supplementary Fig. 7). The detailed results of
enrichment analysis for different methods are provided in Supple-
mentary Data 3.

Differential expression analysis revealed significant differential
gene expression of EGFR at both bulk and single-cell levels
Among the top 20 HRGs identified by RL-GenRisk, 8 HRGs are not
included in these ccRCC risk gene databases. We then performed dif-
ferential expression analysis on these 8HRGs using RNA-seq data from
ccRCC patients in TCGA. Differential expression analysis was per-
formed using Limma64, and the significance threshold was FDR p-
value < 0.05. Notably, EGFR and PCLO showed significant differential
expression between tumor tissues and normal tissues in TCGA among
these 8 HRGs (FDR p-value = 2.07e-38 for EGFR and FDR p-value =
1.04e-14 for PCLO, Fig. 3B and Supplementary Fig. 8). The differential
expression results for these8HRGs are shown inSupplementary Fig. 8.
EGFR was notably upregulated in ccRCC tumor tissues compared to
normal tissues. EGFR is activated as a homodimer or heterodimer,
thereby regulating multiple signaling pathways, including the RAS/
RAF/MAPK, AKT, and JAK/STAT pathways, which play essential roles in
cell migration, proliferation, and survival65–67. These pathways are
intricately involved in driving cell proliferation and conferring resis-
tance to apoptosis67. The overexpression of EGFR leads to an excess of
receptors on the cell surface, fostering uncontrolled cell growth and
division. This dysregulation can drive the transformation of normal
cells into tumor cells, creating a favorable environment for sustained
tumor cell survival68. Additionally, the protein encoded by PCLO is a
component of the presynaptic cytoskeletalmatrix, which is involved in
establishing active synaptic zones and in synaptic vesicle trafficking69.
Recent research has identified the expression level of PCLO as a
prognostic biomarker for esophageal squamous cell carcinoma70, and
a notable highmutation frequency (47.9%) of PCLO has been observed
in large Central European cohorts with gastric cancer71. In addition, to
further explore the transcriptional change of these 8 HRGs across
tumor and normal tissues, we conducted differential expression ana-
lysis using ccRCC patient data from the Gene Expression Omnibus
(GEO). We used twomRNA expression profiles of ccRCC patients from
GSE4669972 and GSE3689573 for analysis. The GSE46699 contains data
from 67 tumor tissues and 63 normal tissues. The GSE36895 contains
data from 29 tumor tissues and 23 normal tissues. We found that
among these 8 HRGs, 5 genes showed significantly differential
expression in both GSE46699 and GSE36895 datasets (FDR p-value <
0.05, as shown in Supplementary Fig. 9). In particular, MUC4 shows
high expression in tumor tissues in the GSE36895 dataset, but low
expression in tumor tissues in the GSE46699 dataset. Existing studies
reported that MUC4 expression is an independent prognostic factor
for overall survival in ccRCC patients74, and MUC4 mutation is asso-
ciated with an exophytic growth pattern of ccRCC75. Then, we com-
pared the differential expression levels of the top 20 ccRCC risk genes
identified by RL-GenRisk and other methods using the GSE46699 and
GSE36895 datasets. The results indicated that the top 20 genes iden-
tified by RL-GenRisk included a higher number (14) of genes that were
significantly differentially expressed in both GSE46699 and GSE36895
(FDR p-value < 0.05). Further details can be found in Supplemen-
tary Data 4.

To further investigate the expression patterns of the top 20 HRGs
in tumor cells and normal cells of ccRCC patients, we performed an
analysis utilizing single-cell RNA-seq data from ccRCC patients repor-
ted in a recent work76 (Supplementary Table 2). Uniform manifold
approximation and projection (UMAP) was used to visualize the dis-
tribution of 31,856 cells from kidneys in these patients in a two-
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dimensional plane (Fig. 3E). We used UMAP to visualize the expression
of the top 20 HRGs in different cells (Supplementary Fig. 10) and
plotted the distribution of expression of these genes in different cell
types (Supplementary Fig. 11). Subsequently, we assessed the expres-
sion levels of EGFR across different cell types within these patients
(Fig. 3F and Supplementary Fig. 11). Our investigation showed a sig-
nificant difference in EGFR expression between tumor cells and other
cells, (FDR p-value < = 1.21e-4, Wilcoxon signed-rank test, Supple-
mentary Fig. 12),with displaying higher expression levels in tumor cells
(Fig. 3G). Therefore, the significant upregulation of EGFR at both bulk
and single-cell levels in ccRCC patients suggested its potential as a
biomarker for ccRCC.

Expression level of protein encoded by the EGFR is significantly
correlated with the prognosis of ccRCC patients
To reveal whether EGFR affects the prognosis of ccRCC patients, the
survival analysis is conducted utilizing clinical data and expression of
EGFR-encoded protein obtained from the TCGA dataset. We obtained
clinical data and reverse-phase protein array (RPPA) data of ccRCC
patients from TCGA. Progression-Free Survival (PFS)77 and Disease-
Specific Survival (DSS)78 were utilized to assess the relationship
between the expression levels of protein encoded by EGFR and the
survival of ccRCC patients. The ccRCC patients from TCGA were
categorized into two groups (top 25% and others) based on the
expression levels of protein encoded by EGFR. We analyzed the ten-

Fig. 3 | Independent datasets analysis. A Top 10 enriched pathways of the
Wikipathways based on the top 20 high-confidence genes (HRGs). B The expres-
sion levels of EGFR in tumor (n = 523) and normal tissues (n = 72) of ccRCC patients
fromTCGA,quantifiedusing Fragments PerKilobaseMillion (FPKM), “***” indicates
p-value < 0.001. Theboxplotdisplays the 25th, 50th (median), and 75th percentiles
as box bounds, with whiskers extending to minima and maxima within 1.5 ×
interquartile range. p-value = 2.07e-38, using the Wilcoxon signed-rank test.
C, D Survival curves of EGFR. ccRCC patients from TCGA were divided into two
groups based on the top 25% (n = 108) and others (n = 324) of expression levels of
protein encoded by EGFR, using Progression-Free Survival (PFS) and Disease-

Specific Survival (DSS) respectively. The red curve corresponds to the high
expression group, while the blue curve corresponds to the low expression group.
E UMAP plot of clustering of single-cell RNA-seq data from kidneys of ccRCC
patients. DC dendritic cell, NK natural killer cell, NKT natural killer T cell, TAM
tumor-associatedmacrophage, T-Reg regulatory T cell. FGene expression of EGFR
in different cells of ccRCC patients, with colors corresponding to the expression
values. G Violin plot displaying the normalized gene expression of EGFR in dif-
ferent cells of ccRCC patients in the single-cell RNA-seq data. Source data are
provided as a Source Data file.
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year survival rate following cancer diagnosis and plotted Kaplan-Meier
survival curves to illustrate the impact of EGFR encoded protein
expression on the prognosis of patients (Fig. 3C, D). The results of the
survival analysis revealed a significant association between the
expression levels of protein encoded by EGFR and the survival time of
ccRCC patients, with higher EGFR encoded protein expression being
correlated with poorer survival outcomes (KM log-rank p-value =
0.0018, PFS; KM log-rank p-value = 0.021, DSS). Our observations
revealed that theoverexpressionofprotein encodedbyEGFRmayplay
a critical role in cancer progression and could potentially serve as a
prognostic biomarker for ccRCC patients.

EGFR effectively promotes ccRCC progression in vitro and
in vivo
To verify the effect of EGFR expression on ccRCC progression, the
stable cells harboring EGFR knockdown were obtained using ACHN
(Fig. 4A, B) and 786-O cells (Fig. 4G, H). The protein and mRNA
expression of EGFR was quantitated by western blotting and qPCR,
respectively, and short hairpin RNA (shRNA)-2/3 showed promising
knockdown epointing out this issuefficacies for EGFR silencing
(Fig. 4A, B, G, H). The downregulation of EGFR significantly inhibits the
cell viability (CCK8 assay, Fig. 4C-ACHN, Fig. 4I-786-O) and migration

(transwell assay, Fig. 4E-ACHN, Fig. 4K-786-O). Furthermore,
decreased EGFR expression markedly promotes the ccRCC cell apop-
tosis (flow cytometry assay, Fig. 4D-ACHN, Fig. 4J-786-O) and represses
cell colony formation in vitro (colony assay, Fig. 4F-ACHN, Fig. 4L-786-
O). Also, the EGFR overexpression was detected using qPCR (Fig. 4M)
and western blotting (Fig. 4N), and it promotes themigration of 786-O
cells significantly (Fig. 4O). Moreover, the EGFR inhibitor, erlotinib,
was further used to inhibit its activity, and the data indicated that
erlotinib can effectively inhibit ccRCC cell migration (Fig. 5A middle
panel) and growth (Fig. 5A lower panel) as well as promotes the
apoptosis (Fig. 5A upper panel) in vitro. In vivo, both erlotinib and
EGFR downregulation can markedly repress the tumor growth
(Fig. 5B, C). Taken together, these results suggested that EGFR can
significantly promote ccRCC cell progression as a risk factor.

The PCLO knockdown significantly impaired the ccRCC
progression
To investigate the effect of PCLO on the progression of ccRCC in vitro,
we utilized four distinct shRNAs to knock down PCLO expression in
293T cells, identifying shPCLO-1 as the most effective (Fig. 6A, B).
Subsequently, we obtained the PCLO knockdown 786-O cells using
shPCLO-1 (Fig. 6C). Thedownregulation of PCLO significantly inhibited

Fig. 4 | EGFR dysregulation significantly affect ccRCC cell progression in vitro.
A, B The protein and mRNA expression of EGFR in stable cells of ACHN-shEGFR.
n = 4 independent samples. C. The cell viability of ACHN-shEGFR cells. n = 10 from
three biological replicates. D–F The assays of apoptosis (n = 4 independent
experiments), migration (n = 5 independent experiments), and colony formation
(n = 3 independent experiments) in ACHN-shEGFR cells. G, H The protein and
mRNA expression of EGFR in stable cells of 786-O-shEGFR. n = 4 independent
samples. I The cell viability of 786-O-shEGFR cells. n = 10 from three biological

replicates. J–L The assays of apoptosis (n = 3 independent experiments), migration
(n = 5 independent experiments), and colony formation (n = 3 independent
experiments) in 786-O-shEGFR cells.M,NOverexpression of EGFR in 786-O cells at
mRNAandprotein levels. n = 4 independent samples.OThemigration assayof 786-
O-EGFR cells. n = 5 independent experiments. NC negative control, ns no sig-
nificant. The data were shown as the mean ± SEM. One-way ANOVA (B–F, H–K).
Two-tailed unpaired Student’s t-test (L–O). Source data are provided as a Source
Data file.
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cell viability (Fig. 6D) and promoted apoptosis (Fig. 6E). Additionally,
the reduction of PCLO expression significantly suppressed cell colony
formation (Fig. 6F), migration (Fig. 6G), and invasion (Fig. 6H). To
further investigate the effects of PCLO knockdownon themorphology
and motility of ccRCC cells, a high-content imaging analysis system
was employed. The results revealed that PCLO knockdown sig-
nificantly reduced both the length and width of the cells at multiple
time points (Fig. 6I), as well as their area and perimeter (Fig. 6J).
Notably, a reduction in cell movement speed was observed in 786-O-
shPCLO cells (Fig. 6K), leading to a shortened accumulated distance
(Fig. 6L). In addition, we performed the same intervention on PCLO in
another renal cancer cell line, ACHN, and conducted related assays to
assess proliferation and metastatic potential. The results showed that
stable knockdown of PCLO in ACHN cells (Supplementary Fig. 24A)
significantly reduced their proliferation (Supplementary Fig. 24B),
colony formation (Supplementary Fig. 24D), migration (Supplemen-
tary Fig. 24E), and invasion (Supplementary Fig. 24F) abilities, while
increasing the apoptosis index (Supplementary Fig. 24C). High-
content imaging analysis system also indicated that knockdown of

PCLO in ACHNnot only decreased cell perimeter but also impaired the
cells’ motility (Supplementary Fig. 24G–I). Overall, the PCLO knock-
down markedly inhibited the progression of ccRCC.

Discussion
In this study, we developed RL-GenRisk, an approach utilizing deep
reinforcement learning to enhance ccRCC risk gene identification by
integrating network knowledge with gene mutation data. By con-
sidering the risk gene identification as a node selection problem, we
model the ccRCC risk gene identification as aMarkovDecisionProcess,
reducing the dependencyon labeled data. Furthermore, we designed a
data-driven reward and employed the DQN algorithm to optimize RL-
GenRisk. RL-GenRisk exhibits a substantial improvement in the task of
ccRCC risk gene identification and reveals several potential risk genes.

RL-GenRisk successfully identified known ccRCC risk genes.
Among the top 20 ccRCC risk genes identified byRL-GenRisk, 12 genes
are listed in the ccRC known risk gene datasets (IntOGen, NCG, and the
Merged dataset) and recognized as ccRCC risk genes in prior research,
including VHL79,80, PBRM181,82, SETD283,84, BAP185,86, MTOR87,88, ATM89,90,

（
）

Fig. 5 | EGFR inhibition represses ccRCC cell progression in vitro and in vivo.
A Erlotinib markedly promoted apoptosis and inhibited migration and colony
formation of ccRCC cells. n = 3 independent experiments. B, C Both erlotinib (B)
(n = 3mice per group) and EGFR knockdown (C) (n = 3mice per group) significantly

reduced tumor growth in vivo. The datawere shown as themean ± SEM. Two-tailed
unpaired Student’s t-test (A). Two-way ANOVA (B, C). Source data are provided as a
Source Data file.
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Fig. 6 | Loss of PCLO significantly impaired the ccRCC progression. A, B The
protein and mRNA expression of PCLO after transient transfection of shPCLO
lentivirus in 293T cells. n = 3 independent samples. C The protein expression of
PCLO in cells of 786-O-shPCLO. D The cell viability of 786-O-shPCLO cells. n = 10
from three biological replicates. E–H The assays of apoptosis, colony formation,
migration, and invasion in 786-OshPCLO cells. n = 3 independent experiments.
I, J Average morphology of 786-O-shPCLO cells per well, including cell width,

length, area, and perimeter, was evaluated at multiple time points using a high-
content cell imaging analysis system. n = 10 independent samples. K, L Average
movement speed and accumulated distance of 786-O-shPCLO cells per well. n = 10
independent samples. NC negative control, ns no significant. The data were shown
as the mean ± SEM. One-way ANOVA (B). Two-tailed unpaired Student’s t-test
(D–L). Source data are provided as a Source Data file.
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SPEN91, TP5392, KMT2D (also known as MLL2)93, SMARCA494,95, and
PTEN96,97. This demonstrates that RL-GenRisk can effectively identify
ccRCC risk genes. Interestingly, 8 of the top 20 identified ccRCC risk
genes are not listed in the known ccRCC risk gene datasets, including
MUC4, DST, PABPC1, PCLO, PDE4DIP, USH2A, EGFR, and FLG. We
visualized the top 20genes identified byRL-GenRisk in the PPI network
using the STRING-db. These genes were significantly interconnected
within the PPI network (one-sided t-test, FDR p-value = 2.72e-07). To
illustrate the interactions between known ccRCC risk genes and the
potential risk genes, we used a bipartite graph (see Supplementary
Fig. 16). Among the potential risk genes, EGFR exhibited the most
interactions with known ccRCC risk genes, followed by MUC4 and
PCLO. Notably, both EGFR and PCLO were validated in our biological
experiments. In addition, some recent studies have found that PDE4-
DIP, FLG, and USH2A are associated with ccRCC. For example,
methylation levels of PDE4DIP were found to be associated with
reduced overall survival in ccRCC patients98. FLG was found to be
specificallymutated in specific subtypes of ccRCC99. USH2Awas found
to have a significant co-mutation with well-known high-confidence
ccRCC risk genes VHL and PBRM1 in ccRCC patients100,101. While the
genes within these identified candidates have been shown a correla-
tion with ccRCC, theirmolecularmechanismwithin ccRCCneeds to be
further investigated.

Furthermore, we validated two top ccRCC risk genes, EGFR and
PCLO, identified by RL-GenRisk through independent datasets and
biological experiments. The results indicated that EGFR exhibits sig-
nificant upregulation at both bulk and single-cell levels in ccRCC
patients. The overexpression of the protein encoded by EGFR is sig-
nificantly associated with poor survival of ccRCC patients. To explore
whether the few EGFR mutations detected in ccRCC patients are
functionally relevant, we analyzed EGFR protein expression levels
between ccRCC patients with andwithout EGFRmutations, as proteins
are the primary functional molecules in cellular processes. We use the
ccRCC patient data fromTCGA to perform analysis, dividing them into
groupswith andwithout EGFRmutations to assesswhether the protein
expression levels significantly differ between these two groups. The
results showed that EGFR protein expression levels were higher in
ccRCC patients carrying EGFR mutations (p-value = 0.017, Wilcoxon
signed-rank test, Supplementary Fig. 17). Moreover, we visualized the
interacting genes of EGFR using STRING-db (Supplementary Fig. 20). It
is shown that EGFR interacts with many genes. To further explore the
effect of these genes, we conducted pathway enrichment analysis on
these genes. The results showed that one ccRCC-related pathway and
three cancer-related pathways are enriched, including the ErbB sig-
naling pathway (FDR p-value = 4.99e-2), the PI3KAkt signaling pathway
(FDR p-value = 3.41e-7), MAPK signaling pathway (FDR p-value = 2.99e-
8), and the CKAP4 signaling pathway map (FDR p-value = 3.54e-7). The
ErbB signaling pathway has been found to play a critical role in the
initiation and progression of ccRCC102. The PI3K Akt signaling pathway
plays a crucial role in various cellular processes and is aberrantly
activated in cancers, contributing to the occurrence and progression
of tumors103. The MAPK signaling pathway is one such complex inter-
connected signaling cascade with frequent involvement in oncogen-
esis, tumor progression, and drug resistance104. The CKAP4 signaling
pathway map has been found to be involved in regulating the pro-
gression of various cancers105. The enrichment analysis results sug-
gested that the genes interacting with EGFR in the PPI network were
significantly enriched in pathways related to the initiation and pro-
gression of ccRCC, as well as tumor initiation and progression. Fur-
thermore, through comprehensive biological experiments, we
validated the impact of EGFR and PCLO on ccRCC progression. The
results demonstrated that decreased EGFR expression promotes
ccRCC cell apoptosis and suppresses colony formation. To confirm the
status of EGFR expression in ccRCC cells, we performed additional
experiments.We found that themRNAandprotein expression levelsof

EGFR in the 786-O and ACHN cells are significantly higher than that in
the human embryonic kidney (293T) cells using qPCR and western
blotting analyses (as shown in Supplementary Fig. 23). Accordingly,
these results showed that EGFR is overexpressed in both 786-O and
ACHNcell lines. Recent studies have indicated that thedownregulation
of certain receptor tyrosine kinases (RTKs) members can prevent the
progression of RCC. For instance, silencing AXL andMET using shRNA
may overcome the resistance to long-term sunitinib treatment in
metastatic RCC106. Additionally, inhibition of EphA2 can suppress
tumor growth both in vitro and in vivo, and restore the sensitivity of
sunitinib-resistant tumor cells to sunitinib107. Therefore, we proposed
that otherRTKs could produce the same effect, even theseRTKswould
play a synergistic role with EGFR in ccRCC. However, their roles in
ccRCC progression need to be further validated in the future. Addi-
tionally, the use of the EGFR inhibitor erlotinib effectively inhibits
ccRCC cell migration and growth in mice. While previous studies have
associated EGFR expression with RCC, functional studies directly
examining EGFR’s role in RCC cell lines have been limited. Lee et al.
utilized shRNA to knock down EGFR on 786-O cells, suggesting that
EGFR knockdown inhibits the invasiveness of RCC cells in vitro and
tumorigenicity in vivo108. However, their conclusions were primarily
based on cell proliferation and branching morphogenesis assays, as
well as tumor xenograft experiments. Similarly, Wen et al. found that
EGFR knockdown reversed ADAMTS1-induced prometastatic char-
acteristics of RCC, thiswasonly verified byCCK8 andMatrigel invasion
assay109. Therefore, comprehensive experiments are essential to fur-
ther elucidate the role of EGFR in ccRCC cell lines. In our study, we
stably knocked down EGFR expression in both 786-O and ACHN cells
using shRNA. We conducted a series of experiments, including CCK8,
apoptosis assays, transwell assays, colony formation assays, and in vivo
experiments, which comprehensively explored the function of EGFR in
ccRCC. Our results demonstrate that knocking down EGFR sig-
nificantly inhibits both the in vitro proliferation and metastasis of
ccRCC cells, as well as tumor growth in vivo. These results not only
demonstrate RL-GenRisk’s capability in identifying ccRCC risk genes
but also provide further insights into the role of EGFR in ccRCC cell
lines. Moreover, the biological experimental results of PCLO showed
that knocking down PCLO expression in vitro significantly inhibited
ccRCC progression. These biological experimental results highlighted
the potential therapeutic significance of our findings.

In addition,weexplored incorporatingmutation type information
and pathogenicity scores into the feature vectors of RL-GenRisk. For
mutation type, we utilized the TCGA data to calculate the proportion
of each mutation type relative to the total number of mutations for
each gene. For the pathogenicity score, we computed the CADD
score110 for each mutation, and the average CADD score across all
mutations in a gene was used as the pathogenicity score feature. By
adding different types of features, we evaluate three variations of RL-
GenRisk, including mutation type only, pathogenicity score only, and
both. The results show that after adding mutation type information
separately to the feature vector, RL-GenRisk showed improvement in
AP on the NCG dataset but showed decreases in DCG, N-DCG, and
DCG-AUC on the NCG dataset, as well as decreases in AP, DCG, N-DCG,
and DCG-AUC on the IntOGen and the Merged dataset (as shown in
Supplementary Fig. 13). After adding pathogenicity scores separately
to the feature vector, RL-GenRisk showed improvements in AP, DCG,
andN-DCGon theNCG and decreases in DCG-AUCon theNCG and the
Merged dataset, as well as decreases in AP and DCG-AUC on the
IntOGen dataset (as shown in Supplementary Fig. 13). Moreover, after
adding both mutation type information and pathogenicity scores to
the feature vector, RL-GenRisk showed a decrease in AP, DCG, N-DCG,
and DCG-AUC across the IntOGen, NCG, and the Merged dataset (as
shown in Supplementary Fig. 13). These results indicated that adding
more clinically informative featuresmight improve theperformanceof
the method, but further exploration is needed.
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Furthermore, we analyzed the overlap between the results of
different methods by calculating the Jaccard similarity coefficient for
the top 100 genes identified by any two methods (Supplementary
Fig. 18). The result indicated that the top 100 genes identified by
Hierarchical HotNet and HotNet2 have the highest degree of overlap
(with Jaccard similarity coefficient = 0.39), as they are similarmethods.
In general, there was a low overlap between the top 100 genes iden-
tified by different methods (Supplementary Fig. 18). Only one gene
VHL is included in all the top 100 genes fromdifferentmethods. VHL is
a known risk gene for ccRCC and with the highest mutation frequency
in TCGA ccRCCpatients. In addition, seven geneswere identified in the
top 100 genes by at least six out of the nine methods, including VHL,
PBRM1, SETD2, BAP1, MTOR, SPEN, and ATM. These six genes are all
well-established risk genes for ccRCC. These results suggested that
while different methods for ccRCC risk gene identification exhibit
different performances, few genes like VHL, consistently emerge
acrossmultiplemethods. Then,we conducted an analysis todetermine
the minimum number of genes required to encompass all known
ccRCC risk genes for each method. Since nCOP only outputs a ranked
list of genes anddoes not allowusers to adjust the list length by setting
different thresholds, we are unable to assess the minimum number of
genes required to encompass all known ccRCC risk genes. For other
methods, the results show that all testedmethods require at leastmore
than 8000 genes to encompass all known ccRCC risk genes (Supple-
mentary Table 7). This leads to a very low proportion of known risk
genes in the identified gene list ( <1%). Including all known risk genes
introduces numerous false positives, which significantly decreases the
precision of the results. A potential future direction could involve
developing methods that can identify all (or most) known risk genes
while maintaining high precision.

Since the interpretability of most reinforcement learning
systems remains a significant challenge, to enhance under-
standing, we have incorporated several cues in the output to
explain why certain genes are more or less likely to be associated
with ccRCC. Our hypothesis is that genes with high ranks are
likely to be in close proximity to known ccRCC-related genes. We
have provided two types of supplementary information to mea-
sure the closeness between the predicted genes and known high-
risk ccRCC genes. First, other than gene rank, we also output the
average shortest path length between each gene and all known
risk genes in the PPI network, as well as the FDR p-values obtained
by the one-sided t-test that measures whether the average
shortest path length between each gene and the known risk genes
was significantly shorter. Second, we output the average cosine
similarity between each gene’s feature embeddings and the fea-
ture embeddings of known risk genes, as well as the FDR p-values
obtained by the one-sided t-test that measures whether the
average cosine similarity of feature embeddings between each
gene and the known risk genes was significantly higher. Supple-
mentary Table 6 shows an example of the output of the top genes
identified by RL-GenRisk. To further strengthen these analyses
and facilitate intuitive interpretation, RL-GenRisk can output the
comparison of the top K genes with K randomly selected genes
(randomly sampled 100 times) in terms of their average shortest
path lengths to known risk genes in the PPI network, as well as
their average cosine similarities of feature embeddings with
known risk genes. Users can evaluate the reasonableness of the
top K predicted genes. For illustration purposes, we set K = 20 in
this example. The results show that the average shortest path
lengths between the top 20 genes identified by RL-GenRisk and
known risk genes within the PPI network are significantly shorter
(FDR p-value = 2.73e-4, one-sided t-test, Supplementary Fig. 21A),
and the average cosine similarities of the feature representations
between the top 20 genes and known risk genes are significantly
higher (FDR p-value = 4.61e-8, one-sided t-test, Supplementary

Fig. 21B). These results indicate that the top 20 genes identified
by RL-GenRisk are closely connected to known risk genes in both
the network structure and feature space.

To illustrate whether the top 20 genes identified by each method
are included in the known ccRCC risk gene datasets, we provided
heatmaps in Supplementary Fig. 4. The results indicated that RL-
GenRisk identified the highest number of known risk genes (12 genes)
among the top 20 genes, followed by nCOP (11 genes), highlighting RL-
GenRisk’s capability in identifying ccRCC risk genes. Additionally, we
provided the runtime of various methods in Supplementary Table 5.
The results showed that HotNet2 and Hierarchical HotNet had the
longest runtimes among the methods tested. In comparison, RL-
GenRisk was completed in approximately 8 hours. Although some
methods had shorter runtimes than RL-GenRisk, their overall perfor-
mance was inferior to that of RL-GenRisk.

RL-GenRisk can also be applied to identify risk genes for other
types of cancer. We evaluated RL-GenRisk and other methods using
additional tumor datasets, specifically focusing on Bladder Urothelial
Carcinoma (BLCA) and Glioblastoma Multiforme (GBM) data from the
TCGAdataset. The known riskgenes for BLCA andGBMwereextracted
from the same source as ccRCC in our study. The results indicated that
RL-GenRisk outperformed other methods on both BLCA and GBM (as
shown in Supplementary Figs. 14 and 15), highlighting the potential of
RL-GenRisk for application in other cancer types.

Methods
Our research complies with all relevant ethical regulations and
guidelines. Animal handling and experimental procedures were
approved by the Ethical Review Committees of West China Hospital,
Sichuan University. The animal studies were authorized by the Animal
Ethics Review Committees of the West China Hospital, China (No.
20230214007). All animal experiments were strictly implemented in
compliance with the NIH Guide for the Care and Use of Laboratory
Animals.

Data preparation
Consistent with previous studies29,31, we used the information from the
PPI network together with gene mutation data from patients. The
feature matrix H for nodes is constructed based on the topological
information of genes in the PPI network, the mutation frequency of
genes in ccRCC patients, and the genes’ length.

PPI networks
We collected protein-protein interactions from HPRD49, STRING-db50,
Multinet51, IRefIndex52, and HumanNet53. Then, following the previous
study31, we performed a two-step preprocess on these PPI networks.
First, we excluded the nine longest genes (TTN, MUC16, SYNE1, NEB,
MUC19, CCDC168, FSIP2, OBSCN, GPR98) as they tend to acquire
numerous mutations by chance and cover many patients31. Second, to
mitigate the noise due to the dense connectivity in PPI networks, we
applied the diffusion state distance (DSD)111 metric on these PPI
networks.

Gene mutation data
We collected somatic mutation of genes in ccRCC patients from The
Cancer Genome Atlas. Each gene corresponds to a patient list con-
taining patients who carry mutations in that gene.

Feature representation
The initial feature of gene v is represented ashv 2 R1 × k , where k is the
dimension. In RL-GenRisk, the node feature is flexible and can have
different dimensions. We set k = 3 in RL-GenRisk. Therefore, the initial
feature of gene v can be represented as hv = ½hð0Þ

v ,hð1Þ
v ,hð2Þ

v �, which
respectively measures the topological importance of v in the PPI net-
work, the mutation frequency in patients, and the length information
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of the gene. We first use the degree of v as the first dimension of hv

since it can represent the topological importance of v in the PPI net-
work:

hð0Þ
v =

DegreeðvÞ
μdegree

, ð1Þ

where Degree(v) represents the node degree of gene v in the PPI net-
work.μdegree is a hyperparameter for normalization.We setμdegree equal
to themaximumdegree of nodes in the PPI network. Then, the second
dimension of hv considers the mutation frequency of gene v in ccRCC
patients:

hð1Þ
v =

Nv
p

Np
, ð2Þ

where Nv
p represents the number of patients carrying mutation on v

and Np represents the total number of patients. Moreover, the initial
feature should consider the length information of the gene, since the
longer genes tend to includemoremutations by change. To dilute this
type of effect, the third dimension of hv is designed as follows:

hð2Þ
v =

LengthðvÞ
αNv

p
, ð3Þ

where Length(v) represents the gene length of v, and α is a normal-
ization parameter. We set α equal to the node number of a connected
subgraph in the PPI network that each patient carried mutations on at
least one gene in this subgraph. Finally, the initial feature of gene was
defined ashv = ½hð0Þ

v ,hð1Þ
v ,hð2Þ

v �, and the initial featurematrix for all genes
was represented as H 2 Rn× k , where n is the number of genes.

Key elements in RL-GenRisk
In RL-GenRisk, the identification of ccRCC risk genes is framed as a
Markov Decision Process. At each step, the policy of RL-GenRisk
receives the current state as input and selects an action. The action is
selecting a node that connects with the sampled subgraph and
appending this node to the sampled subgraph. Thus, this sampled
subgraph adds a new node at each step. A reward is obtained after
taking an action. Therefore, there are three key elements in RL-Gen-
Risk, including state, action, and reward. These three key elements are
defined as follows:

State
The state s at step t is represented as st, which consists of the feature
matrixH and the current subgraphGt sampled from thePPI network. In
the first step, RL-GenRisk creates an empty subgraph and randomly
adds a node to it. The design of incorporating the sampled subgraph
into the state allows RL-GenRisk to delve into localized network
structures. This enables RL-GenRisk to focus on the interaction rela-
tionships relevant to the current sampled subgraph at each step.
Therefore, the subgraph information in the state enables RL-GenRisk
to accurately estimate its current environment and adjust its actions
accordingly.

Action. At step t, the actionat is selecting anode that connectswith the
sampled subgraph Gt and appending this node to Gt. The action space
at step t is represented as At, which contains nodes that connect with
Gt. In detail, after getting Q values for all possible actions, RL-GenRisk
uses an ϵ-greedy strategy to select an action at:

at =
randoma 2 At if p< ϵ

argmaxa2At
Qðst ;a; θÞ otherwise,

(
ð4Þ

where Q(st; a; θ) represents the Q value of action a calculated by the
policy based on the current state st, θ stands for the parameters of the
policy.At represents the action space at step t. With a probability p not
exceeding ϵ, we select an action in action space randomly. Otherwise,
the action with the highest Q value is selected. The ϵ-greedy strategy
can enhance the exploratory nature of the policy, effectively pre-
venting the model from getting stuck in local optimal during training.
Same with the previous study112, we set ϵ equal to 0.95. To balance
exploration and exploitation, ϵ is decreased gradually during the
training process.

Reward. In reinforcement learning algorithms, the design of the
reward is crucial to the performance of the algorithm. In this study, we
designed a specific data-driven reward based on the current sampled
subgraph. The sampled subgraphGt at step t is expected to covermore
patients so that risk genes are more likely to appear in it. Instead of
focusing on an individual gene, RL-GenRisk focuses on a sampled
subgraph Gt with node feature matrix H. This makes RL-GenRisk
effectively leverage information from both the PPI network and gene
mutationdata.More importantly, this design of the rewardensures the
accurate identification of genes with high mutation frequencies, and
also identifies potential risk genes with low mutation frequencies but
functionally interacting with genes that have high mutation fre-
quencies. However, only considering the number of patients covered
by the sampled subgraph Gt is not enough. Longer genes are more
likely to mutate by chance in patients. Therefore, shorter genes with
high mutation frequencies are more likely to be risk genes31. To take
gene length into account, we integrate gene length information when
designing the reward. Thus, the single-step reward is higher when the
sampled subgraph coversmorepatients and the genes in the subgraph
have shorter lengths. The single-step reward rt at step t is designed as:

rt =Rt � Rt + 1,

Rt = δ 1� NGt
p

Np

 !
+ ð1� δÞ

X
v2Gt

LengthðvÞ
Nv

p
,

ð5Þ

where rt represents the single-step reward at step t. δ is a weight
hyperparameter. Rt provides an evaluation score of the current state,
with NGt

p representing the number of patients that carry at least one
mutation on the genes in the sampled subgraph Gt, N

v
p represents the

number of patients carrying mutations on gene v, and Np represents
the total number of patients. Length(v) represents the length of gene v.
The cumulative reward is defined as the sum of all single-step rewards.

Policy network
In RL-GenRisk, the policy takes the current state as input andoutputsQ
values for all possible actions. The policy of RL-GenRisk is represented
by a neural network which is usually referenced as the policy network.
Specifically, the policy of RL-GenRisk comprises two main compo-
nents: a graph convolutional network (GCN) and a node evaluation
network. We also use three multi-layer perceptrons (MLP) to perform
dimensionality transformation. The GCN aggregates neighborhood
information to get the representation for each node bymultiplying the
graph laplacian42 with the node feature matrix. Given the feature
matrixH 2 Rn× k , n is the number of nodes and k is the dimension, the
hidden representation of the l-th graph convolutional layer is calcu-
lated as:

Hl = σðLHl�1WlÞ, ð6Þ

where Hl represents the hidden representation of the l-th graph con-

volutional layer. L= D̂
�1

2ÂD̂
�1

2 represents the normalized graph lapla-
cian, which is used to aggregate neighborhood information. GCN
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preserves the original node signal by adding self-connections: Â= ~A+ I,
~A represents the adjacencymatrix and I represents the identity matrix.

D̂ represents the degreematrix for Â and D̂ii =
P

jÂij ,W
l represents the

trainable matrix of the l-th graph convolutional layer. σ represents the
non-linear activation function.

In RL-GenRisk, we use two graph convolutional layers. Before the
first graph convolutional layer receives data, we use anMLP to perform
dimensionality transformation on the initial features:

H0 =W1H, ð7Þ

whereH represents the initial featurematrix,W1 represents a trainable
projection matrix. H0 represents the input feature matrix of the first
graph convolutional layer.

Inspired by residual networks113, we concatenate the hidden
representationmatrices of twograph convolutional layerswithH0, and
use another MLP for dimension transformation to obtain the final
representations matrix Ĥ:

Ĥ=W2ðConcat ðH0,H1,H2ÞÞ, ð8Þ

where H1, H2 represent the hidden representation matrices of the two
graph convolutional layers, W2 represents a trainable projection
matrix, and Concat( ⋅ ) represents the concatenation operator.

At step t, after getting the representations matrix by GCN, RL-
GenRisk calculates the representation of the sampled subgraph
through the averaging pooling operation and uses the MLP for
dimension transformation:

ĤGt
=W3

P
v2Gt

Ĥv

SizeðGtÞ

 !
, ð9Þ

where ĤGt
represents the representation of sampled subgraph Gt, Ĥv

represents the representationof gene v, Size( ⋅ ) represents the number
of nodes in the sampled subgraph, and W3 represents a trainable
projection matrix.

Then, we use a two-layer MLP as the node evaluation network to
calculate the Q values for each action in action space:

Qðst ;a; θÞ=W5ðσðW4ðConcatðĤGt
, ĤvÞÞÞÞ, ð10Þ

where Q(st; a; θ) represents the Q value for action a based on the
current state st, θ stands for the parameters of the policy. ĤGt

repre-
sents the representation of sampled subgraph Gt, v represents the
gene that selected by actiona, and Ĥv represents the representation of
gene v. W4 and W5 represent two trainable projection matrices. σ
represents the non-linear activation function. By using a two-layerMLP
that can continuously update parameters during the training process
as the node evaluation network, RL-GenRisk can better predict Q
values for actions.More details about the policy network can be found
in Supplementary Table 3.

Policy training for high-confidence risk gene identification
Consistent with the previous study31, we sampled the training data,
randomly collecting 85% samples from 379 ccRCC patients before the
training process started. In the training process, since we model the
ccRCC risk gene identification as aMarkovDecision Process, the policy
of RL-GenRisk iteratively receives the current state as input, selects an
action, and obtains a reward. The DQN algorithm43, which is widely
used in reinforcement learning methods, is employed to train the
policy of RL-GenRisk. DQN uses two sets of Q values calculated by an
online network and a target network, respectively. The online network
in our study is the neural network of RL-GenRisk. The target network is
designed to prevent the online network from overestimatingQ values.

The architecture of the target network is the same as that of the online
network, but their parameters are different. In RL-GenRisk, the loss
function is defined as follows:

L=E½ðrt + γ max
at + 12At + 1

Qðst + 1;at + 1; θ
0Þ �Qðst ;at ;θÞÞ

2�, ð11Þ

where L represents the loss to be minimized. rt stands for the reward
received at the step t, and γ is the discount factor.
maxat + 12At + 1

Qðst + 1;at + 1; θ
0Þ represents the target network estimate of

the maximum expected Q value for the next state st+1 and possible
actionat+1.At+1 represents the action space.Q(st;at; θ) represents theQ
value calculated by the online network based on the current state st
and action at. θ and θ0 represent the parameters of the online network
and target network, respectively. θ is updated through gradient
backward based on the loss function. Then θ0 is updated through soft
updates based on the parameters of the online network as follows:

θ0 = τθ+ ð1� τÞθ0, ð12Þ

where τ represents a hyperparameter that controls the proportion of
each update. More details about the hyperparameters in RL-GenRisk
are shown in Supplementary Table 4. Moreover, we provided
recommended ranges for each hyperparameter in Supplementary
Table 4. Users can select hyperparameters within the recommended
ranges. Additionally, users who wish to try a wider range of
hyperparameter values can also use the grid search114 to select
hyperparameter values.

In the identification process, RL-GenRisk differs from existing
methods that predict outcomes following the same procedure as the
training process23,29,31. Instead, capitalizing on the advantage of RL-
GenRisk combined with reinforcement learning, we have designed a
concise and effective identification process. Specifically, the model
with the highest cumulative reward during the training process is
selected as the best model and loaded. The sampled subgraph is
initialized as empty, and all nodes in the PPI network are included in
the action space at the beginning. The policy calculatesQ values for all
genes, and subsequently, the final ranking list of ccRCC risk genes is
ordered based on these Q values. The higher Q value indicates higher
risk. We analyzed the top 20 high-confidence risk genes in our study:

HRGtop20 = fg 2 GjQðgÞ 2 Qtop20g, ð13Þ

where HRGtop20 represents the top 20 high-confidence risk genes. g
represents a gene and G represents the PPI network. Q(g) represents
theQ value of gene g andQtop20 represents the top 20 highestQ values
in the set of all Q values calculated at the identification process.
Researchers can select the number of top genes for verification based
on actual verification costs.

Performance evaluation
Known ccRCC risk genes were sourced from the IntOGen cancer-
specific database40, the Network of Cancer Genes (NCG) database54,
the Cancer Gene Census (CGC) database55, and a cancer risk gene set
derived from a recent comprehensive study by Bailey et al.56. The
known ccRCC risk genes used in our study are provided in Supple-
mentary Data 1. Due to the limited number of genes in the CGC (nine
genes) and Bailey et al. (twelve genes) lists, we ultimately used three
datasets to evaluate differentmethods: IntOGen, NCG, and a “Merged”
dataset that combined IntOGen, NCG, Bailey et al., and CGC. First, the
performance was evaluated using the Discounted Cumulative Gain
(DCG), which has been used for evaluating cancer risk gene
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identification in the previous study29. The DCG is calculated as:

DCG=
XN
i= 1

relgi

log2ði+ 1Þ
, ð14Þ

whereN represents thenumber of the identified ccRCC risk genes. relgi

is equal to 1 if the i-th gene gi is contained in the known risk gene
database, and 0 otherwise. Therefore, the higher the ranking of known
ccRCC risk genes in the prediction results, the higher the DCG score.
Following the previous study31, the top 100 identified ccRCC risk genes
were considered in the performance evaluation. The top 100 genes
identified by different methods are listed in Supplementary Data 2.
Additionally, to provide amore comprehensive evaluation of different
methods, we presented DCG curves and calculated the area under the
DCGcurve.We also used thenormalizedDCG (N-DCG) and the average
precision (AP) as evaluation metrics. The N-DCG is calculated as:

N-DCG=
DCG
I-DCG

,

I-DCG =
XN
i= 1

relidealgi

log2ði+ 1Þ
ð15Þ

where relidealgi
is the relevance score of the item at gi in the ideal

ranking. The AP is calculated as:

AP =
1
N

X100
i= 1

PðiÞ � relgi
, ð16Þ

where N represents the number of the ccRCC risk genes. P(i) repre-
sents the precision for the top i genes, which is calculated by dividing
the number of known risk genes in identified genes by the total
number of identified genes. relgi

is equal to 1 if the i-th gene gi is
contained in the known risk gene database, and 0 otherwise.

Threshold selection for top K genes
To determine the optimal number of top K genes for downstream
analysis, we evaluated the proportion of known ccRCC risk genes
across various values of K (where K = 20, 30, 40,…, 100).We observed
thatwhenKwas set to 20, the average proportion of known ccRCC risk
genes exceeded 50% (Supplementary Fig. 19). As K increased, the
proportion of known ccRCC risk genes decreased (Supplementary
Fig. 19). Based on this observation, we suggested that selecting K = 20
generates a gene set with a higher likelihood of including unknown
ccRCC risk genes. Additionally, considering the potential downstream
analysis, selecting K = 20 kept the analysis cost within a manageable
range in our study.

Statistical analysis
Gene set enrichment analysis. We used the g:Profiler61 for running
functional enrichment analysis of the top 20 high-confidence risk
genes identified by RL-GenRisk. g:Profiler maps genes to known
functional information sources and detects statistically significantly
enriched terms.Weperformed enrichment analysis onGeneOntology,
Human Phenotype Ontology, and WikiPathways. We used FDR p-value
< 0.05 as the significance threshold.

Survival analysis. Clinical data of ccRCC patients and protein
expression data of EGFR were obtained from TCGA. We used
cSurvival115 to perform progression-free survival and disease-specific
survival analysis on these data. Progression-free survival utilizes the
time from randomization or initiation of treatment to the occurrence
of disease progression or death77. Disease-specific survival refers to
deaths caused specifically by a particular disease78. Patients were
categorized into quartiles based on the expression levels of protein

encoded by EGFR. The Kaplan-Meier estimator was used to generate
survival curves, and the difference was assessed using the log-
rank test116.

In vitro and in vivo experiments
Cell lines. ACHN and 786-O cells were purchased from Shanghai
Zhong Qiao Xin Zhou Biotechnology Co., Ltd. (Shanghai, China), and
were cultured in DMEMandRPMI-1640medium (HyClone, Utah, USA),
respectively, supplemented with 10% fetal bovine serum (FBS, Gibco,
Australia) and 1% antibiotics (penicillin and streptomycin, HyClone) in
a humidified incubator containing 5%CO2 at 37 °C. The stable cell lines
of ACHN-shEGFR, 786-O-shEGFR, 786-O-EGFR, ACHN-shPCLO, and
786-O-shPCLO were obtained as described previously117.

High-content screening analysis. Cells were inoculated into a 96-well
plate at an optimal density to ensure ideal growth and interaction. A
high-content live-cell imaging system was utilized to monitor the cells
at multiple time points, assessing various parameters. This imaging
system, equippedwithfluorescencemicroscopy capabilities, allows for
real-time visualization of cell morphology and dynamics. At each time
point, images were automatically captured, focusing on specific areas
of interest within each well. The analysis included measuring cell
perimeter, calculating movement speed and accumulated distance.
The above analysiswas doneusingOpera Phenix Plus andHarmony 5.2.

Western blot analysis. Total protein was extracted using TPER solu-
tion from Thermo Fisher Scientific. The protein concentration was
measured using a BCA kit from Pierce. The proteins were separated
using 10% SDS-PAGE. The proteins were transferred onto a PVDF
membrane, and the membrane was blocked with 5% skimmedmilk for
1 h at roomtemperature (RT). Then, themembranewas incubatedwith
primary rabbit anti-human EGFR antibodies (R22778, ZenBio, WB:
1:1000), rabbit anti-PCLO antibody (HPA015858, Sigma-Aldrich, WB:
1:1000) andmouse anti-GAPDHantibody (250133, ZenBio,WB: 1:5000)
at 4 °C overnight. After three washes with TBST for 10 min, the mem-
brane was incubated with horseradish peroxidase (HRP)-conjugated
goat antirabbit secondary antibodies (458, MBL) for 1 h at RT. Finally,
the protein bands were detected using an HRP substrate. All experi-
ments were performed in triplicate.

Quantitative polymerase chain reaction (qPCR). Total RNA was
extracted from the cells using a QIAGEN kit (74104), and the RNA
concentration was determined using a NanoPhotometer from Implen
(München). cDNAwas synthesized using a RevertAid first-strand cDNA
synthesis kit from Thermo Fisher Scientific (Waltham). PCR was per-
formed using the following protocol: 98 °C for 2min and 40 cycles at
98 °C for 5 s and 60 °C for 10 s. The relative gene expression was cal-
culated using 2−ΔΔCt. β-Actin was used as an internal control. All
experiments were performed more than triplicate.

Cell counting kit-8 assay. The cell counting kit-8 (CCK-8) assay was
performed using a kit from Dojindo. A total of 3000 cells/well were
cultured in a 96-well plate for 24 h, and 10 μL of CCK-8 solution was
added to the wells. Then, the plate was incubated for 2 h at 37 °C, and
the optical density (OD) value was detected at 450 nm using a micro-
plate reader. All experiments were performed in triplicate.

Cell apoptosis. An Annexin V-Alexa Fluor 647/PI Kit was purchased
from4ABiotech (Suzhou, China). The cells were digested andwashed
twice with cold phosphate-buffered saline (PBS). Next, the 1 × binding
buffer was used to suspend cells to a concentration of 1−5 × 106 cells/
mL. Then 5 μL of Annexin V/Alexa Fluor 647 was added to 100 μL of
cells, and the mixture was incubated at RT for 5 min in the dark.
Finally, the flow cytometry assay was performed after adding 10 μL of
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20 μg/mL propidium iodide (PI) and 400 μL of PBS. Figures illustrat-
ing the gating strategy are provided in the Supplementary Materials.

Transwell assay. Transwell migration assays were conducted using a
Transwell chamber from Corning (REF 3422, Arizona, USA). Briefly,
Transwell chambers were placed on a 24-well plate. Fresh medium
containing 10% FBS in 600 μL was added to the lower chambers, and
(2–5) × 104 cells in 200 μL of medium without FBS were added to the
upper chamber. The 24-well plate was incubated at 37 °C for 48 h. Cells
that invaded through the chamber were washed, fixed (20minwith 4%
paraformaldehyde), and stained (30min with crystal violet). Then, the
upper chambers werewashed, photographed, and preserved under an
inverted fluorescence OBSERVER D1/AX10 cam HRC microscope
(Zeiss). Transferred cells were analyzed using ImageJ software.

Colony formation assay. The cells (500/well) were seeded into a
6-well plate and cultured at 37 °C for 7–10 days. Then, the clones were
imaged using a Celigo imaging cytometer fromNexcelom (Lawrence),
and the clones were counted using ImageJ software. All experiments
were performed in triplicate.

Animal study. Four-week-oldmale BALB/C-nu/numice were purchased
fromGemPharmatech. All thesemice weremaintained in pathogen-free
conditions at 24 °C/50% humidity, with a light/dark cycle for 12 h, and
given a free supply of food (reproductivediet, catalognumber: F010201)
and water. A total of 5 × 106 cells were inoculated into the right flank of
mice, and the tumorvolumewas recordedevery 3days starting fromday
17 after injection of the tumor cells. Mice were administered with erlo-
tinib (S1023, Selleck, Shanghai, China) at a dose of 50mg/kg. The tumor
volume was calculated using the following equation: L ×W2 ×0.5236,
where L is tumor length and W is tumor width117. The maximum tumor
diameter allowedby the Ethics Committee is 2 cm.Weensured that each
time mice were sacrificed the maximal body weight loss did not exceed
the limit of 20%. The animal procedures were approved by the ethics
committee of West China Hospital, Sichuan University.

Statistical analysis. All data are presented as the mean ± standard
error of the mean (SEM) or standard deviation (SD). Statistical sig-
nificance for the comparison of multiple groups (>3) and between the
groups was determined using analysis of variance (ANOVA) and Stu-
dent’s paired t-test, respectively, inGraphPadPrism9.0.p-value < 0.05
was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets analyzed in this article are publicly available. The HPRD
network is available at http://www.hprd.org/. STRING is available at
https://string-db.org/. Multinet and IRefIndex are available at https://
github.com/raphael-group/hotnet2/tree/master/paper/data/
networks. HumanNet is available at https://staging2.inetbio.org/
humannetv3/. PCNet is available at https://www.ndexbio.org/viewer/
networks. Thedata of ccRCCpatients fromTCGA is available at https://
portal.gdc.cancer.gov/. The single-cell RNA-seq data of ccRCCpatients
is available at https://singlecell.broadinstitute.org/. The GEO datasets
of ccRCC patients are available at https://www.ncbi.nlm.nih.gov/geo/.
Data for enrichment analysis is available at https://biit.cs.ut.ee/
gprofiler/gost. Source data are provided with this paper.

Code availability
The source code of RL-GenRisk and the trained model can be down-
loaded from the GitHub repository at https://github.com/23AIBox/RL-
GenRisk.
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