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Gene clusters linked to insulin resistance
identified in a genome-wide study of the
Taiwan Biobank population

Eugene Lin 1,2, Yu-Ting Yan 3, Mu-Hong Chen4,5, Albert C. Yang6,7,
Po-Hsiu Kuo 3,8 & Shih-Jen Tsai 4,5,6

This pioneering genome-wide association study examined surrogate markers
for insulin resistance (IR) in 147,880 Taiwanese individuals using data from the
Taiwan Biobank. The study focused on two IR surrogate markers: the trigly-
ceride to high-density lipoprotein cholesterol (TG:HDL-C) ratio and the TyG
index (the product of fasting plasma glucose and triglycerides). We identified
genome-wide significance lociwithin four gene clusters:GCKR,MLXIPL,APOA5,
and APOC1, uncovering 197 genes associated with IR. Transcriptome-wide
association analysis revealed significant associations between these clusters
and TyG, primarily in adipose tissue. Gene ontology analysis highlighted
pathways related to Alzheimer’s disease, glucose homeostasis, insulin resis-
tance, and lipoprotein dynamics. The study identified sex-specific genes
associated with TyG. Polygenic risk score analysis linked both IR markers to
gout and hyperlipidemia. Our findings elucidate the complex relationships
between IR surrogate markers, genetic predisposition, and disease pheno-
types in the Taiwanese population, contributing valuable insights to the field
of metabolic research.

Insulin resistance (IR) is a well-documented pathophysiological con-
dition characterized by the diminished responsiveness of cells to
insulin, a hormone essential for the regulation of glucosemetabolism1.
In individuals with IR, cellular sensitivity to insulin is markedly
reduced, resulting in elevated blood glucose levels and compensatory
hyperinsulinemia as the pancreas attempts to overcome this
resistance2. This metabolic dysregulation is closely associated with an
increased risk of severalmetabolic disorders, including type 2 diabetes
(T2D), obesity, dyslipidemia, and cardiovascular diseases3,4. The
impaired insulin action in key target tissues— especially skeletal mus-
cle, liver, and adipose tissue—plays a central role in the pathogenesis of
these conditions5. This underscores the critical importance of IR in the

development and progression of metabolic disorders, necessitating
targeted therapeutic strategies to mitigate its impact6.

The euglycemic-hyperinsulinemic clamp7 is considered the most
reliable test for evaluating IR, but its complexity limits its use in large-
scale studies. Prior research has demonstrated a robust correlation
between IR scores derived from the homeostasis model assessment
(HOMA) approach and IR assessed by glucose clamp techniques8. The
triglyceride to high-density lipoprotein cholesterol (TG:HDL-C) ratio is
an alternative IR marker that is more cost-effective and accessible in
larger population studies compared to the HOMA test9–12. A recent
genome-wide association study (GWAS) on TG:HDL-C in European
populations discovered 114 single-nucleotide polymorphisms (SNPs)
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associated with IR13. However, this previous GWAS on TG:HDL-C was
limited to populations of European ancestry. Expanding genetic stu-
dies to diverse populations presents a valuableopportunity to uncover
insights into the complex genetic foundations of IR14. In addition, IR is
associatedwith impaired fatty acid utilization; increased free fatty acid
flow from adipose to nonadipose tissue leads to aberrant fat meta-
bolism and worsens IR. Hence, the TyG index, calculated from fasting
plasma glucose and triglycerides, has emerged as another simple
surrogate marker for IR15,16. The TyG index has high sensitivity for
recognizing IR among apparently healthy subjects, compared with the
HOMA-IR index16. As of the time of this writing and to our current
knowledge, GWASs focusing on TyG have not been undertaken.

In this study, we conducted the GWAS on IR surrogate markers,
including TyG, TG:HDL-C, and the logarithmically transformed
TG:HDL-C ratio (log(TG:HDL-C)), in the Taiwanese population utilizing
the Taiwan Biobank. We also carried out comparisons of heritability
and genetic correlations among these markers. Due to the strong
correlation between these IR surrogatemarkers and the lack of GWASs
on TyG—an emerging and robust marker of IR—our subsequent ana-
lyses were centered on TyG. Additionally, fine mapping and polygenic
risk score (PRS) analysis were performed for TyG. Moreover, we
explored the relationships between disease phenotypes and IR surro-
gate markers. Furthermore, because sex differences in IR have been
suggested17, we undertook sex-stratified and sex-differentiated ana-
lyses of TyG in both female and male cohorts, along with a
transcriptome-wide association study (TWAS) of TyG in the whole
cohort. Finally, pathway analysis was accomplished on genes asso-
ciated with TyG to reveal additional clues to the causes and con-
sequences of IR-related phenotypes.

Results
Taiwan Biobank study cohort
Supplementary Table 1 presents baseline characteristics of the Tai-
wanese population within the Taiwan Biobank, stratified by whole,
female, andmale cohorts. Inour studyutilizing theTaiwanBiobank,we
analyzed a total of 136,735 individuals withmeasurements for TyG and
138,303 individuals for TG:HDL-C and log(TG:HDL-C) (Supplementary
Table 1). The gender distribution in both samples consisted of ~35.5%
male participants and 64.5% female participants.

GWASs of IR markers
We conducted GWASs on three IR surrogate markers–TyG, TG:HDL-C,
and log(TG:HDL-C)–within the Taiwan Biobank sample. The GWAS test
statistics were calibrated at a genome-wide level, ensuring robustness
and reliability (Supplementary Fig. 1). Figure 1 presents the Manhattan
plot illustrating the distribution of association p values across the
genome for SNPs associated with these markers.

Supplementary Table 2 provides the number of significant SNPs
identified at various significant thresholds for each marker, offering a
comprehensive overview of the genetic landscape associated with IR.
Furthermore, Supplementary Table 3 presents the GWAS results of the
top 20 significant SNPs after clumping for each marker, highlighting
the genetic variants with the strongest associations with IR.

Four gene clusters are associated with TyG
Supplementary Tables 4 and 5 provide an overview of all identified
variants and the top 20 variants/genes with genome-wide sig-
nificance for TyG, respectively. These variants primarily clustered
within four gene regions, centered on GCKR (chromosome 2),
MLXIPL (chromosome 7), APOA5 (chromosome 11), and APOC1
(chromosome 19). Further analysis identified additional significant
genes within these clusters: 29 genes in the GCKR cluster, 17 in the
MLXIPL cluster, 15 in the APOA5 cluster, and 6 in the APOC1 cluster
(Tables 1–4 and Fig. 2).

We conducted additional GWASs for TG:HDL-C and glucose levels
(Supplementary Tables 6-7). Supplementary Tables 8–9 present the
top variants exhibiting genome-wide significance for TG:HDL-C and
glucose levels, respectively. The top 20 variants for TG:HDL-C are
identical to those for TyG, with different rankings (Table 5). GCKR, a
major factor in T2D risk18, is the only gene consistently associated with
glucose levels, TG:HDL-C, and TyG (Table 5).

Supplementary Table 10 summarizes genome-wide significance
for variants associated with insulin-related traits in previous studies.
Our analysis revealed 76 genome-wide significant genes in TyG that
had been previously associated with IR in GWAS studies on European
and/or East Asian populations (Supplementary Table 11).

Genes for IR identified in the Taiwan Biobank
Our GWAS on TyG within the Taiwan Biobank unveiled 197 genes not
previously documented in the context of IR (Supplementary Table 12).
According to the NHGRI-EBI GWAS Catalog19, these genes have been
associated with TG (99 genes), HDL-C (58 genes), T2D (29 genes)
separately, as well as traits known to be associated with T2D risk
including Alzheimer’s Disease (AD; 14 genes), fasting glucose levels (22
genes), and body mass index (49 genes).

The top 20 genes, previously unreported in the literature,
exhibiting genome-wide significance for TyG (Table 6) are primarily
clustered within four gene regions: GCKR, MLXIPL, APOA5, and
APOC1. Supplementary Fig. 2 displays a Manhattan plot of these top
20 TyG genes, emphasizing SNPs neutral in European studies but
significant in our cohort, indicating population-specific effects.
Analysis of LD between top SNPs and SNPs previously unreported in
the literature for TyG (Supplementary Table 13) revealed varying
degrees of LD within each gene region, providing insights into
potential functional relationships. For example, we observed strong
LD between MLXIPL rs3812316 and TBL2 rs13246490 (r2 = 0.835),
suggesting a possible shared genetic effect. In contrast, APOA1
rs12718464 and APOA5 rs651821 exhibited weak LD (r2 = 0.008),
indicating potentially independent genetic influences on TyG within
this region.

Conditional analyses on the top 20 genes, previously unreported
in the literature, associated with TyG (Supplementary Table 14) helped
discern independent genetic effects within closely located loci. For
instance, APOA1 rs12718464 maintained a significant association with
TyG (P = 1.1E-13) when conditioning on APOA5 rs651821, suggesting an
independent effect. Conversely, conditioning on MLXIPL rs3812316
nullified the associationofTBL2 rs13246490 (P =0.32), indicating these
variants likely represent the same genetic signal. These findings
enhance our understanding of the complex interplay between genetic
variants influencing TyG and help identify truly independent genetic
associations.

Heritability and genetic correlations for IR surrogate markers
We estimated the heritability20 of TyG, TG:HDL-C, and log(TG:HDL-C)
to be 15.5% (standard deviation (stdev) = 2.5%), 13.9% (stdev = 2.3%),
and 17.3% (stdev = 2.5%), respectively (Supplementary Table 15).
These values indicate the proportion of phenotypic variance attrib-
uted to genetic factors for each IR surrogatemarker. Intercept values
ranging from 1.07 to 1.09 suggestminimal biases due to confounding
factors.

We also assessed genetic correlations to determine the extent to
which genetic factors influencing TyG also affect TG:HDL-C and
log(TG:HDL-C)20. The genetic correlations among TyG, TG:HDL-C,
and log(TG:HDL-C) were notably high, ranging from 0.96 to 0.99
(Supplementary Table 15). This strong correlation underscores the
close relationship among these three IR surrogate markers, high-
lighting their interconnectedness in the context of genetic
influences on IR.
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(a) Manhattan plot for TyG index

(b) Manhattan plot for TG:HDL-C

(c) Manhattan plot for log(TG:HDL-C)

Fig. 1 | Manhattan plots. The Manhattan plots for the identified SNPs associated
with the three IR surrogate markers, including a the TyG index, b TG:HDL-C ratio,
and c log(TG:HDL-C) ratio. IR insulin resistance, TG:HDLC the triglyceride to high-
density lipoprotein cholesterol ratio, TyG the product of fasting plasma glucose

and triglycerides (Ln[fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]).
This GWAS analysis utilized BOLT-LMM’s mixed linearmodels with a two-sided chi-
square test. The conventional genome-wide significance threshold of P < 5 × 10−8

was applied. Source data is provided as a Source Data file.
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Fine mapping analysis for TyG
We employed fine mapping analysis to identify candidate causal
variants linked to TyG21, consolidating overlapping loci into 11 dis-
tinct genomic regions of interest (Supplementary Table 16 and
Supplementary Fig. 3). This approach enhanced analytical precision
and prioritized areas for further investigation. For instance, within
the chromosomal region 43378777–46429300 base pair on chro-
mosome 19, five credible sets were identified with purity values
ranging from 0.92 to 1.0 (Supplementary Table 16), suggesting a high

degree of independence among the SNPs. Coverage values for these
sets ranged from 0.95 to 1.0, indicating a high probability that the
true causal variant for IR is represented within the credible sets.
Certain SNPs exhibited PIP values exceeding 0.9, signifying a heigh-
tened probability of these variants being linked to IR (Supplementary
Fig. 3). This indicates a robust likelihood that these specific genetic
variants may play a significant role in IR manifestation or suscept-
ibility, based on evidence from the Bayesian variable selection
approach.

Table 1 | Summary of top variants in theGCKRgene cluster exhibiting genome-wide significance for the TyG index, amarker of
insulin resistance, identified within the Taiwan Biobank cohort

GENE CHR Interval (b38) Top SNP Pos (b38) Top P Novel TWAS GWAS catalog

DPYSL5 2 26847995..26950351 rs72804857 26,938,608 7.8E-11 no NA TG, HDL-C, FG, BMI,
TG:HDL-C

MAPRE3 2 26970637..27027219 rs10207573 27,020,067 4.0E-09 no 1, 3 TG, HDL-C, TG:HDL-C

TMEM214 2 27032965..27041694 rs2304713 27,035,893 3.5E-10 yes NA NA

AGBL5 2 27050364..27070618 rs70953845 27,064,781 2.1E-10 yes 1, 5 TG

OST4a 2 27070472..27071654 rs4665943 27,073,017 1.8E-08 yes 7 NA

EMILIN1 2 27078615..27086403 rs2304682 27,084,901 1.8E-09 yes 2 NA

KHK 2 27086772..27100762 rs6714547 27,098,338 6.2E-11 yes 2, 8, 9, 10, 11 NA

CGREF1 2 27099353..27119128 rs6746337 27,118,195 2.6E-11 yes 5 TG

ABHD1 2 27123815..27130812 rs4665946 27,125,063 2.3E-21 yes 1, 2, 7, 8 NA

PREB 2 27130756..27134636 rs71401560 27,131,111 1.6E-15 yes 2, 9, 10 NA

PRR30 2 27136848..27139410 rs11121 27,137,019 1.3E-15 yes NA TG

TCF23 2 27149004..27156974 rs1275513 27,148,102 7.9E-18 yes NA TG

SLC5A6a 2 27199587..27212787 rs74684611 27,191,771 2.3E-21 yes 8 TG, HDL-C

CADa 2 27217369..27243943 rs118130043 27,245,399 3.8E-13 yes 3 TG

TRIM54 2 27282429..27307435 rs189387480 27,292,538 5.9E−12 yes NA TG

MPV17 2 27309492..27323097 rs146502189 27,322,314 3.3E-13 yes 8 TG

GTF3C2 2 27325854..27356764 rs201232671 27,348,271 6.4E-14 yes 1 TG

PPM1G 2 27381199..27409591 rs79803862 27,399,271 4.0E-22 yes 6, 8, 9 TG, FG, BMI

NRBP1a 2 27427790..27442259 rs147530299 27,419,228 2.2E-23 yes 5 TG, FG, BMI

IFT172 2 27444377..27489743 rs117414910 27,455,222 1.8E-17 no 1, 10, 11 TG, TG:HDL-C

GCKR 2 27496839..27523684 rs1260326 27,508,073 4.3E-204 no 5, 11 IG, TG, T2D, FG, BMI,
TG:HDL-C

SPATA31H1 2 27537386..27582722 rs1919127 27,578,626 6.9E-114 yes 1, 2, 4, 9, 11 NA

ZNF512 2 27583042..27623217 rs12989678 27,598,615 1.3E-115 yes NA TG, T2D

GPN1 2 27628247..27651511 rs34502053 27,631,657 7.9E-68 yes 4, 8, 10, 11 TG, BMI

SUPT7L 2 27642568..27663614 rs4666010 27,655,819 9.9E-45 yes 1, 5, 6, 9,
10, 11

NA

SLC4A1AP 2 27663889..27694969 rs13021208 27,678,861 1.6E−57 yes 6, 10 TG

MRPL33 2 27771719..27779733 rs3792252 27,773,064 2.2E-37 yes 2, 8, 9 TG, FG

RBKS 2 27781379..27890387 rs898034 27,867,953 1.5E-38 yes 8, 11 TG

BABAM2 2 27888709..28338901 rs141361525 27,896,053 8.7E-18 yes 1, 2, 11 TG, HDL-C, FG. BMI

TAD CHR Interval (b38) -- -- -- -- -- --

pancreas 2 25920000..27320000 -- -- -- -- -- --

pancreas 2 27680000..28520000 -- -- -- -- -- --

hippocampus 2 25360000..27360000 -- -- -- -- -- --

hippocampus 2 27680000..28480000 -- -- -- -- -- --

liver 2 25920000..27320000 -- -- -- -- -- --

liver 2 27360000..28520000 -- -- -- -- -- --

Tissues in TWAS: 1 = Adipose Subcutaneous; 2 = Adipose Visceral Omentum; 3 = Adrenal Gland; 4 = Brain Cortex; 5 = Brain Hippocampus; 6 = Brain Hypothalamus; 7 = Liver; 8 = Muscle Skeletal; 9 =
Pancreas; 10 = Pituitary; 11 = Thyroid. PreviousGWASs reported in theNHGRI-EBIGWASCatalog have identified various phenotypes that reachgenome-wide significance (P < 5 × 10−8). Coordinates for
TADs were retrieved from the following source (https://3dgenome.fsm.northwestern.edu/publications.html).
AD Alzheimer’s disease, b38 Genome Research Consortium human build 38, BMI body mass index, CHR chromosome, FG fasting glucose, HDL-C high-density lipoprotein cholesterol, IR insulin
resistance,NA not available, Pos position, T2D type 2 diabetes, TAD topologically associating domains, TG triglycerides, TG:HDLC the triglyceride to high-density lipoprotein cholesterol ratio, TWAS
transcriptome-wide association analysis.
aNearby gene. -- not applicable. This GWAS analysis utilized BOLT-LMM’s mixed linear models with a two-sided chi-square test. The conventional genome-wide significance threshold of P < 5 × 10−8

was applied.
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PRS analysis for TyG
We conducted PRS analysis to quantify the cumulative impact of
multiple genetic variants on TyG22. The analysis used 854,050 SNPs to
calculate the PRS for TyG (Supplementary Table 17 and Supplementary
Fig. 4). The PRS model demonstrated substantial explanatory power,
with 23.80% of the variance in TyG attributed to genetic factors. The
incremental predictive value (R2–R2 Null) achieved by integrating
genetic information into the PRS model was 10.57% compared to a
model without genetic predictors. The R2 and R2–R2 Null values for TyG
surpassed those reported in diverse phenotypes from prior investi-
gations (e.g., triglyceride23 in Supplementary Table 17 and Supple-
mentary Fig. 5), underscoring the robustness and effectiveness of the
PRS model in elucidating the genetic underpinnings of TyG in the
context of IR.

Association of disease phenotypes with IR surrogate markers
This study investigated the relationship between 27 disease phe-
notypes and IR surrogate markers (TyG, TG:HDL) and their
PRS within the Taiwan Biobank (Table 7). Statistical significance
was determined using the Bonferroni correction threshold of

p = 0.00185. TyG exhibited associations with 20 different diseases,
including coronary heart disease and mood disorders (P < 0.0001).
TG:HDL showed associations with 14 diseases, such as gout and
hyperlipidemia (P < 0.0001). PRS of TyG was linked to gout
(P = 0.0016) and hyperlipidemia (P < 0.0001). PRS of TG:HDL was
also associated with gout (P = 0.001) and hyperlipidemia
(P < 0.0001). These findings highlight the relationships between IR
surrogatemarkers, their PRS, and various disease phenotypes within
the Taiwan Biobank.

Sex-stratified and sex-differentiated analyses of TyG
Sex-specific genetic differences have been found previously in the
context of IR, and exploring sex-specific genetic effects may reveal a
substantial number of important genes, previously unreported in the
literature17. We conducted sex-stratified analyses, revealing 5787 sig-
nificant SNPs in females (Supplementary Table 18) and 2817 SNPs in
males (Supplementary Table 19).

Sex-differentiated analyses identified 915 SNPs with statistically
heterogeneous effects between sexes (heterogeneity p value < 0.05)
among those with genome-wide significance (Supplementary

Fig. 2 | Locus zoom plots of gene clusters associated with TyG index in the
Taiwan Biobank. The locus zoom plot for the a GCKR, b MLXIPL, c APOA5, and
d APOC1 gene clusters concerning the TyG index in the Taiwan Biobank illustrates
single nucleotide polymorphisms (SNPs) by their chromosomal positions and
their association with TyG (−log10 P). The SNPs are color-coded to indicate their
linkage disequilibrium with the top SNPs a rs1260326; b rs3812316; c rs651821;
and d rs483082. Additionally, estimated recombination rates are depicted in
cyan, derived from Asian subjects in the 1000 Genomes Project. The plot was
generated using LocusZoom. This GWAS analysis utilized BOLT-LMM’s mixed

linear models with a two-sided chi-square test. The conventional genome-wide
significance threshold of P < 5 × 10−8 was applied. The topologically associating
domain (TAD) TAD-1 spans from 25,920,000 to 27,320,000 (GRCh38) in pan-
creatic tissue. The TAD-2 spans from 27,680,000 to 28,520,000 (GRCh38) in
pancreatic tissue. The TAD-3 spans from 73,160,000 to 74,760,000 (GRCh38)
in pancreatic tissue. The TAD−4 spans from 116,760,000 to 119,360,000
(GRCh38) in pancreatic tissue. Notably, these TADs cover a significant portion
of the GCKR, MLXIPL, and APOA5 gene clusters. Source data are provided as a
Source Data file.
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Table 20). For instance, the SNP rs7412 in APOE showed a hetero-
geneity p value of 2.37E-4 between sexes, with a p value of 2.29E-33
(effect size = 0.0796) for males and a p value of 4.43E-24 (effect
size = 0.0494) for females. We identified 42 genes with sex-specific
effects in females and 25 in males (Supplementary Table 21). Notably,
female-specific genes were found in the MLXIPL cluster (FZD9 and
BAZ1B) and APOA5 cluster (APOA4, APOA1, PAFAH1B2, SIDT2, TAGLN,
andPCSK7).Male-specific genes suchasMRPL33 (GCKR cluster),BACE1,
CEP164, DSCAML1 (APOA5 cluster), and APOC1P1 (APOC1 cluster) were
identified. The top loci with stronger female-specific effects were
mapped to KLF14, APOA4, NID2, and TNFAIP8. Conversely, loci map-
ping to GMIP, TRIB1, and PBX4 showed stronger male-specific effects.
Specifically, the locus rs1364422 (KLF14) demonstrated the strongest
female-specific effect (heterogeneity p value = 1.51E-05). The locus
rs190712692 (APOC1) showed the strongest male-specific effect (het-
erogeneity p value = 1.24E-05). However, some APOC1 loci also exhib-
ited female-specific effects.

In our parent-offspring cohort, we detected parent-of-origin
effects at the KLF14 locus (rs1364422), with 0 paternal and 1173
maternal transmissions of the minor allele in 1173 heterozygous off-
spring, indicating strong maternal inheritance (p value < 2.2E-16; Sup-
plementary Table 22).

TWAS of TyG in the whole cohort
We used a TWAS approach24 to identify genes with expression differ-
ences associatedwith TyG. SupplementaryTables 23–27 present genes
exhibiting significant associations with TyG in TWAS at genome-wide
significance across chromosomes 2, 7, 11, 19, and in aggregate. In the
GCKR gene cluster, 23 of 29 genes showed significant associations in

both TWAS and GWAS, predominantly in adipose-subcutaneous,
muscle-skeletal, and thyroid tissues (Table 1). TheMLXIPL gene cluster
revealed 9 of 17 genes with significant associations in both analyses,
primarily in adipose-subcutaneous tissue (Table 2). In the APOA5 gene
cluster, 13 of 15 genes demonstrated significant associations, mainly in
adipose-visceral-omentum tissue (Table 3). The APOC1 gene cluster
showed 4 of 6 genes with significant associations in both TWAS and
GWAS (Table 4).

Pathway analysis of TyG
Pathway analysis was employed to elucidate key pathways influenced
by TyG and gene-metabolic interactions25. The analysis included
genome-wide significant genes, sex-specific genes, and genes from
previous studies (Supplementary Tables 28–31). A summary of GO
analysis results for four gene groups is presented in Table 8 and Sup-
plementary Table 32.

Genome-wide significant genes are involved in AD pathogenesis,
glucose homeostasis, insulin resistance and signaling, neurodegen-
erative pathways, Wnt signaling cascade, and plasma lipoprotein
dynamics (Table 8). These enriched GO terms and pathways demon-
strate substantial overlap with those associated with genes from pre-
vious studies (Table 8), suggesting a consistent functional profile
across multiple investigations.

Female-specific genes exhibited similar enrichment to genome-
wide significant genes (Table 8). The congruence between female-
specific and genome-wide significant genes implies a potentially pro-
minent role for these pathways in female-specific disease mechanisms.
Conversely, male-specific genes revealed a distinct functional profile
(Table 8) and lacked several pathways enriched in female-specific genes

Table 2 | Summary of top variants in theMLXIPL gene cluster exhibiting genome-wide significance for the TyG index, amarker
of insulin resistance, identified within the Taiwan Biobank cohort

GENE CHR Interval (b38) Top SNP Pos (b38) Top P Novel TWAS GWAS catalog

POM121 7 72879357..72951459 rs117135057 72,938,316 1.8E-08 yes NA TG, BMI

NSUN5 7 73302516..73308826 rs3750074 73,308,628 1.1E-17 yes NA NA

FKBP6a 7 73328161..73358625 rs186391487 73,384,030 9.2E-18 yes 1, 2 TG

FZD9 7 73433778..73436120 rs1178947 73,435,848 5.8E-69 yes 9 TG, HDL-C

BAZ1B 7 73440406..73522293 rs111837003 73,493,129 1.2E-71 yes 1, 4, 6, 10, 11 TG, HDL-C

BCL7B 7 73536356..73557690 rs13244614 73,559,524 9.0E-84 yes 1, 2, 8, 9 HDL-C

TBL2 7 73567537..73578579 rs13246490 73,578,020 2.6E-84 yes NA TG, HDL-C, BMI

MLXIPL 7 73593202..73647907 rs3812316 73,606,007 8.5E-105 no 1, 2, 3, 9,
10, 11

TG, HDL-C, BMI,
TG:HDL-C

VPS37Da 7 73665347..73672110 rs371515311 73,660,465 6.1E-16 yes 1 TG, HDL-C

DNAJC30 7 73680918..73683453 rs3828973 73,682,169 1.3E-09 yes NA TG

ABHD11a 7 73736094..73738802 rs10226706 73,751,424 3.6E-08 yes 5 TG

CLDN3 7 73768997..73770270 rs6460054 73,770,204 3.0E-08 yes NA TG

TMEM270a 7 73860848..73865890 rs73144858 73,922,565 2.7E-13 yes 7 NA

ELNa 7 74028173..74069907 rs188072556 73,999,294 1.3E-15 yes 10 NA

RFC2 7 74231502..74254399 rs148741166 74,252,973 1.2E-10 yes NA TG

CLIP2 7 74289407..74405935 rs151126504 74,392,493 1.0E-13 yes NA NA

GTF2IRD1a 7 74453906..74602605 rs145049525 74,440,602 9.0E-09 no NA TG, BMI, TG:HDL-C

TAD CHR Interval (b38) -- -- -- -- -- --

pancreas 7 73160000..74760000 -- -- -- -- -- --

hippocampus 7 73280000..74760000 -- -- -- -- -- --

liver 7 73280000..74760000 -- -- -- -- -- --

Tissues in TWAS: 1 = Adipose Subcutaneous; 2 = Adipose Visceral Omentum; 3 = Adrenal Gland; 4 = Brain Cortex; 5 = Brain Hippocampus; 6 = Brain Hypothalamus; 7 = Liver; 8 = Muscle Skeletal; 9 =
Pancreas; 10 = Pituitary; 11 = Thyroid. PreviousGWASs reported in theNHGRI-EBIGWASCatalog have identified various phenotypes that reachgenome-wide significance (P < 5 × 10−8). Coordinates for
TADs were retrieved from the following source (http://3dgenome.fsm.northwestern.edu/publications.html).
AD Alzheimer’s disease, b38 Genome Research Consortium human build 38, BMI body mass index; CHR chromosome, FG fasting glucose, HDL-C high-density lipoprotein cholesterol, IR insulin
resistance,NA not available, Pos position, T2D type 2 diabetes, TAD topologically associating domains, TG triglycerides, TG:HDLC the triglyceride to high-density lipoprotein cholesterol ratio, TWAS
transcriptome-wide association analysis.
aNearby gene. -- not applicable. This GWAS analysis utilized BOLT-LMM’s mixed linear models with a two-sided chi-square test. The conventional genome-wide significance threshold of P < 5 × 10−8

was applied.
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(e.g., estrogen signaling pathway). The male-specific genes showed
enrichment in the tight junction pathway, which was absent in the
female-specific gene set. This sexual dimorphism inpathway enrichment
suggests potential differences in disease mechanisms between sexes.

Discussion
A recent European GWAS pinpointed 114 genetic loci that play a role
in TG:HDL-C13. However, despite the large number of identified loci,
they do not fully account for the heritability of IR, suggesting the
existence of additional undiscovered genetic variants. Because the
majority of GWAS studies on IR have focused predominantly on
European populations, genetic variants that contribute to variations
in traits across different populations are likely to be discovered by
expanding genetic investigations to diverse populations14,26. Indeed,
this inaugural GWAS of IR markers in the Taiwan Biobank has pro-
vided a wealth of loci, previously unreported in the literature,
enhancing our understanding of the genetic underpinnings of IR-
related diseases.

In our GWAS of IR markers, we identified genome-wide sig-
nificant associations with loci in four distinct genomic regions: GCKR,
MLXIPL, APOA5, and APOC1. SNPs with minimal impact in European
studies are significant here (Supplementary Fig. 2), indicating
potential unique genetic or environmental influences in Asians,
warranting further investigation. The enrichment of IR-associated
loci over such large regions might be attributed to the unique
population structure and haplotype patterns present in the Taiwa-
nese population. However, we found that these clusters are included

within haploblocks identified in broader population studies14,27–31. For
instance, our analysis of the East Asian population from the 1000
Genomes Project revealed peaks in recombination rates at the
boundaries of the APOA5 gene cluster (Fig. 2). Furthermore, although
they have not been highlighted in previous studies, similar clusters
over the same genetic regions have also appeared in studies within
the European, African, Korean, South Asian, and diverse
populations14,27–31. For example, a recent study identified these four
gene clusters in a diverse cohort, associating them with blood glu-
cose, HDL-C, and TG levels (Supplementary Table 33)28. These clus-
tered associations, therefore, may reflect low recombination rates
within the regions that lead to a high probability of co-inheritance
driven by strong IR-related loci, such as GCKR32,33.

Another explanation for genetic association to extend across
such broad genomic regions is speculative but bears some mention
here. We noted that the clustered high-association regions were
mostly contained within the same or closely adjacent topologically
associated domains (TADs), three-dimensional chromatin structures
that enclose adjacent genes that are subject to some degree of co-
regulation and co-expression in vivo (Tables 1–4 and Fig. 2). Reg-
ulatory elements within TAD structures can influence the disease-
related expression of multiple neighboring genes34,35, and especially
considering the TWAS results indicating the commonmis-expression
for these clustered genes in adipocytes (Tables 1–4), we speculate
that the extended association clusters we identified could reflect the
influence of noncoding variants that alter regulatory relationships
and extend across the TADs. In contrast to the other three clusters,

Table 3 | Summary of top variants in theAPOA5 gene cluster exhibiting genome-wide significance for the TyG index, amarker
of insulin resistance, identified within the Taiwan Biobank cohort

GENE CHR Interval (b38) Top SNP Pos (b38) Top P Novel TWAS GWAS catalog

BUD13 11 116748173..116772987 rs6589565 116,769,521 7.3E-445 yes 8 TG, HDL-C

ZPR1 11 116773799..116788023 rs10750096 116,786,072 3.4E-451 no NA TG,HDL-C, TG:HDL-C

APOA5 11 116789367..116792420 rs651821 116,791,863 1.4E-919 no 9 TG,HDL-C, TG:HDL-C

APOA4 11 116820700..116823304 rs5104 116,821,618 1.1E-235 no 8, 11 TG,HDL-C, TG:HDL-C

APOC3 11 116829907..116833072 rs5128 116,832,924 2.8E-152 yes 6 TG, HDL-C

APOA1 11 116835751..116837622 rs12718464 116,836,685 3.1E-39 yes 2, 6, 7, 10 TG, HDL-C, BMI

SIK3 11 116843402..117098428 rs6589574 116,859,922 1.2E-112 no 1, 2, 5, 6, 8, 10 TG, HDL-C, BMI,
TG:HDL-C

PAFAH1B2 11 117144287..117178173 rs7925256 117,174,619 8.0E-75 yes 5, 9 TG, HDL-C, BMI

SIDT2 11 117178743..117197442 rs6589603 117,185,123 1.1E-59 yes 1, 2, 3, 4, 6, 9,
10, 11

TG, HDL-C

TAGLN 11 117199294..117207465 rs12970 117,203,393 6.1E-40 yes 4, 8, 9 TG, HDL-C

PCSK7 11 117204337..117232073 rs236911 117,214,554 5.3E-56 no 1, 2, 7, 11 TG, HDL-C, BMI,
TG:HDL-C

RNF214 11 117232671..117286454 rs200694867 117,244,658 6.3E-28 yes NA TG, HDL-C

BACE1 11 117285698..117316256 rs3741288 117,315,499 4.2E−12 yes 2 TG, HDL-C

CEP164 11 117321778..117413266 rs11216364 117,355,903 1.2E-34 no 5, 10 TG, HDL-C, BMI,
TG:HDL-C

DSCAML1a 11 117427772..117817514 rs7115491 117,424,434 8.6E-17 no NA TG,HDL-C, TG:HDL-C

TAD CHR Interval (b38) -- -- -- -- -- --

pancreas 11 116760000..119360000 -- -- -- -- -- --

hippocampus 11 116760000..117200000 -- -- -- -- -- --

hippocampus 11 117200000..118960000 -- -- -- -- -- --

liver 11 116720000..117200000 -- -- -- -- -- --

liver 11 117360000..118120000 -- -- -- -- -- --

Tissues in TWAS: 1 = Adipose Subcutaneous; 2 = Adipose Visceral Omentum; 3 = Adrenal Gland; 4 = Brain Cortex; 5 =Brain Hippocampus; 6 = Brain Hypothalamus; 7 = Liver; 8 = Muscle Skeletal; 9 =
Pancreas; 10 = Pituitary; 11 = Thyroid. PreviousGWASs reported in theNHGRI-EBIGWASCatalog have identified various phenotypes that reachgenome-wide significance (P < 5 × 10−8). Coordinates for
TADs were retrieved from the following source (http://3dgenome.fsm.northwestern.edu/publications.html).
AD Alzheimer’s disease, b38 Genome Research Consortium human build 38, BMI body mass index, CHR chromosome, FG fasting glucose, HDL-C high-density lipoprotein cholesterol, IR insulin
resistance,NA not available, Pos position, T2D type 2 diabetes, TAD topologically associating domains, TG triglycerides, TG:HDLC the triglyceride to high-density lipoprotein cholesterol ratio, TWAS
transcriptome-wide association analysis.
aNearby gene. -- not applicable. This GWAS analysis utilized BOLT-LMM’s mixed linear models with a two-sided chi-square test. The conventional genome-wide significance threshold of P < 5 × 10−8

was applied.
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the APOC1 cluster is not enclosed within an established TAD (Fig. 2);
however, the genes in this cluster are known to interact with the
same long-distance enhancers36,37, suggesting that enhancer varia-
tion could contribute to a cluster-wide association with IR in this
region as well.

Our sex-differentiated analyses of TyG identified 40 female-
specific and 25 male-specific genes. Notably, KLF14 exhibited the most
pronounced sex-specific effect in females, consistent with recent
findings in European populations13. KLF14-associated SNPs have con-
sistently shown sex-specific associations with metabolic traits,
including T2D, waist-to-hip ratio, TG, HDL-C, and low-density lipo-
protein cholesterol38–41, and corroborating these human studies,KLF14
deficiency in adipocytes leads to increased adiposity in female but not
male mice42. The observed stronger associations in females are hypo-
thesized to stem from themodulation of KLF14 expression rather than
from hormonal influences43,44. We also identified several female-
specific genes located within the APOA5 gene cluster, aligning with
previous research45–48. These findings underscore sex-dependent
mechanisms in lipid regulation and metabolism, exemplifying the
importance of considering sex-specific effects in genetic studies of
metabolic traits.

The imprinting analysis of KLF14 not only corroborates its
known role in sex-specific genetic influence but also highlights
the utility of large biobank datasets with familial information for
dissecting complex genetic mechanisms49. Our findings suggest
that the imprinting status of KLF14 could influence its biological
roles, potentially affecting metabolic pathways or disease risk in a
manner dependent on the sex of the parent from whom the allele
is inherited44,50. Future studies could expand this approach to
other genes with suspected imprinting effects, furthering our
understanding of how genetic and epigenetic factors interplay in
human health and disease.

Comparing gene sets from previous studies and the current
genome-wide significant genes revealed substantial concordance in
enriched pathways, particularly those implicated in insulin resistance/
signaling, lipidmetabolism, and glucose homeostasis, highlighting the

critical role of these pathways in the etiology of IR. Interesting, GO
analysis of the four distinct gene groups (genome-wide significant,
female-specific, male-specific, and previously identified genes) also
consistently demonstrated significant involvement in neurodegen-
erative processes; pathways associated with AD, including those rela-
ted to nervous system development, are prominently represented
across all groups. This shared enrichment suggests a potential
mechanistic link underlying the high association between IR and
neurodegenerative disorders51–53.

Our pathway analysis revealed some potential differences inmale
and female groups. For example, the GO analysis of female-specific
genes revealed a distinct enrichment in pathways associated with
estrogen signaling; this pathway’s prominence in female-specific genes
is consistent with its proposed role in modulating disease risk or
progression in women54. Conversely, the male-specific gene set exhi-
bits a unique enrichment in the tight junction pathway, which is crucial
formaintaining cellular barriers55. This pathway is absent in the female-
specific gene set, indicating a potential sex-based difference in cellular
mechanisms. Furthermore, insulin signaling pathway genes were
more highly represented in the female-specific genes, pointing to
potentially divergent metabolic regulation between sexes56,57. The
identification of distinct molecular pathways in male and female-
specific gene sets underscores the potential for developing sex-
specific therapeutic approaches58,59. Sex-specific genetic factors and
disease mechanisms interplay complexly17, suggesting that sex-
tailored interventions may improve treatment efficacy60. Further
research is warranted to elucidate the functional implications of these
sex-specific pathway enrichments and their impact on disease risk and
treatment strategies61,62.

The absence of medication data limits our understanding of drug
effects on insulin resistance markers. Our sensitivity analysis, exclud-
ing self-reported diabetes mellitus (DM) cases (Supplementary Fig. 6
and Supplementary Table 34), shows minimal change in genetic
associations for the TyG index, suggesting robustness despite poten-
tial DM treatment effects. Nonetheless, this does not substitute for
medication records, emphasizing the need for future studies to

Table 4 | Summary of top variants in theAPOC1 gene cluster exhibiting genome-wide significance for the TyG index, a marker
of insulin resistance, identified within the Taiwan Biobank cohort

GENE CHR Interval (b38) Top SNP Pos (b38) Top P Novel TWAS GWAS catalog

NECTIN2 19 44846297..44889223 rs283811 44,885,243 1.6E-94 yes 4 TG, HDL-C, T2D,
AD, BMI

TOMM40 19 44891254..44903689 rs157582 44,892,962 7.5E-94 yes NA TG, HDL-C, AD, BMI

APOE 19 44905796..44909393 rs440446 44,905,910 1.7E-106 yes 1 TG, HDL-C, T2D,
AD, BMI

APOC1 19 44914325..44919346 rs5117 44,915,533 2.8E-111 no 8 TG, HDL-C, AD, BMI,
TG:HDL-C

APOC1P1 19 44926803..44931386 rs7259004 44,929,300 2.0E−59 no NA TG, HDL-C, AD, BMI,
TG:HDL-C

APOC2,
APOC4-APOC2

19 44946051..44949565 rs2288911 44,946,027 2.8E-10 yes 3, 10 TG, HDL-C, AD

TAD CHR Interval (b38) -- -- -- -- -- --

pancreas 19 43760000..44560000 -- -- -- -- -- --

pancreas 19 45440000..47760000 -- -- -- -- -- --

hippocampus 19 43520000..44720000 -- -- -- -- -- --

hippocampus 19 45640000..47720000 -- -- -- -- -- --

liver 19 42080000..44560000 -- -- -- -- -- --

liver 19 45000000..47720000 -- -- -- -- -- --

Tissues in TWAS: 1 = Adipose Subcutaneous; 2 = Adipose Visceral Omentum; 3 = Adrenal Gland; 4 = Brain Cortex; 5 = Brain Hippocampus; 6 = Brain Hypothalamus; 7 = Liver; 8 = Muscle Skeletal; 9 =
Pancreas; 10 = Pituitary; 11 = Thyroid. PreviousGWASs reported in theNHGRI-EBIGWASCatalog have identified various phenotypes that reachgenome-wide significance (P < 5 × 10−8). Coordinates for
TADs were retrieved from the following source (http://3dgenome.fsm.northwestern.edu/publications.html).
AD Alzheimer’s disease, b38 Genome Research Consortium human build 38, BMI body mass index, CHR chromosome, FG fasting glucose, HDL-C high-density lipoprotein cholesterol, IR insulin
resistance,NA not available, Pos position, T2D type 2 diabetes, TAD topologically associating domains, TG triglycerides, TG:HDLC the triglyceride to high-density lipoprotein cholesterol ratio, TWAS
transcriptome-wide association analysis.
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include such data to explore medication’s influence on genetic asso-
ciations with metabolic traits.

Methods
Taiwan Biobank
The study cohort comprised 147,880 Taiwanese subjects from the
Taiwan Biobank63–69. Detailed inclusion and exclusion criteria26 are
presented in Supplementary Methods. Ethical approval for the study
was obtained from the Institutional Review Board of Taipei Veterans
General Hospital (approval number: 2023-04-007CC#1). All partici-
pants provided informed consent in accordance with established
guidelines and regulations.

Genotyping and imputation
Stringent quality controlmeasures were applied to ensure reliable SNP
analysis66,70. SNPs were excluded if they deviated from Hardy-
Weinberg equilibrium (P < 1 × 10−6), exhibited a genotyping call rate
below 95%, or a minor allele frequency less than 1%. From an initial set
of 686,370 directly genotyped and 15,851,039 imputed SNPs,
7,604,854 SNPs remained after quality control and were used for
functional prediction.

Statistical analysis
We conducted a GWAS to investigate the genetic underpinnings of
three IR surrogate markers: TyG16, TG:HDLC13, and log(TG:HDLC).
The TyG index was derived using the formula Ln[fasting triglycer-
ides (mg/dL)×fasting glucose (mg/dL)/2]. The GWAS analysis
employed mixed linear models in BOLT-LMM (version 2.4.1)71,
adjusting for sex and the top 10 principal components (PCs) to
account for potential confounding factors. Manhattan and quantile-
quantile (Q-Q) plots were generated utilizing the R package ‘qqman’.
The study used a genome-wide significance threshold of P < 5 × 10−8.

To identify independent genetic variants, we employed the
clumping method in PLINK70, which accounts for linkage

disequilibrium (LD) patterns in the genome. We performed fine map-
ping using susieR (v.0.12.35)21, which includes two metrics: Posterior
Inclusion Probability (PIP) and Residual Sum of Squares Posterior
Inclusion Probability (RSS PIP). We estimated heritability and genetic
correlations using LD Score Regression (LDSC) v.1.0.120. We con-
structed PRS analysis using PRS-CS (v.1.1.0)22. Detailed methodologies
for clumping, fine mapping, LDSC statistics, and PRS models are
available in Supplementary Methods.

Sex-stratified and sex-differentiated analyses
Sex-stratified analyses used mixed linear models in BOLT-LMM (ver-
sion 2.4.1)71, separately for male (n = 48,189) and female (n = 88,564)
subjects, adjusting for sex and the top 10 PCs. Sex-differentiated
analysis72 utilized GWAMA73 with the “-sex” option to identify sex-
specific allelic effects and test for heterogeneity between sexes.

Transcriptome-wide association studies
We conducted TWAS to investigate the relationship between gene
expression and TyG. Using FUSION24, we combined gene expression
measurements with GWAS summary statistics. We obtained pre-
computed expression reference weights from GTEx(v7) for 11 human
tissues, including various adipose, brain, and organ tissues. FUSION
was then used to calculate TWAS P-values, identifying genes with sig-
nificant associations between their expression levels and TyG
susceptibility.

Pathway analysis
We constructed protein-protein interaction (PPI) networks utilizing
NDEx-The Network Data Exchange74 with significant genes associated
with TyG. The Human Integrated Protein–Protein Interaction Refer-
ence database75 was employed for PPI analysis within NDEx. We then
conducted pathway analysis on the genes within the PPI network
using ClueGO25, a Cytoscape76 plugin. ClueGO leverages various
ontology source databases to identify gene ontology (GO) terms and

Table 6 | Top 20 novel genes exhibiting genome-wide significance for the TyG index, a marker of insulin resistance, identified
within the Taiwan Biobank cohort

CHR Rank Gene Top SNP Top P Interval (b38) GWAS catalog

2 4 SPATA31H1 rs1919127 6.90E-114 27,576,521 27,582,722 NA

2 3 ZNF512 rs12989678 1.30E-115 27,582,968 27,623,215 T2D, TG

2 13 GPN1 rs34502053 7.90E-68 27,628,647 27,650,846 TG, FG, BMI

2 17 SUPT7L rs4666010 9.90E-45 27,650,809 27,663,840 NA

2 15 SLC4A1AP rs13021208 1.60E−57 27,663,470 27,694,980 AD, TG

2 19 RBKS rs898034 1.50E-38 27,781,379 27,890,387 TG

2 20 MRPL33 rs3792252 2.20E-37 27,771,719 27,779,733 TG, FG

7 12 FZD9 rs1178947 5.80E-69 73,433,778 73,436,120 TG, HDL-C

7 11 BAZ1B rs111837003 1.20E-71 73,440,406 73,522,293 TG, HDL-C

7 9 BCL7B rs7793710 1.10E-83 73,536,352 73,557,735 HDL-C

7 8 TBL2 rs13246490 2.60E-84 73,568,945 73,578,683 TG, HDL-C, BMI

11 1 BUD13 rs6589565 7.3E-445 116,748,173 116,772,987 TG, HDL-C

11 2 APOC3 rs5128 2.80E-152 116,829,907 116,833,071 TG, HDL-C

11 18 APOA1 rs12718464 3.10E-39 116,835,752 116,837,622 TG, HDL-C, BMI

11 10 PAFAH1B2 rs7925256 8.00E-75 117,144,283 117,178,173 TG, HDL-C, BMI

11 14 SIDT2 rs6589603 1.10E−59 117,178,743 117,197,442 TG, HDL-C

11 16 TAGLN rs588534 3.40E−51 117,199,294 117,207,465 TG, HDL-C

19 6 NECTIN2 rs283811 1.60E-94 44,846,135 44,889,228 AD, T2D, TG, HDL-C, BMI

19 7 TOMM40 rs157582 7.50E-94 44,891,219 44,903,689 AD, TG, HDL-C, BMI

19 5 APOE rs440446 1.70E-106 44,905,796 44,909,393 AD, T2D, TG, HDL-C, BMI

AD Alzheimer’s disease, b38 Genome Research Consortium human build 38, BMI body mass index, CHR chromosome, FG fasting glucose, HDL-C high-density lipoprotein cholesterol, IR insulin
resistance, NA not available, Pos position, T2D type 2 diabetes, TAD topologically associating domains, TG triglycerides.
Previous GWASs reported in the NHGRI-EBI GWAS Catalog have identified various phenotypes that reach genome-wide significance (P < 5 × 10−8). This GWAS analysis utilized BOLT-LMM’s mixed
linear models with a two-sided chi-square test. The conventional genome-wide significance threshold of P < 5 × 10−8 was applied.
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pathway networks, elucidating the functional significance of identi-
fied genes within specific biological processes and pathways25.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics data generated in this study are available in the
Supplementary Information file. The Taiwan Biobank genetic data are
subject to controlled access due to privacy policy requirements.
Access can be obtained by submitting a formal request to the Taiwan
Biobank at biobank@gate.sinica.edu.tw, with responses typically pro-
videdwithin 30days, subject to approval. Approvedusersmust adhere
to data use agreements restricting secondary distribution and non-
research use. Source data are provided with this paper.
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