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Microbes use a range of genetic codes and gene structures, yet these are often
ignored during metagenomic analysis. This causes spurious protein predic-

tions, preventing functional assignment which limits our understanding of

ecosystems. To resolve this, we developed a lineage-specific gene prediction
approach that uses the correct genetic code based on the taxonomic assign-
ment of genetic fragments, removes incomplete protein predictions, and
optimises prediction of small proteins. Applied to 9634 metagenomes and
3594 genomes from the human gut, this approach increased the landscape of
captured expressed microbial proteins by 78.9%, including previously hidden
functional groups. Optimised small protein prediction captured 3,772,658
small protein clusters, which form an improved microbial protein catalogue of
the human gut (MiProGut). To enable the ecological study of a protein’s pre-
valence and association with host parameters, we developed InvestiGUT, a tool
which integrates both the protein sequences and sample metadata. Accurate
prediction of proteins is critical to providing a functional understanding of
microbiomes, enhancing our ability to study interactions between microbes

and hosts.

Microbiome analysis has most often focused on the study of taxo-
nomic groups, although it is the functionality of these taxa that is of
interest'”. Microbes that perform the same function, or work together
to form a functional unit, are referred to as members of the same
‘guild”. Guild-based analysis of metagenomic datasets provides some
functional insight but represents an indirect method of studying
functionality, as the unit of study remains the taxa rather than directly
studying the function of interest. Such inference of functionality from
taxonomy is reductionist, given that even strains of the same species
vary in their functionality, thereby expanding the functional capacity
of microbial communities®.

Methods derived from functional ecology’~ can be applied to the
study of proteins and their functions. We term this ‘protein ecology’,
which aims to study the ecological distribution of proteins or functions
as the unit of study*>*'°. The direct study of proteins/functions takes

into account horizontal gene transfer, which can lead to the sharing of
the protein of interest outside the taxa being studied, although tran-
scriptional activity and genomic context can modify the functionality
of a protein™. It has been shown that horizontal gene transfer occurs
at high rates in the human gut microbiome, particularly in indus-
trialised populations', facilitating the spread of antibiotic resistance
genes, virulence factors, and other traits that affect the progression of
human disease®.

Computational methods such as AnnoTree have been developed
to study the distribution of functions across the microbial tree of life,
highlighting functional variation between taxa™. Studying the ecology
of proteins, rather than species, can provide insights into the ecolo-
gical importance of protein-bearing species and the ecological pres-
sures that drive protein evolution™. In the context of the human gut
microbiome, species-independent functional studies have provided

TFunctional Microbiome Research Group, RWTH University Hospital, Aachen, Germany. ZInstitute for Global Food Security, School of Biological Sciences,

Queen’s University Belfast, Belfast, UK. 3Department of Computer Science, Aberystwyth University, Aberystwyth, UK.

e-mail: thitch@ukaachen.de

Nature Communications | (2025)16:3204


http://orcid.org/0009-0008-4418-4012
http://orcid.org/0009-0008-4418-4012
http://orcid.org/0009-0008-4418-4012
http://orcid.org/0009-0008-4418-4012
http://orcid.org/0009-0008-4418-4012
http://orcid.org/0000-0002-3808-206X
http://orcid.org/0000-0002-3808-206X
http://orcid.org/0000-0002-3808-206X
http://orcid.org/0000-0002-3808-206X
http://orcid.org/0000-0002-3808-206X
http://orcid.org/0000-0002-7229-5595
http://orcid.org/0000-0002-7229-5595
http://orcid.org/0000-0002-7229-5595
http://orcid.org/0000-0002-7229-5595
http://orcid.org/0000-0002-7229-5595
http://orcid.org/0000-0003-2244-7412
http://orcid.org/0000-0003-2244-7412
http://orcid.org/0000-0003-2244-7412
http://orcid.org/0000-0003-2244-7412
http://orcid.org/0000-0003-2244-7412
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58442-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58442-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58442-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58442-w&domain=pdf
mailto:thitch@ukaachen.de
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58442-w

insights into the association of bile acid and sulphur metabolic genes
with colorectal cancer”’"®, and type 3 secretion system effectors with
human health conditions".

Gene catalogues also place the proteins/genes as the unit of study
by providing a reference source of non-redundant genes for either
descriptive studies of a microbiome?, or targeted analysis of microbial
functionality®*. So far, each gene catalogue has ignored the diversity
of genetic codes used by bacteria*** and fails to account for the
existence of eukaryotic multiple exon genes®. This is indicative of the
trend in human gut microbiota research to focus on prokaryotes,
neglecting other domains”. This is detrimental as eukaryotes and
viruses directly influence human health, including via immune
modulation®,

Further to this, several critical issues in genome annotation, par-
ticularly when applied across diverse taxa have been identified”. One
of the major challenges identified is the variability in gene prediction
accuracy, where certain tools excel at predicting specific gene types in
particular taxa, but fail when applied to others. This inconsistency
stems from the vast diversity in genetic structures, including variations
in coding sequences, regulatory elements, and the genetic codes used
by different organisms. Additionally, prokaryotic annotation tools
often perform poorly when applied to eukaryotic genes, especially
those with complex exon-intron structures, while tools designed for
eukaryotic genomes may overlook small, overlapping genes com-
monly found in prokaryotes®. The limitations of current annotation
tools are compounded by the lack of comprehensive training datasets,
particularly for non-model organisms, especially lacking those from
diverse lineages, leading to errors in gene predictions and functional
annotations. As a result, the incomplete or inaccurate annotation of
metagenomic datasets can obscure important biological functions,
particularly in diverse microbial communities. These challenges have
started to be addressed by the introduction of ‘re-annotation’
techniques® and initiatives to clean-up consensus assemblies and
annotations®*>, While these solutions address genomes, microbiota
vary greatly, meaning de novo gene prediction is essential. As of yet, no
lineage-directed gene prediction method exists for microbiome
analysis.

We present a workflow using the taxonomy of metagenomic
contigs to inform protein sequence prediction. Application of this
approach to the human gut uncovered a multitude of previously
missed proteins and provided an improved gene catalogue. To facil-
itate protein ecology studies of the human gut, we developed Inves-
tiGUT, a tool that identifies associations between protein sequence
prevalence and host parameters.

Results

Lineage-specific gene prediction expands the human gut pro-
tein repertoire

A workflow for lineage-optimised gene prediction was developed by
selecting gene prediction tools based on the taxonomic assignment of
each metagenomically assembled sequence and customisation of each
tool’s parameters (genetic code, gene size) (Fig. 1a). Tool selection for
gene prediction was informed by initial testing of 13 tools on archaeal
(n=3), bacterial (n=17), fungal (n=3), and viral (n=3) species (total
species = 26). The quality of annotations from each tool was quantified
and compared using ORForise”. Given the variability of an individual
tool’s ability to predict all genes, we investigated the potential synergy
of combining two or three tools in tandem (Supplementary Table 3).
Given the small, but consistent increase in both full and partial genes
predicted by the combination of three tools, and the low cost in terms
of spurious genes compared to two tools, we chose to use the com-
bination of three tools that performed best for each taxonomic group.
While this approach does result in an inflation of spurious predictions,
below we have applied multiple approaches to study the benefit of this
approach. This includes metatranscriptomic analysis to identify

evidence for expression, and comparison with an independent gene
catalogue to provide independent validation. Based on these results,
we believe it is more advantageous to predict additional real proteins
at the expense of including spurious genes, than to risk excluding real
proteins.

This workflow was applied to 9677 metagenomes from 28 coun-
tries (Fig. 1b). In addition to the metagenomes, a non-redundant col-
lection of genomes representing the prokaryotic diversity within the
human gut was included for downstream analysis of the taxonomic
occurrence of proteins®. Taxonomic profiling of the metagenomic
samples was consistent with previous observations that identified
Bacteria as the dominant microbial domain in the human gut (Sup-
plementary Table 5). The annotation of contigs was observed to be
dependent on the database used, consistent with previous findings
and highlighting the need for greater characterisation of novel taxa to
improve coverage by the databases (Supplementary Table 6)*. The
predicted proteins were dominated by those originating from bacterial
contigs (58.4 +18.9%), followed by proteins on contigs that could not
be assigned to a specific domain by Kraken 2, termed unknown
(41.2+18.8%), then viruses (0.19 + 0.41%), archaea (0.15+ 0.65%), and
eukaryotes (0.03 +1.31%) (Supplementary Table 7). The high percen-
tage of taxonomically unassigned proteins, the unknown group, is in
line with current estimates that >50% of the gut microbiota has yet to
be cultured, hence complete genomes, which were used for taxonomic
assignment, do not exist for many gut microbes®*”’.

In total, 846,619,045 genes (metagenomes: 838,528,977, gen-
omes: 8,090,068) were predicted, with the majority originating from
contigs of bacteria or unknown assignment (Fig. 1c). In comparison,
the exclusive use of Pyrodigal across all metagenomes identified
737,874,876 genes (metagenomes: 730,237,038, genomes: 7,637,838),
meaning that the lineage-specific workflow identified an additional
108,744,169 genes (14.7%). While the use of multiple gene prediction
tools might be expected to inflate the number of predicted genes, the
majority of predictions were consistent across tools, except for
eukaryotes. For eukaryotic contigs, AUGUSTUS® resulted in sub-
stantially lower gene prediction numbers, reducing the harmonious
prediction of eukaryotic genes across all three tools (Fig. 1d). In addi-
tion to the lower number of genes predicted by AUGUSTUS, the
overlap between SNAP and Pyrodigal also highlights inconsistency.
This is likely due to the inability of Pyrodigal to predict multi-exon
genes, whereas both SNAP and AUGUSTUS predict exons and introns,
which is crucial for accurate gene prediction in eukaryotes®.

Enhanced coverage of the protein landscape from the

human gut

Lineage-specific gene prediction yielded a larger number of proteins
compared to any single approach. Therefore, we sought to confirm
that these were real proteins and not spurious predictions. To facilitate
comparison with a previously established protein catalogue, the Uni-
fied Human Gastrointestinal Protein (UHGP) catalogue®*, we derepli-
cated our >800 million proteins at 90% similarity to 29,232,514 protein
clusters, increasing the human gut protein landscape by 210.2% com-
pared to UHGP. We termed this protein catalogue the Microbial Pro-
tein Catalogue of the Human Gut (MiProGut).

Nearly 10,000 samples were used to generate MiProGut, but the
rarefaction of MiProGut suggests that greater diversity has yet to be
captured for all taxonomic groups (Fig. 2a). This was supported by
analysis of 100 permutations where 2397 samples were needed to
cover 50% of proteins in MiProGut, and for 90% coverage an average of
7824 samples were needed. Eukaryotic proteins were observed least
frequently, with the majority of these proteins being identified within a
few samples that were dominated by Eukaryotic contigs (Supplemen-
tary Table 5). The Western bias of included samples, as well as low
number of samples from developing countries may explain the rar-
efaction observation of further diversity. The inclusion of additional
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Fig. 1| Taxonomy-informed gene prediction workflow and its application to
the human gut. a The workflow consists of three major steps. Taxonomic
separation of either metagenomic contigs, or input genomes, into their respective
domains. The genetic code utilised by each lineage is then identified at the species
level, to account for variation within domains of life. For each domain-genetic code
grouping, the respective gene prediction tools are run, and then merged, removing
redundant predictions and incomplete gene predictions occurring at the edges of
contigs. b Geographical distribution of the human gut metagenomes used, with
darker colours indicating a greater number of samples originate from the country.

¢ The number of proteins predicted for each taxonomic domain. d The overlap
between gene prediction tools was identified for each domain to quantify each
tool’s variation in predictions. Visualisation is based on a variation of an upset plot,
where the number on the left is the number of overlapping protein predictions for
each domain with the tools indicated by the connected coloured circles. Abbre-
viations for tools are: MGA MetaGeneAnnotator, MGM MetaGeneMark, FGS Frag-
GeneScan, GMS GeneMarkS, GMS2 GeneMarkS2, GMST GeneMarkST, PY Pyrodigal,
SNAP SNAP, AUG AUGUSTUS.

samples may also reduce the number of protein clusters consisting of a
single protein sequence, known as singletons (n=14,043,436). This
frequency of singleton clusters is consistent with previous observa-
tions that most protein clusters are rare”, leading to the formation of
singletons. While singletons were rarely captured by metagenomic
sequencing, metatranscriptomic expression in human gut samples was
observed for 39.1% of singletons, confirming they are not spurious and
are functionally relevant to the microbiota.

MiProGut provides an improved resource for protein sequence
identification, but functional annotation is required to understand the
role of these proteins, both in relation to the microbiome, and their
impact on the host***. The majority (64.4%) of MiProGut proteins
lacked informative functional annotation when annotated with
eggNOG-mapper (Fig. 2b). Further annotation with MANTIS, which
integrates multiple functional databases, increased the annotated
fraction by 4.9% compared to all eggNOG assigned COG categories.
However, this included assignments to general functions. These values
re-highlight the high number of microbial proteins in the human gut
that lack meaningful functional annotation®.

Significant overlap was observed between MiProGut and UHGP,
with 75.7% of UHGP proteins being covered by MiProGut, whereas only
37.6% of MiProGut proteins were covered by UHGP (Fig. 2c). The UHGP

proteins not captured by MiProGut are likely due to the different
sources each catalogue used to predict proteins, namely the focus on
genomes for UHGP and metagenomes for MiProGut. As UHGP was
generated from prokaryotic genomes, the majority of MiProGut pro-
teins matching UHGP were of bacterial, archaeal, or unknown origin.
Conversely, only 16.6% of viral and 0.3% of eukaryotic MiProGut pro-
teins matched UHGP due to their exclusion (Supplementary Table 8).
Functionally this means MiProGut is enriched with eukaryotic func-
tions, for example there were 413 protein clusters assigned to ‘nuclear
structure’ in MiProGut while only seven in UHGP. While the identifi-
cation of overlapping proteins between the two catalogues supports
that these proteins have been observed previously, further evidence is
required to validate them as real and not spurious.

Given that MiProGut accounted for a greater range of function-
ality, including that from non-bacterial domains, we aimed to quantify
the impact of this on our ability to study the human gut microbiota.
Therefore, we quantified the expression captured in 862 metatran-
scriptomic samples from three studies (Fig. 2d)"*>*. We identified
transcriptional evidence for 13,756,670 MiProGut proteins (47.1%),
compared to 7,689,106 UHGP proteins (55.7%). This included 22.7% of
the MiProGut protein clusters containing eukaryotic proteins, 35.9% of
the viral-containing clusters, and 45.4% of archaeal-containing clusters.
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Fig. 2 | Taxonomy-informed gene prediction expands the protein landscape of
the human gut microbiome. a For each taxonomic group, as well as the cumu-
lative protein repertoire of the proteins within the MiProGut (loglO scale), rar-
efaction analysis was conducted across all studied metagenomes. b Functional
annotation of the 29,232,514 MiProGut proteins based on COG functional group-
ings via eggNOG-mapper annotation. ¢ Comparison of MiProGut (green) to UHGP
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n=682, Oyarzun et al. 2022: n =100, Zhang et al. 2018: n =100) by both MiProGut
and UHGP. The boxplots include a line in the centre indicating the median, the
boxes represent the interquartile range, and the whiskers represent the minimum
and maximum values, not including outliers.

Given the increased number of expressed proteins, we calculated the
aligned fraction of reads for each of the 862 metatranscriptomes.
Across all samples, MiProGut covered an additional 22.9 + 9.9% reads
compared to UHGP. The largest increase occurred in a Spanish cohort
where MiProGut increased read coverage by an additional
41.6 +8.6%" In addition to the expression of proteins, we used the
prediction of proteins by multiple tools and the protein cluster,
including multiple proteins (=2 members), to create a high-quality
subset of 25,266,245 (86.4%) protein clusters (MiProGut-HQ).

The inclusion of genomes representative of all prokaryotes
detected in the human gut allowed us to investigate the occurrence of
protein clusters across different phylogenomic distances. Of the
29,232,514 protein clusters in MiProGut, 19.6% (5,734,391) were
detected within a genome, and only 927,384 (3.2%) occurred in gen-
omes assigned to multiple species (Supplementary Fig 1a). To better
assess the taxonomic range at which each protein cluster is shared, we
evaluated the genus (Supplementary Fig 1b), and phylum level (Sup-
plementary Fig 1c) and observed 142,342 and 19,320 protein clusters to
be shared across multiple taxa at each level, respectively. To identify
the most frequently shared protein clusters, we filtered for those

present in >10 species and >2 phyla. Of these 2423 clusters, 2197
(90.6%) were present in Firmicutes_A, a division of the phylum Bacil-
lota (formerly Firmicutes) (Supplementary Fig 1d). As viruses are a
known mediator of horizontal gene transfer within the gut** we
investigated the protein clusters containing a protein of viral origin
(n=77,496) that also occurred in the reference genomes (n=2914)
(Supplementary Fig 1e). Of these, 75 protein clusters occurred in at
least two phyla and were annotated as including virulence and anti-
biotic resistance genes (Supplementary Fig 1f). The most promiscuous
viral protein cluster was identified as P4 primase83 (Supplementary
Table 9), detected within 58 species, which may suggest that P4 phage
acts as a corridor of horizontal gene transfer between core members of
the gut. The horizontal transfer of genes from prokaryotes into fungi
has been a driver of fungal evolution within gut ecosystems®. We
identified 87 protein clusters occurring within the prokaryotic refer-
ence genomes, which also contain a eukaryotic protein, suggesting
they may be examples of prokaryotic genes transferred to eukaryotes
(Supplementary Fig 1g). These findings support previous findings that
horizontal gene transfer frequently occurs between members of the
human gut microbiome™.
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Identification of commonly expressed small protein clusters
within the human gut

Small proteins have been understudied in the human gut as many gene
prediction tools exclude them by default*. To improve the prediction
of small proteins, the gene prediction parameters were modified to
include proteins of >5 amino acids. This resulted in the prediction of
44,164,853 small proteins (5.2% of total proteins), represented by
3,571,095 protein clusters within MiProGut, called small protein clus-
ters (SPCs) (Fig. 3a). Of these, 1,104,393 (30.9%) clusters were single-
tons (Fig. 3b), while the largest SPC contained 10,700 proteins and was
identified as a member of the proposed ‘family 350024’ of crosstalk
proteins*. Studying the expression of the SPCs within 687 metatran-
scriptomic samples revealed that all SPCs were expressed within at
least one sample, but many were rarely expressed (<10% of samples).
However, 69 SPCs were highly prevalent, being expressed in >90% of
samples (Fig. 3c).

In addition to being largely ignored, small proteins contribute
critical functionality to the survival of strains within complex com-
munities. One such functionality is antimicrobial activity, of which the
gastrointestinal tract has been identified as a rich source**5, To
determine whether this included the most commonly expressed SPCs,
we predicted each SPCs antimicrobial activities* (Fig. 3d). By pre-
dicting the antimicrobial activity against four ESKAPE pathogens and
two fungi of relevance to human health, we found that 35% (24/69) of

these SPCs could be antimicrobial. The most highly expressed anti-
microbial SPC (13,707 +17,886 RPKM) was predicted to be active
against all four ESKAPE pathogens (Escherichia coli ATCC 25922,
Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae, Sta-
phylococcus aureus ATCC 25923). Although expressed in 97.1% of the
samples, this cluster contained only a single sequence with similarity
to an unknown protein from Bifidobacterium spp. The presence of this
protein within a dominant genus of human gut commensals, in addi-
tion to its high expression and wide range of predicted activity, sug-
gests this protein may be of importance to the gut ecosystem. Of the
24 antimicrobial SPCs, 14 were predicted to target both fungal species,
Candida albicans and Saccharomyces cerevisiae.

Ecological distribution of proteins across individuals uncovers
associations with host health status
The application of lineage-specific gene prediction enhances the abil-
ity to study the ecological distribution of proteins, referred to in this
manuscript as protein ecology. Using the metadata associated with
both the metagenomes studied, and the genomes analysed, we created
a tool, InvestiGUT, to facilitate protein ecology studies of the human
gut (Fig. 4).

InvestiGUT was developed to accept multiple sequences at once
and examines them either individually or as a collection. If proteins are
studied together as a collection, only samples that contain all queried
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Disease association:
Inflammatory bowel diseases (Ulcerative colitis, Crohn'’s disease), Clostridioides difficile
infection, Type 2 diabetes, Colorectal cancer, Cancer stage (AJCC), Rheumatoid arthritis

Geographical association:

Host associations

User’s protein

General: Western Vs non-Western

Country specific: Japan, China, Israel, USA, Mongolia, Fiji, Denmark, Sweden,
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Fig. 4 | Workflow of InvestiGUT. An overview of InvestiGUT, detailing the host
associations that are studied, as well as detailing the process for calculation of the
function-positive fraction. Functional positive species and their relative
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abundances are coloured turquoise, along with the final functional positive frac-
tion. Methyl-co-reductase was used as a use-case of the multiple-protein option
within InvestiGUT, identifying the complexes prevalence across host age.

sequences are reported. The input sequences are compared against all
846,619,045 predicted protein sequences, representing those from
both the metagenomes and genomes. The sequence similarity for
annotation is by default 90%, but can be defined by the user. Integra-
tion of metadata for the metagenomes is used to quantify the pre-
valence of the queried proteins with disease and geographic locations,
as well as host parameters. The inclusion of genomes from human gut
commensals allows the taxonomic range of the protein to be deter-
mined. Additionally, we can determine the ‘function-positive fraction’,
which represents the proportion of an individual’s microbiota that is
positive for the function/protein sequence of interest. This is calcu-
lated by determining which genomes encode the protein sequence of
interest and then determining the cumulative relative abundance of
these genomes across the gut metagenomes of 4464 individuals from
the Netherlands and Israel for which pre-computed relative abundance
values are available™.

Methanogenesis in the human gut is restricted to archaea and has
been linked to several human diseases*®. Methyl-coenzyme M reduc-
tase (MCR) catalyses the formation of methane in methanogens and
consists of an alpha, beta, and gamma chain. Due to MCRs multiple
chains, the multiple sequence approach was used in InvestiGUT,
ensuring only those samples in which all three chains were detected to
be studied. The prevalence of methanogenic functionality increased
with host age (Fig. 5a), confirming previous reports of this
association®. Increased methane production has been reported in
individuals with higher BMI, supporting our observation that MCR was
more prevalent in individuals with higher BMPP? (Fig. 5b). Variation with
sex has also been previously observed, although age is a confounding
variable in this association®’. The decreased prevalence of MCR in
patients noted as having used antibiotics provides the first metage-
nomic insight into the observation that antibiotic therapy can elim-
inate methane in the breath of individuals®. This may be due to
indirect interactions, such as the dependence of methanogenic
archaea on bacteria that are themselves susceptible to antibiotics. The
MCR-positive fraction revealed a country-specific association, with
individuals from the Netherlands having a higher relative abundance of
species positive for MCR than individuals from Israel (Fig. 5c).

Country-specific associations can be explained by variation in
diet**. An example is the enrichment prevalence of seaweed-degrading
porphyranases (Bp1689), and agarases (Bp1670) in the gut of Japanese

individuals, compared to North Americans’. The original study was
limited to 31 individuals (13 Japanese vs 18 North Americans), hence
our analysis expands the study of these proteins across 28 countries.
We confirmed that both proteins are most prevalent in Japanese
samples (80.4% and 85.6%, respectively), followed by China (29.7% and
29.8%, respectively) (Supplementary Fig 2). Interestingly, 45 USA
samples were positive for Bp1689 and 47 for Bp1670, perhaps reflecting
changes in diet, travel, or immigration over the last decade.

Given that small proteins are highly expressed in the human gut,
we investigated the ecological distribution of the 69 most highly
expressed SPCs (Fig. 3d). Of these, we observed that 7 were enriched in
inflammatory bowel disease (IBD), 9 in ulcerative colitis (UC), and 8 in
Crohn'’s disease (CD). In particular, ‘55401|ChengpingW_2017_AS130-
raw|Bacterialll|MetaGeneAnnotator’ showed a significant change in
prevalence with all three conditions across the studies (Fig. 5d). When
we explored this association further, we found that the association
with UC was only significant in one of the three studies, although the
increased prevalence in UC patients was observed in all three studies
(Fig. Se). Analysis of the 69 SPCs expression in patients with UC and CD
patients compared to control patients identified that 31 and 34 pro-
teins respectively were enriched in IBD subtypes, including ‘55401]|
ChengpingW _2017_AS130raw|Bacteria|ll]MetaGeneAnnotator’ (Sup-
plementary Table 10, 11). This association may be explained by the
predicted antimicrobial activity of the protein, which targets E. coli*>, K.
pneumoniae®, and S. aureus”, all of which have been studied as cau-
sative agents of colitis.

The largest SPC (n=10,700) was also of interest due to its pre-
valence. It contained a highly conserved core sequence across all
sequences, forming a continuous helix (Supplementary Fig 3a). The
taxonomic range of this small protein was restricted to the Bacter-
oidaceae, in which it is prolific, with 76.3% (45/59) of Bacteroides spp.
containing a matching protein sequence (Supplementary Fig 3b).
Functional annotation of the protein suggested that it has anti-
microbial activity against S. aureus (Supplementary Fig 3c). The pre-
valence of this protein was associated with Westernised individuals,
decreased with antibiotic use, and varied depending on host health
status (Supplementary Fig 3d-f). These use cases highlight Investi-
GUT'’s ability to facilitate protein ecology studies, confirm associations
previously identified in smaller cohorts, and identify associations
uncovered by integrating multiple data sources.
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antimicrobial peptide ‘55401|ChengpingW_2017_AS130raw|Bacteria|l11|MetaGen-
eAnnotator’ with IBD, CD, and UC were observed when all studies were combined.
e To explore the association with UC further, the three individual studies on UC
were examined, each showing increased prevalence in UC patients compared to
healthy controls. Significance from Fisher’s exact test, after Benjamini-Hochberg
correction, are shown as: NS not significant, * <0.05, ** <0.01, ** <0.001.

Discussion

While metagenomes consist of DNA from a range of taxonomic
groups, the common practice of using a single gene prediction tool
ignores the inherent complexity of these communities. Integrating the
taxonomic assignment of a sequence into the choice of gene predic-
tion tools, and optimising the parameters used, allowed us to reveal
millions of protein sequences previously missing from human gut gene
catalogues. We also observed ~10% variation in the ability of gene
prediction tools to correctly predict genes on both fungal and viral
genomes. This reinforces the need to select a tool based on the lineage
of the sequence being studied. While the variation in perfect predic-
tions between tools was large, the variation was much lower for partial
predictions. Interestingly we observed that all tools performed poorly
on Aspergillus nidulans, with single tools predicting less than 9% of the
genes, while a combination of three increased the perfect predictions
to 14%. This supports the need for improved tools for eukaryotic gene
prediction from metagenomic data*’. When applied to the human gut,
this approach uncovered eukaryotic, archaeal, and viral proteins that
have previously been overlooked”. While the application of multiple
gene prediction tools increased the prediction of correct genes, it also
increased the number of spurious predictions compared to catalogues
generated with a single tool such as UHGP. As these proteins will not
match queried proteins in InvestiGUT or match data aligned to
MiProGut this does not pose an issue, but highlights that further
improvements are needed to correctly identify genes from micro-
biomes. To reduce the inclusion of falsely predicted proteins and
provide a subset of high-quality protein predictions, we created a fil-
tered version of MiProGut. The first line of evidence studied was the
potential for multiple gene prediction tools to predict the same pro-
tein at the same location. Therefore, proteins predicted by two tools
were retained due to their independent prediction. Secondly, protein
clusters containing two or more members were included as they also
had independently been predicted, either by the same, or by different

gene prediction tools on separate genomic fragments. Finally, the
expression of a protein cluster within one of the 882 metatran-
scriptomic samples provided the most reliable evidence for the exis-
tence of a protein. Based on these, a final collection of 25,266,245
proteins (86.4%) remained within the high-quality protein catalog,
MiProGut-HQ. As the selection of gene prediction tools was chosen
based on the benchmarking on gut-specific species, further bench-
marking is needed before application to additional ecosystems.

Taxonomic assignment of assembled contigs still remains a major
barrier. We observed the majority of contigs could not be tax-
onomically assigned to a lineage to allow for informed gene prediction
to occur. It is well documented that further work is required to study
the unknown taxonomic diversity within the human gut®****", This will
enhance the annotated fraction and facilitate a greater understanding
of this ecosystem.

The lack of functional annotation by both MANTIS and eggnog-
mapper for 47.9% of the proteins is consistent with previous obser-
vations that nearly half of the identified proteins in the human gut have
yet to be characterised™. Integration of metatranscriptomic datasets
facilitated the identification of highly expressed small proteins with
potential antimicrobial activity against key human pathogens. Further
analysis of these proteins revealed that the majority (49/69) were
differentially expressed between IBD subtypes and non-IBD patients,
including those with predicted antimicrobial activity. The association
with human health conditions, as well as their antimicrobial activity,
warrants further investigation of these proteins to characterise their
impact on the microbiota and potential therapeutic application.

The increased coverage of the human gut protein landscape by
MiProGut, compared to other gene catalogues, facilitates greater
analysis of omics datasets, doubling the aligned fraction in a meta-
transcriptomic study. While many of the predicted proteins included
within MiProGut were singletons, not clustering with any other pre-
dicted proteins, transcriptional evidence confirms the existence and
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that some are highly expressed, although rarely identified metagen-
omically. This may be due to them originating from low abundant
members of the microbiota, which are often missed by sequencing’®.
As gene catalogues are often used as reference databases for the
metagenomic study of an environment, the discovery of these missing
proteins will facilitate the identification of disease-specific biomarkers
that were previously overlooked. However, the bias of metagenomic
samples included towards industrialised countries (USA, China) sug-
gests that the human gut landscape could be further enhanced with
the inclusion of additional samples from underrepresented countries
and age groups (infants, elderly)®.

We present the concept of protein ecology, which focuses on
the study of proteins rather than taxonomic species and should be
applied more broadly to the study of the human gut. InvestiGUT
facilitates protein ecology studies by providing statistical analysis of
the prevalence of a protein sequence/ sequence of interest across the
samples examined in this work. The application of this approach
identified both previously observed associations, but across a larger
number of samples, providing independent validation of these
associations. In addition to protein prevalence, the relative abun-
dance of microbial species containing the queried protein, referred
to as the ‘function positive fraction’, is of interest for protein ecology,
as it allows the estimation of protein distribution within the ecosys-
tem. The current genome collection and approach does not account
for strain-level diversity, instead assuming that the presence within
the reference genome is representative. Currently, this limits our
ability to truly capture gut microbiota diversity. Future integration of
a larger collection of genomes that captures the strain-level diversity
of each species would facilitate the calculation of a modified func-
tional positive fraction.

Methods

Selection of optimal gene prediction tools

To test the performance of gene prediction tools for large-scale
metagenomic predictions, 13 different tools (Supplementary Table 1)
were evaluated individually as well as in combinations of two or
three using the ORForise framework”. Among these, three tools were
designed for eukaryotic sequences®**°, nine focused on
prokaryotes®7°, and one for viruses”. Both Prodigal®® and Pyrodigal
(v2.1.0) were included in the comparisons, but as both provided
identical results, Prodigal was removed from the comparisons. Three
of the eukaryotic tools (AUGUSTUS™ v3.3, GlimmerHMM* v3.0.4, and
SNAP*° v2006-07-28) rely on the selection of a model before genes can
be predicted. AUGUSTUS was run with the built-in sacchar-
omyces_cerevisiae_S288C model on all eukaryotic genomes. Both
other tools had no default fungal model, so a model was built based on
Saccharomyces cerevisiae S288C (GCF_000146045.2).

The genomes and corresponding gene predictions used in the
tool comparison are detailed in Supplementary Table 2. The bacteria
genomes studied included the six model organisms used in the pub-
lication of the ORForise framework?’. Despite this set consisting only
of species from the two phyla Pseudomonadota and Bacillota, the
study revealed significant differences in gene characteristics, both
unique to individual genomes and across the group, that are critical for
accurate gene prediction. These included substantial variations in start
codon usage, gene length and overlap, GC content, and the utilisation
of the ‘canonical’ stop codon TGA, which in some genomes and even
niche genes, serves as a codon for tryptophan. These characteristics
posed considerable challenges to the 15 gene prediction tools com-
pared in the study, with no single tool able to fully overcome them. To
address these limitations, we expanded the dataset by including
additional bacterial species known to be either pathogenic’>’® or
health-associated’” % The final set included bacterial (n =17), archaeal
(n=3), eukaryotes/fungal (n = 3), and viral (n = 3) genomes (total of 26
species), all selected from strains associated with the mammalian gut.

For the fungi, only nuclear genomes were considered to prevent the
inclusion of non-specific mitochondrial sequences.

The under- and overprediction of the tools was quantified using
ORForise”, which provides metrics on the performance of gene pre-
diction software, by comparing predicted results to reference anno-
tations (Supplementary Table 3).

Datasets

A total of 9677 metagenomes from 43 studies were analysed (Sup-
plementary Table 4). Among those, 7735 metagenomic assemblies
from 41 studies were available from Pasolli et al.® and 1326 assemblies
from the Integrative Human Microbiome Project’. FASTQ files for 616
metagenomes from a Japanese cohort® were also downloaded and
processed. Human sequences were removed from the latter metage-
nomic reads by running BBMap®* (v38.18) with Genome Reference
Consortium Human Build 38 (GRCh38) as a reference. Reads were
assembled using MEGAHIT® (v1.2.9) with a range of k-mer sizes from 21
to 99, and a minimum count of 5 to filter out low-quality reads.
Metagenomes that encode less than 1000 proteins predicted were
removed (n=43) due to a lack of sequencing information, meaning
9634 metagenomes were retained. Metadata for metagenomic
samples was either obtained directly, or from the cur-
atedMetagenomicData R package®. Additionally, a collection of 3594
non-redundant high-quality genomes from Leviatan et al.>* were stu-
died, this included both metagenomic assembled genomes (MAGs)
and isolate genomes. These non-redundant genomes had a reported
median completeness of 95% and median contamination of 0.67%*.

Taxonomic assignment

For the taxonomic classification of all contigs, Kraken 2 (v2.1.2)*” was
applied with a confidence threshold of 0.15%. To enhance the
taxonomy-assigned fraction of each metagenome, a custom Kraken 2
database was formed using all complete genomes for Archaea, Bac-
teria, Eukaryota, and Viruses from the NCBI RefSeq database (April
2023)*. The inclusion of the human genome (Genome Reference
Consortium Human Build 38 (GRCh38)) within the Kraken 2 database
facilitated the removal of host contamination from downstream gene
prediction. Based on the taxonomic ID assigned to each contig, the
correct genetic code was assigned according to the NCBI Taxonomy
Database (August 2023). For representative genomes, the taxonomic
classifications of Leviatan et al. were computed with GTDB-Tk (v2.3.2;
r214)**%°, Contigs from each metagenome/genome were subdivided
into files based on their inferred taxonomy and genetic code with the
selected combination of three gene prediction tools being run on the
corresponding subset files. Contigs without an assigned taxonomy
were annotated with the bacteria-optimised selection of tools and
genetic code 11.

Gene prediction

Variability in tool outputs was accounted for with a script to parse the
start, stop, and strand information of prediction outputs. When mul-
tiple tools predicted genes with the same stop position, but different
start positions, the longest sequence was selected. In cases of differing
stop codons, all sequences were retained. Secondly, all partial genes
were removed from consideration, including those with a start codon
in the first or last three bases of a contig, where assembly errors are
common®’, to prevent the inclusion of truncated genes. When possi-
ble, the minimum prediction length setting was set to 21 bases (six
amino acids plus a stop codon).

Based on this information, protein sequences were generated
using the genetic code corresponding to the Kraken 2 taxonomy ID
predictions. No protein count threshold was applied for the number of
predicted genes in the studied representative genomes.

Protein sequences are named using a standardised system of
metadata connected by the ‘|’ symbol. The names start with a unique
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number for each protein predicted from a single file. Next, the name of
the dataset the predicted protein is from is included. The domain the
originating contig was assigned to is then stated, followed by the
codon table which was used. Finally, the name of the gene prediction
tools that predicted the protein are provided, if multiple tools pre-
dicted the same protein, then all tools are stated connected by
hyphens. An example is “55401|ChengpingW_2017_ AS130raw|Bacteria|
11]MetaGeneAnnotator” which is the 55,401st protein predicted from
the dataset “ChengpingW_2017_AS130raw”. The contig it was pre-
dicted from was assigned as Bacterial, and codon table 11 was used by
MetaGeneAnnotator for its prediction.

Protein ecology across human gut samples (InvestiGUT)
InvestiGUT (v1.1) accepts either a single protein sequence or a set of
sequences, as defined by the parameters ‘-s’ or ‘-m’ respectively. User-
provided protein sequences are matched to the collection of human
gut microbiome proteins via DIAMOND (v2.1.11)"" alignment with a
default minimum query and subject coverage of 90% and identity of
90%, which can be defined by the user. User proteins can be analysed
individually (-s), or as a group (-m) where all proteins must be present
within a sample to be considered. The group analysis allows users to
determine how frequently all enzymes in a certain pathway or all
subunits in a protein complex are present. Output is divided into
metagenomic and species-based analysis results, with both being
available as raw data in the form of ‘tab separated value’ files and as
automatically generated vector figures.

Metadata for each metagenomic sample included age, sex, BMI,
smoker-status, westernised-diet status, use of antibiotics, and geo-
graphical location. Additionally, disease prevalence includes output
for CD, ulcerative colitis, colorectal cancer, Clostridioides difficile
infection, type-2 diabetes, rheumatoid arthritis, and fatty liver disease.
Metadata vocabulary is consistent with that used in the cur-
atedMetagenomeData repository. Prevalence of the queried sequence
in each of these groups is quantified, and compared either between
categories, or healthy controls, using Fisher’'s exact test from the
scipy.stats®> module in Python.

Querying the user input protein against the 3594 species repre-
sentative genomes provides a list of species which contain the protein,
termed “function-positive species”. The taxonomic range of the pro-
tein is determined by the prevalence of the protein with each genus,
family, and phylum of positive species. The function-positive fraction
is obtained as the cumulative relative abundance of function-positive
genomes across 4624 individuals for which precomputed relative
abundance values are available. InvestiGUT is available at: https://
github.com/Matt-Schmitz/InvestiGUT.

Gene catalogue creation

The protein sequences from the 9634 filtered human gut metagen-
omes and 3594 genomes were clustered using MMseqs2 (v14-7e€284)%
linclust using parameters ‘--cov-mode 1 -c 0.8’ (minimum coverage
threshold of 80% the length of the shortest sequence), ‘--k-mer-per-seq
80’ (number of k-mers selected per sequence), and --min-seq-id 0.9' to
cluster at 90% protein identity. Thresholds were selected as previously
used to generate the UHGP-90 to allow for comparison, with addi-
tional clustering conducted at 50%, 95%, and 100% protein identity.
Overlap between the MiProGut-90 and UHGP-90 was identified by
combining the proteins of both catalogues and reclustering with the
same parameters.

Functional annotation

The MiProGut-90 gene catalogue was annotated using eggNOG-
mapper (v2.1.12) with the inbuilt DIAMOND blastp search option and
default parameters®*®. Further annotation was conducted with
MANTIS’® using the integrated annotation file and default parameters.
When proteins had more than one functional category or general

category letter association, the corresponding functional descriptions
of each category were evenly weighted. Antimicrobial activity was
predicted using the DBAASP toolkit*’. Positive activity against Escher-
ichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Kleb-
siella pneumoniae, Staphylococcus aureus ATCC 25923, Candida
albicans, and Saccharomyces cerevisiae was determined as a predicted
MIC < 25 pg/ml. Annotation against the NCBI nr database was con-
ducted using BLASTP with default parameters”’.

Metatranscriptome expression analysis

DIAMOND (v2.1.11)"" mapped metatranscriptomic reads against
the MiProGut-90 and UHGP-90 protein catalogues using the ‘blastx’
command with parameters “-id 90 --evalue 1e-6 -k 1 --max-hsps 1'. The
aligned fraction was calculated per sample as: (aligned reads/total
reads) x100. Expression of specific proteins was quantified as reads
per kilobase per million mapped reads (RPKM) and calculated using:
(aligned reads/(gene length/1000) x (total reads/1,000,000)).

742,43

Statistics and reproducibility

No statistical method was used to predetermine sample size as data
was gathered from multiple studies, and only those datapoints with
insufficient data (<1000 proteins) were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets used in this study are described in Supplementary
Table 4. Gene and protein predictions, along with the non-redundant
MiProGut catalogue at 50%, 90% (termed MiProGut throughout the
paper), 95%, and 100% protein identity, as well as the high-quality
filtered version (MiProGut-HQ) are available at: https://doi.org/10.
5281/zenodo.10988030.

Code availability

InvestiGUT, along with the protein prediction pipeline used in this
work, is available at: https://github.com/Matt-Schmitz/InvestiGUT
(https://doi.org/10.5281/zenodo.14973403).
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