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Nanopore sequencing enables comprehensive detection of 5-methylcytosine
(5mC), particularly in repeat regions. However, CHH methylation detection in
plants is limited by the scarcity of high-methylation positive samples, reducing
generalization across species. Dorado, the only tool for plant 5mC detection
on the R10.4 platform, lacks extensive species testing. Here, we develop
DeepPlant, a deep learning model incorporating both Bi-LSTM and Transfor-
mer architectures, which significantly improves CHH detection accuracy and
performs well for CpG and CHG motifs. We address the scarcity of
methylation-positive CHH training samples through screening species with
abundant high-methylation CHH sites using bisulfite-sequencing and generate
datasets that cover diverse 9-mer motifs for training and testing DeepPlant.
Evaluated across nine species, DeepPlant achieves high whole-genome
methylation frequency correlations (0.705-0.838) with BS-seq data on CHH,
improved by 23.4- 117.6% compared to Dorado. DeepPlant also demonstrates
superior single-molecule accuracy and F1 score, offering strong generalization

for plant epigenetics research.

DNA methylation, specifically 5-methylcytosine (5mC), is an essential
epigenetic modification regulating numerous biological processes in
plants', such as gene expression?, transposon silencing?®, and genome
stability*®. Unlike in animals, where 5mC primarily occurs at CpG sites,
plant SmC exits across three different sequence contexts, CpG, CHG,
and CHH (where H represents A, T, or C). CHH methylation, though
less abundant, plays a critical role in silencing transposable elements
(TEs), which is essential for maintaining genome integrity during plant
development and stress responses’.

Several methods have been developed for detecting SmC®’, with
bisulfite sequencing (BS-seq)® being the most widely used for all three

methylation contexts. However, BS-seq’s reliance on short-read
sequencing technologies limits its ability to accurately profile com-
plex and repetitive genomic regions, such as centromeres and trans-
posable elements (TEs)’. Additionally, BS-seq introduces biases, such
as DNA damage'®, which can impair accuracy-particularly for CHH
motifs that only have half effective coverage due to being asymmetric
between forward and reverse DNA strands. Recent advancements in
third-generation sequencing, particularly with Oxford Nanopore
Technologies (ONT), present a promising alternative. Nanopore
sequencing signals can be directly utilized to detect DNA modifica-
tions on native long reads" ", enabling more comprehensive analysis
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of genomic regions. A key breakthrough in this area for plant has been
DeepSignal-Plant’, our deep learning tool developed for genome-wide
5mC detection in CpG, CHG, and CHH contexts. Trained on Arabi-
dopsis thaliana and Oryza sativa, DeepSignal-Plant demonstrated high
accuracy across these contexts, correlating strongly with BS-seq while
providing enhanced methylation information in repetitive regions.

The recently released ONT’s R10.4 FlowCell has dramatically
improved accuracy and stability in basecalling compared to earlier
versions and has gradually become the mainstream product. However,
software compatible with the R10.4 FlowCell has lagged behind. Sub-
stantial changes in the nanopore protein structure and signal collec-
tion frequency of R10.4 have led to differences in electrical signal
output and data storage formats. As a result, methylation detection
tools developed for the R9.4 platform, such as Tombo', Megalodon'®,
and DeepSignal-Plant’®, cannot be directly applied to the R10.4 Flow-
Cell. To address the compatibility issue with the R10.4 FlowCell, ONT
has introduced new 5mC detection models for their Dorado' software.
While Dorado performs well in detecting high-methylation levels of
CpG and CHG in plants on R10.4, it struggles with CHH methylation
detection (see Results), most likely due to the limited availability of
positive CHH samples for training.

In this work, we analyze publicly available BS-seq datasets and
screen species with abundant high-methylation CHH sites for model
training. We generate new Nanopore and BS-seq data from selected
species, significantly increasing the number of CHH-positive samples.
The new dataset covers 97.2% of all possible 9-mers centered with CHH
motifs. In parallel, we develop DeepPlant, which outperforms Dorado,
achieving a correlation improvement ranging from 0.135 to 0.381 with
BS-seq in whole-genome CHH methylation frequency quantification.
DeepPlant also demonstrates superior single-molecule accuracy, F1
score, and recall, while maintaining greater stability across all tested
species. These results suggest that DeepPlant has strong generalizability
and holds significant potential for broad applications in plant methyla-
tion detection.

Results

Sample selection for generalized CHH methylation model
training

This study aimed to enhance nanopore-based SmC detection across
plant species, with a particular focus on developing a CHH methylation
model that generalizes well across species. A critical challenge in this
process was obtaining methylation-positive samples with diverse motif
contexts. In a previous study, CHH-positive samples were sourced
from genomic CHH sites with high-methylation levels (>90%) based on
BS-seq data'®. However, collecting samples with high CHH methylation
levels and broad k-mer coverage is difficult due to the generally low
CHH methylation content (-1-17% reported in 34 angiosperms)® in
most plants. And highly methylated CHH sites represent only about
0.02-0.12% of BS-seq quantified CHH sites in A. thaliana and O. sativa
(Supplementary Data 1) used for training DeepSignal-Plant™®.

To collect more representative positive training samples, we
reviewed existing literature’®* and analyzed the abundance and con-
text k-mer diversity of high-methylation CHH motifs using previously
published BS-seq data from 10 plant species®*> (Supplementary
Data 1). These species included Arabidopsis thaliana (a maximum of
0.03% high-methylation CHH sites among tested datasets), Oryza
sativa (0.12%), Beta vulgaris (1.27%), Salvia miltiorrhiza (2.78%), Sola-
num tuberosum (1.96%), Ricinus communis (3.91%), Citrus sinensis
(1.35%), Gossypium hirsutum (0.01%), Solanum lycopersicum (0.78%),
and Physcomitrium patens (7.28%). The samples with the highest ratios
of high-methylation CHH sites or the greatest k-mer context diversity
were S. tuberosum tuber, S. miltiorrhiza root, P. patens gametophore, R.
communis embryo, S. lycopersicum fruit, C. sinensis fruit pericarp, and
B. vulgaris leaves (Fig. 1a and Supplementary Data 1).

We then collected tissue samples from seven of these species
and conducted BS-seq. For better sample diversity, A. thaliana, O.
sativa, Glycine max, Vitis vinifera, and Marchantia polymorpha were
also added to the analysis. Among these, BS-seq data from S. mil-
tiorrhiza root provided the largest number of CHH-positive samples,
followed by R. communis embryo and S. tuberosum tuber (Fig. 1b, c).
The same three DNA samples were therefore subjected to nanopore
sequencing on R10.4 platform. Low-mapping rate (<5%) of P. patens
and M. polymorpha BS-seq suggested sample impurity, and the G.
max strain showed a relatively high nucleotide difference level to the
reference genome (GCF_000004515.6), leading them to be aban-
doned in further analysis. Analysis of the nanopore data revealed that
S. miltiorrhiza alone covered 93.4% of all possible 9-mer CHH con-
texts. However, the number of high-methylation sites for specific
CHH motifs, such as CCA, CCC, and CCT, was low across all species
(Fig. 1c). Consequently, we combined the datasets from S. miltior-
rhiza, S. tuberosum, and R. communis, resulting in 97.2% coverage of
all possible 9-mer contexts centered with CHH motifs, with an
average of 9225 samples per context.

To evaluate the model’s generalizability, we selected another
six species with varying CHH methylation levels for testing, which
are A. thaliana (3.01% overall CHH methylation ratio), V. vinifera
(8.04%), O. sativa (3.50%), B. vulgaris (10.23%), S. lycopersicum
(15.10%), and C. sinensis (10.61%) (Supplementary Data 2). The
number of high-methylation CHH sites in their BS-seq datasets also
differed from 2047 in A. thaliana to 520,150 in S. lycopersicum.
These results indicate that our selected datasets provide a broad
and representative foundation for both model training and
evaluation.

Deep neural network architectures and model training for plant
5mC detection

Based on the datasets collected, we developed DeepPlant, a deep
learning tool for accurate SmC detection in plants. DeepPlant
employs a triple-encoder architecture (Fig. 2a), similar to our
previous tools, DeepSignal** and DeepBam®®. This architecture
includes separate encoders for k-mer sequence information (from
Dorado basecalling), raw signal features, and a secondary colla-
borative encoding. Systematic ablation analysis showed that dis-
carding any of the encoders (sequence encoder, signal encoder,
and combine encoder) would significantly impact the model’s
performance (Supplementary Data 3). A classifier then determines
the methylation status of cytosines located at the center of the
k-mer. Two deep neural network architectures were implemented
in DeepPlant-one based on Bidirectional Recurrent Neural Net-
works with LSTM units (Bi-LSTM) and the other using Transfor-
mer encoders, forming a BERT-like network (Fig. 2a-c and
Supplementary Data 4).

Cytosine methylation can affect the signals of adjacent sequences,
so the input feature length influences model performance'®”’. To
assess the impact of using different k-mer lengths, we trained Deep-
Plant models using 9-mer, 13-mer, and 51-mer samples. Testing on O.
sativa and A. thaliana showed that models trained with 9-mer samples,
matching Dorado’s input length, significantly outperformed Dorado,
suggesting the robustness of our training dataset. Among the models
trained using different k-mer lengths, the 51-mer model had the
highest accuracy on randomly sampled testing dataset (Fig. 2d);
however, it is overfitted since it led to poorer methylation frequency
quantifications (Fig. 2e). Overall, the 13-mer Bi-LSTM model (default
DeepPlant model) was regarded optimal and further assessed in fol-
lowing sections.

In addition, we trained CHG and CpG detection models using a
similar Bi-LSTM architecture, which are detailed in the Methods sec-
tion and Supplementary Fig. 1a-d.
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Fig. 1| Selection of plant samples for CHH methylation training feature col-
lection. CHH methylation sites, particularly those with high-methylation levels
(=90%), are rare in plants. This figure presents the statistics on high-methylation
CHH sites from previously published bisulfite sequencing (BS-seq) datasets'®**™
and those generated in this study. a Ratios of high-methylation CHH sites among
quantified CHH motifs (=5 read coverage) (left panel) and the number of covered
9-mer contexts (right panel) in BS-seq datasets from ten plant species. Only 9-mers
observed at three or more high-methylation CHH sites were considered. Species
other than A. thaliana and 0. sativa were selected based on high CHH methylation
ratios reported in previous studies?*”. b Ratios of high-methylation CHH sites in BS-

Ratio .

0.00 0.25 0.50 0.75 1.00

seq datasets sequenced for this study, including A. thaliana, O. sativa, and species
with abundant high-methylation CHH sites identified in (a), as well as Glycine max
and Marchantia polymorpha. ¢ Number of covered 9-mer contexts (top) and
heatmap of context abundance (bottom) grouped by CHH motifs in nanopore
datasets from six plant species. In the top panel, the top line of each bar corre-
sponds to the number (36,864) of all possible 9-mer sequences centered with a
CHH motif. A 9-mer was considered covered if present in 50 or more positive
training samples and had at least an equal number of negative samples. “Mixed”
refers to combined samples from S. miltiorrhiza, R. communis, and S. tuberosum.
Source data are provided as a Source Data file.

Evaluation of 5SmC methylation frequency quantification by
DeepPlant
Aggregated methylation frequencies-defined as the ratio of methy-
lated reads to total local effective reads-at CHH sites across the gen-
ome is a key metric for evaluating the performance of methylation
detection models. As shown in Fig. 2c, d, this metric does not always
positively correlate with single-molecule performance but can indicate
amodel’s overall effectiveness. To assess the quantitative performance
of DeepPlant, we profiled CHH methylation frequencies across three
training datasets (S. miltiorrhiza, S. tuberosum, R. communis) and six
testing datasets: B. vulgaris, O. sativa, A. thaliana, V. vinifera, C.
sinensis, and S. lycopersicum. BS-seq data were also used to profile
methylation frequencies at each cytosine site, serving as a control to
evaluate the performance of nanopore-based methylation callers.

To minimize the sum of false-positive and false-negative calls, we
applied an adaptative methylation score threshold selection method in
DeepPlant (Supplementary Fig. 2; see “Methods”). We also applied the

same approach in methylation frequency profiling using Dorado calls,
and it improved the site-level methylation quantification correlations
with BS-seq for Dorado compared to using its default settings (Table 1).
On the six testing datasets, at a sequencing depth of 30x, DeepPlant
achieved 0.705-0.838 Pearson’s correlations (r) with BS-seq (Table 1
and Supplementary Data 5). For species with relatively high CHH
methylation content, such as B. vulgaris, C. sinensis, and S. lycopersi-
cum, the correlations exceeded 0.80. Across all testing datasets,
DeepPlant consistently showed higher correlations and more similar
methylation patterns (Supplementary Fig. 3a—c) with BS-seq compared
to Dorado (using its default settings), with advantages ranging from
0.078 to 0.324 at 10x and from 0.135 to 0.381 at 30x sequencing depth
(Table 1), even higher than the advantages observed on the three
training datasets. As nanopore sequencing depth increased, the cor-
relation between DeepPlant’s aggregated methylation frequencies and
BS-seq results steadily improved, while Dorado showed reduced cor-
relations with BS-seq in most cases as sequencing depth increased.
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Fig. 2 | Deep neural network architecture and model comparison. a Overview of
the signal features used by DeepPlant and the triple-encoder architecture. b, ¢ Bi-
LSTM and Transformer encoder architectures applied in DeepPlant. d Accuracy
progression during CHH methylation detection training, comparing the perfor-
mance of Bi-LSTM and Transformer encoders across different k-mer lengths. 9-,13-,

and S51-mer denote the lengths of model feature contexts surrounding target C at
CHH sites. e Quantitative evaluation of CHH methylation detection accuracy by
different models on single chromosomes using 43x O. sativa and 35x A. thaliana
nanopore data. Pearson correlations were calculated between nanopore and cor-
responding BS-seq data. Source data are provided as a Source Data file.

Notably, DeepPlant achieved a nearly two-fold correlation coefficient
with BS-seq on O. sativa compared to Dorado (0.654 vs. 0.329).
These results highlight DeepPlant’s superior generalizability in
CHH methylation frequency quantification. We also evaluated methy-
lation frequency quantification using DeepPlant’s CHG and CpG

models across the same nine datasets, and the results are detailed in
Supplementary Data 6 and Supplementary Note 1. Overall, our CHG
model outperformed Dorado across the datasets, though with a
smaller margin compared to the CHH model. And the CpG model
performed slightly better than Dorado on seven of nine tested datasets
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Table 1 | Quantitative evaluation of CHH methylation detection by DeepPlant and Dorado

Species Tool Sequencing depth
5x 10x 15x 20x% 25x 30x%

Training datasets

S. miltiorrhiza DeepPlant 0.8472 0.8524 0.8601 0.8695 0.8780 -
Dorado 0.7604 0.7500 0.7443 0.7420 0.7441 -
Dorado* 0.8069 0.7975 0.7890 0.7821 0.7784 -

S. tuberosum DeepPlant 0.8048 0.8173 0.8251 - - -
Dorado 0.6964 0.6899 0.6861 - - -
Dorado* 0.7453 0.7412 0.7365 - - -

R. communis DeepPlant 0.8340 0.8532 0.8592 0.8663 0.8742 0.8814
Dorado 0.7849 0.7819 0.7752 0.7714 0.7713 0.7735
Dorado* 0.8098 0.8133 0.8085 0.8048 0.8036 0.8041

Testing datasets

A. thaliana DeepPlant 0.6410 0.6611 0.6733 0.6853 0.6998 0.7139
Dorado 0.5908 0.5828 0.5813 0.5795 0.5789 0.5787
Dorado* 0.6322 0.6324 0.6365 0.6378 0.6394 0.6396

B. vulgaris DeepPlant 0.7655 0.7740 0.7826 0.7920 0.8006 0.8074
Dorado 0.6385 0.6242 0.6123 0.6062 0.6054 0.6051
Dorado* 0.7253 0.7182 0.7076 0.6996 0.6937 0.6904

O. sativa DeepPlant 0.6401 0.6535 0.6659 0.6796 0.6937 0.7051
Dorado 0.3266 0.3292 0.3269 0.3247 0.3237 0.3240
Dorado* 0.4833 0.4937 0.4860 0.4728 0.4605 0.4510

V. vinifera DeepPlant 0.7268 0.7326 0.7445 0.7588 0.7719 0.7832
Dorado 0.6499 0.6360 0.6284 0.6233 0.6201 0.6193
Dorado* 0.7082 0.7026 0.7000 0.6976 0.6949 0.6928

C. sinensis DeepPlant 0.7616 0.7800 0.7949 0.8064 0.8175 0.8259
Dorado 0.6644 0.6595 0.6563 0.6544 0.6538 0.6533
Dorado* 0.7165 0.7146 0.7090 0.7055 0.7032 0.7017

S. lycopersicum DeepPlant 0.7808 0.7903 0.8022 0.8157 0.8277 0.8378
Dorado 0.6759 0.6655 0.6569 0.6546 0.6546 0.6577
Dorado* 0.7315 0.7260 0.7195 0.7153 0.7134 0.7133

Note: Each value represents the genome-wide Pearson correlation between the methylation callers and whole-genome BS-seq results at the corresponding sequencing depths of downsampled
nanopore datasets. For each species, the same BS-seq dataset (Supplementary Data 2) was used for all tests. The results of applying DeepPlant’s threshold selection method (Supplementary Fig. 2) to

Dorado are labeled as “Dorado*”.

and also performed slightly better than Rockfish on eight tested
datasets.

Single-molecule methylation detection performance of
DeepPlant

Nanopore sequencing, as a single-molecule long-read sequencing
technology, offers a distinct advantage in detecting methylation for
individual molecules compared to BS-seq. To assess DeepPlant’s per-
formance in this context, we conducted a comprehensive analysis
across nine datasets. Reference sites were selected using corre-
sponding BS-seq data, focusing on fully methylated (100% methylation
frequency) and unmethylated (0% methylation frequency) CHH sites,
with a minimum coverage of 5x. Given the scarcity of fully methylated
CHH sites in the analyzed species, the ratio of fully methylated to
unmethylated CHH genomic sites (Supplementary Data 7) is sig-
nificantly lowered compared to the realistic single-molecule methy-
lated to unmethylated CHH motif ratios in the analyzed species’ DNAs
(Supplementary Data 2), where the single-molecule performance
could be indirectly evaluated through above methylation frequency
quantification assessments. Direct evaluations of DeepPlant and Dor-
ado on the imbalanced fully methylated/unmethylated datasets mainly
provided insights into the accuracy of unmethylated site detection,
and DeepPlant outperformed Dorado in all instances (Supplementary
Data 7). Recognizing the importance of both methylated and

unmethylated calls, we then compared the single-molecule perfor-
mance of DeepPlant and Dorado on datasets with a balanced repre-
sentation of fully methylated and unmethylated samples. On the
training datasets, DeepPlant achieved F1 scores exceeding 0.9 for S.
miltiorrhiza and R. communis, outperforming Dorado across all three
species. Notably, the F1 score for S. miltiorrhiza was more than 10%
higher than Dorado. Results on the testing datasets (Table 2 and
Supplementary Data 8) demonstrated that DeepPlant consistently
outperformed Dorado and achieved higher F1 scores across all six
species, with notable gains of 6.8%, 5.94%, and 5.48% for O. sativa, B.
vulgaris, and S. lycopersicum, respectively. DeepPlant maintained <6%
false-positive rates (FPRs) across all testing and training datasets
(Supplementary Fig. 4a-i). In contrast, Dorado exhibited significantly
higher FPRs on C. sinensis, B. vulgaris, O. sativa, and S. lycopersicum,
with rates of 24.1%, 11.1%, 10.1% and 11.0%, respectively.

Further analyses using Receiver Operating Characteristic (ROC)
and Precision-Recall (PR) curves (Supplementary Fig. 5a-r) confirmed
DeepPlant’s advantage at the single-molecule level. Across testing
datasets, the area under the ROC curve (AUC) of DeepPlant increased
by 0.22-6.77%, and the area under the PR curve (AP) improved by
1.31-7.29% compared to Dorado. The advantages were more pro-
nounced in the training datasets. It is important to note that these
metrics were calculated based on CHH sites with extreme methylation
frequency levels. In the previous section, we observed much greater
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Table 2 | Single-molecule evaluation of CHH methylation detection

Species Tool F1score Accuracy Recall Precision AUC AP
Training datasets
S. miltiorrhiza DeepPlant 0.9051 0.9083 0.8745 0.9378 0.9514 0.9617
Dorado 0.7920 0.8000 0.7613 0.8252 0.8655 0.8526
S. tuberosum DeepPlant 0.8869 0.8925 0.8432 0.9355 0.9365 0.9518
Dorado 0.8042 0.8076 0.7900 0.8188 0.8693 0.8695
R. communis DeepPlant 0.9008 0.9064 0.8502 0.9578 0.9460 0.9595
Dorado 0.8577 0.8694 0.7873 0.9419 0.9224 0.9332
Testing datasets
A. thaliana DeepPlant 0.7883 0.8202 0.6697 0.9579 0.8662 0.9039
Dorado 0.7722 0.8050 0.6611 0.9283 0.8481 0.8800
B. vulgaris DeepPlant 0.8682 0.8775 0.8072 0.9392 0.9192 0.9405
Dorado 0.8088 0.8217 0.7544 0.8717 0.8907 0.8942
O. sativa DeepPlant 0.8867 0.8932 0.8355 0.9446 0.9375 0.9540
Dorado 0.8186 0.8309 0.7632 0.8828 0.8887 0.9006
V. vinifera DeepPlant 0.8414 0.8566 0.7608 0.941 0.8964 0.9227
Dorado 0.8150 0.8349 0.7274 0.9267 0.8941 0.9096
C. sinensis DeepPlant 0.8221 0.8433 0.7241 0.9508 0.9256 0.9375
Dorado 0.7830 0.7788 0.7982 0.7684 0.8579 0.8646
S. lycopersicum DeepPlant 0.8872 0.8946 0.8294 0.9538 0.9332 0.9510
Dorado 0.8324 0.8407 0.7910 0.8784 0.8918 0.9061

Note: This table presents single-molecule methylation evaluation results of DeepPlant (13-mer model) and Dorado across different species. Corresponding ROC (Receiver Operating Characteristic)
and PR (Precision-Recall) curves are provided in Supplementary Fig. 5. And AUC and AP denote the area under ROC curve and the area under PR curve, respectively.

advantages of DeepPlant over Dorado in overall methylation fre-
quency quantification. These results suggest that the tested Dorado
model could be overfitted to extreme CHH sites.

We also evaluated the CpG and CHG models of DeepPlant across
the datasets. Though with smaller advantages than the CHH model,
both CpG and CHG models of DeepPlant demonstrated better single-
molecule performance compared to Dorado, and the CpG model
outperformed Rockfish on most metrics, with detailed results pre-
sented in Supplementary Data 6 and Supplementary Note 2.

CHH methylation profiling of O. sativa centromere and trans-
poson regions by DeepPlant

Centromeres are crucial structures in eukaryotic chromosomes,
playing essential roles in mitosis and meiosis*. In plants, they are
predominantly composed of satellite repeats, transposable elements
(TEs), and a small number of genes®. The highly repetitive nature of
centromeric sequences presents significant challenges for accurate
assembly and functional analysis, including the study of their
methylation patterns. Despite the agricultural importance of O.
sativa, the methylation characteristics of its centromeres have been
largely unexplored. Leveraging ~43x O. sativa nanopore data with a
read N50 of 12.8kb, we conducted an in-depth analysis of cen-
tromeric methylation patterns using DeepPlant on the T2T-NIP*
reference genome (Supplementary Data 9). DeepPlant almost com-
pletely profiled centromeric regions of chromosomes 4, 5, 8, and 12,
while the largest gap in coverage was observed in chromosome 11
(Fig. 3a). Across non-centromeric regions, DeepPlant quantified
methylation frequencies for ~98% of CHH sites, representing ~26%
improvements compared to the results achieved with -52x BS-seq
data (Fig. 3b). In centromeric regions, DeepPlant covered 88.0% CHH
sites, more than double the coverage ratio of BS-seq (37.7%) (Fig. 3b).
CHH coverage by DeepPlant in centromeric regions showed only
slight reduction compared to mean genome sequencing depth
(39.3x/43x), whereas BS-seq exhibited a more pronounced decrease
(22.4x/52x). Exemplary centromeric regions successfully profiled by
DeepPlant but left blank by BS-seq are shown in Fig. 3¢ and

Supplementary Fig. 6a-c. Moreover, in the sub-telomeric region of
chromosome 10, within the gene AGIS Os10g035850
(LOC 0Os10g43075 in IRGSP-1.0/MSU?7), all 3830 CHH motifs were
profiled by DeepPlant, compared to only 2197 motifs profiled by
BS-seq.

DeepPlant’s ability to quantify methylation states in a strand-
specific manner was further demonstrated in the analysis of O. sativa
centromeric TEs (from genome annotation of T2T-NIP). CHH methy-
lation levels were significantly higher in TEs compared to centromeric
protein-coding regions (Fig. 3d). Among seven different types of cen-
tromeric transposons, no significant strand bias was observed overall.
However, when looked at independently, Ac/Ds and Mariner sub-class
transposons exhibited higher methylation on the forward strand, while
others, including LINE and Tyl-copia, showed higher methylation on
the reverse strand (Fig. 3e). This result echoed a previous study that
reported strand-biased methylation in A. thaliana centromeres®.
These results demonstrate that the combination of DeepPlant and
nanopore sequencing offers enhanced coverage and accuracy for
profiling methylation in complex genomic regions, such as cen-
tromeres and transposable elements, compared to traditional BS-seq
approaches.

Discussion

In this study, we introduce DeepPlant, a deep learning tool designed to
accurately detect 5-methylcytosine (SmC) modifications across all
sequence contexts-CpG, CHG, and particularly CHH-in plant genomes
using Oxford Nanopore Technologies (ONT) R10.4 sequencing data.
By addressing the limitations of existing methylation detection
methods, especially in the CHH context, DeepPlant significantly
enhances our ability to profile plant epigenomes comprehensively,
including complex and repetitive genomic regions.

A critical challenge in CHH methylation detection has been the
scarcity of high-methylation CHH sites for collecting positive samples,
which hampers model training and generalization across species.
Researchers have traditionally employed in vitro DNA methylation
enzyme reactions to provide positive samples for CpG methylation
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model training*”. However, CHH methylation depends on RNA-
directed DNA methylation (RdADM), which requires non-coding RNA
guidance and the involvement of methyltransferases (DRMI1 and
DRM2), rendering in vitro enzyme-catalyzed DNA methylation
ineffective®. PCR amplification with modified base substitutions** is a
second choice; nevertheless, previous studies have reported sig-
nificant difficulties replacing cytosines with high-purity SmC in PCR

amplification'®*. And even if this approach succeeded the base con-
texts will be significantly different from native DNAs. In this study, we
addressed the challenge by systematically analyzing publicly available
BS-seq datasets and identifying plant species with abundant high-
methylation CHH sites, such as S. miltiorrhiza, S. tuberosum, and R.
communis. By generating new ONT R10.4 sequencing data for these
species, we significantly increased the diversity and number of CHH-
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Fig. 3 | CHH methylation profiling of O. sativa centromere and transposable
element regions. a Circos plot illustrating DeepPlant CHH methylation profiling in
centromeric regions and 100 kb intervals upstream and downstream in O. sativa.
From outer to inner: ideograms of centromere (center box) and neighboring
regions (two terminal boxes); histograms of normalized sequencing coverage
across 100 bp bins (gray, normalized against mean genomic coverage); histograms
of CHH methylation frequencies (blue) across 100 bp bins. b Comparison of CHH
motif coverage ratios across different genomic regions between BS-seq, DeepPlant,
and Dorado profiling. To be noticed, the same nanopore dataset was used for
DeepPlant and Dorado profiling, and the coverage difference between DeepPlant
and Dorado derived from the distinct read filters they applied. DeepPlant applies
three thresholds for screening high-quality alignments, including MAPQ > 20, pri-
mary alignment length/read length >80%, and mapping identity >80% by default.
Only CHH motifs with a minimum read coverage of 10 were regarded as quantified.

TE transposable element, CDS non-TE protein-coding sequences. ¢ Read coverage
and CHH methylation frequencies in the centromeric regions of Chrl, comparing
whole-genome BS-seq data, DeepPlant, and Dorado analysis on Nanopore data.

d Boxplot illustrating CHH methylation frequencies on the forward (+) and reverse
(-) strands in protein-coding and transposable element (TE) regions. The center
line represents the median; each box shows the first and third quartiles; minima
represents the larger between Q1-1.5xIQR and the minimum observed value;
maxima represents the smaller between Q3 +1.5xIQR and the maximum observed
value. e Violin plot displaying strand-specific CHH methylation status across var-
ious TE types and non-TE protein-coding regions. The annotation of TEs and
protein-coding regions was acquired from T2T-NIP*°, Source data of (c, d) are
provided in Zenodo [https://doi.org/10.5281/zenod0.15062213]. Source data of the
other panels are provided as a Source Data file.

positive samples. Our comprehensive training dataset now covers
97.2% of all possible 9-mer CHH contexts, averaging over 9225 samples
per context—substantially surpassing DeepSignal-Plant which used A.
thaliana and O. sativa'®. This extensive coverage is crucial for training a
model capable of generalizing across diverse plant species and
methylation patterns.

In model training, by optimizing the model with 13-mer sequen-
ces, we achieved a balance between capturing sufficient sequence
features and avoiding overfitting, which can be a risk when positive
samples are limited. Importantly, DeepPlant demonstrates superior
performance not only in CHH methylation detection but also in the
CpG and CHG contexts. This consistent improvement across all con-
texts highlights DeepPlant’s versatility and effectiveness in compre-
hensive 5SmC detection in plants.

DeepPlant’s enhanced performance extends to regions of the
genome that are challenging for traditional BS-seq methods due to
their repetitive nature and sequence complexity. For instance, we
successfully profiled methylation patterns in most centromeric
regions and TEs of O. sativa, achieving greater coverage than BS-seq
and revealing strand-specific methylation patterns consistent with
previous observations in A. thaliana®. DeepPlant’s ability to quantify
methylation states in a strand-specific manner provides valuable
insights into the mechanisms of epigenetic regulation and the func-
tional significance of asymmetric methylation patterns. These findings
have implications for understanding the role of DNA methylation in
regulating gene expression, transposon silencing, and genome stabi-
lity in plants.

Despite these advancements, several limitations remain. The
computational benchmark showed that DeepPlant is less com-
putationally efficient than Dorado as it took much longer to call
methylation on the same dataset (Supplementary Data 10). The
scarcity of high-methylation CHH samples, although partially
mitigated in this study, continues to pose challenges for model
training and generalization. Our reliance on species with naturally
abundant CHH methylation may not capture the full diversity of
methylation patterns across all plant species. In addition, there is
a need to address the potential for overfitting to specific
sequence patterns, which underscores the importance of careful
model optimization and validation. Future work should explore
methods to artificially enrich CHH methylation samples, possibly
through targeted methylation or synthetic biology approaches, to
further enhance model training. Integrating DeepPlant with other
epigenetic and genomic data could provide a more holistic
understanding of epigenetic regulation. Applying DeepPlant to
study epigenetic responses to environmental stresses, develop-
mental cues, or pathogen interactions holds promise for advan-
cing plant biology and agricultural sciences.

In conclusion, DeepPlant represents a significant advancement in
plant epigenetics research, providing a powerful tool for accurate and
comprehensive 5mC detection using ONT sequencing data. By

overcoming limitations in CHH methylation detection, DeepPlant
opens new avenues for exploring the complex epigenetic landscapes
of plants. Its ability to profile methylation in challenging genomic
regions enhances our capacity to study genome regulation, stability,
and adaptation, ultimately contributing to advancements in plant
epigenetics.

Methods

Public BS-seq and reference genomes

The reference genomes for all species were downloaded from NCBI
(Supplementary Data 1). We reviewed relevant literature to obtain
BS-seq data for A. thaliand', O. sativa', B. vulgaris®, S. miltiorrhiza®,
S. tuberosum®, R. communis®?¥, C. sinensis®®, G. hirsutum®,
S. lycopersicum™, and P. patens™ * as detailed in Supplementary Data 1.

Preparation of plant materials

Plant materials from various species were prepared for sequencing.
Callus cultures were established from undeveloped ovules of C.
sinensis cv. ‘Liucheng’*® and leaf discs of Vitis vinifera var. ‘Baiti'"’.
Fresh roots of wild S. miltiorrhiza were collected in March 2024 from
Song County, Henan, China, and the epidermal tissue was carefully
sliced into thin sections (-0.1 mm thick). For A. thaliana and 0. sativa,
leaves were collected from one-month-old seedlings of A. thaliana
(L.) Heynh. Columbia-O (Col-0) and O. sativa L. ssp. Japonica cv.
Nipponbare. For B. vulgaris L. var. cicla and Glycine max, leaves were
collected from 50-day-old plants. For R. communis, embryos were
separated from fresh seeds of wild plants collected in March 2024
from Maoming, Guangdong, China. Sporangium powders of M.
polymorpha L. and P. patens L. were purchased from the market,
which later found to have low purity with <5% mapping ratio of BS-
seq reads to reference genomes. Outer pericarps of S. lycopersicum
(cultivar DRK0568) were dissected for DNA extraction. A tuber from
the S. tuberosum variety A9, with the epidermis removed, was cut into
0.5-cm cubes. After these preparations, all plant samples were
immediately frozen in liquid nitrogen and stored at =80 °C until DNA
extraction.

DNA extraction and nanopore sequencing

DNA extraction was carried out using DNeasy Plant Kits (Qiagen, Hil-
den, Germany) for the plant samples. Sequencing was performed on
the Oxford Nanopore Technologies (ONT) PromethlON R10.4.1 plat-
form by Grandomics company (Wuhan, China). The raw nanopore data
was base-called using ONT official basecaller, Dorado” (version 0.8.0),
with the hac model, and 5SmC modifications were called with the model
version “dna_r10.4.1_e8.2_.400bps_hac@v5.0.0” (https://github.com/
nanoporetech/dorado?tab=readme-ov-file#dna-models). BS-seq and
DeepPlant do not distinguish between SmC and ShmC modifications,
therefore SmC was called by Dorado using a 5mC/5hmC combined
mode. We then aligned the reads to the reference genome using
minimap2*®,
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Whole-genome BS-seq

For methylation profile consistency, the same genomic DNA used for
nanopore sequencing was also subjected to BS-seq. The DNAs were
first fragmented to an average size of 200-350 bp, followed by end-
repair of the short DNA fragments. After bisulfite conversion, PCR
amplification was performed, and the sequencing data were generated
by BGI Genomics Co. Ltd. The sequencing reads were then processed
using the standard workflow of Bismark (v0.24.0)*. Bismark provided
a methylation call for every cytosine detected in CpG, CHG, and CHH
contexts. The methylation frequency of cytosines is calculated as the
number of mapped reads predicted to be methylated divided by the
total number of mapped reads. To be noticed, the Bisamark pipeline
only counts unique best alignments where the next best alignment
does not exist or is not as good.

Select high-confidence sites from BS-seq analyses

We used whole-genome BS-seq analysis as reference for selecting
training samples. Sites for extracting training samples were selected
from the whole genomes of S. tuberosum, S. miltiorrhiza, and R.
communis. To ensure the reliability of the sites, we required the BS-
seq coverage at each site to be above 5x. We selected CHH sites with
a methylation frequency of zero as negative sites. Different criteria
were applied for positive sites based on the methylation levels of
different CHH motifs. For the CAA motif, we selected sites with a
methylation frequency above 0.95, and the number of such sites
exceeded 2 million. For the CAC, CAT, CTA, CTT, and CTC motifs, we
selected sites with a methylation frequency above 0.9, with more
than 1 million such sites. For the CCA, CCT, and CCC motifs, we
selected sites with a methylation frequency above 0.85. For CHG
motifs, positive sites were selected from S. miltiorrhiza and R. com-
munis with methylation frequencies above 0.98, while negative sites
were chosen with a frequency of zero. For CpG motifs, we selected
sites from the HGOO2 and B. vulgaris datasets with methylation fre-
quencies greater than 0.99 as positive sites and those with fre-
quencies below 0.02 as negative sites.

DeepPlant framework

DeepPlant uses raw sequencing signals from the Nanopore R10.4
flowcell and a reference genome as input data. The raw sequencing
signals should be saved in the pod5 file format. The Nanopore
sequencing signals need to be base-called by a basecalling tool to
obtain the corresponding read sequences, which are then aligned with
the reference genome using an alignment tool. The reads need to be
stored in a BAM file, and the move table must be retained during the
basecalling to enable correspondence between the bases and their
sequencing signals. After basecalling, the reads in the BAM file should
be sorted by the pods5 file names (fn field).

Feature extraction

We locate the cytosine sites in the aligned reads based on the selected
reference genome’s cytosine positions. A k-mer is extracted from the
read for each target cytosine, with the target cytosine positioned in the
middle of the k-mer. Reads not aligned to the reference or had low
alignment quality were filtered out. The default filtering criteria for
low-quality alignments are as follows: Reads with a mapping quality
(MAPQ) score of less than 20 were filtered. Reads were further filtered
if the length of the primary alignment (total length minus soft clipped
bases) to the total number of bases in the read was less than 80% or the
mapping identity was lower than 80%. We locate the raw sequencing
signals for the k-mer from the pods file using the move table. The raw
sequencing signals are standardized using the median shift and med-
ian absolute deviation (MAD) scale®*. The mean and standard deviation
are calculated for each base’s standardized signal. These, along with
basecalling quality, the number of corresponding signals, and the base
itself, form the sequence features. This leads to a matrix with

dimensions of kx5. In addition, 15 signals are sampled from the stan-
dardized signals of each base to form signal features, resulting in a kx15
matrix. Thus, each k-mer has two types of features for cytosine
methylation detection.

Model architecture

The k-mer sequence is transformed into an embedding representation,
combined with other statistical features to create the sequence fea-
tures. We then use three encoders to build DeepPlant. The first enco-
der independently encodes the sequence features, while the second
encoder independently encodes the signal features. The encoded
results from both are concatenated and fed into the third encoder,
which performs collaborative encoding of the sequence. After the
collaborative encoding, a feedforward network is used as the final
classifier to determine the methylation probability of the target
cytosine.

DeepPlant encoders use two structures: a bidirectional recurrent
neural  network(BiRNN)"  consisting of long  short-term
memory(LSTM)” units and a transformer encoder”. The bidirec-
tional LSTM scans the k-mer both forward and backward. Then, a
feedforward network produces hidden vectors, aggregating informa-
tion from all bases in the k-mer at the end of the sequence. We extract
the hidden vectors from the sequence’s end in both the forward and
backward directions and concatenate them to get the final encoding
representation. On the other hand, when using the transformer
encoder in DeepPlant, since the attention mechanism does not retain
positional information, similar to natural language processing, both
the sequence feature encoder and the signal feature encoder need to
perform positional encoding at the beginning. We use sinusoidal
positional encoding®, which can be described as:

PEp0s,2i) = SIN <pOS . IOOOO’Zi/d),

e M
PE pos,2i+1) = €OS (pos -10000~%/ )

where pos is the position of the base within the k-mer, i is the index of
the hidden vector dimension of the base or signal, and d is the
dimension of the hidden vector with default value of 128.

Then, we adopt a structure similar to BERT*°, using a multi-head
attention module and a feedforward network to construct another
encoder with residual connections and layer normalization® between
the modules. The transformer encoder attends to the influence of the
neighboring cytosines on both sides of the base, which affects its
signal. We extract the hidden vector as the final encoding repre-
sentation at the central position.

Training

We ultimately extracted 124 million samples genome-wide from S.
miltiorrhiza, S. tuberosum, and R. communis nanopore sequencing data
for CHH motifs, with a 1:1 ratio of positive to negative samples. For
CHG motifs, we extracted samples from S. miltiorrhiza and R. com-
munis, and for CpG motifs, samples were extracted from the HGO02
and B. vulgaris datasets. About 1% of the total samples were used as a
test set to select the best-performing model. Adam®* was used as the
optimizer for the network, with exponential decay rates for the first
and second-moment estimates set to 0.9 and 0.999, respectively. The
initial learning rates for the LSTM and transformer encoder were set to
0.001 and 0.0005, respectively, and decreased by 80% with each
epoch. The model’s optimization gradients were generated using
cross-entropy loss. Gradient clipping was applied to prevent gradient
explosion in the network. In addition, dropout layers®® were inserted
between different layers of the model to mitigate overfitting, and early
stopping®* was employed during training. The sequence feature
encoder and the signal feature encoder were set to 2 layers, while the
collaborative encoder was set to 3. The sequence encoder and signal
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encoder had a feature dimension of 128, whereas the collaborative
encoder had a feature dimension of 256. Detailed network parameters
are listed in Supplementary Data 4.

Model evaluation

We evaluated DeepPlant and Dorado using Nanopore R10.4 sequencing
data from nine species: B. vulgaris, O. sativa, A. thaliana, V. vinifera, C.
sinensis, S. miltiorrhiza, S. tuberosum, S. lycopersicum, and R. communis.
We conducted all evaluations for each tool independently, and each tool
was used with its default parameter settings. For read-level evaluation,
we used BS-seq analysis as the benchmark. We selected sites with
sequencing coverage higher than 5x, where sites with a methylation
frequency of O were used as negative samples and those with a
methylation frequency of 100% as positive samples. We extracted k-mer
samples from these sites, sampling 100,000 positive and 100,000
negative samples. For datasets with insufficient positive samples, we
applied the Synthetic Minority Over-Sampling Technique (SMOTE)* to
oversample and meet the evaluation requirements. We used DeepPlant
and Dorado to determine their methylation status, and the sample is
classified as methylated if the methylation probability is higher than the
non-methylation probability. To increase the reliability of the results, we
repeated this process three times and calculated the average of the
three evaluation results.

For site-level evaluation, we downsampled the nanopore sequen-
cing data to obtain datasets with depth of 5x, 10x, 15%, 20%, 25%, and
30x. For each sequencing depth, we selected cytosine locus with BS-seq
and nanopore sequencing coverage, both higher than 5x, as valid eva-
luation sites, the number of sites detected by each method is listed in
Supplementary Data 2. We determine the methylation threshold P,,
based on the output methylation probability distribution (Supplemen-
tary Fig. 2). Divide the range from 0.2 to 0.9 into 70 intervals with a step
size of 0.01, using the left endpoint of each interval as the representative
value for that interval. For the detection results of a single dataset, group
the samples into the corresponding intervals based on their methylation
probabilities, count the number of samples in each interval and calculate
their proportion. The value corresponding to the interval with the
smallest proportion is selected as the methylation threshold P,,,. If the
methylation probability P,, > P,,, the sample is classified as methylated;
otherwise, it is classified as non-methylated. After aligning the target
cytosine in the test reads with the reference genome, we calculated the
number of cytosines predicted to be methylated and the total number
of cytosines at each target genomic site to determine the methylation
frequency at the site. We then calculate the Pearson correlation between
the predicted methylation frequency at the whole-genome evaluation
sites and the methylation frequency from BS-seq. The benchmarking
results, including runtime and memory consumption, are provided in
Supplementary Data 10.

K-mer balancing
Due to the low methylation levels of the CHH motif, there is a sig-
nificant imbalance between the number of positive and negative k-mer
samples available for training. This causes the model to produce dif-
ferent prediction biases for different k-mers, leading to unstable per-
formance. Compared to DeepSignal-plant’, we adopted a stricter
sample balancing method to mitigate the impact caused by k-mer
sequences. The algorithm is as follows:

Input: a set of positive samples S, set of negative samples S,
the maximum quantity of kmer k max.

Output: a set of balanced positive samples S;,os, set of balanced
negative samples S,
1. Kpos = set of k-mers in Spo5, Kpeg = set of k-mers in Syeq
2. Keomm = Kneg. Intersection(Kpos)
3. KNUMp,s = number of samples of each k-mer in Spos, KNUMpeq =

number of samples of each k-mer in Sy,

4. Spey=9D,S,55=9D

eg’

5. for each k-mer k in Ko, do
(1) k count = min of KNUMpos(k), KNUMpeo(k), k max
(2) S5« = set of at most k_count samples of k extracted from S
randomly
(3)  Speq x =set of at most k count samples of k extracted from Speg
randomly
(4) Slneg = S;Ieg_k

/

(5) S;JDS += SposJ(
6. returnS,,., Sy,
Data availability
All sequencing data generated in this study (BS-seq and nanopore
sequencing data of S. miltiorrhiza, S. tuberosum, R. communis, C. sinensis,
S. lycopersicum, and V. vinifera; BS-seq data of G. max, P. patens and M.
polymorpha) and our assembly of V. vinifera have been deposited in the
Genome Sequence Archive in BIG Data Center, Beijing Institute of
Genomics under accession PRJICA030666. The BS-seq and Nanopore
sequencing data of A. thaliana, O. sativa, and B. vulgaris are available at
BIG under accession PRJCA023349. The reference genomes of S. mil-
tiorrhiza (GCF 028751815.1), S. tuberosum (GCF 000226075.1), R. com-
munis (GCF 019578655.1), C. sinensis (GCF 022201045.2), A. thaliana
(GCF_000001735.4), O. sativa (GCF_034140825.1), S. lycopersicum (GCA_
915070445.1), and B. vulgaris (GCF_026745355.1) were downloaded from
NCBI. The genome assembly and annotation for the T2T-NIP of O. sativa
were accessed from RiceSuperPIRdb [http://www.ricesuperpir.com/
web/nip]. Source data for Fig. 3¢ and d as well as Supplementary
Fig. 3 and 6 are provided in Zenodo [https://doi.org/10.5281/zenodo.
15062213]. Source data are provided with this paper.

Code availability
DeepPlant codes, installation, and usage instructions are available at
Github [https://github.com/xiaochuanle/DeepPlant] and Zenodo
[https://doi.org/10.5281/zenodo.15022822], which are distributed
under the MIT License.
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