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A multi-modal transformer for predicting
global minimum adsorption energy

Junwu Chen 1,2,6, Xu Huang 1,3,6, Cheng Hua 4, Yulian He 3,5 &
Philippe Schwaller 1,2

The fast assessment of the global minimum adsorption energy (GMAE)
between catalyst surfaces and adsorbates is crucial for large-scale catalyst
screening. However, multiple adsorption sites and numerous possible
adsorption configurations for each surface/adsorbate combination make it
prohibitively expensive to calculate the GMAE through density functional
theory (DFT). Thus, we designed a multi-modal transformer called AdsMT to
rapidly predict the GMAE based on surface graphs and adsorbate feature
vectors without site-binding information. The AdsMT model effectively cap-
tures the intricate relationships between adsorbates and surface atoms
through the cross-attention mechanism, hence avoiding the enumeration of
adsorption configurations. Three diverse benchmark datasets were intro-
duced, providing a foundation for further research on the challenging GMAE
prediction task. Our AdsMT framework demonstrates excellent performance
by adopting the tailored graph encoder and transfer learning, achieving mean
absolute errors of 0.09, 0.14, and 0.39 eV, respectively. Beyond GMAE pre-
diction, AdsMT’s cross-attention scores showcase the interpretable potential
to identify the most energetically favorable adsorption sites. Additionally,
uncertainty quantification was integrated into our models to enhance the
trustworthiness of the predictions.

The adsorption energy of an adsorbate on the catalyst surface is
crucial for determining the reactivity and selectivity of catalytic
reactions. The highest catalytic activity of a material frequently
resides at the optimal adsorption energy of the key reaction inter-
mediates, according to the Sabatier principle1–4. Therefore, develop-
ing cheap and efficient adsorption energy evaluation methods is key
for accelerating catalyst discovery. Currently, high-throughput
screening of catalysts relies heavily on computationally expensive
simulations like density functional theory (DFT)5–8. However, multiple
adsorption sites and variable adsorbate geometries lead to numerous
possible adsorption configurations and local minima on the potential

energy surface9–11. The local adsorption energy, which strongly
depends on the initial structure of the simulation, might not well
represent the catalytic activity. Several methods, including global
optimization algorithms12,13 and “brute-force" searches14,15, have been
employed to find the most stable adsorption structures and corre-
sponding globalminimumadsorption energies (GMAE). However, the
high computational cost of suchDFT-basedmethodologies inevitably
imposes limitations on their large-scale implementation, given the
immense catalyst design space.

Recent developments in machine learning (ML) algorithms hold
great promises in approximating DFT-level accuracy with significantly
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higher efficiency and lower computational costs16–19. Various ML
models, such as random forests, multilayer perceptions, and graph
neural networks (GNNs), have been explored to predict the adsorption
energy of adsorbate-surface systems11,20–26. However, several draw-
backs are present in most models, which (1) can only predict local
minimum adsorption energies, (2) require specific binding informa-
tion between the adsorbates and catalyst surfaces, and (3) exhibit poor
generalizability limited to specific adsorbates. Recently, Ulissi et al.
proposed the AdsorbML workflow9, which combines heuristic search
and ML potentials to accelerate the GMAE calculation. The ML
potentials trained on the huge Open Catalyst 2020 (OC20) dataset
achieve promising prediction accuracy and substantial speedups over
DFT computations9. Moreover, Margraf et al.10 proposed a global
optimization protocol that employs on-the-fly ML potentials trained
on iteratively DFT calculations to search the most stable adsorption
structures. This method is versatile for various combinations of sur-
faces and adsorbates, significantly reducingDFT calculations as well as
the reliance on prior expertise10. Despite notably mitigating compu-
tational expenses relative to DFT methods, these approaches still
require the exploration of a large number of initial adsorption struc-
tures and iterative calculations to obtain the GMAE values.

Recently, multi-modal learning has become a research hotspot
through the extraction and alignment of rich information from het-
erogeneous modalities for scientific research27–31. Among them, the
multi-modal transformersdemonstrate exceptional learning capability
by associating different modalities with a cross-attention
mechanism30–34. For instance, Kim et al.30 created a multi-modal pre-
training transformer that integrates atom-wise graphs and energy-grid
embeddings to predict the properties of metal-organic frameworks
(MOFs). Moreover, a prompt-guided multi-modal transformer pro-
posed by Park et al.31 demonstrated excellent performance in pre-
dicting the density of states (DOS) through modalities of graph
embedding and energy-level embedding of crystals.

Herein, we propose a multi-modal transformer model, named
AdsMT, which incorporates catalyst surface graphs and adsorbate
feature vectors as heterogeneous input modalities to directly predict
theGMAEof diverse adsorption systemswithout the acquisitionof any
site-binding information. The AdsMT is designed to capture the intri-
cate relationships between adsorbates and the multiple adsorption
sites on surfaces through the cross-attention mechanism, thereby
avoiding the enumeration of adsorption configurations. As illustrated
in Fig. 1a, three GMAE datasets comprising diverse catalyst surfaces
and adsorbates were introduced for the challenging GMAE prediction
task. Our AdsMT demonstrates excellent performance in predicting
GMAE, with mean absolute errors (MAE) below 0.15 eV for two of the
datasets. A transfer learning strategy was also proposed to further
improve AdsMT’s performance on small-sized datasets. Moreover,
cross-attentionweights are exploited to identify themost energetically
favorable adsorption sites anddemonstrate the interpretablepotential
of AdsMT. The calibrated uncertainty estimation is integrated into our
AdsMT for reliable GMAE prediction. Overall, AdsMT exhibits strong
learning ability, generalizability, and interpretable potential, making it
a powerful tool for fast GMAE calculations and catalyst screening.

Results
AdsMT architecture
AdsMT is a multi-modal Transformer that takes periodic graph repre-
sentations of catalyst surfaces and feature vectors of adsorbates as
inputs to predict the GMAE of each surface/adsorbate combination
without any site binding information. As depicted in Fig. 1b, the AdsMT
architecture consists of three parts: a graph encoder EG, a vector
encoder EV, and a cross-modal encoder EC. In the graph encoder, the
unit cell structure of each catalyst surface ismodeled as a graph Gwith
periodic invariance by self-connecting edges and radius-based edge
construction (see Methods for details). The atom-wise embeddings of
surfaces are output from the graph encoder and passed into the cross-
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Fig. 1 | Overall schematics and architecture of AdsMT. a The schematic overview
of this study.Wepresent threedatasets containingdiverse combinationof catalysts
and adsorbates for predicting the globalminimum adsorption energy (GMAE). The
upper-right plot illustrates the difference between global minima (GM) and local
minima (LM). AdsMT is a multi-modal model that processes separate surface and
adsorbate inputs to predict GMAE.bThe architecture of AdsMT. AdsMTconsists of
three blocks: a graph encoder for catalyst surface encoding, a vector encoder for
adsorbate encoding, and a cross-modal encoder for GMAE prediction from

embeddings of surfaces and adsorbates. c Illustration of cross-attention and self-
attention layers in the cross-modal encoder. In the first cross-attention layer, the
concatenated adsorbate vector embeddings and surface graph embeddings form
the query matrix (Q), while the concatenated atomic embeddings and depth
embeddings serve as the key (K) and value (V) matrices. Each atomic depth vector
encodes the relative position of an atom within the surface (e.g., top-layer or bot-
tom-layer). In the self-attention layer, the stacked atom embeddings, surface graph
embeddings, and adsorbate vector embeddings are used as the input Q, K, and V.
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modal encoder. Any geometric graph neural network, such as SchNet35

and GemNet36, can serve as the graph encoder in the AdsMT frame-
work. For the vector encoder, molecular descriptors are chosen to
represent adsorbates (see Methods for details), while multilayer per-
ceptron (MLP) is used to compute vector embeddings from adsorbate
descriptors and passed to the cross-modal encoder.

The cross-modal encoder takes atomic embeddings of surfaces
and vector embeddings of adsorbates as inputs to predict the GMAE. It
comprises cross-attention layer(s), self-attention layer(s), and an
energy block (Fig. 1b, c). The adsorption energy primarily arises from
the interaction between the catalyst surface and the adsorbate, while
the resulting surface atomic displacements also influence it37–39.
Therefore, the cross-attention layer is assigned to capture the complex
relationships between the adsorbate and all surface atoms, while the
self-attention layer is expected to learn the interactions between atoms
within the surface caused by adsorption (e.g., atomic displacements).
In the first cross-attention layer (Fig. 1c), the concatenated matrix of
adsorbate vector embeddings and surface graph embeddings is
employed as the query matrix, while the concatenated matrix of
atomic embeddings anddepth embeddings serves as the key andvalue
matrices. Each atomic depth vector describes the relative position
(e.g., top-layer or bottom-layer) of an atom within the surface (Meth-
ods). In the self-attention layer, the stacked matrix of atom embed-
dings, surface graph embeddings, and adsorbate vector embeddings
are set to the input query, key, and value. The aggregatedoutput of the
final self-attention layer is concatenated with the output of the last
cross-attention layer, and passed into the energy block to predict the
GMAE. The detailed algorithmof the cross-modal encoder is described
in the Methods.

The graph encoder employed in the AdsMTmodel plays a pivotal
role in capturing the structural and chemical features of catalyst sur-
faces. Unfortunately, existing GNNs fail to discriminate between top-
layer and bottom-layer atoms when representing a surface as a graph.
Practically, only the top-layer atoms of surfaces are capable of inter-
acting with adsorbates, rendering them inherently more important
than other atoms in terms of adsorption energy. Therefore, we

designed a graph transformer called AdsGT specifically for encoding
surface graphs. As depicted in Fig. 2a, a positional encodingmethod is
proposed to compute the positional feature δi for each atom based on
fractional height relative to the underlying atomic plane. This
approach augments the model’s understanding of surface structures
and differentiates between top and bottom layer atoms. Figure 2b
shows the architecture of the AdsGT encoder, which consists of radial
basis function (RBF) expansions, embeddings, and graph attention
layers. Different from the conventional graph transformer like
Graphormer40, the AdsGT layer (Fig. 2c) adopts an edge-wise attention
mechanism, delineated by three sequential steps: edge-wise attention
coefficients calculation, edge-wise message calculation, and node
update. More details about AdsGT architecture and its positional
encoding are described in the Methods.

GMAE benchmark datasets
We introduced three GMAE benchmark datasets named OCD-GMAE,
Alloy-GMAE and FG-GMAE from OC20-Dense9, Catalysis Hub7, and
‘functional groups’ (FG)-dataset25 datasets through strict data cleaning
(see Methods for details), and each data point represents a unique
combination of catalyst surface and adsorbate. As shown in Fig. 3a and
Supplementary Tables 1–4, three GMAE datasets possess different
sizes and span diverse ranges of chemical space. Alloy-GMAE com-
prises 11260 combinations (largest), covering 1916 bimetallic alloy
surfaces and 12 small adsorbates of less than 5 atoms (*O, *NH, *CH2,
etc.). FG-GMAE exhibits a medium scale with 3308 combinations,
featuring 202 adsorbateswithdiverse functional groups (e.g., alcohols,
amidines, aromatics) alongside only 14 pure metal surfaces. OCD-
GMAE consists of 973 combinations spanning 967 inorganic surfaces
(intermetallics, ionic compounds, etc.), coupled with 74 adsorbates
(O/H, C1, C2, N-based). As illustrated in Fig. 3c and Supplementary
Figs. 1–3, the catalyst surfaces within OCD-GMAE showcase the most
diverse elemental composition (54 elements), including alkali/alkaline
earth metals, transition/post-transition metals, metalloids, and reac-
tive nonmetals. Comparatively, the surfaces of Alloy-GMAE involve
37 species of transition/post-transition metals, while FG-GMAE only
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has 14 transition metals. Regarding GMAE values (Fig. 3b), FG-GMAE
ranges from −4.0 to 0.8 eV, primarily concentrated around −0.9 eV. In
comparison, Alloy-GMAE and OCD-GMAE present a broader spectrum
of GMAE values (−4.3 ~ 9.1 and −8.0 ~ 6.4 eV), and encompass more
surface/adsorbate combinations with positive GMAEs. Moreover, the
Uniform Manifold Approximation and Projection (UMAP) algorithm
was utilized to visualize the chemical space of three GMAE datasets on
a two-dimensional plane (Supplementary Note 2), where the distances
between each surface/adsorbate combination are correlated with the
differences in feature space41,42. Each surface/adsorbate combination is
depicted by the smooth overlap of atomic positions (SOAP)
descriptors43,44 of surfaces and RDKit descriptors45 of adsorbates. Fig-
ure 3e demonstrates that three GMAE datasets delineate separate
chemical spaces, albeit with certain overlapping regions.

AdsMT performance and transfer learning
The prediction performance of the AdsMT framework with different
graph encoders (AdsGT, CGCNN46, SchNet35, DimeNet++47, GemNet-
OC48, ET49 and eSCN50) were evaluated on the three GMAE datasets
(Fig. 4a and Supplementary Table 6–7). All outcomes stem from ten
repeated experiments with different random seeds following an 8:1:1
training/validation/testing set ratio (Methods). In addition to MAE, we
adopt a new evaluation metric termed success rate (SR), representing
the percentage of predicted energieswithin 0.1 eV of theDFT-computed
GMAEs9. On the Alloy-GMAE dataset, the MAE values of AdsMT models
range from 0.14 to 0.17 eV, with lower MAE tending towards higher SR.
The proposed AdsGT surpasses other graph encoders and achieves the
best MAE (0.143 eV) and SR (66.3%) in GMAE prediction. While on the
smaller-sized FG-GMAE dataset, AdsMT models yield even lower MAE
( ~0.1 eV) and higher SR ( ~69%), with the bestMAEof 0.095 eV and an SR
of 71.9% through employing the AdsGT encoder. The fewer element
types of surfaces and narrower GMAE distribution of the FG-GMAE
dataset could be beneficial to the GMAE prediction task. Notably, our
AdsMT outperforms the GAME-Net model (MAE = 0.18 eV) that was
specifically designed for FG-Dataset and required site binding
information25. More challenging dataset splits based on surface or
adsorbate typewere testedon theAlloy-GMAE andFG-GMAEdatasets to
explore the generalization performance of AdsMT to unseen surfaces or
adsorbates (Supplementary Tables 15–18). For surface- or adsorbate-

based data partitioning, a set of unique types was obtained, of which
80% typeswere randomly sampled for training, and each 10% typeswere
used for validation and testing, respectively. Therefore, the types of
surfaces or adsorbates present in the test set are not included in the
training and validation sets. As shown in Supplementary
Tables 15 and 16, using surface-based data split leads to an increase of
approximately 0.02 eV in the MAE with a corresponding decrease of
around 6% in the success rate compared to random split. Although the
prediction accuracy slightly decreases under surface-based data parti-
tioning, the best MAE and success rate of AdsMTmodel on Alloy-GMAE
were 0.158 eV and 60.1%, respectively. Similarly, as presented in Sup-
plementaryTables 17 and 18, adsorbate-baseddatapartitioning results in
an increase of approximately 0.04 eV in MAE and a reduction of about
8% in success rate compared to random split, and AdsMT achieves the
bestMAEof 0.123 eV and the best success rate of 65.3%on the FG-GMAE.
The slight accuracy drops demonstrate the robust generalization cap-
ability of AdsMT to unseen surfaces or adsorbates.

In contrast, all AdsMTmodels exhibit unsatisfactory performance
on the OCD-GMAE dataset, with MAE exceeding 0.5 eV and SR below
15%. The underperformance could be attributed to the limited dataset
size (<1000) and the intricate composition of catalyst surfaces invol-
ving 54 elements. Nevertheless, the AdsMTmodel with AdsGT encoder
still achieves the best MAE of 0.571 eV and an SR of 13.5% on the OCD-
GMAE dataset, outperforming other graph encoders. In addition, the
Uni-Mol+ model (49M)51 pre-trained on the huge OC20 dataset52 was
explored for GMAEprediction by initial structure sampling, whichonly
achieved a success rate of about 32% and highlighted the difficulty of
the OCD-GMAE dataset (Supplementary Table 19).

To enhance the AdsMT performance under data scarcity, we
implemented a transfer learning strategy that entails pre-training on
data with local minimum adsorption energy (LMAE). To this end, we
established OC20-LMAE, a dataset comprising 363,937 surface/adsor-
bate combinations alongside their LMAEs, derived through data
cleaning of the OC20 dataset52 (Methods). It should be noted that both
OCD-GMAEandOC20-LMAEdatasets originate from theOpenCatalyst
Project52,53 with analogous surface and adsorbate types, which will be
advantageous for transfer learning. As illustrated in Fig. 4b, each
AdsMT model undergoes initial pre-training on the OC20-LMAE, fol-
lowed by fine-tuning on the GMAE datasets while selectively freezing
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graph encoder parameters. The efficacy of our transfer learning
strategy is elucidated in Fig. 4c and Supplementary Tables 8–10, where
AdsGT and GNNs reported in the past two years (refs.48–50) are chosen
as the graph encoders for AdsMT. On the OCD-GMAE dataset, AdsMT
models achieve obvious performance gains after transfer learning,
resulting in all MAE reductions surpassing 0.14 eV and SR increments
exceeding 7%. Particularly, the ET encoder enables AdsMT to achieve
an MAE reduction of 0.291 eV and a 9.3% increase in SR, and the
GemNet-OC encoder facilitates AdsMT to attain an MAE reduction of
0.256 eV and a 9.5% increase in SR. The best performance of AdsMTon
the OCD-GMAE was obtained after transfer learning, yielding an MAE
of 0.389 eV and a SR of 22.0%. On the contrary, transfer learning only
provides slight improvements for AdsMT models on the Alloy-GMAE
and FG-GMAE, likely attributable to substantial dissimilarities in cata-
lyst surface types between these datasets and OC20-LMAE (Supple-
mentary Note 9)54,55. The effectiveness of transfer learning mainly
depends on the quality of pre-training data and the similarity between
the source and target domains. It is important to note the inherent
difference between LMAE and GMAE. We randomly sampled 100
surface-adsorbate combinations from OC20-LMAE and calculated
their GMAE using the DFTmethod and AdsorbML pipeline9. Themean

absolute difference between GMAE and LMAE is about 0.27 eV. The
MAEs of the AdsMT models without transfer learning on the OCD-
GMAE dataset are about 0.6 eV. Therefore, it is reasonable that pre-
training on LMAE data can improve the AdsMT performance on OCD-
GMAE, despite the inherent difference between LMAE and GMAE.
However, AdsMT already exhibits commendable predictive perfor-
mance on the FG-GMAE and Alloy-GMAE datasets, with MAE values
beloworproximal to0.1 eV. The inherent errors (>0.2 eV) in LMAEdata
could hinder improving the AdsMT performance on both datasets
through transfer learning.

Overall, these results demonstrate the remarkable ability of the
AdsMT framework to rapidly predict GMAE of diverse surface/adsor-
bate combinations without any binding information. Utilizing separate
information of catalysts and adsorbates as input, the AdsMT could
generalize to predictions for unseen surfaces or adsorbates, making it
suitable for efficient virtual screening of catalysts where adsorption
structures are rarely available.

Adsorption site identification from cross-attention
Beyond predicting adsorption energies, identifying adsorption sites
holds particular importance in catalystdesign and reactionmechanism
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prediction and transfer learning. a The prediction success rate (SR) and mean
absolute error (MAE) of AdsMT models with different graph encoders35,46–50 on the
three GMAE datasets. b Schematic illustration of our transfer learning strategy.

Each AdsMT model is pre-trained on the OC20-local minimum adsorption energy
(LMAE) dataset, and then fine-tuned on a GMAE dataset with the graph encoder
parameters selectively frozen. c AdsMT's performance gains after transfer learning
using different graph encoders48–50.
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studies24,56,57. In this context, we explored the application of attention
scores from cross-attention layers to estimate the most energetically
favorable adsorption sites on catalyst surfaces58. As illustrated in
Fig. 5a, the average cross-attention score of each surface atom with

respect to the adsorbate is computed from all attention heads of the
last cross-attention layer, which implies the relative importance of
each surface atom in adsorbate binding58. The surface atom(s) with the
highest average cross-attention score is hypothesized as the most
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Fig. 5 | Adsorption site identification by cross-attention scores. a Schematic of
identifying the most energetically favorable adsorption sites from the average
cross-attention score of each surface atom relative to the adsorbate, which is cal-
culated over all attention heads in the last cross-attention layer. b The accuracy
(n = 5) of AdsMT models adopting different graph encoders48–50 in identifying
optimal adsorption sites with or without transfer learning (TL). The black dotted

lines represent the accuracy of random atom selection. The error bars represent
standard deviations from five experiments. c Four examples of the comparison
between (left) global minimum adsorption structures optimized by density func-
tional theory (DFT) and (right) attention score-colored surfaces computed by the
trained AdsMT model with AdsGT encoder. The black arrows point to the most
stable adsorption sites.
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favorable adsorption site. To assess the reliability of adsorption site
identification from cross-attention scores, no information regarding
adsorption structures or sites was provided to the AdsMT model
during training. The trained AdsMTmodel is employed to suggest the
optimal adsorption site for each surface/adsorbate combination and
compared with the ground truth from DFT calculations.

Figure 5c presents four examples contrasting cross-attention
score-colored surfaces (right) with DFT-optimized adsorption con-
figurations under GMAE (left). For the combination of CrN(211) sur-
face and *CH adsorbate, six equivalent N atoms of the surface
possess much higher cross-attention scores compared to other
atoms, and the adsorbate *CH is bonded with two of these N atoms in
the DFT-optimized GMAE structure. For *NH2NðCH3Þ2 on the
Zn2CuNi(201), three equivalent Ni atoms in the top layer of the sur-
face show the highest cross-attention scores, while the adsorbate
binds to one of them in the GMAE structure. In addition, our model
effectively distinguishes between top-layer and sub-layer atoms,
benefiting from incorporating atomic depth embeddings in the
cross-attention layers. These tendencies are consistent with other
random examples in the Alloy-GMAE and OCD-GMAE datasets
(Supplementary Fig. 8–11), indicating that the most favorable
adsorption sites strongly relate to the atoms with high cross-
attention scores. However, the AdsMT model is unsuitable for rea-
soning about adsorption sites on simple monometallic surfaces (e.g.,
FG-GMAE dataset), where the top-layer atoms are completely
equivalent and have identical attention scores. Furthermore, we
computed the accuracy of AdsMT models in identifying optimal
adsorption sites on the Alloy-GMAE and OCD-GMAE (Supplementary
Note 3). As illustrated in Fig. 5b, the AdsMT models demonstrate
commendable identification capabilities for optimal adsorption sites
across both datasets, substantially surpassing the accuracy obtained
through random atom selection (black dotted line). The AdsMT
model adopting the ET encoder achieves the highest accuracy of
0.48 on the Alloy-GMAE dataset, while the AdsMT model with the
AdsGT encoder exhibits the highest accuracy of 0.56 on the OCD-
GMAE. The implementation of transfer learning was also found to
improve the AdsMT’s accuracy for adsorption site identification. In
addition, the cross-attention scores also have the potential to iden-
tify the different types of adsorption sites (e.g., top, bridge, hollow)
through the improved method (Supplementary Note 10).

These results confirm that our AdsMT architecture can indeed
learn the complex association between adsorbates and surface atoms
through the cross-attention mechanism, underscoring its inter-
pretable potential. The trained AdsMTmodel can be a valuable tool to
rapidly identify energetically favorable adsorption sites of a specific
adsorbate on the surface.

Calibrated uncertainty estimation
From the practical perspective of virtual catalyst screening, it is
desirable that the models can provide uncertainty estimation for their
predictions, enabling researchers to evaluate the reliability of predic-
tions and assign experimental effort more efficiently. To this end, an
ensemble of independent AdsMT replicates is trained to estimate the
uncertainty from the variance of individual models’ predictions, which
is a widely recognized method for effective uncertainty quantification
(Methods)24,59,60. The AdsMT ensemble’s predictions were ranked
based on their uncertainty estimations (Supplementary Note 4), and
the correlation between uncertainty and prediction MAE was investi-
gated. As depicted in Supplementary Fig. 12a, AdsMT’s predictions
with lower uncertainty tend to have lowerMAEs across the threeGMAE
datasets. Moreover, the Spearman correlation coefficients between
the estimated uncertainty and predictionMAEs for the AdsMTmodels
with different graph encoders consistently exceed 0.98 on the three
GMAE datasets (Supplementary Fig. 12b). The results show that the
AdsMT’s estimated uncertainty is significantly correlated with the

predicted MAE, and its predictions are highly accurate at low uncer-
tainty levels24,60.

Furthermore, we investigated whether the AdsMT’s uncertainty
estimation is well-calibrated and statistically significant, thereby
avoiding overconfidence or underconfidence60–62. Supplementary
Fig. 13 presents the calibration curves and corresponding miscalibra-
tion areas of AdsMTmodelswithdifferent graph encoderson the three
GMAE datasets (Supplementary Notes 5, 6), which is an effective
approach to evaluating the calibration of uncertainty estimates24,60,61. It
is notable that the calibration curves of AdsMT models closely
approximate the ideal diagonal line and exhibit small miscalibration
areas less than 0.1. The results prove that AdsMT’s uncertainty esti-
mations are well-calibrated and scaled with errors60–62.

Overall, all results indicate that AdsMT’s uncertainty estimation is
reliable and well-calibrated. The precise uncertainty quantification is
crucial for active learning and experimental validation, which can drive
data expansion and candidate prioritization during the catalyst
discovery.

Discussion
We have presented AdsMT, a general multi-modal transformer fra-
mework for directly predicting GMAE of chemically diverse surface-
adsorbate systems without relying on any binding information. The
AdsMT integrates heterogeneous input modalities of surface graphs
and adsorbate feature vectors, demonstrating excellent predictive
performance on two GMAE benchmark datasets. Utilizing separate
input information of catalysts and adsorbates, the AdsMT could gen-
eralize predictions for unseen surface/adsorbate combinations, mak-
ing it suitable for efficient virtual screening of catalysts where
adsorption structures are rarely available. Furthermore, the AdsMT is
insensitive to surface geometric fluctuations without changes in
atomic connectivity, which is advantageous for virtual screening
across different materials/catalyst databases (Supplementary Note 11).
Moreover,AdsMTachieves a speedupof approximately eight ordersof
magnitude compared to DFT calculations, and four orders of magni-
tude faster than machine learning interatomic potentials (MLIP)
combined with heuristic search9 (Supplementary Note 7). Such a high
efficiency and low computational cost endow AdsMT with great pro-
mises for fast GMAE prediction and large-scale screening of catalysts.

In termsof data scarcity, AdsMTremains poised for enhancement,
as indicated by its unsatisfactory performance on the OCD-GMAE
dataset. It was shown that transfer learning is effective in addressing
this challenge. In futurework,MLIP can be employed to acquire coarse
GMAE data for model pretraining, which is much cheaper than LMAE
data fromDFT calculations.Moreover, it can be particularly interesting
to integrate AdsMT with active learning, as it enables the iterative
expansion of the training datasets towards underexplored regions of
catalyst space and improves the model’s reliability.

The application of identifying the most advantageous adsorption
sites from AdsMT’s cross-attention scores is promising, despite the
current accuracy is not high enough. An intriguing avenue for future
research lies in incorporating domain knowledge such as adsorbate
geometric information into model training, potentially enhancing the
model’s capability for GMAE prediction and adsorption site identifi-
cation. Moreover, considering the surfacial atom importance for
adsorption sites as a prediction target and fusing it into the loss
function can be beneficial for the model to learn the complex rela-
tionship between catalyst surfaces and adsorbates.

Another natural extension to this work involves combining our
AdsMT with MLIP and DFT calculations for catalyst screening in spe-
cific reactions (Supplementary Note 7). Each catalyst crystal can gen-
erate a large number of surface structures due to varyingMiller indices
and absolute positions of surface planes. Combined with uncertainty
estimation, AdsMTcanbe used for rapid preliminary screening inhuge
catalyst libraries and pinpoint a small range of candidate catalyst
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surfaces with desired GMAE and low uncertainty. Afterwards, more
precise methods such as DFT can be used to further validate the top
candidate catalysts. This strategy holds promise for significantly
reducing computational costs while achieving reliable virtual catalyst
screening.

Methods
GMAE benchmark datasets
Three GMAE datasets, named Alloy-GMAE, FG-GMAE and OCD-GMAE,
were filtered from Catalysis Hub7, ‘functional groups’ (FG)-dataset25, and
OC20-Dense9 datasets, respectively. Each of the source datasets enum-
erated all adsorption sites on surfaces and performed DFT calculations
on various possible adsorption configurations. The data cleaning was
conducted to sort the local adsorption energies and take the lowest
adsorption energy of all conformations as the GMAE target for each
surface/adsorbate combination. Each data point in the datasets repre-
sents a unique combination of catalyst surface and adsorbate. Random
splitting is adopted on three datasets during the model evaluation.

In addition, a similar data cleaning procedure was employed on
the OC20 dataset52 to create a new dataset named OC20-LMAE, which
comprises surface/adsorbate pairings along with their local minimum
adsorption energies (LMAE). The data points with anomalies (adsor-
bate desorption/dissociation, surface mismatch) are removed. The
OC20-LMAE dataset contains 363,937 data points and serves as an
effective resource for model pretraining. Specifically, its training set
consists of 345,254 data points, while the validation set comprises
18,683 data points. Further detailed descriptions of the datasets are
provided in the Supplementary Note 1.

Surface graph
Each input catalyst surface is modeled as a graph G consisting of n
nodes (atoms) V = v1, . . . , vn

� �
and m edges (interactions)

E = ϵ1, . . . , ϵm
� � � V2. H= h1,h2, � � � ,hn

� �T 2 Rn × k is the node feature
matrix, where hi 2 Rk is the k-dimensional feature vector of atom i.
E 2 Rm× k0

is the edge feature matrix, where etij 2 Rk0
is the k0-dimen-

sional feature vector of t-th edge between node i and j.
X= x1,x2, � � � ,xn

� �T 2 Rn× 3 is the position matrix, where xi 2 R3 is
the 3D Cartesian coordinate of atom i. For periodic boundary condi-
tions (PBC), let thematrixC= a,b, c½ �T 2 R3 × 3 depicts how theunit cell
is replicated in three directions a, b and c.

Ignoring periodic invariance will lead to different graph repre-
sentations and energy predictions for the same surface63. Different
from crystals, the presence of the vacuum layer breaks the periodicity
along the direction perpendicular to the surface. This means that the
catalyst surfaces exhibit periodicity only in the a and b directions.
Thus, the infinite surface structure can be represented as

Ĥ= ĥijĥi =hi, i 2 Z, 1≤ i≤n
n o

,

X̂= x̂ijx̂i =xi + k1a+ k2b, i, k1, k2 2 Z, 1≤ i≤n
� �

:
ð1Þ

To encode such periodic patterns, the infinite representation of
the surface is used for graph construction, and all nodes and their
repeated duplicates are considered to build edges. Given a cutoff
radius rc 2 R, if there is any integer pair ðk0

1, k
0
2Þ, such that the Eucli-

dean distance dji = k xj + k
0
1a+ k

0
2b� xik2 ≤ rc, then an edge is con-

structed from j to iwith the initial edge feature dji. It should be pointed
out that self-loop edges (i = j) are also considered if there exists any
integer pair ðk0

1, k
0
2Þ other than (0, 0) such that d = k k0

1a+ k
0
2bk2 ≤ rc.

Adsorbate feature
The representation of adsorbate is crucial for models to predict the
lowest adsorption energy for a given combination of surface and
adsorbate. Some important adsorbates (e.g., *H, *O, *N) have only one
atom, andmessage passing in GNNs cannotwork for one nodewithout

an edge.Many adsorbate species (e.g., *CO2, *CO, *OH, *NH2) consist of
fewer than four atomsor twobonds, whichmakes capturing important
chemical information difficult through atomic representation and
graph learning. On the other hand, molecular descriptors based on
expert knowledge can quickly and accurately capture the chemical
information of adsorbates, especially for small adsorbates or new
adsorbates without structural information. Therefore, molecular
descriptors are used to represent adsorbates rather than the widely

used molecular graphs. P= p1,p2, � � � ,ps

� �T 2 Rs × k 00
is the adsorbate

feature matrix, where pc 2 Rk00
is the k″-dimensional feature vector of

the adsorbate for the surface/adsorbate combination c (1≤ c≤ s). In this
study, the molecular descriptors of adsorbates were calculated by
RDKit package45, where k″ = 208 for adsorbate feature vectors.

AdsGT graph encoder
Positional feature. Unlike molecular graphs, the importance of each
atom in the catalyst surface differs for adsorption energy prediction
(Fig. 2a). For example, atoms at the top layers are more important,
while atoms at the bottom are less important. Moreover, GNNs are
unable to determine the relative heights of atoms on a surface based
on a surface graph, making it impossible to distinguish between top-
layer and bottom-layer atoms. To help models understand the varying
importance of atoms at different relative heights (Fig. 2a), each atom i
of a surface graph will get a positional feature δi computed by

δi =
h� hmin

hmax � hmin
, ð2Þ

where h is the height of the atom i and calculated by the projection
length of the atomcoordinate xi on the c vector. hmax and hmin represent
the maximum and minimum heights of surface atoms, respectively.
Specifically, δi = 1 indicates that the atom i is located at the topmost
layer, while δi = 0 means that the atom i is located at the bottommost
layer. Then, δi is expanded via a set of exponential normal radial basis
functions eRBF to compute the positional embedding ζi of surface atom i:

ζ i = e
RBF
k δi

� �
= exp �βk δi � μk

� �2� 	
, ð3Þ

where βk and μk are fixed parameters specifying the center and width
of the radial basis function k, respectively.

In the initialization, atomic number zi is passed to the embedding
layer and summed with the positional embedding ζi to compute the
initial node embeddingh0

i . The distanced
t
ij of t-th edgebetweennode i

and j is expanded via a set of radial basis functions (RBF) and trans-
formed by linear layers and Softplus activation function to obtain the
edge embedding etij . The message passing phase follows an edge-wise
attention mechanism63. In the l-th (0 ≤ l ≤ L) attention layer, edge-wise
attentionweightsαt

ij andmessagemt
ij of t-th edge betweennode i and j

are calculated based on hl
i , h

l
j and etij according to

qij =LN
l
Q hl

i ∣h
l
i ∣h

l
i

� 	
, kt

ij =LN
l
K hl

i ∣h
l
j ∣e

t
ij

� 	
, vt

ij =LN
l
V hl

i ∣h
l
j ∣e

t
ij

� 	
, ð4Þ

αt
ij =

qij°k
t
ijffiffiffiffiffiffiffiffi

dkt
ij

q , mt
ij = sigmoid LNorm αt

ij

� 	� 	
°vtij , ð5Þ

where LNl
Q, LN

l
K and LNl

V are three linear transformations, ∘ represent
the Hadamard product, ∣ denotes concatenation, and LNorm is the
layer normalization operation. Then, themessagemi of node i from all
neighbors N i is computed by

mi =
X
j2N i

X
h

LNorm Wl
mm

t
ij +b

l
m

� 	
, ð6Þ
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and the embedding of node i is updated based on the message mi

according to

hl + 1
i =Wl

uh
l
i +b

l
u + σ BNorm mi

� �� �
, ð7Þ

whereWl
m andWl

u are two learnable weight matrices, while bl
m and bl

u
are two learnable bias vectors. σ denotes the activation function, and
BNorm represents batch normalization.

AdsMT architecture
The proposed AdsMT model consists of three parts: a graph encoder
EG, a vector encoder EV, and a cross-modal encoder EC. Each surface/
adsorbate combination c, consisting of a surface graph Gc and an
adsorbate feature vector pc, is defined as the model input, and the
GMAE of the combination is set as the prediction target. Surface
graphs and adsorbate feature vectors are passed to the graph encoder
EG and the vector encoder EV for embedding learning, respectively.
Then, both embeddings are passed to the cross-modal encoder EC for
the cross-modal learning and GMAE prediction. The details of these
parts are as follows.

Graph encoder. Prior to capturing the complex interaction between
the surface graphs and the adsorbate features, geometric GNNs are
used to encode the surface graphs into atom-wise embedding, which
contains chemical and structural information. Formally, given a sur-
face graph Gc = ðH,EÞ for the combination c, the atom embedding
matrix H0 is computed according to:

H0 = EGðH,EÞ 2 Rn× k , ð8Þ

whose i-th row indicates the representation of atom i. It is noteworthy
that any geometric GNN, such as SchNet35 and GemNet36, can serve as
the graph encoder in the AdsMT framework.

Vector encoder. A simple multilayer perceptron (MLP) is used to
encode the feature vectors of adsorbates, and the adsorbate embed-
ding of the combination c is calculated based on

p0
c =MLPðpcÞ, ð9Þ

Cross-modal encoder. The cross-modal encoder comprises a cross-
attention module, a self-attention module, and an energy block. The
cross-attention module is assigned to model the inter-modality and
capture the complex relationships between the adsorbate and all
surface atoms. Initially, the additional inputs of the cross-attention
module are computed based on:

gc =
1
n

Xn
i= 1

h0
i, H0 = h0

1,h
0
2, � � � ,h0

n

� �T 2 Rn × k , ð10Þ

si =W
SeRBF δi

� �
, S= s1, s2, � � � , sn

� �T 2 Rn × k , ð11Þ

where gc is the surface graph embedding, WS is a learnable weight
matrix, si is the depth embedding of surface atom i, and S is the surface
atom depth embedding matrix similar to the position encoding of
AdsGT encoder. The depth embedding si describes the relative position
of atom i in the surface (e.g., top layer, bottom layer). It could facilitate
cross-attention layers to understand the surface structures and the
importance of different atoms for adsorption. Then, each cross-
attention layer is carried out as defined in the following equations:

a0 = p0
c jgc

� �
, ql = al�1W

Q
l , ð12Þ

Kl = H0 jS� �
WK

l , Vl = H0 jS� �
WV

l , ð13Þ

al = Cross�Attention ql ,Kl ,Vl

� �
= softmax

qlK
T
lffiffiffiffiffiffi

2k
p

 !
Vl , ð14Þ

where l = 1,…, L1 indicates the index of the cross-attention layers, and
WQ

l ,W
K
l ,W

V
l are three learnable weight matrices. The final output aL1

of the cross-attention module reflects the complex interaction
between the surface atoms and the adsorbate.

Moreover, the self-attention module is designed to learn the
interactions between atomswithin the surface of the adsorbate caused
by adsorption (e.g., atomic displacements). Initially, the stacked fea-
tures R0 is computed by:

R0 = H0,gc,p
0
c

� �T
: ð15Þ

Then, each self-attention layer is denoted as:

Q0
l =Rl�1W

Q0

l , K0
l =Rl�1W

K 0

l , V0
l =Rl�1W

V 0

l , ð16Þ

Rl = Self�Attention Q0
l ,K

0
l ,V

0
l

� �
= softmax

Q0
lðK0

lÞTffiffiffi
k

p
 !

V0
l , ð17Þ

Rl = H0
l ,gc, l ,p

0
c, l

� �T , ð18Þ

where l = 1, …, L2 indicates the index of the self-attention layers, and
WQ0

l , WK 0

l , WV 0

l are three learnable weight matrices. The final output z
of the self-attention module is calculated based on RL2

:

z= gc, L2
jp0

c, L2

� 	
: ð19Þ

In the energy block, the multilayer perceptron (MLP) is used to
compute the GMAE of the surface/adsorbate combination c based on
thefinal output of the cross-attentionmoduleaL1 and the self-attention
module z:

y=MLP aL1 j z
� 	

: ð20Þ

Model training
The training procedures have been executedbyminimizing theMAE as
the loss functionusing the AdamWoptimizer64. The learning rate value
is adjusted by the reduce-on-plateau scheduler. Each GMAE dataset
underwent a random split into training, validation, and test sets with a
ratio of 8:1:1. To scale the GMAE target, a standardization method was
conducted using themean and standard deviation of the GMAE values
from the training set. The experiment results are derived from ten
separate runs with different random seeds. Eachmodel was trained on
a single NVIDIA Tesla A100 GPU at float32 precision. To explore the
benefits of transfer learning,modelswith andwithout transfer learning
have the same architecture and hyperparameters. More training
details including model hyperparameters are depicted in Supple-
mentary Note 8.

Implementation details
AdsMTmodelswerebuilt with PyTorchGeometric 2.2.065 running over
PyTorch 1.13.166, with surface structures processing by Atomic Simu-
lation Environment 3.22.1 package67. RDKit 2022.9.5 package45 was
used to generate the molecular descriptors for adsorbates. Matplotlib
3.7.268 and NGLview 3.0.869 were used to draw the plots presented in
this work.

Uncertainty quantification
The model ensemble method is used for uncertainty quantification, a
technique widely acknowledged for its efficacy in uncertainty
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estimation. Specifically, each of the ten AdsMT replicas shared iden-
tical architectures and hyperparameters, yet their learnable para-
meters were initialized with distinct random seeds. Denoting ŷk xi

� �
as

the prediction from the k-th individualmodel for a given input surface/
adsorbate combination ci, AdsMT’s final GMAE prediction μ(ci) and its
estimated uncertainty σ(xi), are derived from the mean and standard
deviation of the individual model’s predictions based on:

μ xi

� �
=

1
M

XM
k = 1

ŷk xi
� �

, σ xi

� �2 = 1
M

XM
k = 1

ŷk xi
� �� μ xi

� �� �2 ð21Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study are available via Zenodo (https://doi.
org/10.5281/zenodo.12104162)70 and Figshare (10.6084/m9.figshare.
25966573)71. This provides three GMAE benchmark datasets (Alloy-
GMAE, FG-GMAE, OCD-GMAE) and OC20-LMAE dataset for model
pretraining. Source data are provided with this paper.

Code availability
The source code of the AdsMT framework is available on GitHub at
https://github.com/schwallergroup/AdsMT(ref. 72).
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