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A machine learning model for hub-height
short-term wind speed prediction

Zongwei Zhang 1,2, Lianlei Lin 1,2 , Sheng Gao1,2, Junkai Wang 1,2,
Hanqing Zhao 1,2 & Hangyi Yu1,2

Accurate short-term wind speed prediction is crucial for maintaining the safe,
stable, and efficient operation of wind power systems. We propose a multi-
variatemeteorological data fusionwind prediction network (MFWPN) to study
fine-grid vector wind speed prediction, taking Northeast China as an example.
Results show that MFWPN outperforms the ECMWF-HRES model regarding
vector wind speed prediction accuracy within the first 6 h. Transfer experi-
ments demonstrate the good generalized performance of the MFWPN, which
can be quickly applied to offsite prediction. Efficiency experiments show that
the MFWPN takes only 18ms to predict vector wind speeds on a 24-hour fine
grid over the future northeastern region. With its demonstrated accuracy and
efficiency, the MFWPN can be an effective tool for predicting vector wind
speeds in large regional wind centers and can help in ultrashort- and short-
term deployment planning for wind power.

The changing world climate has encouraged societies to look for
alternative clean energy sources to fossil fuels. As an inexhaustible
clean energy source, wind energy is crucial in the future energy mix1,2.
However, the stochastic nature of wind power and its inability to be
stored also lead to uncertainties in wind power supply. In addition, the
strong stochasticity and volatility of wind speed also present sig-
nificant challenges to the safe and stable operation of wind farms3.
Relying solely on real-time wind speed data limits the responsiveness
of a control system, reduces power utilization, and leads to anunstable
wind power supply. In the context of large-scale integration of wind
power into a grid system, this instability can reduce economic benefits
and even cause “wind abandonment“4. Therefore, accurate short-term
wind speed prediction (WSP) is essential for the guidance, scheduling,
operation, and maintenance of wind power5.

China has abundant wind and solar resources, and their energy
potential is sufficient to meet 1.5 times China’s expected electricity
demand in 20506. To fully utilize wind resources and accomplish the
goalsof peak carbondioxide and carbonneutrality, China is vigorously
developing its wind power industry. As one of thewealthiest regions in
China in terms of wind energy resources, Northeast China will be
densely distributed with wind turbines in the future. Therefore, to
respond to futuredemands for predictingwind power generation over

a wide area, this study focuses on refined-grid WSP in Northeast China
to help wind power centers (WPCs) schedule and operate wind power
networks in a large region. Existing wind speed prediction systems
include ultrashort, short-time7, and long-time prediction systems8.
Ultra-short time is generally a minute-level forecast, predicting wind
speeds for the next 10 min9,10 and 1 h11. Short-term wind forecasts are
generally hourly, from 1 to 6 h12–14 and even 24 h15,16. Our short-term
wind speed prediction research plans to achieve high accuracy wind
speed prediction for up to 6 h and wind speed trend prediction for up
to 24 hwith a temporal resolution of 1 h. Regional fine-gridWSP can be
formulated as a space‒time series prediction problem: given a time-
varying historical spatial and temporal distribution of wind speed, the
spatial and temporal distributions of wind speed within a specific time
range can be predicted in the future. Accurate and efficient WSP is a
complex problem because the evolution of wind speed involves the
coupling of space, time, andmultiplemeteorological factors. Themain
challenges of WSP are as follows:

The role of different meteorological factors on wind speed: Many
wind speed prediction methods only study the evolution of wind
speed itself15,17,18, ignoring othermeteorological factors that are closely
related to wind, such as geopotential, temperature, and elevation. The
formation of wind results from the synergistic effects of various
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meteorological factors in nature. Ideally, temperature differences
create pressure differences, which lead to pressure gradient forces
that form winds. Both the wind speed and direction are altered by
topography. Considering only the vector wind speed information
obtained by wind speed sensors and ignoring information from tem-
perature sensors and pressure sensors limits the improvement of WSP
accuracy.

Global temporal dependence of wind speed series: Determining
the global temporal dependence of wind speed series plays a crucial
role in accurate WSP. However, existing studies have usually focused
on the temporal dependence of neighboring wind speed
sequences19,20. On the one hand, uncertainty severely affects the pre-
diction accuracy as the prediction period is extended. On the other
hand, the inherent dynamic variability of wind speed series further
increases the uncertainty of WSP. Therefore, it is essential to deter-
mine the global dependence of wind speed series.

Dynamic spatial dependence of wind speed: The spatial distribu-
tion of wind speed is a whole with spatial solid linkages.Many previous
works have ignored spatial connections17, considered spatial depen-
dence solely in a static way21, or used a dynamic graph network to
model the spatial dependence of a finite number of observations.
Convolution helps capture the dynamic spatial connections among
wind speed sequences. However, the local “feel-good”field property of
convolution cannot capture global spatial dependence. Therefore,
fully capturing the dynamic spatial dependencies of wind speed data is
difficult.

Currently, WSP can be divided into twomain methods: one based
on physical models and the other on data-driven methods22,23.
Numericalmodel-based approaches are standardphysicalmethods for
modeling weather via complex thermodynamic and hydrodynamic
equations. They describe the evolution of weather by solving many
differential equations on the basis of a given initial value24,25. Numerical
models integrate relevant meteorological factors, including tempera-
ture, pressure, geopotential, density, humidity, and terrain, to predict
detectable wind speed. Classic numerical models include Weather
Research and Forecasting, Integrated Forecasting Systems, and Eur-
opean Center for Medium-Range Weather Forecasts. Although these
numerical models provide better results in mesoscale and large-scale
prediction, they require many computational, storage, and temporal
resources26,27. In addition, it is challenging to meet the accuracy and
timeliness requirements necessary for short-term forecasting, which
limits the application of numerical models for WSP28.

Data-drivenmethods, which learn historical wind speed evolution
patterns and then project the wind speed in the future, mainly include
statistical and machine learning methods. The autoregressive inte-
grated moving average model (ARIMA) family of statistical models is
the classic time series forecasting method. Autoregressive models use
the previous values of a time series to predict future values29. ARMA
combines regression modeling and moving averages to describe and
forecast time series models on the basis of their own past values and
past errors30,31. The ARIMAmodel adds a differencing process to ARMA
to transform a nonstationary time series into a stationary one32,33.
Singh et al. combined the wavelet transform with the ARIMA model,
achieving good results in short-term WSP18. Hill et al. utilized ARIMA
and detrending techniques to predict wind speed29. When faced with
more straightforward, small amounts of wind speed data, statistical
methods can identify geopotential features of wind speed evolution
well enough topredict futurewind speeds.However, when the amount
of data increases, the number of prediction steps increases, and the
wind speed strongly fluctuates, as shown in Supplementary Fig. 1 and
Supplementary Fig. 2. These models have difficulty capturing the
complex nonlinear features of the wind, and the prediction error
increases dramatically34. With the successful application of machine
learning methods in various fields, several machine learning algo-
rithms, including SVM35,36, artificial neural network37, and support

vector regression38, have also been introduced to predict future wind
speed. Kramer et al. used a support vector regression framework for
wind prediction within six hours38. Hu et al. derived an optimal loss
function for heteroskedastic regression and proposed a SVR short-
term wind prediction framework on the basis of the heteroskedastic
Gaussian noise learning task39. Tian et al. decomposed a short-term
wind speed time series via local mean decomposition and then used a
combined kernel function least squares SVM for prediction40. The
choice of hyperparameters is essential for classic machine learning
algorithms, but it is laborious. Li et al. improved the dragonfly algo-
rithm toobtain the optimal parameters for a support vectormachine36.
Classic machine learning algorithms can quickly achieve accurate
results for small-scale wind field prediction. However, when facing the
demand for WSP at large scales, such as in Northeast China, complex
spatiotemporal evolution requires a more powerful nonlinear feature
extraction capability, which could require by shallowmachine learning
models8,15.

Deep learning has attracted the attention ofmany scholars inWSP
due to its powerful fitting ability7. Compared with classic machine
learning methods, deep learning methods have deeper networks and
can fit more complex nonlinear relationships. The long short-term
memory network (LSTM)41 is a classic deep-learning temporal predic-
tionmodel that extracts temporal dependencies by designingmemory
and forgetting gates. Li et al. proposed a short-term wind speed
interval predictionmethod that combines a gated recurrent unit42 and
variational mode decomposition. Farah et al. proposed a short-term
WSP method that combines data decomposition and bidirectional
LSTM19. U et al. used gated recurrent units and LSTM to predict future
wind power at 1-h, 3-h, 5-h and 12-h intervals20. Several studies have
incorporated additional meteorological variables, such as tempera-
ture, barometric pressure, and humidity, to enhance wind speed
prediction43–45. Shang et al. proposed an integrated wind speed pre-
diction system using a self-organizing map to cluster meteorological
factors and a regularized limit learning machine to predict wind
speed44. Wei et al. extracted wind speed and other meteorological
variable features using autoencoder and singular value decomposi-
tion, after which a GRU was used to predict wind speed time series46.
These WSP methods predict the wind speed time series data for a
specific observation point without considering the connection with
other observation points. However, because wind is a fluid, it is
strongly spatially correlated, as shown in Supplementary Fig. 1. Limit-
ing the wind speed to the current observation point and abandoning
other spatial data might hinder the improvement of prediction
accuracy13,15. Moreover, with the widespread popularity of wind power,
the macro control of WPCs requires a regional WSP model to guar-
antee the safe and stableoperation of a power grid insteadof spending
considerable resources to monitor each wind point.

Numerous studies on spatiotemporal wind speed prediction have
leveragedConvLSTM47, integrating convolutional and recurrent neural
network models to capture the spatiotemporal dynamics of the wind
field. Zhu and Chen et al. investigated the potential of combining
convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) to generate a spatiotemporal correlation representation of
WSP48,49. Yang et al. proposed the deep attention convolutional
recurrent model based on K-shape and enhanced memory, which
integrates an attention layer, CNN, and RNN to extract a spatio-
temporal potential representation and improve WSP performance50.
An undirected graph13 between observation points was built via a
graph neural network to capture robust spatiotemporal wind speed
and direction features at multiple neighboring wind measurement
sites. LSTM pairs were subsequently used to extract the temporal
features of the wind speed at each site. Graphcast extracts
spatiotemporal-dependent features of meteorological variables by
modeling the Earth’s surface as a graph structure and performs well in
short- and medium-term weather prediction51. The STDGN introduced
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the self-attention separation method to integrate spatial, temporal,
and variational data for multivariate weather prediction52. However,
self-attention is strong for global dependency extraction and weak for
local feature extraction. Gao et al. proposed a spatiotemporal multi-
wave network based on three-dimensional convolution, which utilizes
a wavelet module, multi-scale embedding, and temporal information
fusionmodule to synthesize the temperature barometric pressure and
wind speed, and predicts multivariate meteorological distributions in
several regions53. Lin et al. utilized attention and convolution to
enhance wind feature extraction to predict offshore wind speed54.
Generally, the errors of an imperfect wind speed predictionmodel can
be classified into two categories: 1) systematic errors, which arise from
the model’s inability to adequately model the deterministic evolution
of the winds, and 2) uncertainty errors, which arise from the stochas-
ticity and uncertainty of the winds themselves55. Although some
methods have integrated multivariate meteorological variables to
mitigate uncertainty, most current fusion approaches employ multi-
task forecasting, which makes it challenging to centrally capture the
key dynamics driving wind speed changes. Moreover, the nonlinear
features of wind speed may be masked by the changing patterns of
smooth variables.

In this work, we propose a method for refined grid vector wind
speed prediction, namely, a multivariate spatiotemporal fusion wind
prediction network (MFWPN). This method addresses the need for
deterministic modeling of wind speed by a CNN-Transformer-based
spatiotemporal feature evolution module, including spatial feature
encoder-decoder and temporal units. To capture the uncertain evolu-
tion of the wind, we design a spatial fusion module and a temporal
fusion module, which employs an LSTM-like gating mechanism to
extract precursory knowledge of the winds from the evolution of
topography, geopotential, and temperature. Finally, a composite loss
function that mixes structure, velocity, and wind direction is designed
for themodel to better fit the spatiotemporal distribution of wind.More
details about theMFWPNmodel architecture are available in “Methods”.
The results demonstrate that MFWPN outperforms the ECMWF-HRES
model regarding wind speed prediction accuracy within the first 6 h.
After fine-tuning, MFWPN can be applied to various climatic regions,
and its inference speed surpasses that of both ECMWF-HRES and other
machine learning models, making it highly efficient for practical appli-
cations. Therefore, MFWPN presents itself as a valuable tool for wind
power centers, enabling accurate regional wind speed forecasts and
facilitating the overall management of regional wind power.

Results
Implementation details
All the experiments are conducted on the same equipment, and the
relevant parameters are shown in Supplementary Table 1. In the

MFWPN training procedure, the initial learning rate is 0.001, and the
optimization is done using Adam. The comparison methods include
CNN56, ConvLSTM47, E3DLSTM55, PhyDNet57, SimVP58, TAU59, STDGN52,
WPN and ECMWF-HRES. Among them, CNN and ConvLSTM are clas-
sical spatiotemporal prediction algorithms. E3DLSTM, PhyDNet,
SimVP, and TAU are the current prediction algorithms of SOTA, which
are widely used in classical spatiotemporal domains, such as meteor-
ological prediction. The parameters for all machine learning models
are provided in Supplementary Table 2. WPN is the model in which
MFWPN has not fused the information of other variables. The hyper-
parameters of the comparison models were trained and fine-tuned
based on their respective open-source engineering until the best
results emerged. All machine learning models are trained on the same
dataset with a training batch size of 4 and 100 Epochs. ECMWF-HRES
(European Center for Medium-Range Weather Forecasts - High Reso-
lution) is one of the most accurate numerical weather prediction
models in the world60,61, and it is widely used in global meteorological
research andweather forecasting by its high resolution, advanced data
assimilation techniques, and excellent forecasting performance.

Comprehensive performance analysis
Tables 1, 2, and 3 present the evaluation results of each algorithm in
terms of the RMSE, MAE, and ACC, respectively. All models predict
wind speeds twice a day, each time for the next 24h. Comparative
results for each machine learning model predicting four times a day
are presented in Supplementary Table 3, Supplementary Table 4 and
Supplementary Table 5. TheMAE shows eachmodel’s basic prediction
of the wind speed distribution, the RMSE is better able to show each
model’s prediction effect on the wind speed fluctuation, and the ACC
reflects the difference between the real wind field evolution pattern
and the obtained prediction. Owing to the inability to extract temporal
relationships, CNN can utilize only the spatial connection of the cur-
rent wind speed distribution to infer the wind speed distribution
within a concise step. For example, the RMSE of the first step predic-
tion reaches 0.64m s−1. With increasing time, the prediction effect of
convolution rapidly decreases. ConvLSTM and E3DLSTM combine
convolution and LSTM and can capture the spatiotemporal evolution
of the wind field. However, the LSTM-like network cannot stack mul-
tiple layers to optimize long-time feature extraction because of the
defect of gradient propagation, so the prediction effect is not good
with the extensionof time. Both SimVPandTAUare fully convolutional
networks, which greatly improve the efficiency of the spatiotemporal
prediction problem. However, the accuracy of the WSP is also limited
because of the insufficient spatial and temporal feature extraction
capability. STDGN is a self-attentionmethod that relies on attention to
tap into the relationships among space, time, and channels. Its results
are also stronger than those of classic spatiotemporal prediction

Table 1 | RMSE results of different models for WSP

Models 0 h
[m s−1]

1 h
[m s−1]

2 h
[m s−1]

3 h
[m s−1]

6 h
[m s−1]

9 h
[m s−1]

12 h
[m s−1]

18h
[m s−1]

21 h
[m s−1]

23 h
[m s−1]

CNN 0.64 1.00 1.27 1.49 1.95 2.25 2.66 3.10 3.26 3.46

ConvLSTM 0.58 0.94 1.20 1.39 1.74 1.92 2.13 2.51 2.61 2.64

E3DLSTM 0.66 0.91 1.12 1.30 1.72 2.09 2.41 2.83 2.93 3.03

SimVP 0.46 0.73 0.92 1.07 1.39 1.64 1.91 2.29 2.41 2.51

TAU 0.48 0.73 0.91 1.04 1.35 1.60 1.86 2.23 2.36 2.46

Phydnet 2.77 2.84 2.91 2.99 3.14 3.15 3.14 3.41 3.39 3.32

STDGN 0.44 0.73 0.94 1.10 1.46 1.74 2.00 2.37 2.50 2.59

WPN 0.47 0.72 0.90 1.02 1.31 1.59 1.84 2.22 2.41 2.53

ECMWF 1.22 - - 1.13 1.12 1.19 1.31 1.24 1.30 -

MFWPN 0.42 0.66 0.83 0.96 1.24 1.49 1.76 2.12 2.30 2.43

0h, 1 h, and up to 23h represent the hours from 00:00 to 23:00, with 0 h being the first hour predicted based on the input historical data.
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methods. PhyDNet uses deep networks to construct physically con-
strained models, but the experimental results demonstrate that it is
not applicable to complex WSP. The above methods are designed to
reduce the systematic errors caused by the deterministic evolution of
the spatiotemporal sequence of wind speeds. As shown in Tables 1, 2,
and 3, without considering multivariate data, WPN still achieves good
prediction results, outperforming the classic spatiotemporal predic-
tion algorithm and other SOTA models. This may be attributed to the
fact that the spatiotemporal feature extractor of the WPN can better
model the deterministic evolution process of the wind speed spatio-
temporal sequence. The spatial feature extractor consisting of con-
volution attention can extract sufficient spatial dependencies of the
wind speed, and the temporal unit enables the model to extract inter-
and multiframe temporal dependencies, which can efficiently reduce
the deterministic prediction error of the wind speed. In multivariate
fusion, the precursory knowledge ofwind speed evolution is extracted
from the spatial and temporal evolution of temperature and geopo-
tential via LSTM-style spatiotemporal fusion to help the model learn
the uncertainty of the long-term WSP, significantly improving the
accuracy of the WSP. In the prediction with a 1-hour lead time, the
RMSE is 1.22m s−1 for ECMWFand0.42m s−1 forMFWPN,which is a 66%
difference. At a lead time of 6 h, the predicted RMSE of MFWPN is
slightly weaker than that of ECMWF, but the ACC is higher than it.
However, with the extension of time, the prediction effect of MFWPN
decreases faster than that of ECMWF, suggesting that the ability of
ECMWF to capture the climate evolutionpattern in long-termforecasts
is more robust. Comparison with large numerical models shows that
MFWPN has better performance in wind speed forecasting for wind
farms within 6 h. Together with the higher efficiency of the machine

learningmodel, this provides confidence in the application of MFWPN
in wind power.

Keeping the wind turbine oriented in the optimal direction while
operating maximizes wind energy capture, improves power genera-
tion efficiency, and reduces mechanical stress to protect the
mechanical devices of thewind turbine. Thewind turbine receives data
from thewind direction sensor. The yaw control system analyzes these
data and adjusts the orientation of the wind turbine. The MFWPN can
help the yaw control system predict the future wind direction and
make more timely adjustments. Table 4 shows the accuracy of each
algorithm in termsofwinddirectionprediction. For the0-hprediction,
machine learningmodels achieve perfect results, withWDFA reaching
over 98% at 90 degrees and over 93% at 22.5 degrees. However, the
ECMWF’s short-term forecasting results are not so good. The ECMWF’s
WDFA22:5 at the first hour trails MFWPN by 33.48%, which reflects its
poor short-term prediction ability. It is challenging to meet the
demand for wind farms that value timeliness, such as performance in
short-term prediction. For the 3-h prediction, the MFWPN’sWDFA22:5

remains above 85%, outperforming the other models. With the
extension of time, MFWPN still has the highest WDFA22:5. The data
chosen for this study are vector wind speeds consisting of u-wind and
v-wind, so wind direction prediction also demonstrates the robustness
of the network to multichannel prediction. The higher the wind pre-
diction accuracy is, the more robust the channel robustness of our
proposednetwork. Theperformanceof theMFWPN inwindprediction
demonstrates that it can provide reliable short-term wind prediction
for yawing systems, helping turbines improve their power generation
efficiency and guaranteeing the safety of turbines under high wind
speed conditions.

Table 3 | ACC results of different models for WSP

Models 0h 1 h 2 h 3 h 6h 9h 12 h 18 h 21h 23h

CNN 0.97 0.93 0.89 0.85 0.74 0.64 0.52 0.38 0.32 0.27

ConvLSTM 0.98 0.94 0.90 0.87 0.80 0.74 0.67 0.58 0.52 0.49

E3DLSTM 0.97 0.94 0.91 0.88 0.79 0.67 0.58 0.43 0.35 0.32

SimVP 0.98 0.96 0.94 0.92 0.86 0.79 0.73 0.62 0.55 0.51

TAU 0.98 0.96 0.94 0.92 0.87 0.80 0.74 0.63 0.56 0.52

Phydnet 0.49 0.47 0.45 0.44 0.42 0.37 0.34 0.29 0.25 0.24

STDGN 0.99 0.96 0.94 0.92 0.86 0.78 0.71 0.59 0.52 0.48

WPN 0.98 0.96 0.94 0.93 0.88 0.82 0.76 0.66 0.59 0.54

ECMWF 0.91 - - 0.92 0.92 0.91 0.89 0.90 0.89 -

MFWPN 0.99 0.97 0.95 0.94 0.89 0.84 0.78 0.68 0.60 0.55

0h, 1 h, and up to 23h represent the hours from 00:00 to 23:00, with 0 h being the first hour predicted based on the input historical data.

Table 2 | MAE results of different models for WSP

Models 0 h
[m s−1]

1 h
[m s−1]

2 h
[m s−1]

3 h
[m s−1]

6 h
[m s−1]

9 h
[m s−1]

12 h
[m s−1]

18h
[m s−1]

21 h
[m s−1]

23 h
[m s−1]

CNN 0.49 0.77 0.98 1.16 1.51 1.74 2.09 2.44 2.57 2.72

ConvLSTM 0.44 0.73 0.93 1.08 1.34 1.48 1.65 1.96 2.04 2.06

E3DLSTM 0.49 0.70 0.86 0.99 1.32 1.61 1.86 2.21 2.29 2.37

SimVP 0.35 0.56 0.70 0.81 1.05 1.24 1.45 1.76 1.86 1.94

TAU 0.37 0.56 0.69 0.80 1.02 1.21 1.42 1.71 1.82 1.91

Phydnet 2.00 2.10 2.19 2.27 2.44 2.45 2.44 2.69 2.68 2.61

STDGN 0.33 0.55 0.72 0.84 1.11 1.32 1.52 1.83 1.92 2.00

WPN 0.36 0.55 0.69 0.78 0.99 1.21 1.41 1.72 1.88 1.97

ECMWF 0.90 - - 0.83 0.82 0.87 0.98 0.91 0.96 -

MFWPN 0.32 0.51 0.64 0.73 0.94 1.13 1.33 1.62 1.78 1.88

0h, 1 h, and up to 23h represent the hours from 00:00 to 23:00, with 0 h being the first hour predicted based on the input historical data.

Article https://doi.org/10.1038/s41467-025-58456-4

Nature Communications |         (2025) 16:3195 4

www.nature.com/naturecommunications


To visually compare each algorithm’s performance, we evaluate
eachmodel’s prediction effect for thewhole yearof 2023by predicting
twice a day. Figure 1 visualizes these results. In the two 12-h forecasts
before and after, the machine learning model’s prediction longitude
decreases significantly with the extension of time, and the ECMWF
model ismore robust in the prediction.MFWPNachieves better results
than other machine learning models regarding prediction accuracy.
Compared to the ECMWF model, MFWPN has a specific lead in the
prediction effect in the earlier period, especially in the latter 12-h
period. However, with faster inference and inexpensive consumption,
MFWPNcanachievemore projectionsmore times a day.Weplaced the
predictions ofMFWPN−6 (4 predictions in a day, 6 h at a time) and can
see that MFWPN outperforms ECMWF overall. However, MFWPN
requires a complete set of input variables, including wind speed,
temperature, and geopotential. Currently, the data is sourced from
ERA5, a reanalysis dataset generated through the assimilation of
observational data and inference by the Integrated Forecasting Sys-
tem. This reliance on reanalysis data presents a limitation for fast
forecasting models with 6-h intervals. However, as wind turbines
become more densely distributed, they will be equipped with sensors
such as anemometers, barometers, and thermometers. This will make
it increasingly feasible to obtain real-time multivariate data, including
wind speed, temperature, and barometric pressure. Such data will
significantly enhance the applicability of machine learning models,
particularly for wind speed prediction over short time scales.

To demonstrate the model’s ability to capture spatial and tem-
poral features, we visualize the prediction results of MFWPN−6. The
summer months are selected as July, August, and September, and the
winter months are selected as December, January, and February. Fig-
ure 2 visualizes these results. Northeast China is influenced by Dax-
inganling and Zhangguangcailing, and the narrow tube effect shapes
the northeast windy region. In the ERA5 visualization, the distribution
of wind speeds in winter and summer reflects the rich wind resources
in the Northeast region. There is a clear boundary between the wind
speeds in the land and sea areas, and the ocean area has higher wind
speeds. In the spatial distribution of wind speed, the prediction result
of MFWPN is not much different from the truth, which proves that the
model can capture this overall spatial distribution. MFWPN performs
better in winter than in summer, which may be because the meteor-
ological conditions in summer are more complicated. With the
extension of the prediction time, the wind speed prediction in some
fluctuating regions worsens, but the overall difference is insignificant.
The Siberian high pressure in winter brings mainly northwesterly
winds to northeast China. The ERA5 in Fig. 3 shows that the wind
direction in the local area is northwesterly. However, it may now be
due to the pooling of southwesterly winds formed in the southern
region under the influence of the stronger southwesterly sea-land
winds formed offshore. A comparison of the ERA5 and MFWPN shows

that MFWPN has successfully captured this meteorological pattern,
and the wind speed and direction distribution predictions are accu-
rate. The summer Pacific high pressure brings strong southerly winds
to the Northeast, and a comparison of the distribution of predicted
and actual values at this time shows thatMFWPN’s predictions are also
accurate.

Vector wind speed analysis in key areas
To demonstrate the WSP capability of the MFWPN in key regions, we
selected Harbin and Chifeng, important WPCs in Northeast China, for
prediction evaluation. Harbin is in the northeastern plain, in the mid-
latitude continental monsoon climate zone, with flat terrain in the
middle of the gap between Daxinganling and Zhangguangcailing, and
is rich in wind resources. Chifeng, which is in the eastern part of the
Inner Mongolia Autonomous Region and has high altitude and abun-
dant wind resources, is suitable for large-scale wind farmconstruction.
Figure 4 show the wind rose maps of the Chifeng and Harbin. Com-
paring the ERA5 real wind rose, ConvLSTM, and MFWPN predicted
wind rose, it can be found that the MFWPN model shows a prediction
ability closer to the truth in the distribution of the leading wind
direction in the two locations. Specifically, the ERA5 wind roses show
that the wind direction in Chifeng is more stable, dominated by
southeasterlywinds, accompanied by a small amount of northwesterly
winds. Southwesterly winds dominate the wind direction in Harbin,
and MFWPN can accurately capture the distribution of this significant
wind direction, which is close to the truth and has a more reasonable
coverage in the direction. In contrast, the ConvLSTMmodel has some
deviation in the distribution of the leading wind direction, and the
proportion may be overestimated or underestimated, indicating its
limited ability to model the main wind direction. In terms of the wind
speed intensity distribution, the ERA5 wind roses show that the med-
ium wind speed (6–15m s−1) occupies a more significant proportion in
the two locations, while the proportion of the high wind speed section
( ≥ 18m s−1) is lower. MFWPN can fit this distribution better and per-
form more accurately in the medium wind speed section. Overall,
MFWPN shows substantial modeling capability and prediction accu-
racy for the joint distribution of wind direction and wind speed in the
key regions.

Transfer and robust performance
Experiments have demonstrated the accuracy of the MFWPN in pre-
dicting wind speed in Northeast China, but transferability and
robustness are also two essential indices for practical application
algorithms. The transferability of deep neural networks has always
been an important issue that cannot be avoided in their application.
Training a neural network model is the most time-consuming process
in deep learning applications. If the trained model is fine-tuned or can
be directly used to predict wind speeds in other regions, it can save

Table 4 | WDFA results of different models for WSP

Models 0 h (%) 3 h (%) 6h (%) 12 h (%)

α =90 α =45 α =22:5 α =90 α =45 α =22:5 α =90 α =45 α = 22:5 α =90 α =45 α =22:5

CNN 99.47 98.12 93.54 96.51 88.37 70.04 93.26 79.88 56.77 86.15 64.78 39.72

ConvLSTM 99.58 98.49 94.86 97.29 90.74 74.05 95.47 85.39 64.41 91.52 76.77 53.62

E3DLSTM 99.44 97.98 93.23 97.29 91.10 75.85 94.51 83.83 63.31 86.23 67.54 44.24

SimVP 99.74 99.05 96.69 98.28 94.09 82.34 96.80 89.80 73.76 92.60 80.17 59.69

TAU 99.72 98.97 96.40 98.37 94.41 83.04 96.97 90.38 74.74 92.97 81.00 60.74

STDGN 99.75 99.09 96.80 98.18 93.80 81.56 96.52 88.93 71.82 92.14 78.62 56.74

ECMWF 94.77 84.53 63.86 95.24 85.77 65.88 95.59 86.71 67.55 94.40 83.47 62.19

MFWPN 99.80 99.26 97.34 98.68 95.44 85.69 97.63 92.18 78.36 94.33 83.89 64.57

0h, 3 h, and up to 12h represent the hours from 00:00 to 12:00, with 0h being the first hour predicted based on the input historical data.
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Fig. 1 | Comparison of the next 24 h ofWSP by each algorithm. a is RMSE result.
b is MAE result. c is ACC result. For a fair comparison with the ECMWF numerical
model, the machine learning 24-hprediction model is used here to predict twice a
day, each time taking the results of the first 12 h. MFWPN−6 denotes that the

MFWPN 24-h predictionmodel predicts four times a day, each taking the results of
the first six h of the prediction. The breaks on the horizontal axis indicate the
intervals where the predictions are made twice a day. These figures shows that
MFWPN outperforms ECMWF in the first 6 h of wind prediction.
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significant computational resources and preparation time. Our trans-
ferability experiment involves the prediction of wind speeds along the
east coast of China and Southeast Asia via a model trained on data
from Northeast China. Before forecasting, we used the dataset of the
region to be forecasted to fine-tune the 24-h forecastingmodel for the
Northeast region by one epoch. The results are presented using four
forecasts a day. Supplementary Table 6 shows the results of the
transfer test for the two regions.

Supplementary Table 6 shows that the fine-tuned Northeast
model predicts the east coast with ACCs of 0.99 and 0.95 for the first
and third hours, respectively, which are almost as good as those of the
Northeast model. With respect to the wind direction forecasts, the
accuracy of the 6th hour 8-direction for East China remains as high as
90.45%. For the key regional forecast, Yancheng, the coastal WPC, was
chosen for the wind rose display. Yancheng’s annual average wind
speed at a height of 100m is more than 7.6m s−1, and the annual
equivalent total load hours can reach 3000–3600h. Yancheng is one
of the best conditions for developing and constructing coastal wind
power in China. The ERA5 wind roses in Supplementary Fig. 3 show

higher average wind speeds in Yancheng City and an average dis-
tribution of multiple wind directions. For this situation, MFWPN can
make real-time adjustments to the fanby predicting thewind direction
to improve the power generation efficiency of the wind turbine and
protect the safety of the wind turbine hardware. For the transfer pre-
diction in Southeast Asia, the fine-tuned Northeast model reached an
ACC of 0.99 in the first hour and an ACC of 0.93 in the 6th hour.
Regarding to wind direction prediction, the accuracy of the 6th hour
8-direction prediction reaches 92%, which still provides accurate
futurewinddirections forwind turbines.On theonehand, it is easier to
predict wind speed with less fluctuation in the vast ocean area of
Southeast Asia. On the other hand, Northeast China has a temperate
continental climate, and the selected Southeast Asian region has a
tropical climate. The transfer results in entirely different climatic
regions demonstrate the strong transfer capability of the MFWPN and
provide confidence in the flexible application of MFWPN in the
later stage.

To further demonstrate the performance of the transfer forecasts,
we obtain the mean wind speeds for 2023 in eastern coastal region of

Fig. 2 | Visualization of the WSP results for Northeast China. The first two rows
indicate the 2023 wintermean wind speed, and the following two rows indicate the
2023 summer mean wind speed. True and Predicted denote the ERA5 wind speed
and the MFWPN predicted wind speed, respectively. From left to right, the wind

speeds are shown for the 1st hour, 3rd hour, and 6th hour. The legend on the right
shows that the averagewind speeds in theNortheast are higher in thewinter than in
the summer.
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China and Southeast Asia to visualize and compare ERA5 and forecast
results. Supplementary Fig. 4 shows the prediction results for eastern
China and Southeast Asia. In the visualization of ERA5, there is a clear
land-sea divide in the wind speed distribution along the eastern coast.
The flatness of the ocean is more likely to bring strong wind speeds
than the occlusion caused by undulations in the land. Compared with
the east coast of China, the land area of Southeast Asia is smaller, and
the interaction between land and sea is not obvious enough, so there is
no clear interval between the wind speeds of land and sea. Comparing
the ERA5 and predicted wind speeds of the two regions, the general
consistency reflects the well transfer performance of the MFWPN and
its ability to predict complex sea-land mixed wind regions.

The temporal robustness of the MFWPN is evaluated by predict-
ing wind speeds for several different intervals in the future via 24-h
historical data. The prediction results of each model are shown in
Supplementary Fig. 5. It indicates that the prediction error gradually
increases as the prediction time increases. However, the performance
is basically the same for all time intervals, which shows the robustness
of the model in predicting different time intervals. The shorter-time
prediction model achieves higher prediction accuracy, reaching an

RMSE of 0.26m s−1 when predicting only one hour into the future and
accuracies of0.26m s−1, 0.49m s−1, and0.67m s−1 whenpredictingonly
three hours into the future. This gives us the flexibility to use models
for different periods when faced with the need to predict for different
periods. A comparisonof the results of eachmachine learningmodel in
Fig. 1 shows that although all the models weaken with increasing time,
MFWPN stays ahead at every time point. This is because our temporal
units and temporal fusion module make MFWPN more time robust.

Efficiency analysis
The inference speed of amodel is crucial for its efficiency in real-world
applications. Tomeasure the inference speed of MFWPN, we compare
it with several other models, and Table 5 shows the experimental
results. Without the use of the multivariate fusion module, the GFlops
of WPN is 63, which is not advantageous compared with STDGN and
PhyDNet, but we note a single 24-h wind speed prediction of 13ms,
which is far ahead of those of the other algorithms. More critically, the
WPN inference accuracy is also higher than that of other algorithms.
After using the multivariate fusion module, the prediction accuracy of
MFWPN achieves a significant improvement but requires more

Fig. 3 | Wind speed and direction for the key region. The region is labeled red in
Fig. 2, the direction of the black arrow indicates the direction of the wind, and the
length of the arrow indicates the wind speed. The wind speed results for January 2

using the January 1 forecast are shown for winter, and the forecast results for
August 2 are shown for summer. From the comparison, MFWPN can realize accu-
rate vector wind speed prediction for the key area at this time point.
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computing power. Happily, themodel inference time after fusion does
not increase significantly and only increases to 18ms. When faced with
limited computing power, we can use the WPN to forecast the vector
wind speed. If the computing power is sufficient, we can use the
MFWPN. Regardless of the type of model, it can provide accurate and
efficient WSP service.

Discussion
Accurate and efficient prediction of the vector wind speed is sig-
nificant for wind power development. In this work, we propose a
multivariate data fusion vector wind speed prediction (WSP) network,
the MFWPN, to meet the demand of fast WSP frameworks for rapid
wind power development. In this work, we propose amultisource data

fusion vector WSP network, the MFWPN, to meet the demand of WSP
for rapid wind power development. MFWPN predicts the future 24-h
wind speeds in northeast China, with the MAE of 0.32m/s in the first
hour and 0.64m/s in the third hour. For the wind direction prediction,
the accuracies for the eight wind directions in the 1st and 4th hours are
99.26% and 95.44%, respectively. MFWPN outperforms the ECMWF
model in wind speed prediction within 6 h. The prediction results for
Harbin, Chifeng, and Yancheng show that MFWPN can provide accu-
rate wind field forecasts for key areas of the wind energy industry.
MFWPN has good transferability and can be well adapted to different
WSP scenarios, such as land, sea, and different climatic regions, which
can save much time and computational resources by transferring and
fine-tuning. It took only 18ms for MFWPN to complete the WSP for
Northeast China for the next 24 h, and its high efficiency lays the
foundation for its practical application. In conclusion, the MFWPN
performs well in handling short-term WSP, which means that the
MFWPN can serve as a valuable tool for wind power facilities to assess
grid vector wind speeds.

However, there are still some limitations to this work. The first is
the limitation of the data used. The experimental data currently used is
from the ERA5 reanalysis dataset, with a spatial resolution of
0.25° × 0.25°, which, while being among the higher resolutions used in
meteorological modeling, may not be able to capture wind speed
variations atfiner scales. At theheight layer, currentlyMFWPNcanonly
support 100-meter height wind speed prediction, and cannot provide
multi-level wind speed prediction like the NWP model. In the next
stage, weplan to realizemulti-level wind speedoutput by replacing the

Fig. 4 | Wind roses for 2023 in wind power focus areas. a is Chifeng. b is Harbin.
On the left is the ERA5 wind rose, in the center is the predicted wind rose from
ConvLSTM, and on the right is the predictedwind rose fromMFWPN. The direction

is where the wind is blowing, and different colors indicate different wind speed
magnitudes. On the left legend, the wind speed is set up in intervals of 3m s−1. This
figure shows thatMFWPN can accurately forecast the wind speeds in the key areas.

Table 5 | Comparison of the prediction efficiency of
the models

Models Gflops Forecast time [ms]

ConvLSTM 111 28

PhyDNet 47 153

E3DLSTM 123 195

SimVP 81 25

STDGN 58 56

WPN 63 13

MFWPN 124 18
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training data and adjusting the network architecture. The temporal
resolution of the dataset is 1 h, which may result in an inability to
predict the rapid changes in wind speed associated with extreme
weather, such as gusty winds or frontal systems that may occur on
shorter time scales. The model must be fine-tuned or re-trained when
applied to other regions or scenarios at other resolutions. Although
the model uses geopotential, temperature, and wind speed as inputs,
these variables may not fully encompass all the physical processes
involved in wind speed changes. For example, turbulence, humidity,
boundary layer processes, soil moisture, and land cover may sig-
nificantly impact wind speed but are not directly included. This sim-
plification may lead to errors, especially under complex
meteorological conditions such as monsoons, frontal systems, or
cyclones. In addition, WSP has a time interval problem. Because of the
dataset, we cannot predict the interval wind speed between each time
point. Therefore, the MFWPN is more of a guide for the upper WPCs
than for the turbines.

In practice, models may struggle to provide reliable predictions
during extreme weather events such as typhoons, where nonlinear
interactions between atmospheric variables dominate. Additional
model calibration or couplingwith physically basednumerical weather
prediction systems may be required in such cases. When applied to
more significant regions, MFWPN requires some additional arithmetic
power to complete the model training. In our future research, we will
continue to develop MFWPN in the direction of multi-source infor-
mation input, ensemble prediction, and multi-scale modeling to con-
tinuously develop the wind speed prediction model’s potential and
provide greater assistance towind power and lower-altitude economic
development. As wind power generation has expanded, public con-
cern about energy stability and reliability has also increased. Accurate
wind speed forecasts can increase public confidence in wind energy as
a sustainable source, making it a more established and competitive
energy option. In addition, it is recommended that governments install
weather sensors on turbines to obtain wind-related data at wind tur-
bine heights. We call for all governments to share wind data to jointly
construct global wind field data atwind turbine heights to facilitate the
development of WSP methods and assist in constructing intelli-
gent WPCs.

Methods
Data
Influenced byAsian highpressure inwinter and Pacific high pressure in
summer, Northeast China has an abundance of wind resources and is
vigorously developing the wind power industry. Therefore, in this
study, Northeast China, with a latitudinal and longitudinal range of
approximately [38°−54°N, 116°−136°E], is selected for the WSP study,
as shown in Fig. 5. We used the 100-meter height u-wind and v-wind
data from ERA562 for the hub-height wind prediction study. We chose
geopotential, temperature, and elevation as auxiliary variables to
match the prediction of wind at 100m height. According to the
International StandardAtmosphere, the 100mheight is closer to 1000
hpa, so we choose the geopotential and temperature at 1000 hpa. The
spatial resolution of the selected data is 0.25° × 0.25° and the temporal
resolution is 1 h. Geopotential measures the geopotential energy of a
unitmass at a given height in the Earth’s gravitationalfield. Differences
in geopotential height at a constant pressure level correspond to dif-
ferences in pressure at a constant altitude. A higher geopotential
height at a pressure surface indicates higher pressure below, and vice
versa. In synoptic-scale systems, atmospheric pressure and tempera-
ture are fundamental determinants of wind speed. Pressure gradients
drive large-scale air movement, while temperature influences air den-
sity and vertical motion, modulating wind velocity. Near the surface,
wind speed becomes more complex due to additional factors such as
terrain, surface roughness, and turbulence, which introduce further
variability. Nonetheless, pressure and temperature remain essential

meteorological variables, as they govern atmospheric stability, air
mass interactions, and density distribution, which in turn dictate the
fundamental characteristics of wind, including its magnitude and
direction.

To demonstrate the performance of the method proposed in
this study, we additionally selected ranges containing the east
coastal region of China [115°−123°E, 29°−37°N] and Southeast Asia
[116°−132°E, 1°−17°N] for the validation experiments, as shown
in Fig. 5.

This study selected a six-year sequence of wind speeds for
2018-2023, using 2018-2022 for training and validation and 2023 as
a test set. A sliding window is used to acquire training and testing
data. Thewindow size is the sumof the historical and predicted time
lengths, and the number of sliding steps is three and six for the
training and testing phases, respectively. TheWorldMeteorological
Organization declares that the 6-h interval meets the global
meteorological standards, which can ensure the uniformity and
efficient processing of global data. The 6-hour interval can accu-
rately reflect the weather changes and ensure the stability and
efficiency of the prediction, making it the best choice for current
weather forecasting. The sliding length of the training set is 3 to
enrich and enhance the training set. We randomly select a part
of the training set as the validation set, and the ratio of the training
set to the validation set is 9:1. To account for the varying units in
different data sources, which can negatively impact model training,
we first normalize all source data via the data normalization
method. The following equation illustrates our preprocessing
approach:

ŷ =
y� ymean

ystd
ð1Þ

where ŷ and y denote the preprocessed value and the original value of
the variable, respectively, and ymean, ystd denote the mean and the
standard deviation of the variable’s original value, respectively. Nota-
bly, because the elevation data of the ocean area represents the depth
of the seabed, we use the zero-conversion method to address the
elevation data of the ocean area to avoid the influence of this on
capturing the role of land topography.

Preliminaries
Wedefine themultivariatemeteorological data fusionWSP problem as
follows. Given that st 2 RC ×H ×W represents the vector wind speed at
time t, the m wind speed prior to t can be expressed as
St�m, t = fsigtt�m 2 RT ×C ×H ×W . T denotes the time scale (here, T =m), C
represents the variable scale, H represents the latitudinal height, and
W represents the longitudinal width. In this study, the vector wind
speed is divided into u-wind and v-wind; hence, C is two. In addition,
we introduce geopotential, temperature, and elevation data as aux-
iliary variables, where GTt�m, t = fgtigtt�m 2 RT ×C ×H ×W denotes tem-
perature and geopotential data for the period t �m to t and where
E 2 RH ×W denotes elevation data. Suppose that we use wind speed,
geopotential, temperature, and elevation data fromm historical times
to predict the wind speed field at n future points in time; this can be
expressed as:

St + 1, t +n =ψ½St�m, t ;GTt�m, t ; E� ð2Þ

where St + 1, t +n denotes the wind speed data from t + 1 to t +n and ψ
denotes theMFWPN. To realize the wind speed prediction for the next
24 h (n = 24), we set the time length of historical wind speed data to
24 h (m= 24). The past 24 h of data helps to identify trends and cyclical
patterns in wind speed, such as diurnal variations and seasonal fluc-
tuations, which may continue in the next 24 h. In addition, the short-
termdata simplify the complexity of the predictionmodel while better
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reflecting the sensitivity of short-termwind speed changes,making the
prediction of future wind speeds more accurate. We referred to the
relevant studies15,33 and finally decided to use the historical 24-h wind
speeds to forecast wind speeds in the next 24 h.

MFWPN
Figure 6 shows the overall network architecture of the MFWPN. In this
work, multiple wind-related meteorological data are fused to perform
more accurate vector wind speed estimation, as shown in Fig. 6. The

Fig. 5 | Topographic map of the study area. a is the Northeast China. b is the East
coastal region of China. c is the Southeast Asia. The legend at the bottom of the
picture indicates the elevation. On a line of longitude, the actual distance is roughly
111 kilometers for every degree difference in latitude. On the line of latitude, for
eachdegreedifference in longitude, the actual distancediffers by roughly 111 × cosθ
kilometers. θ denotes longitude degree. The size of the actual distance in (a) is

about 1776 km× 2220 km. Harbin and Chifeng in (a) are important wind power
center cities. Chifeng is at a higher elevation. Harbin is at a lower elevation and is in
themiddle of twomountain ranges. Yancheng City in (b) is a wind power center on
the southeast coast of China. In (c), Manila is rich in sea wind resources and has a
large offshore wind farm.

Article https://doi.org/10.1038/s41467-025-58456-4

Nature Communications |         (2025) 16:3195 11

www.nature.com/naturecommunications


input data include the vector wind speed FWind 2 RB ×T ×C ×H ×W , tem-
perature and geopotential FGT 2 RB×T ×C ×H ×W , and geographic ele-
vation FE 2 RH ×W . Where B denotes batch size, C denotes the number
of variables (FWind and FGT contain two variables, so C is 2), and H and
W denote the number of grid points in the study area. Afterward, the
input data are reshaped and fed into the encoder for spatial feature
extraction of each meteorological dataset. Each encoder is packaged
with a local convolutional and global attention encoder. The spatial
features of elevation, geopotential, and temperature are then inte-
grated via a multivariate spatial fusion module to correct the spatial
features of the wind. Then, the time unit is used to capture the tem-
poral evolution pattern, and the multivariate temporal fusion module
is used to extract the precursor informationof thewind evolution from
the geopotential temperature evolution to correct the wind further.
Finally, a decoder is used to decode the evolved wind spatial features
to obtain the vector wind speed distribution at future moments.

Local CNN unit
The evolution of the wind field is highly complex, containing local and
global patterns. Global patterns reflect regularities and trends on a
large scale, and local patterns reflect fluctuations on a smaller spatial
scale. Convolutional neural networks have good feature extraction
ability for local features. However, the local fluctuations of wind speed
are more frequent, and traditional convolutional operations tend to
lose some high-frequency components when extracting local infor-
mation, which is not conducive to capturing the dynamics of the wind
field and its evolution patterns. Therefore, we use an invertible neural
network (INN)63,64 to construct a local feature extractor for the wind
field, whose network structure is shown in Fig. 6b. The INN allows
interactive information transfer between input and output, can main-
tain feature integrity, and ensures that high-frequency information is
adequately retained, especially subtle changes and local fluctuations in
the wind field, such as sharp changes in wind speed, which are key
features in the evolutionof thewindfield. Taking FWind 2 RB×T ×C ×H ×W

as an example here, the transformation can be expressed as:

F1
Wind , F

2
Wind = Split½WexpandðRðFWindÞÞ� ð3Þ

F3
Wind = F

2
Wind + ½WinnðF1

WindÞ� ð4Þ

F4
Wind = F

1
Wind + ½WinnðF3

WindÞ� ð5Þ

FL
Wind =WpressðCat½F3

Wind ; F
4
Wind �Þ ð6Þ

whereR denotes the transformation of the scale from B×T ×C ×H ×W
to BT ×C ×H ×W . Wexpand denotes the channel expansion convolu-
tion, which expands the original feature channel from C to C0. Refer-
ring to INN 63,64, C0 is set at 64. Winn denotes the inverse convolution
intermediate convolution process, which contains a 3 × 3 convolution
block, a 1 × 1 convolution block, and a 1 × 1 convolution. Split denotes
the segmentation computation, which splits the expanded feature into
F1
Wind , F

2
Wind 2 RBT × C0

2 ×H ×W . Cat denotes feature splicing, and Wpress

denotes channel compression convolution that compresses the vari-
able channel back to C. Through feature splitting andmerging, inverse
convolution extracts features while preserving the original feature
information as much as possible to avoid information loss. Finally, the
localized features of the wind and auxiliary variables can be obtained
as FL

Wind 2 RBT ×C ×H ×W and FL
GT 2 RBT ×C ×H ×W .

Global SA unit
Wind fields are influenced by local climatic factors and regulated by
large-scale meteorological systems. Changes in large-scale meteor-
ological systems, such as the monsoon, determine the wind field’s

overall movement pattern and long-term trend. Capturing the global
pattern of thewind field and realizing the organic combination of local
features and global patterns are especially important to reflect the
spatial and temporal changes in wind speed accurately. Self-attention
can directly model the long-range dependence between arbitrary
positions in the input data and has significant advantages in extracting
global patterns. Meanwhile, to balance the computational efficiency
and performance of self-attention, we use the lite transformer
block63,65 as the basic unit of the global spatial unit, whose network
structure is shown in Fig. 6b. Take the two-channel input FWind 2
RB×T ×C ×H ×W as an example, first reshape it to obtain
F̂Wind 2 RBT ×C ×H ×W . Then, using 1 × 1 convolution and 3 × 3 depth-wise
convolution to obtain Q, K, and V , which can be expressed as follows:

Q=WQ
1 × 1W

Q
3 × 3ðLNðF̂WindÞÞ 2 RBT ×C ×H ×W ð7Þ

K =WK
1 × 1W

K
3 × 3ðLNðF̂WindÞÞ 2 RBT ×C ×H ×W ð8Þ

V =WV
1 × 1W

V
3 × 3ðLNðF̂WindÞÞ 2 RBT ×C ×H ×W ð9Þ

where W 1 × 1 and W 3 × 3 denote 1 × 1 convolution and 3 × 3 depth-wise
convolution, respectively, and LN denotes the normalization layer.
Next, we dimensionally transform Q, K, and V to obtain
Q0 2 RBT ×HW ×C , K 0 2 RBT ×C ×HW , and V 0 2 RBT ×HW ×C . The attention
computation process can be summarized as follows:

Aweight =V
0 � SoftmaxðK0 ×Q0=αÞ 2 RBT ×HW ×C ð10Þ

ϕ=WA
1 × 1ðRðAweight ÞÞ+ F̂Wind ð11Þ

where Aweight denotes the self-attention matrix, Softmax denotes the
SoftMax activation function, Rð:Þ reshape the Aweight 2 RBT ×HW ×C to
BT ×C ×H ×W , and ϕ denotes the self-attention output feature. Here,
α is a learnable scaling parameter used to control the size of the dot
product of K and Q before applying the SoftMax function. Afterward,
feature transformation is performed via a regular feedforward
network, which can be represented as follows:

ϕ0 =GELUðWa
1 × 1W

a
3 × 3ðLNðϕÞÞÞ �Wb

1 × 1W
b
3 × 3ðLNðϕÞÞ ð12Þ

FG
Wind =W

c
1 × 1 ϕ

0 +ϕ ð13Þ

where � denotes element multiplication, LN denotes the normal-
ization layer, GELU denotes the GELU activation function. The spatial
feature output FG

Wind 2 RBT ×C ×H ×W of the self-attention branch is
obtained after residual computation. Two learnable parameters are
introduced to balance the global spatial features and local spatial
features adaptively:

χSWind =α
L � FL

Wind +α
G � FG

Wind ð14Þ

where αL and αG denote global and local weighting factors, respec-
tively. The final outputs of the encoder are the vector wind speed
spatial feature χSWind 2 RBT ×C ×H ×W and the geopotential temperature
auxiliary feature χSGT 2 RBT ×C ×H ×W .

Multivariate spatial fusion module
The deterministic evolution law of wind speed refers to the fixed,
periodic evolution law that can be modeled by relying on historical
wind speed data and models. However, the wind speed system is a
chaotic system, and the uncertainty evolution refers to the complexity
and unpredictability of the wind speed system, which limits the

Article https://doi.org/10.1038/s41467-025-58456-4

Nature Communications |         (2025) 16:3195 12

www.nature.com/naturecommunications


Fig. 6 |MFWPNnetwork structure.MFWPNconsists of four parts: spatial encoder-
decoder, time units, spatial fusion module, and temporal fusion module. The
spatial encoder-decoder is used to extract and reconstruct the spatial features of
the wind field. The time unit is used to realize the temporal evolution of the wind

field. The spatial and temporal fusion modules are used to fuse the spatial and
temporal effects of other meteorological factors on wind field evolution. The last
module is a loss function designed according to the wind speed characteristics,
which helps the network to complete the fitting more efficiently.
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accuracy of wind speed prediction by relying only on the historical
wind speed. Wewould like to obtain some data from other sensors as a
complementary fusion into the prediction model to further improve
the wind speed prediction accuracy. According to the explanation in
Data, geopotential and temperature are important meteorological
factors affecting wind, and they work together to form the basis of
wind speed variation through variousmechanisms such as topography
and turbulence. In a complex environment, the air temperature, geo-
potential, and elevation data contain some noise information on the
wind, but more of the original force of the wind field evolution, so we
correct the wind field characteristics based on the meteorological
information extracted from them. When processing the time series,
LSTM corrects the present data based on data from future time points,
and its correction effect is generally verified and recognized. Inspired
by the multigating mechanism of LSTM, we introduce this mechanism
into the fusionmodule and let themeteorological information, such as
geopotential, temperature, etc., correct the wind evolution character-
istics through the cooperation of the forgetting gate andmemory gate.

The Multivariate spatial fusion module is shown in Fig. 6c, which
consists of spatial attentionmodules, a forgetting gate, amemory gate,
and an elevation encoding block. After spatial coding, we obtain the
spatial distribution characteristics of the geopotential, temperature,
and vector wind speed as χSGT and χSWind . The SA block first filters the
focused information of the geopotential and temperature to prevent
noise interference. The focused wind spatial distribution is relayed to
the network through sigmoid activation, which we call the forgetting
gate f . Afterward, the supplementary features are obtained from the
geopotential and temperature to obtain the spatial features of the
wind through thememory gate i. The above process can be expressed
as follows:

SAðχSGT Þ=W 7 ×7ðCat½AvepoolingðχSGT Þ;MaxpoolingðχSGT Þ�Þ 2 RBT × 1 ×H ×W

ð15Þ

f SGT = σ½SAðχSGT Þ� 2 RBT × 1 ×H ×W ð16Þ

iSGT = σ½SAðχSGT Þ�× TanhðχSGT Þ 2 RBT ×C ×H ×W ð17Þ

where SA denotes spatial attention computation, Cat denotes feature
splicing, Avepooling and Maxpooling denote average pooling and
maximum pooling, σ denotes the sigmoid activation function, and
Tanh denotes the tanh activation function. To incorporate the con-
trolling role of elevation data in the spatial characterization of winds,
we coded the elevation data in the study area:

Ele= σðWeleðStackðFE ÞÞÞ 2 RBT ×C ×H ×W ð18Þ

where Stack denotes the superposition of FE from H ×W to
BT ×C ×H ×W , Wele denotes the elevation data coding, and 1 × 1 con-
volution and 3 × 3 convolution blocks are used for adaptive coding. In
summary, we obtain the wind spatial features corrected by the multi-
variate spatial fusion unit χ_S

Wind 2 RBT ×C ×H ×W :

χ_S
Wind = χ

S
Wind × f

S
GT + i

S
GT + χ

S
Wind × Ele ð19Þ

Time unit
Like spatial evolution, the wind field has short- and long-term depen-
dence on the time scale. Taking 24-h wind speed forecast as an
example, diurnal variations can be interpreted as long-time climatic
phenomena, and localized air currents canbe interpreted as short-time
variations. The accurate prediction of future wind speed can be rea-
lized only by realizing the grasp of the short-time dependence and the
long-time trend. If an iterative prediction method is used, the long-

time prediction will result in the accumulation of errors, while the
direct prediction will lead to the inefficiency of the model. Therefore,
we propose a time cell that can realize multi-step direct prediction,
through which we capture the short-time fluctuation and long-time
trend of wind field evolution and directly evolve the historical 24-h
wind speed characteristics into the future 24-h wind speed char-
acteristics. As shown in Fig. 6d, to fully capture the spatiotemporal
evolutionary patterns of the wind, we employ large kernel convolution
and inter-frame dynamic attention to design the time unit. We use the
affine large kernel dilated convolution method58,59 to extract the
intraframe spatiotemporal evolution patterns of wind and auxiliary
meteorological elements. According to the principle of the convolu-
tional sensory field, the sensory field obtained by combining a ð2d �
1Þ× ð2d � 1Þ deep convolution and a K=d ×K=d dilation convolution is
comparable to that ofK ×K . Therefore, in the upper branchof the time
unit, we use 3 × 3 depth-wise convolution, dilated convolution, and
1 × 1 convolution to obtain the receptive field of the large kernel con-
volution to extract the in-frame spatiotemporal evolution law of the
wind. Taking χ_S

Wind as an example, it is first reshaped to obtain

z0 =Rðχ_S
WindÞ 2 RB ×TC ×H ×W . The affine large kernel convolution

process can be expressed as follows:

z1l + 1 =W 1 × 1ðWDw�dðWDwðzlÞÞÞ 2 RB×TC ×H ×W ð20Þ

whereW 1 × 1 denotes a 1 × 1 convolution, WDw�d denotes a depth-wise
dilated convolution, andWDw denotes adepth-wise convolution. In the
lower branch, adaptive channel attention is used to regulate the
interframe relationship of the wind speed spatiotemporal sequence:

z2l + 1 = gφðGAPðzlÞÞ 2 RB ×TC × 1 × 1 ð21Þ

where gφ denotes a one-dimensional convolution with convolution
kernel φ, and GAP denotes global average pooling. According to
ECANet66, φ= jðlog2ðTCÞ+ 1Þ=2jodd . Afterward, the two branches of
information are fused to obtain a time cell spatiotemporal feature
output zl + 1 2 RB×TC ×H ×W .

zl + 1 =W 1 × 1ðσðz1l + 1Þ � z2l + 1Þ+ zl ð22Þ

After the evolutionary process ofmultiple time units, the output of the
final time unit module is χTWind 2 RB×TC ×H ×W and χTGT 2 RB ×TC ×H ×W .

Multivariate temporal fusion module
Fig. 6e shows themultivariate temporal fusionmodule, which consists
of channel attention blocks, forgetting gates, andmemory gates. After
passing through the time unit, we obtain the time series evolution
characteristics of the geopotential, temperature, and vector wind
speed, χTWind and χTGT , respectively. We use the forgetting gate and
memory gate to correct the wind field features from the temporal
dimension and explore the foreshadowing wind speed evolution pat-
tern caused by the temporal variation in temperature and geopoten-
tial. Similar to the multivariate spatial fusion module, the LSTM-style
temporal fusion process can be expressed as follows:

CAðχTGT Þ= LinearðAvepoolingðχTGT ÞÞ 2 RB×TC × 1 × 1 ð23Þ

f TGT = σ½CAðχTGT Þ� 2 RB ×TC × 1 × 1 ð24Þ

iTGT = σ½CAðχTGT Þ�× TanhðχTGT Þ 2 RB ×TC ×H ×W ð25Þ

where Linear denotes a fully connected layer, CA denotes the channel
attention, which captures the temporally important information about
the bit geopotential and temperature. In summary, we can obtain the

Article https://doi.org/10.1038/s41467-025-58456-4

Nature Communications |         (2025) 16:3195 14

www.nature.com/naturecommunications


output of the multivariate temporal fusion module as follows:

χ_T
Wind = χ

T
W × f TGT + i

T
GT ð26Þ

Decoder
The structure of the decoder is similar to that of the encoder. The
difference is that the decoder performs only spatiotemporal decoding

of the vector wind speed feature χ_T
Wind 2 RB×TC ×H ×W , which incor-

porates information from multiple sources. Afterward, a linear trans-
formation is performed to obtain the final wind speed distribution

feature Fout 2 RB ×T ×C ×H ×W .

Composite loss function
Wind is a meteorological factor that fluctuates dramatically. The fluc-
tuating wind speed at a given moment in a single image reflects
alternating high- and low-frequency information. These switches pose
a challenge for the MSE loss function to capture such high- and low-
frequency information. Moreover, owing to the variability of the wind
direction itself, global MSE loss has difficulty capturing the wind
direction in a targeted manner. To adapt to the variability of the wind
and enable MFWPN to better fit the wind pattern, a composite loss
function was designed with a global MSE loss, a structural similarity
(SSIM) loss, and a wind direction loss, as shown in Fig. 6f. The global
loss can be expressed as:

LGlo = kŷ� yk2F ð27Þ

where y denotes the truewind speed and ŷ denotes the predictedwind
speed. In imaging, the SSIM is often used to evaluate the quality of
image generation. Considering each frame of the wind speed as a
picture, theSSIMcan focuson the spatial interrelationshipsof thewind
speed at each observation point, including texture and edge infor-
mation. Therefore, we introduce SSIMmetrics from the image domain
into our WSP loss to assist the network in better fitting the spatial
fluctuations in the wind speed. The SSIM loss can be expressed as
follows:

LSSIM = 1� SSIM½ŷ, y� ð28Þ

where SSIMð:Þ denotes the SSIM calculation. To perform accurate
wind direction prediction, we additionally introduced wind
direction loss. The wind direction at an observation point can be
calculated from the u-wind and v-wind components of the wind
speed. Assuming that the u-wind and v-wind at an observation point
are ug and vg , the wind direction at that point can be calculated as
follows:

Ang = arctanðug , vg Þ ð29Þ

The true and predicted wind directions can be expressed as follows:

yAng = arctanðuy, vyÞ ð30Þ

ŷAng = arctanðuŷ, vŷÞ ð31Þ

The wind angle loss can be obtained as:

LAng =
kj ŷAng � yAng jk2F , jŷAng � yAng j≤ 180

k360� j ŷAng � yAng jk2F , jŷAng � yAng j>180

8
<

:
ð32Þ

Finally, the composite loss can be obtained as follows:

L= LGlo + LSSIM + LAng ð33Þ

Evaluation methods
We used latitude-weighted RMSE, MAE, and ACC15,56 to evaluate the
accuracy of vector wind speed prediction.

RMSE=
1

Npredictions

XNpredictions

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NlatNlon

XNlat

j

XNlon

k

LðjÞ Y_
i, j, k � Y i, j, k

� �2

v
u
u
t

ð34Þ

MAE =
1

Npredictions

XNpredictions

i

1
NlatNlon

XNlat

j

XNlon

k

LðjÞ Y_
i, j, k � Y i, j, k

�
�
�

�
�
� ð35Þ

ACC=

PN
i, j, kLðjÞðY_

i, j, k � ξÞðY i, j, k � ξÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i, j, kLðjÞ Y_
i, j, k � ξ

� �2 P
LðjÞ Y i, j, k � ξ

� �2
r ð36Þ

LðjÞ= cosðlatðjÞÞ
1

Nlat

PNlat
j cosðlatðjÞÞ ð37Þ

whereNpredictions denotes the predicted time length,Nlat ,Nlon denotes
the number of grid points in latitude and longitude direction, i, j, k
denotes the time, width, and height index, Y denotes the true value,
and Y_ denotes the predicted value. ξ denotes the climate factor,
defined as ξh,w = 1

Npredictions

PNpredictions

i Y i.
In addition, we introduced a more targeted metric, WDFAα , to

measure wind direction prediction. For the H×W grid points to be
predicted, we measure wind direction prediction by calculating the
number of grid points in which error is less than a set threshold. The
angle thresholds α are generally set to 90, 45, and 22.5.WDFAα can be
expressed as follows:

WDFAα =
Countðdif f ðpred, trueÞ<αÞ

H ×W
× 100% ð38Þ

dif f ðpred, trueÞ= jpred � truej, jpred � truej≤ 180
360� jpred � truej, jpred � truej>180

�

ð39Þ

where Countð:Þ denotes counting the number of eligible observations.
For example, for 64 × 80 grid points in Northeast China, if 4800 grid
points have an angular difference of less than 22.5 degrees,
then WDFAα = 22:5 =

4800
64×80 × 100%=93:75.

Data availability
We downloaded hour-by-hour data of u-wind and v-wind for ERA5
from https://cds.climate.copernicus.eu/datasets/reanalysis-era5-
single-levels?tab=download. We downloaded hour-by-hour data for
temperature and geopotential at 1000 hpa altitude for ERA5 from
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-
levels?tab=download. ECMWF-HRES data are from historical forecast
data at https://www.ecmwf.int/en/forecasts/datasets/set-i. Elevation
data were provided by NOAA at https://www.ncei.noaa.gov/products/
etopo-global-relief-model. In addition, to facilitate the discussion of
the study, we also provide the data that have been downloaded and
processed in https://github.com/Zhang-zongwei/MFWPN. Source data
is available as a Source Data file. Source data are provided with
this paper.
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Code availability
The source code used to train and run the MFWPNmodel in this study
is available on GitHub: https://github.com/Zhang-zongwei/MFWPN67.
The code for the comparison algorithm was from public content in
Github: https://github.com/chengtan9907/OpenSTL.
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