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All-site alloyed perovskite for efficient and
bright blue light-emitting diodes

Yu Chen1, Ruishan Wang1, Gunnar Kusch 2, Bo Xu1, Chenjie Hao1, Chen Xue1,
Lu Cheng 3, Lin Zhu 1, Jingmin Wang1, Hai Li 1, Rachel A. Oliver 2,
Nana Wang 1 , Wei Huang 1,4,5 & Jianpu Wang 1,6

Perovskite light-emitting diodes have drawn great attention in the fields of
displays and lighting, especially for applications requiring high efficiency and
high brightness. While three-dimensional perovskite light-emitting diodes
hold promise for achieving higher brightness compared to low-dimensional
counterparts, efficient blue three-dimensional perovskite light-emitting
diodes have remained a challenge due to defect formation during the dis-
ordered crystallization of multiple A-cation perovskite. Here we demonstrate
an all-site alloy method that enables sequential A-site doping growth of for-
mamidinium and cesium hybrid perovskite. This approach significantly redu-
ces the trap density of the perovskite film by approximately one order of
magnitude. Consequently, we achieve efficient and bright blue perovskite
light-emitting diode with an external quantum efficiency of 23.3%, a luminous
efficacy of 33.4 lmW−1, and a luminance of approximately 5700 cdm−2 for the
emission with a peak at 487 nm. This work provides a strategy for growing
high-quality multicomponent perovskite for optoelectronics.

Solution-processed thin-film perovskite light-emitting diodes (LEDs)
are considered to be promising candidates for emerging light-
emitting technology owing to their high brightness, low power
consumption, and potential low cost1,2. In recent years, significant
advancements have been made in red and green perovskite LEDs,
with their external quantum efficiencies (EQEs) approaching those of
organic LEDs and quantum-dot LEDs2–5. However, the efficiency and
brightness of blue perovskite LEDs have lagged behind, becoming an
obstacle for their application in full-color displays. Mixed bromide/
chloride (Br/Cl) three-dimensional (3D) perovskites with the ABX3

formula exhibit high charge mobility and a high Auger recombina-
tion threshold, showing great promise for achieving efficient and

bright blue LEDs6,7. To enhance the stability of the crystal structure
and improve halide homogeneity in X-site alloyed perovskites, mul-
tiple A-site cations like formamidinium/cesium/rubidium (FA/Cs/Rb)
have been widely utilized8,9. However, the competitive crystallization
process of multiple A-site perovskite phases can lead to disordered
growth and cation segregation10,11, resulting in the formation of
numerous defects. Here we demonstrate that the trap density in
blue 3D perovskite can be significantly reduced by introducing a
B-site alloy (lead/strontium, Pb/Sr) to facilitate a sequential A-site
doping growth of perovskite. Based on these high-quality all-site
alloyed perovskites, we demonstrate efficient and bright blue per-
ovskite LEDs.
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Results
High-performance perovskite films and light-emitting diodes
The all-site alloyed (FA/Cs/Rb)(Pb/Sr)(Br/Cl)3 perovskite layers were
prepared by spin-coating a precursor solution of formamidinium
bromide (FABr), cesium bromide (CsBr), rubidium bromide (RbBr),
lead chloride (PbCl2), lead bromide (PbBr2), strontiumbromide (SrBr2)
and 2-(2-(2-aminoethoxy)ethoxy)acetic acid (AEAA) with a molar ratio
of 0.2/1.2/0.1/0.56/0.44-x/x/0.2 dissolved in dimethyl sulfoxide
(DMSO). We used Pb and Pb/Sr to denote perovskites prepared with-
out and with 0.05 ratio SrBr2, respectively. Both Pb and Pb/Sr films
exhibit blue emission with a photoluminescence (PL) peak at 487 nm
and similar absorption spectra (Supplementary Fig. 1). X-ray diffraction
(XRD) data reveal typical diffraction peaks of 3D perovskite, with
enhanced crystallinity observed in the Pb/Sr perovskite (Fig. 1a). These
results indicate that the inclusion of small amount Sr2+ has a minimal
effect on the crystal structure of the perovskite, unlike the introduc-
tion of a large amount of Sr2+, which can enlarge the bandgap of
perovskite12–14. Scanning electron microscope (SEM) images show that
the Pb/Sr perovskite film possesses larger grains compared to the Pb
film (Fig. 1b, c). It also exhibits a discrete morphology similar to the Pb
perovskite sample, which is beneficial for light extraction in LEDs15.
More importantly, the Pb/Sr perovskite exhibits an enhanced photo-
luminescence quantum efficiency (PLQE) of 75%, particularly at lower
excitation intensities (Fig. 1d), suggesting reduced trap-assisted non-
radiative recombination16. Transient PL decay measurements further
demonstrate that the Pb/Sr perovskite exhibits a much longer PL life-
time compared to the Pb sample (Fig. 1e, f), confirming its lower trap
density. By fitting the transient PL data, it is estimated that the trap
density of the Pb/Sr sample is 4.2 × 1014cm−3, which is lower than in
conventional blue perovskite films (approximately 1015cm−3)17 and
almost one order of magnitude lower than the 2.2 × 1015cm−3 of the Pb
perovskite film. The local properties of the perovskite films were
investigated using cathodoluminescence (CL) measurements (Fig. 2),
which can provide high-resolution information about the local emis-
sion behavior of perovskites6,18. The Pb perovskite film exhibits sig-
nificant variation in the emission peak (Fig. 2e, g), with a high standard

deviation (SD) of 1.9 nm. In contrast, the CL peakwavelength of the Pb/
Sr perovskites is distributed much more narrowly (Fig. 2f, g), and the
SD decreases to 1.5 nm, indicating improved uniformity of the per-
ovskite grains.

We then fabricated blue LEDs using the above perovskite films
(Fig. 3a). The device based on the Pb/Sr perovskite exhibits an elec-
troluminescence (EL) peak at 487 nm (Fig. 3b), corresponding to
Commission Internationale de l’Eclairage (CIE) coordinates of (0.070,
0.246) (Fig. 3c). The devicedemonstrates a low turn-on voltage of 2.4 V
and reaches a maximum luminance of approximately 5700 cdm−2

(Fig. 3d). It achieves a peak EQE of 23.3% and a peak luminous efficacy
of 33.4 lmW−1 (Fig. 3e), representing the most efficient blue 3D per-
ovskite LED to date (SupplementaryTable 1)8,19. These Pb/Sr perovskite
devices exhibit an average peak EQE of 21.5% (Fig. 3f). The Pb/Sr per-
ovskite LED reaches a longer half-lifetime of 42min compared to the
11min of the Pb perovskite device (Supplementary Fig. 2a). Addition-
ally, the Pb/Sr LED exhibits good color stability, with spectra remaining
unchanged after the stability measurement (Supplementary Fig. 2b).
This improved stability canbe attributed to the reduced trap density in
the Pb/Sr perovskite film, which can mitigate ion migration20. Fur-
thermore, by increasing the ratio of Cl to Br in the Pb/Sr perovskite
through in situ halide exchange using a mixed tetraphenylpho-
sphonium chloride (TPPC) and phenylbutylammonium chloride
(PBAC) solution21, the EL peak of the devices can be tuned to deep blue
as 468 nm and 464 nm. The devices achieve high peak EQEs of 11.9%
and 7.5%, and luminous efficacy of 7.3 and 3.9 lmW−1, respectively.
Importantly, the deep-blue device at 464 nm exhibits CIE coordinates
of (0.132, 0.046), fully meeting the Rec. 2020 blue standard (0.131,
0.046). In contrast, deep-blue Pb perovskite LEDs with an EL peak at
464 nm can only achieve a low EQE of 2.1% (Supplementary Fig. 3),
which is attributed to higher trap densities.

Formation mechanism of high-quality perovskites
To verify how B-site alloying enhances the quality of the perovskite
film, we compared the PL spectra of samples during the spin-coating,
vapor-assisted crystallization (VAC), and thermal annealing processes.
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Fig. 1 | Characterizations of perovskite films. a XRD patterns. b, c SEM images of Pb (b) or Pb/Sr (c) perovskites. Scale bar, 500 nm. d Excitation-intensity-dependent
PLQEs. e, f Transient PL decays of Pb (e) or Pb/Sr (f) perovskites.
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The results demonstrate that the Pb perovskite sample begins to form
emitters approximately 35 s during the spin-coating process, exhibit-
ing a PL peak at approximately 469 nm (Fig. 4a and Supplementary
Fig. 4a). In contrast, the Pb/Sr sample shows no PL signal from the
perovskite (Fig. 4b and Supplementary Fig. 4b), indicating that Sr
doping can retard the crystallization of our perovskite. Then, during
the dimethylformamide (DMF) vapor treatment process, both Pb and
Pb/Sr samples exhibit enhanced and red-shifted PL spectra (Fig. 4c, d),
which can be attributed to the growth of perovskite and themigration

of Br− to the Cl-rich perovskite with the assistance of DMF vapor22.
During the subsequent thermal annealing process, the PL peak of the
Pb sample remains constant at approximately 481 nm (Fig. 4e). In
contrast, the PL peak of the Pb/Sr perovskite exhibits a blue shift from
487 nm to 481 nm within 5 s (Fig. 4f and Supplementary Fig. 4e). This
observation indicates that the Pb/Sr perovskite experiences distin-
guishable growth during the annealing process, which is further con-
firmed by SEM images and XRD data of perovskite films annealed for
various times. SEM measurements show that the as-prepared Pb/Sr

Fig. 2 | Local characterizations of Pb and Pb/Sr perovskite films. a, b SEM image
of Pb (a) and Pb/Sr (b) perovskite films. c, dCorresponding CL peak intensity maps
of Pb (c) and Pb/Sr (d) perovskite films. e, f CL peak wavelengthmaps of Pb (e) and

Pb/Sr (f) perovskite films. Scale bar, 700nm. g Statistics of CLpeak in themeasured
Pb and Pb/Sr perovskite films. The SD values of the Pb and Pb/Sr samples are 1.9 nm
and 1.5 nm, respectively.
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sample consists of large grains embedded in some mud bank-like
clusters (Supplementary Fig. 5a). As the annealing time increases, the
mudbank-like clusters gradually grow andmerge into large grains, and
the XRD peak at 30.7° gradually shifts to a larger diffraction angle at
30.9°, accompanied by enhanced diffraction intensity (Supplementary
Fig. 5c). This observation indicates that after introducing Sr, the per-
ovskite experiences a significant evolution of two phases during the
annealing process. In contrast, the Pb sample exhibits a similar mor-
phology and XRD pattern during the annealing process (Supplemen-
tary Fig. 5b, d). Therefore, we conclude that while the crystallization of
the Pb sample mainly occurs before the annealing process, the Pb/Sr
perovskite experiences a slower, stepwise crystallization pathway,
contributing to the high-quality perovskite.

We then investigate how the Sr-doping affects the crystallization
of the perovskite. The elemental analysis using Auger electron spec-
troscopy (AES) measurements reveals a stronger carbon signal in the
large grains of the as-prepared Pb/Sr sample without annealing, while
the signal of Cs is higher in themud bank-like clusters (Supplementary
Fig. 5e). This finding suggests that the large andmud bank-like clusters
correspond to emissive FA-rich perovskite phase and Cs-rich non-
perovskite phase, respectively. After being annealed for 10min, the
grains exhibit similarC andCs signals (Supplementary Fig. 5f).We infer
that during the thermal annealing process, there exist cation exchan-
ges between the FA-rich andCs-richphases, with Cs+migrating into the
FA-rich perovskite framework to replace the FA+ 23. This leads to blue-
shifted PL spectra and a shift of the XRDpeak to a larger angle24 (Fig. 4f
and Supplementary Fig. 5c). Similar cation exchangeprocesses are also
observed in (FA/Cs/Rb)(Pb/Sr)Br3 perovskite, further supporting this
A-site doping growth process (Supplementary Fig. 6).

To reveal the originof this unique crystallization pathway induced
by Pb/Sr alloying, we conducted X-ray photoelectron spectroscopy
(XPS) measurements. The results show that the SrBr2 and CsBr sample
exhibits a larger shift of the Sr 3dpeak towards a higher binding energy
compared to the SrBr2 + FABr sample (Supplementary Fig. 7a), which
can be attributed to the stronger ionic bonds between Cs+ and [SrBr3]

−

(Supplementary Fig. 7b). Furthermore, theoretical simulations show

that the average distance between Sr2+ and Cs+ ions is 4.964Å, while
the distance between Sr2+ and FA+ ions is 5.401 Å, with DMSO solvent
molecules surrounding the cations (Supplementary Fig. 7c, d). This
indicates that the interaction between [SrBr3]

− and Cs+ is stronger than
that between [SrBr3]

− and FA+, which is consistent with the solid-state
structures (averageCs-Sr distance: 2.904Å and average FA-Sr distance:
3.960Å) (Supplementary Fig. 7e, f). Consequently, we can conclude
that the strong interaction between SrBr2 and CsBr impedes the initial
growth ofmixed FA/Cs alloyedperovskite, leading to the growthof FA-
rich perovskite. Additionally, the FA-rich perovskite can undergo
oriented growth with the assistance of AEAA, resulting in ordered
inorganic frameworks with low defects25. As the annealing time
increases, Cs+ gradually migrates into the ordered FA-rich perovskite
framework, maintaining high-quality perovskite grains. This is further
supported by the CL intensity map, which shows that the large grains
in the Pb/Sr perovskite exhibit a much more uniform and higher CL
intensity compared to the Pb sample (Fig. 2).

We believe that the above sequential A-site doping growth of FA/
Cs hybrid perovskites plays a critical role in achieving low-defect
perovskites and is the key for the impressive device performance, as
the peak EQE of the Pb perovskite device is only 13.5% (Supplementary
Fig. 8). As shown in Supplementary Fig. 8a, b, increasing the ratio of
SrBr2 gradually retards the growth of the FA/Cs perovskite while
simultaneously increasing grain size and enhancing crystallinity. This
results in a reduced defect density of the perovskite, leading to
improved PLQEs (Supplementary Fig. 8c). When the SrBr2 ratio is fur-
ther increased to 0.07, the PLQE starts to reduce. Moreover, CL mea-
surements indicate that a 0.1 ratio of SrBr2 can result in heterogeneous
emissions, wherein the perovskite grain edges exhibit a blue-shifted
emission peak compared to the grain centers (Supplementary
Fig. 8g–i). This can be attributed to the impeded migration of Cs+ into
the FA-rich perovskite framework at a higher SrBr2 ratio.

Discussion
The A- and X-site alloyed perovskite strategy has been widely
employed to achieve high-quality perovskite films, relying on precise
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control of crystallization for multiple phases. However, effectively
controlling the rapid and disordered crystallization of multi-
component blue perovskites has remained a challenge. Inourwork, we
demonstrate that the B-site Pb/Sr alloy can further reduce the defect
density of blue perovskite films by forming an ordered stepwise crys-
tallization of FA/Cs hybrid perovskites. Based on this all-site alloy
strategy, we have achieved efficient and bright blue perovskite LEDs
with a peak EQE of 23.3% and a peak luminous efficacy of 33.4 lmW−1.
Moreover, this strategy can be employed for deep-blue perovskites,
enabling the fabrication of efficient deep-blue LEDs with high bright-
ness. Our advances in crystallization control provide the guidelines for
achieving high-performance multicomponent perovskites.

Methods
Synthesis and material preparation
The precursor solution of (FA/Cs/Rb)(Pb/Sr)(Br/Cl)3 perovskite was
prepared by dissolving FABr, CsBr, RbBr, PbCl2, PbBr2, SrBr2, andAEAA
with a molar ratio of 0.2/1.2/0.1/0.56/0.44-x/x/0.2 in DMSO. The solu-
tion was stirred at 60 °C overnight in a N2-filed glovebox before use.
The (FA/Cs/Rb)(Pb/Sr)Br3 perovskite precursor solution was prepared
by dissolving FABr, CsBr, RbBr, PbBr2, SrBr2, and AEAA with a molar
ratio of 0.2/1.2/0.1/0.95/0.05/0.2 in DMSO.

Film and device fabrication
The devices have a structure of indium tin oxide (ITO)/nickel oxide
(NiOx):[2-(3,6-Dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic Aicd
(Meo-2PACz) (10 nm)/poly(9,9-dioctyl-fluorence-co-N-)4-butylphenyl)
diphenylamine) (TFB):poly(9-vinylcarbazole) (PVK) (25 nm)/per-
ovskite (around 50 nm)/2,2’,2”,-(1,3,5-benzinetriyl)tris(1-phenyl-1H-
benzimidazole) (TPBi; 50nm)/lithium fluoride (LiF; 1.2 nm)/aluminum
(Al; 100 nm). All devices were fabricated on ITO-coated glass sub-
strates with a device area of 3 mm2. NiOx nanocrystals obtained from
Avantama AG were spin-coated onto ITO glass at 4000 rpm for 30 s
and annealed at 150 °C for 10min. The NiOx-coated substrates were
then transferred to the N2-filled glovebox. The Meo-2PACz layer, dis-
solved in isopropanol (IPA) at a concentration of 1mgmL−1, was spin-
coated at 2000 rpm for 30 s and annealed at 100 °C for 10min. The
TFB layer, dissolved in m-xylene at a concentration of 5mgmL−1, was
spin-coated at 2000 rpm for 45 s and annealed at 150 °C for 30min.
Next, the PVK layer, dissolved in chlorobenzene at a concentration of
3mgmL−1, was spin-coated at 2000 rpm for 30 s and annealed at
120 °C for 20min. The perovskite layerswere prepared by spin-coating
the precursor solutions onto the PVK film at 5000 rpm for 45 s. Sub-
sequently, the wet perovskite films were transferred into a petri dish
containing 20 μL DMF to improve the homogeneity of halides22. After
10min of DMF vapor treatment, all perovskite films were annealed at
90 °C for 10min. For perovskite films with TPPC+ PBAC treatments,
post-treatment solutions with 2.7 × 10−3 mM TPPC+ 5.4 × 10−3 mM
PBAC and 3.2 × 10−3 mM TPPC + 6.5 × 10−3 mM PBAC were used to
achieve devices with EL peaks of 468 nm and 464 nm, respectively.
Finally, the TPBi, LiF, and Al layers were thermally evaporated onto the
perovskite films.

Device characterization
All devicemeasurements were performed in a nitrogen-filled glovebox
using an integrated systemcomprising aKeithley 2400 sourcemeter, a
fiber integration sphere (FOIS-1), and a QE65 Pro spectrometer26.
Photon collection was achieved directly through the integrating
sphere and spectrometer. Current-voltage sweeps were conducted
from zero bias to forward bias at a bias rate of 0.2 V s−1. Stability
measurements were carried out using a Keithley 2450 source meter, a
Keithley 2000 electric-meter, and a Thorlabs PDA100A photodetector
(Nanjing Ouyi Optoelectronics Technology) in a glovebox at room
temperature27.

Film characterization
XRD data were acquired using a RIGAKU SmartLab 3 kW X-ray dif-
fractometer. SEM images were obtained with a JEOL5 JSM-7800F
microscope. PL spectra weremeasured using aQE65 Pro spectrometer
with a 375 nmCW laser as the excitation source. In situ PL spectrawere
collected using an ISAS-HI001 system (Nanjing Ouyi Optoelectronics
Technology) equipped with a 375 nm CW laser28. PLQEs were deter-
mined using an integrating sphere system and a 375 nm CW laser29.
Time-resolved PL measurements were performed with an Edinburgh
Instrument (FLS980 spectrometer) and a 445 nm pulsed laser. AES
data were collected using a PHl710 Auger Electron Spectrometer, with
samples transferred into the AES chamber via a nitrogen-filled glove-
box to avoid atmospheric exposure. XPS measurements were con-
ducted using a Thermo Scientific ESCALAB Xi+ XPS microprobe with
an Al Kα anode (E = 1486 eV). Cathodoluminescence hyperspectral
mapping was performed using an Attolight Allalin 4027 Chronos
dedicated CL-SEM. CL spectra were acquired with an acceleration
energy of 3 keV, a beamcurrent of 62 pA, and an iHR320 spectrometer
equipped with a 150 lmm−1 grating blazed at 500nm and an Andor
1024 px charged coupled device. Beam current calibration was per-
formed using a Faraday cup prior to measurements. Electrospray
ionization time-of-flight mass spectrometry (ESI-TOF-MS) was con-
ducted using an Agilent 6230 TOF LC/MS.

Calculations
First-principles calculations were performed using density functional
theory as implemented in the Vienna Ab initio Simulation package
(VASP) with the projector-augmented wave method30,31. Exchange-
correlation interactions were described by the generalized-gradient
approximation with the Perdew-Burke-Ernzerhof (PBE) functional32.
For electronic structure calculations, an energy cut-off of 400 eV was
employed. The unit cell was constructed as a 10 × 10 × 10 supercell
containing one [SrBr3]

− anion, one cation (Cs+ or FA+), and four DMSO
solvent molecules to model the intermediate phase between the
solution and solid phases. The unit cell was fully relaxed, and a 2 × 2 × 2
Monkhorst-Pack k-point gridwasused for structural optimizations and
switching pathways calculations33. Structural optimizations were con-
sidered complete when the root-mean-square forces were less than
0.01 eV/Å.

Data availability
The data that support the finding of this study are provided in the
Source data file. Source data are provided with this paper.
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