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CodonTransformer: a multispecies codon
optimizer using context-aware neural
networks

Adibvafa Fallahpour1,2,6, Vincent Gureghian 3,4,6, Guillaume J. Filion 2 ,
Ariel B. Lindner 3,4,5 & Amir Pandi 3,4,5

Degeneracy in the genetic code allows many possible DNA sequences to
encode the same protein. Optimizing codon usage within a sequence to meet
organism-specific preferences faces combinatorial explosion. Nevertheless,
natural sequences optimized through evolution provide a rich source of data
for machine learning algorithms to explore the underlying rules. Here, we
introduce CodonTransformer, a multispecies deep learning model trained on
over 1 million DNA-protein pairs from 164 organisms spanning all domains of
life. The model demonstrates context-awareness thanks to its Transformers
architecture and to our sequence representation strategy that combines
organism, amino acid, and codon encodings. CodonTransformer generates
host-specific DNA sequences with natural-like codon distribution profiles and
with minimum negative cis-regulatory elements. This work introduces the
strategy of Shared Token Representation and Encoding with Aligned Multi-
masking (STREAM) and provides a codon optimization framework with a
customizable open-access model and a user-friendly Google Colab interface.

The genetic code, a universal set of 64 three-nucleotide codons,
instructs cellular protein production from genomes. The genetic code
is degenerate, i.e., most of the 20 amino acids can be encoded by
multiple codons. These synonymous codons are used with diverse
frequencies across organisms due to differences in the abundance of
cellular tRNAs, protein folding regulations and evolutionary
constraints1–3. The preferential selection among synonymous codons is
called codon usage bias, a characteristic feature varying among
species4,5. Thus, taking into account codon usage bias is required in
designing DNA sequences for heterologous gene expression. The
process of tailoring synonymous codons in DNA sequences to match
the codon usage preference of a host organism is known as codon
optimization6–10. The need for codon optimization has recently been

increased by the drop in template-less DNA synthesis costs and the
rapid advancements in de novo protein design11–16.

Exploring the combinatorial space of synonymous codons
arrangement is virtually impossible (~10150 for a 300-amino acid protein
with the average composition of UniProtKB/Swiss-Prot17). Traditional
codon optimization approaches often rely on the selection of highly
frequent codons, which can lead to resource depletion and protein
aggregation, or on the insertionof rare codons in random locations that
can cause protein misfolding and ribosome stalling18,19. These efforts
shouldnot only aim toenhance the targetedprotein expressionbut also
to avoid host toxicity due to tRNA pool perturbation. Evolutionary-
inspired approaches such as codon harmonization20,21 leverage the
codon usage pattern in an original sequence, yet are limited to natural
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proteins and to designing cross-species DNA among organisms with
similar translation mechanisms and dynamics.

Deep neural networks, with their capacity to learn complex pat-
terns and relationships in data, offer a promising approach to decipher
the language of codon usage and efficiently design DNA sequences.
Deep learning models have been developed laying the foundation of
this technology for codonoptimization18,22–24. Yet thepotential of these
models can be expanded by addressing limitations posed by small
training data focused only on a single host organism (e.g., Escherichia
coli), or limitedmodel accessibility, and lackof user-friendly interfaces.
Importantly, organism-specific global and local codon patterns have
not been addressed, representing a substantial aspect of codon opti-
mization that can be implemented via neural network architectures
and specialized sequence encoding.

Here, we present a codon optimization approach that harnesses
the capacity of Transformer architecture to capture intrinsic sequence
patterns. As the training data, we used a vast collection of ~1 million
gene-protein pairs from 164 organisms (“Data availability”) that not
only increases the data size and learning universal rules but also
enables species-specific DNA design via a single model. To address
organism-specific context-awareness, we used a sequence repre-
sentation strategy combining organism encoding with tokenized
amino acid-codon pairs. Hence, we introduce the strategy of Shared
Token Representation and Encoding with Aligned Multi-masking
(STREAM). We develop CodonTransformer, a multispecies model
that learns codon usage patterns across organisms and designs host-
specificDNAsequences.Thebase (pretrained)model is available to the
community for custom fine-tuning on a user-defined set of genes. In
this work, we fine-tuned the model on the 10% genes with the highest
codon similarity index (CSI)25 for 15 genomes (including two chlor-
oplasts). CodonTransformer generated DNA sequences with natural-
like codon distributions while minimizing the number of negative cis-
elements.

Along with the open-access base and fine-tuned models, we pro-
vide a comprehensive Python package to streamline the entire codon
optimization workflow, including dataset processing, model training,
and sequence evaluation. We also offer a Google Colab notebook with
a user-friendly interface for designing codon-optimized sequences
using CodonTransformer.

Results
A Transformer model with combined organism-amino acid-
codon representation
Optimizing a coding sequence canbe thought of as reverse-translating
a protein sequence into a DNA sequence. It is therefore tempting to
approach the problem from the point of view of machine translation,
which typically follows one of two paradigms: In the Encoder-Decoder
approach, the query is first encoded into the hidden state of a neural
network and then decoded into the desired language26,27. In the
Decoder-only approach, thequery is used as aprompt tobecompleted
with the translation in the desired language28. In both approaches, the
translation is produced by an auto-regressive decoder, meaning that
one token at a time is produced until the translation is completed. The
auto-regressive paradigmmay be problematic in the context of codon
optimization: Choosing a codon in the 5′ part of the sequence may
cause interference in the 3’ part of the sequence, however once a
codon is chosen it cannot be removed. It is preferable to use a bi-
directional strategy where the sequence is optimized uniformly. We
therefore used an Encoder-only architecture and trained it with a
masked language modeling (MLM) approach.

In MLM, parts of the sequence are hidden and the task of the
algorithm is to recover the missing parts using the information from
the parts that are available. This design is bidirectional; for instance it
allows the user to optimize a region in 5’ while keeping the rest of the
sequence constant, which is not possiblewith anEncoder-Decoder or a

Decoder-only architecture. Remains the problem of instructing the
algorithm that it has to produce the DNA template of a given protein.
For this, wedesigned a specialized alphabet and a tokenization scheme
where a codon can either be clear or hidden. In this alphabet, the
symbol A_GCC specifies an alanine residue produced with the codon
GCC, and the symbol A_UNK specifies an alanine residue but does not
specify the codon. The same logic is applied to all the codons, so that in
effect we expanded the alphabet with 20 different MASK tokens, each
indicating adifferent residue.During training, a fractionof the symbols
are replacedwith theirmasked version, andduring inference, the input
sequence uses the masked versions of all the symbols so that the
algorithm can propose an optimized DNA encoding of the target
protein.

The encoder model is based on the BigBird Transformer
architecture29, a variant of BERT30 developed for long-sequence train-
ing through a block sparse attention mechanism (Fig. 1a). An essential
requirement is to allow the algorithm to adapt the codon usage to the
organism where the protein is expressed. This implies that during
training, the algorithm must be aware of the source organism for a
given DNA sequence and that during inference, users must be able to
force the algorithm to use the context of their choice. We solved both
issues by repurposing the token-type feature of Transformer models
like BigBird. Token types are often used to distinguish interlocutors in
text data (e.g., question vs answer or user vs assistant) but they can be
used to specify any type of context for string-like data. We therefore
amplified the token type vocabulary so that every species has its own
token type (Fig. 1b). This strategy allows our model to learn distinct
codon preferences for each organism, associating specific codon
usage patterns with their corresponding species. In addition, passing
the token type as an argument allows users to optimize a DNA
sequence in the species of their choice.

We trained the base model, which we named CodonTransformer,
using ~1 million genes from 164 organisms (“Data availability”). The
training set is a collection of genomes from all domains of life, i.e.,
Bacteria, Archaea, and Eukarya that constitute 56.1%, 2.5% and 41.4% of
sequences, respectively. This model can be either used directly for
codon optimization across species or it can be fine-tuned on custom
sets ofDNA sequences to performmore tailored tasks. In this study,we
fine-tuned CodonTransformer on the 10% genes with the highest CSI
(“Methods”) for 15 organisms: Escherichia coli, Bacillus subtilis, Pseu-
domonas putida, Thermococcus barophilus, Saccharomyces cerevisiae,
Chlamydomonas reinhardtii and its chloroplast, Arabidopsis thaliana,
Nicotiana tabacum and its chloroplast, Caenorhabditis elegans, Danio
rerio, Drosophila melanogaster, Mus musculus, and Homo sapiens
(Fig. 1c). TheCSI25 is derived from the codon adaptation index (CAI)8 to
quantify the similarity of codon usage between a sequence and the
codon usage frequency table of an organism instead of an arbitrary
reference set of highly expressed genes. It therefore provides a robust
metric at the multispecies level and may constitute a superior pre-
dictor of expression level in higher eukaryotes4,7,25,31.

CodonTransformer learned codon usage across organisms
To assess the ability of the model to capture organism-specific codon
preferences, we generated DNA sequences for all proteins encoded by
the 15 genomes for which we performed fine-tuning (Fig. 1c). We then
compared the sequences generated by the base and fine-tunedmodels
to their natural counterparts (entire genome and top 10% CSI used for
fine-tuning).

Sequences generated by the base model show a higher percen-
tage of matching codons with their natural DNA counterparts than
randomly selected codons without and with organismic preferences,
uniform random choice (URC) and background frequency choice
(BFC), respectively (Supplementary Fig. 1). Those sequences have a
high CSI indicating that they follow for each organism the preference
of codon usage (Fig. 2a, Supplementary Figs. 2–16). Obtaining higher
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CSI than genomic sequences is expected because not every DNA
sequence of a species is tuned for optimal expression, whereas
CodonTransformer optimizes every sequence based on codon fre-
quencies that it encounters during training. The basemodel generated
sequences with higher CSI than the top 10% genomic CSI for all
organisms except S. cerevisiae, N. tabacum and its chloroplast (Fig. 2a,
Supplementary Figs. 2–16). When fine-tuning the model, Codon-
Transformer generated sequences with lower CSI than the basemodel
for all organisms except S. cerevisiae, N. tabacum and its chloroplast
which showed an increase in the CSI better mimicking the top 10%
genomic CSI on which they were fine-tuned (Fig. 2a, Supplementary
Figs. 2–16). As expected, the clustering of CodonTransformer
embeddings for organisms used for training resembles their overall
phylogenetic distances (Supplementary Fig. 17).

Interestingly, all generated sequences have a GC content similar
to their natural counterparts (Supplementary Figs. 2–16) further sup-
porting that the model learned organism-specific characteristics.
Finally, the tendency of the base model to pick rare codons, as mea-
sured by the Codon frequency distribution (CFD), representing the
number of rare codons18 (frequency<0.3) in a sequence, is verydistinct
across species. The influence of fine-tuning on CFD was striking for P.
putida, C. reinharditi and its chloroplastwhere it increased the number
of rare codons and for N. tabacum and its chloroplast for which it
decreased the number of rare codons (Supplementary Figs. 4, 7, 8,
10, 11).

Although we developed CodonTransformer for sequence design
tasks, it can also be used to predict the effect of synonymous muta-
tions. To do this, the probability of mutant and wild-type codons can
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Fig. 1 | CodonTransformermultispeciesmodel with combined organism-amino
acid-codon embedding. a An encoder-only BigBird Transformer model trained by
combined amino acid-codon tokens along with organism encoding for host-
specific codon usage representation. b Schematic representation of the organism
encoding strategy used in CodonTransformer using token_type_id, similar to

contextualized vectors in natural language processing (NLP). c CodonTransformer
was trained with ~1 million genes from 164 organisms across all domains of life and
fine-tuned with highly expressed genes (top 10% codon usage index, CSI) of 13
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general unknown token, SEP the end of sequence token, PAD padding token.
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be predicted by the model for every amino acid position. We used 62
synonymous mutations in ccdA, i.e., the antitoxin component of the E.
coli ccdAB toxin-antitoxin system, from a recent study32 with their

respective experimental relative fitness and ribosome stalling values.
Both base and fine-tune CodonTransformer models predicted the log-
likelihood of the mutant codon significantly correlated with

Fig. 2 | CodonTransformer learned codon patterns across organisms. a Codon
usage index (CSI) for all and the top 10% CSI original genes (yellow and blue,
respectively) and generated DNA sequences for all original proteins by Coron-
Transformer (base andfine-tunedmodels, light anddark red, respectively) for9 out
of 15 genomes used for fine-tuning in this study. See Supplementary Figs. 2–16 for
all 15 genomes and additional metrics of GC content codon and distribution fre-
quency (CDF). b Synonymous mutations in the E. coli (K12 strain) ccdA antitoxin
gene, from the ccdAB toxin-antitoxin system, were analyzed using Codon-
Transformer (base and fine-tuned for E. coli K12 strain, with wild-type DNA as input
to the model) and background frequency choice (BFC) models. The natural log of

the probability of mutant codons over wild-type codons was computed for 62
mutations from Chandra et al.32, plotted against the natural log of experimental
relative fitness, blue bars, (positive correlation) and relative ribosome stalling,
green bars, (negative correlation, absolute values plotted). Two-sided Spearman
correlation tests were used (for n = 62 mutations) to evaluate the models’ perfor-
mance with numerical p-values of, from left to right for the six bars, 0.0153 (*),
0.1232, 0.0015 (**), 0.1123, 0.0026 (**), 0.0094 (**). Raw data and source data for
a and Supplementary Figs. 2–16 are available at https://zenodo.org/records/
13262517 and for data underlying b is provided in the Source Data File.
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experimental relative fitness in a zero-shot manner with the wild-type
DNA sequence as input to the model (Fig. 2b). The same prediction
task by BFC that selects codons based on organismic codon usage
table, also resulted in significant correlations slightly less than
CodonTransformers. However, among BFC, base and fine-tuned
CodonTransformer, only the fine-tuned model showed a significant
correlation between log-likelihood of mutation and relative ribosome
stalling (Fig. 2b).

Altogether, these results demonstrate that the base model effi-
ciently learned organism-specific codon usage preferences and that
additional fine-tuning can further adjust the model outcomes.

CodonTransformer generates DNA sequences with natural-like
codon usage patterns
The strength of Transformers lies in their ability to capture long-range
patterns in sequences, enabling CodonTransformer to generate DNA
sequences with distributions of both low- and high-frequency codons.
Codon distribution (and not only composition) plays an important role
in the expression of both natural and heterologous genes by influencing
the dynamics of translation in the host and the subsequent protein
folding1,33–40. To quantify and visualize the codon usage pattern along a
DNA sequence, %MinMax41 provides a suitable metric24 (Fig. 3a). %Min-
Max quantifies low- andhigh-frequency codons in a slidingwindowof 18
codons providing a local score throughout the sequence, with lower
values indicating a higher presence of rare codons in the cluster41.

For 5 model organisms (E. coli, S. cerevisiae, A. thaliana, M. mus-
culus, andH. sapiens), we selected a set of 50 randomgenes among the
top 10% CSI. We then compared their natural DNA sequence with the
ones generated by CodonTransformer, both base and fine-tuned, and
by Twist Bioscience, Genewiz, IntegratedDNATechnologies (IDT), and
ICOR (Improving Codon Optimization with Recurrent Neural Net-
works) which has been trained on and can codon optimize only for E.
coli18. We first calculated the %MinMax profiles for all natural and
codon-optimized sequences (the profile for onegene as representative
of the dynamic time warping (DTW) distance for each organism is
shown in Fig. 3b, and for all genes in the Source Data File). We then
used theDTWalgorithm (“Methods”) to evaluate the distance between
the %MinMax profiles of natural and generated sequences (Fig. 3c).
Finally, for the 50 sequences of eachorganism,we computed themean
and standard deviation of the normalized DTW distances, that
accommodate for differences in sequence length, to further compare
the different tools (Fig. 3d, Supplementary Fig. 18).

The DTW distance is not significantly different between sequen-
ces generated by base and fine-tunedCodonTransformer, except for E.
coli that the fine-tunedmodel showed a higher match to natural genes
(i.e., lowerDTW) (Fig. 3c). Fine-tunedCodonTransformerperformedas
well or better than other models except in A. thaliana where Twist
DTW distances were significantly lower. Overall, fine-tunedmodel and
Twist generated sequences with lower normalized DTW distances
indicative of more natural-like codon patterns (mean of 0.08 ± 0.05
and 0.07 ±0.05, respectively) than other models (mean of 0.11 ± 0.05
for the base model, 0.14 ± 0.07 for IDT and 0.15 ± 0.09 for Genewiz)
(Fig. 3d). ICOR performed well for E. coli sequences (0.08 ± 0.02).

Additionally, in order to assess our model capacity to capture
potential RNA secondary structure constraints, we computed the
minimum free energy for the corresponding RNA sequences based on
the ViennaRNA package42. This energy was proportional to the
sequence length (Supplementary Fig. 19a) and was normalized for it.
Linear regressions between the normalized energy of generated
sequences and natural ones showed that fine-tuned Codon-
Transformer and Genewiz better fitted natural energies than other
models (Supplementary Fig. 19b). At the species level, both fine-tuned
and Genewiz mimicked the separation between species observed for
natural sequences, with both S. cerevisiae and A. thaliana corre-
sponding to high values while other species corresponded to low

values (Supplementary Fig. 19c). Interestingly, GC content alone
reproduced thedistinctmodel behaviorswhile the separation between
species was exacerbated for Genewiz (Supplementary Fig. 19d). Linear
regressions for GC content of generated and natural sequences
showed that CodonTransformer better fitted natural GC content
(Supplementary Fig. 19e).

To conclude, sequences generated by CodonTransformer closely
recapitulate natural distribution of low- and high-frequency codons as
represented by %MinMax profiles and reproduce natural GC content
and RNA folding energy.

Model benchmark for heterologous expression of proteins
To further compare the performance of codon optimization tools in
the context of heterologous expression, we collected 52 recombinant
proteins with applications in molecular biology and therapeutics.
Using each optimization tool, we designed DNA sequences for
expression in E. coli, S. cerevisiae, A. thaliana, M. musculus, and H.
sapiens (“Source Data File”).

We first compared the sequences generated by different tools
using a set-based similarity measure: the Jaccard index23,43. For each of
the benchmark proteins, we calculated the Jaccard index i.e., the
similarity between two sequences as the ratio between the intersection
and the union of the corresponding codon sets (“Methods“). A value
close to 0 and 1 indicates a low and high similarity, respectively. We
computed the mean value and standard deviation between analogous
sequences for all tools in each organism (Supplementary Fig. 20) and
across the organisms (Fig. 4a). Across organisms (excluding ICOR as it
works only for E. coli), the base model showed a greater Jaccard simi-
larity with the fine-tuned model (mean of 0.74) than with any other
tools (Twist: 0.61, IDT: 0.60, Genewiz: 0.59). Among all the pairs, IDT
and Twist showed the highest similarity score (0.92).

We then used a similarity measure that considers codon position:
the sequence similarity. We calculated the sequence similarity as the
percentage of matching codons (“Methods”) and computed the mean
value and standard deviation for all tools at the organism level (Sup-
plementary Fig. 21) and across all organisms (Fig. 4b). Codon-
Transformer fine-tuned and base models showed the highest score
when compared between them (mean of 69.26) and comparable
values when compared to other models (maximal difference in mean
<2). Compared to other models, IDT showed the overall lowest simi-
larity score (mean <40 and standard deviation <4 for all comparisons)
followed by Twist (mean <50 and standard deviation <4 for all com-
parisons). Genewiz showed relatively high similarity with both base
and fine-tuned models (mean of 61.42 and 62.58 respectively), also
with ICOR for which mean and standard deviation are computed only
for E. coli genes.

To explain the differences between these two similaritymeasures,
we looked at the codon distributions across the 52 sequences (Sup-
plementary Fig. 22). For the 5 organisms, IDT and Twist generated
sequences with more uniform codon distributions resulting in codons
being present in a large number of sequences and explains the high
Jaccard index between these models. The low sequence similarity
suggests that the codons are positioned differently within the
sequences. On the contrary, CodonTransformer and Genewiz dis-
played high differences in their total count of codons and number of
sequences where a codon is present. These distinct model behaviors
were also observed for the 50 natural sequences selected for each
organism (Supplementary Fig. 23), which recapitulated distributions
observed at the genome level (Supplementary Fig. 24).

Finally, we computed the %MinMax profiles and the normalized
DTW distances for sequences generated by the different tools. In line
with the results obtained for natural genes, (excluding ICOR as it works
only for E. coli) we observed minimal DTW distance between the
CodonTransformer base and fine-tuned model (mean of 0.05 ±0.03)
when computing the mean across organisms (Fig. 4c, Supplementary
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Fig. 25). Low DTWdistance were also observed between Twist and IDT
(mean of 0.07 ±0.02) while Genewiz and Twist had intermediate dis-
tance (meanof 0.24 ±0.11) and the highest DTWdistance was between
Genewiz and IDT (mean of 0.40 ±0.15). Notably, the trend among the
different tools for DTW distances of benchmark proteins (Fig. 4c)
resembles the one observed for natural genes (Fig. 3d). Additionally,

observations made on RNA folding energy for natural proteins also
hold true for the benchmark sequences (Supplementary Fig. 19). These
suggest that CodonTransformer robustly designs sequences with
natural-like codon distribution and RNA folding energy for new amino
acid sequences beyond its training set making it a suitable tool for
heterologous expression.
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Fig. 3 | CodonTransformer generates natural-like codon distributions.
a Schematic representation of %MinMax and dynamic time warping (DTW). %
Minmax represents the proportionof common and rare codons in a slidingwindow
of 18 codons. DTW algorithm computes the minimal distance between two %Min-
Maxprofiles byfinding thematching positions (“Methods”).b%MinMaxprofiles for
sequences generated by different models for genes yahG (E. coli), SER33 (S. cere-
visiae), AT4G12540 (A. thaliana), Csad (M. musculus), ZBTB7C (H. sapiens). c DTW
distances between %MinMax profiles of model-generated sequences and their
genomic counterparts for 50 random genes selected among the top 10% codon

similarity index (CSI). For each organism, the gene for which the %MinMax profiles
are represented above (b) is highlighted in gray. Mean DTW distances were com-
pared to the fine-tuned model using a two-sided unpaired t-test (n = 52), with the
numerical p-value shown for each. Center line shows the median; box limits
represent the 25th (Q1) and 75th (Q3) percentiles; whiskers extend to 1.5× inter-
quartile range (IQR); points are outliers beyond whiskers. d Mean and standard
deviation of normalized DTWdistances by sequence length between sequences for
the 5 organisms (for organism-specific DTWdistances, see Supplementary Figs. 18).
Data underlying this figure is provided in the Source Data File.
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Altogether, these results suggest that heterologous sequences
generated by codon optimization tools differ in their global and local
codon usage and corroborate observationsmade on natural sequences.

CodonTransformer generates sequences with minimal negative
cis-elements
To minimize regulatory interference of the host organism on the
expression of a heterologous gene of interest, negative cis-regulatory
elements (e.g., operators and silencers)44–46 should be avoided in DNA
sequence design18,47. We used a freely available tool developed by
Genescript (https://www.genscript.com/tools/rare-codon-analysis) (as
it has previously been used to analyze codon-optimized sequences18,47)
toquantify thenumber of negative cis-elements in sequences designed
by the different tools for the 52 benchmark proteins (Fig. 4d).

Among all models, Genewiz designed sequences with the highest
number of negative cis-elements for some species (mean of 1.1 for E.
coli, 1.96 for S. cerevisiae and 0.88 for A. thaliana), whereas the
sequences contained almost zero forM.musculus andH. sapiens. Twist
and IDT showed equivalent results with an intermediate number of cis-
elements across organisms. Finally CodonTransformer, both base and
fine-tuned models, robustly designed sequences with minimal nega-
tive cis-elements for all 5 organisms (mean of 0.37 and 0.29 for E. coli,
0.02 and0.1 for S. cerevisiae, 0.06 and0.17 forA. thaliana, 0.1 and 0.02
for M. musculus, and 0.1 and 0.04 for H. sapiens). Notably, Codon-
Transformer was not specifically trained to avoid negative cis-ele-
ments, we observed a similar trend for ICOR i.e., a neural network-
based model18. For E. coli-optimized benchmark proteins, the fine-
tuned model reduced the number of negative cis-elements compared
to the base model (Fig. 4d). Indeed, we found that E. coli genes with
high CSI harbor substantially lower number of negative cis-elements
than genes with lowCSI (Supplementary Fig. 26). The E. coli genes with
high number of negative cis-elements (low CSI genes), were markedly
reduced in these elements when codon-optimized by Codon-
Transformer (Supplementary Fig. 26), suggesting that our models can
also be used for improved over-expression of endogenous genes.

These results show that CodonTransformer, both base and fine-
tunedmodels, robustly generate sequences withminimal negative cis-
elements across organisms.

Discussion
In this work, we describe a multispecies context-aware deep learning
model, CodonTransformer, with the following advances: First, its
multispecies training enables it to learnandgenerate codon-optimized
sequences for a wide range of host organisms, including popular
model organisms (Fig. 2a, Supplementary Figs. 2–16). Multispecies
training also enabled us to increase the size of the training data com-
pared to other approaches18,24 and to learn universal underlying rules.
Second, we showcased the fine-tuning step on the top 10% CSI natural
genes showing that themodel performances can be furthermodulated
according to a user-defined gene set. We then showed that base and
fine-tuned models can predict the effect of synonymous mutations,
providing an additional feature in relevant applications (Fig. 2b). Third,
the model’s ability to learn long-range codon patterns results in DNA
sequences with natural-like codon distributions (Fig. 3), avoids the
potential pitfalls of clustered low-/high-frequency codons18,19. Fourth,
CodonTransformer generates sequences with minimal number of
negative cis-elements across organisms, minimizing potential inter-
ference with gene expression in the host organism (Fig. 4d).

While available tools support a limited number of genes and have
different behaviors in codon usage, CodonTransformer serves as an
open-source tool with a knownmechanism (i.e., deep neural networks)
generating sequences with natural-like distribution of low- and high-
frequency codons. It has been reported that such distribution is
important for the dynamic of the translation, for the folding of sec-
ondary and tertiary structures, and for protein multimerization and

assembly48. In contrast, clusters of slow and fast codons can lead to
protein aggregation,misfolding, anddegradation48 or to anexpression
level reduced by post-transcriptional mechanisms49. Therefore,
sequences generated by CodonTransformer are likely to optimally
preserve protein structure and function while expression level can be
controlled at the level of transcription (via promoters) and translation
initiation (via the Shine Dalgarno and Kozak sequences in prokaryotes
and eukaryotes, respectively)4.

Our results demonstrate that the fine-tuning process further allows
modulating the model outcomes (Fig. 2). Using the top 10% natural CSI
genes generated sequences with more natural-like patterns (Fig. 3) and
decreased the number of negative cis-elements in E. coli (Fig. 4d).

Our results demonstrate that the fine-tuning process further
allowsmodulating themodel outcomes (Fig. 2), tuning thedistribution
of codons (Supplementary Fig. 24), generating sequences with more
natural-like patterns (Fig. 3) and reducing the number of negative cis-
elements in E. coli (Fig. 4d). Additionally, CodonTransformer can be
customized by the community for broader or more specialized tasks,
e.g., custom fine-tuning on a given gene set with desired property
(specific metric/expression level) or on a specific protein family (e.g.,
for de novo protein design11–15). This is of particular interest in
addressing a pronounced bottleneck in the expressibility of de novo-
designed proteins14,16. We therefore provide as open-access, the base
and fine-tuned models, as well as a Python package for easy imple-
mentation and a Google Colab notebook for online usage through a
user-friendly interface (“Code availability”).

Our approach leverages valuable genomic data that have already
been optimizedby evolution across the tree of life. CodonTransformer
was trained on 164 genomes not only increasing the size of the training
data but also allowing it to learn both universal and species-specific
rules and constraints underlying gene expression. The sequence
encoding strategy and model architecture described here consider
both amino acids and nucleotides while capturing positional depen-
dencies and can be adapted for protein design50 or to addressdifferent
bottlenecks of biotherapeutics such as alternative splicing, miRNA
targeting and immunogenicity51. Future studies canextend the size and
diversity of training sequences to also consider regulatory elements
involved in transcription and translation.

Methods
Data
A total of 1,001,197 DNA sequences were collected from NCBI
resources from164organisms includingHumans (Homo sapiens), thale
cress (A. thaliana), C. elegans, C. reinhardtii and its chloroplast, Zeb-
rafish (D. rerio), fruit fly (D.melanogaster), housemouse (M.musculus),
tobacco (N. tabacum) and its chloroplast, P. putida, and baker’s yeast
(S. cerevisiae) from Eukaryotes, along with all species of the Entro-
bactreacea order such as Escherichia coli and selected species from
Archea such asT. barophilus and Sulfolobus solfataricus. Depending on
the organism, these DNA sequences came in the gene or CDS format
and were translated to protein sequences using NCBI Codon Tables52.
During preprocessing, only the DNA sequences with a length divisible
by three, starting with a start codon, ending with a stop codon, and
only having a single stop codon were chosen. We made this dataset
available at https://zenodo.org/records/12509224.

Model input
The input for our Transformer model is a tokenized sequence created
using both the DNA and protein sequences. Representing the DNA as a
sequence of codons and the protein as a sequence of amino acids
allows us to define tokens that integrate both the codon and the amino
acid. For example, a hypothetical protein sequence of “M A L W _”,
where “_” represents the end of the sequence, and the corresponding
DNA sequence of “ATG GCC CTG TGG TAA” are tokenized as a
sequence of 5 tokens: “[M_ATG] [A_GCC] [L_CTG] [W_TGG] [__TAA]”.
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During Masked Language Modeling (MLM), a given token with a
known codon and amino acid is changed to an alternative token with a
known amino acidbut unknown codon. For example,masking [A_GCC]
will yield the token [A_UNK]. During inference, since we only know the
protein sequence, all input tokens will be of the tokens with the form
[aminoacid_UNK]. In both scenarios, themodel’s objective is to predict
the correct [aminoacid_codon] token for a given [amino
acid_UNK] token.

This approach introduces a training scheme we call STREAM
(Shared Token Representation and Encoding with Aligned Multi-
masking). Unlike traditional MLM methods that employ a single gen-
eric mask token, STREAM leverages the inherent alignment between
DNA and protein sequences to create multiple, specialized mask
tokens.Using tokens of the form [aminoacid_UNK], wemaintain partial
information during masking, allowing the model to simultaneously
learn a shared representation of bothDNA andprotein sequences. This
multi-masking strategy, combined with the natural alignment of the
data, enables a more nuanced and context-aware learning process.

As a result, our vocabulary includes 64 tokens with both a known
codon and a known amino acid, 21 tokens with an unknown codon and
a known amino acid, and 5 special tokens including the general
unknown token ([UNK]), the start of sequence token ([CLS]), the endof
sequence token ([SEP]), padding token ([PAD]), and a general masking
token ([MASK]). This will bring our total vocabulary size to 90 tokens.

The final input to the model is a truncated and padded sequence
with a maximum length of 2048 tokens, that starts with a [CLS] token,
includes the sequence tokens, ends with a [SEP] token, and is followed
by several [PAD] tokens. A simple example could be “[CLS] [M_ATG]
[A_GCC] [L_CTG] [W_TGG] [__TAA] [SEP] [PAD]… [PAD]”. In addition to
the input sequence, the model also receives a taxonomy ID as input, a
unique number defining the target organism. Subsequently, this
organism ID will be considered as the token type ID of each token in
the sequence for that organism.

Embedding
Themodel learns an embedding vector for each token in the vocabulary,
as well as for each organism ID, which is provided as a token type ID.
During training, these token type embeddings are added to the learned
embeddings for each token in the sequence53 to integrate organism-
specific information into the token representations. Additionally, the
model incorporates positional embeddings that represent the absolute
position of each token in the sequence, enabling the model to capture
and leverage sequential dependencies within the input data.

Model structure
Our model architecture is based on BigBird29, a variant of the BERT
Transformer30, with a block sparse attentionmechanism, enabling it to
efficiently process much longer sequences than a standard BERT
Transformer. Hence, CodonTransformer can optimize the DNA
sequence for a protein sequence with a maximum length of 2048
tokens. CodonTransformer has 12 hidden layers, 12 attention heads, a
hidden size of 768, an intermediate size of 3072, and an attention type
of block sparse with a block size of 64, bringing the total number of
parameters to 89.6 million. The model is curated using the open-
source Transformers package from Hugging Face54.

Training
There are two stages in model training: pretraining and fine-tuning.
The goal of the pretraining is to teach the model what a general input
sequence looks like, while the fine-tuning focuses on adapting the
model to specifically predict DNA sequences that are highly optimized
for the target organism.

Both stages share the sameMLMobjective, in which 15% of tokens
are randomly selected, and out of them, 80% are masked (e.g., the
chosen amino acid token with a known codon like [M_ATG] is swapped

with the corresponding amino acid token with an unknown codon,
[M_UNK]), 10% are swapped with a random token, and 10% remain
unchanged. Following this, the model has to predict the correct token
that was masked.

Pretraining uses all sequences in the dataset. It uses a batch size of
6 and 16NVIDIA V100GPUs, for 5 epochs. The learning rate starts from
5e-7, linearly increases to 5e-5 over the first 10% of training steps, and
then linearly decreases to 5e-7 over the remaining.

Fine-tuning follows a similar process to pretraining but uses a
subset of the dataset. To ensure high optimization, we select the top
10%of geneswith the highest codon similarity index (CSI) fromvarious
organisms: E. coli, B. subtilis, P. putida, T. barophilus, S. cerevisiae, C.
reinhardtii (and its chloroplast), N. tabacum (and its chloroplast), A.
thaliana, C. elegans, D. rerio, D. melanogaster, M. musculus and H.
sapiens. The batch size and learning rate are the same as pretraining,
and we use 4 NVIDIA V100 GPUs for 15 epochs. This fine-tuning step
allows the model to learn the codon distribution patterns of highly
optimized genes.

Inference
Inference was conducted using two primary methods:

Protein sequence only: In thismethod, themodel is given only the
protein sequence. Each amino acid is represented by tokens in the
format [aminoacid_UNK]. The model then processes these tokens to
unmask and convert them into the [aminoacid_codon] format, thereby
generating the corresponding DNA sequence.

ProteinwithDNA sequence: In thismethod, themodel is provided
with both the protein sequence and a plausible DNA sequence. Since
both are provided, the sequence is initially encoded using [aminoa-
cid_codon] tokens. The model optimizes these tokens by replacing
them with more suitable [aminoacid_codon] tokens for the given
protein sequence.

Following, the codon parts from all tokens are concatenated to
produce the predicted DNA sequence.

Custom fine-tuning
Fine-tuning customizes the base CodonTransformer model to a spe-
cific set of genes. This process, exemplified by our use of sequences
with high (top 10%) codon similarity index (CSI), enhances themodel’s
performance for optimizing DNA sequences for various species and
conditions. The CodonTransformer repository provides a guide on
fine-tuning the base model (“Code availability”).

Evaluation metrics
Several metrics are used to assess codon-optimized sequences, pro-
viding a comprehensive view of codon usage and sequence properties:

Codon similarity index (CSI)
CSI25 is an application of CAI8 to the codon usage table of an organism
(representing the codon frequency across the entire genome). It has
the advantage that it does not rely on the arbitrary selection of a
reference gene set. The rationale is that codon optimization based on
the most frequent codons (as determined from highly expressed
genes) may be detrimental to the host and impair the correct protein
folding. Therefore, CSI may provide a softer estimator of codon usage
for a specific organism. For the computational implementation of the
CSI calculations, weutilized the CAI andCAI-PyPI Python libraries55, for
which we used the overall codon usage tables56.

The relative adaptiveness of a codon wij is calculated as the ratio
of its frequency xij to one of the most used codon ximax for the same
amino acid.

wij =
xij

ximax
ð1Þ
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TheCSI for a gene is the geometricmeanof these relative adaptiveness
values across all codons in a DNA sequence (gene) with a length of L
codons:

CSI = exp
1
L

XL

k = 1

lnwk

 !
ð2Þ

Codon frequency distribution (CFD)
TheCFDquantifies thepercentageof rare codons (those used less than
30% as often as the most frequent codon) in a gene. A weight wij is
assigned to each codon, where wij = 1 if the codon is rare and 0
otherwise:

wij = 1 if
xij

ximax
<0:30, 0otherwise

� �
ð3Þ

The CFD is the mean of these weights:

CDF=
1
L

XL

k = 1

wk ð4Þ

GC content (%GC)
GC content measures the proportion of guanine (G) and cytosine (C)
bases in a DNA sequence:

GC=
G+C

A+T+G+C
ð5Þ

Negative cis-regulatory elements
The number of negative cis-regulatory elements was determined using
the Genscript codon analysis tool (https://www.genscript.com/tools/
rare-codon-analysis).

%MinMax
The %MinMax metric41 evaluates the balance between high and low
frequency codons within a window of specific length sliding along the
sequence.

For a given window size ofw (w = 18 as previously reported41), the
%MinMax for each window i is calculated as:

%MinMaxi =
xmax , i � xmin , i

xmax , i + xmin , i
× 100 ð6Þ

where xmax,i and xmin,i are the maximum and minimum codon usage
frequencies within the i-th window, respectively. The overall %MinMax
for the gene is represented as an array of %MinMax values for each
position of the window:

%MinMax= %MinMax1 , %MinMax2 , ::: , %MinMaxn
� � ð7Þ

where n is the number of windows in the sequence.
To compute minmax profiles, we used the R package kodonz

available at https://github.com/HVoltBb/kodonz/ using built-in codon
usage tables for the different organisms.

Dynamic time warping (DTW)
DTW is an algorithm for measuring the similarity between two tem-
poral sequences or shape matching57,58. We employ DTW to quantify
distances in %MinMax of codon usage patterns. DTW calculates the

optimal alignment between two time series X and Y, as:

DTWðX , Y Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ði, jÞεπ jX i � Y jj2
q

ð8Þ

Where X and Y are the %MinMax arrays, π is the optimal alignment
path, Xi and Yj are aligned points in the sequences, and ||Xi - Yj|| is the
Euclidean distance between these points. This metric enables quanti-
tative assessment of how closely one sequence’s codon usage pattern
aligns with that of a target sequence.

To compute the DTW distances, we used the main function from
the R package dtw59 with default parameters and retrieved from the
result object the distance or normalizedDistance items.

Jaccard index
We used the Jaccard index to evaluate the propensity of models to use
the same codons in the generated sequences. Jaccard index is a set-
based similaritymeasure that evaluates the similarity between two sets
as the ratio between their intersection and their union.

For two DNA sequences X and Y composed of codon sets A and B,
the Jaccard index is as follows:

JðX , Y Þ= A \ B
A ∪ B

ð9Þ

Sequence similarity analysis
Sequence similarity measures the percentage of codonsmatching two
sequences. This metric is crucial for assessing the functional and
evolutionary relationships between genes.

For sequences A and B, the sequence similarity is calculated as:

SimilarityðA, BÞ= 1
L

XL

i= 1

δðai ,biÞ× 100 ð10Þ

where L is the length of the sequences, ai and bi are the codons at
position i in sequences A and B, respectively, and δ is the Kronecker
delta function, which is 1 if ai = bi and 0 if ai ≠ bi. This metric ranges
from 0% to 100%, with 100% indicating identical sequences and 0%
indicating completely different sequences.

Minimum free energy of RNA structures
To compute theminimum free energy for the sequences generated by
themodels, we translated those sequences to RNAusing theR package
XNAString60 with default sugar and backbone structures. This package
then calls the RNAfold_MFE function from ViennaRNA package42 to
compute theminimal folding energy for the RNA structure. TheR code
to calculate %MinMax, DTW, Jaccard index, sequence similarity and
RNA minimum free energy has been provided with the Source Data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All genomic data (164 organisms) used to train themodel are available at
both https://zenodo.org/records/12509224 and https://huggingface.co/
datasets/adibvafa/CodonTransformer. Data for Fig. 2a and Supplemen-
tary Figs. 2–16 are available at https://zenodo.org/records/13262517. Data
for Figs. 2b, 3, 4, Supplementary Figs. 18–25, and the custom code used
to produce results in this work are available as Source Data File. Source
data are provided with this paper.

Code availability
The user-friendly Google Colab Notebook for codon optimization can
be accessed here. The CodonTransformer model and codes used to
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train and evaluate models are available at the CodonTransformer
GitHub repository: https://github.com/Adibvafa/CodonTransformer61

under Apache-2.0 License. Base and fine-tuned model weights are
available at Hugging Face, https://huggingface.co/adibvafa/
CodonTransformer, along with a guide that explains how Codon-
Transformer package can be used to fine-tune the base model on a
custom dataset. CodonTransformer package: We introduced a com-
prehensive Python Package named CodonTransformer that supports
the development and evaluation of such models. The toolkit available
at https://pypi.org/project/CodonTransformer/ includes 5 major
modules: CodonData: Simplifies the process of gathering, preproces-
sing, and representing data to achieve a clean and well-structured
dataset. CodonPrediction: Enables easy tokenization, loading, and
utilization of CodonTransformer for making predictions. It also
includes various other approaches such as High-Frequency Choice
(HFC), Background Frequency Choice (BFC), Uniform Random Choice
(URC), and ICOR. CodonEvaluation: Offers scripts to evaluate various
metrics for codon-optimized sequences. CodonUtils: Provides essen-
tial utility functions and constants that streamline the workflow.
CodonJupyter: Comes with tools for creating demo notebooks,
allowing users to quickly set up and demonstrate the capabilities of
CodonTransformer in an interactive environment.

References
1. Pechmann, S. & Frydman, J. Evolutionary conservation of codon

optimality reveals hidden signatures of cotranslational folding.Nat.
Struct. Mol. Biol. 20, 237–243 (2013).

2. Rocha, E. P. C. Codon usage bias from tRNA’s point of view:
redundancy, specialization, and efficient decoding for translation
optimization. Genome Res 14, 2279–2286 (2004).

3. Ran, W., Kristensen, D. M. & Koonin, E. V. Coupling between protein
level selection and codon usage optimization in the evolution of
bacteria and archaea. MBio 5, e00956–14 (2014).

4. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes
and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

5. Deng, Y., de Lima Hedayioglu, F., Kalfon, J., Chu, D. & von der Haar,
T. Hidden patterns of codon usage bias across kingdoms. J. R. Soc.
Interface 17, 20190819 (2020).

6. Mauro, V. P. Codon Optimization in the Production of Recombinant
Biotherapeutics: Potential Risks and Considerations. BioDrugs 32,
69–81 (2018).

7. Mauro, V. P. & Chappell, S. A. A critical analysis of codon optimi-
zation in human therapeutics. TrendsMol. Med 20, 604–613 (2014).

8. Sharp, P. M. & Li, W. H. The codon Adaptation Index-a measure of
directional synonymous codon usage bias, and its potential appli-
cations. Nucleic Acids Res. 15, 1281–1295 (1987).

9. Quax, T. E. F., Claassens,N. J., Söll, D. & vanderOost, J. Codonbias as
a means to fine-tune gene expression. Mol. Cell 59, 149–161 (2015).

10. Brule, C. E. &Grayhack, E. J. Synonymous codons: choosewisely for
expression. Trends Genet 33, 283–297 (2017).

11. Khakzad, H. et al. A new age in protein design empowered by deep
learning. Cell Syst. 14, 925–939 (2023).

12. Watson, J. L. et al. De novo design of protein structure and function
with RFdiffusion. Nature 620, 1089–1100 (2023).

13. Ingraham, J. B. et al. Illuminating protein space with a program-
mable generative model. Nature 623, 1070–1078 (2023).

14. Madani, A. et al. Large languagemodelsgenerate functional protein
sequences across diverse families. Nat. Biotechnol. 41, 1099–1106
(2023).

15. Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsu-
pervised language model for protein design. Nat. Commun. 13,
4348 (2022).

16. Johnson, S. R. et al. Computational scoring and experimental eva-
luation of enzymes generated by neural networks. Nat. Biotechnol.
https://doi.org/10.1038/s41587-024-02214-2 (2024).

17. UniProtKB/Swiss-Prot Release 2024_04 statistics. https://web.
expasy.org/docs/relnotes/relstat.html.

18. Jain, R., Jain, A., Mauro, E., LeShane, K. & Densmore, D. ICOR:
improving codonoptimizationwith recurrent neural networks. BMC
Bioinforma. 24, 132 (2023).

19. Yang, Q. et al. eRF1 mediates codon usage effects on mRNA
translation efficiency through premature termination at rare
codons. Nucleic Acids Res. 47, 9243–9258 (2019).

20. Angov, E., Legler, P. M. & Mease, R. M. Adjustment of codon usage
frequencies by codon harmonization improves protein expression
and folding. Methods Mol. Biol. 705, 1–13 (2011).

21. Claassens, N. J. et al. Improving heterologous membrane protein
production in Escherichia coli by combining transcriptional tuning
and codon usage algorithms. PLoS ONE 12, e0184355 (2017).

22. [No title]. https://mlcb.github.io/mlcb2019_proceedings/papers/
paper_29.pdf.

23. Fu, H. et al. Codon optimization with deep learning to enhance
protein expression. Sci. Rep. 10, 17617 (2020).

24. Constant, D. A. et al. Deep learning-based codon optimization with
large-scale synonymous variant datasets enables generalized tun-
able protein expression. Preprint at bioRxiv https://doi.org/10.1101/
2023.02.11.528149 (2023).

25. Sabath, N., Wagner, A. & Karlin, D. Evolution of viral proteins origi-
nated de novo by overprinting.Mol. Biol. Evol. 29, 3767–3780
(2012).

26. Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the
properties of neural machine translation: Encoder-decoder
approaches. https://doi.org/10.48550/ARXIV.1409.1259 (2014).

27. Vaswani, A. et al. Attention is all you need. https://doi.org/10.
48550/ARXIV.1706.03762 (2017).

28. Brown, T. B. et al. Language models are few-shot learners. https://
doi.org/10.48550/ARXIV.2005.14165 (2020).

29. Zaheer, M. et al. Big bird: Transformers for longer sequences.
https://doi.org/10.48550/ARXIV.2007.14062 (2020).

30. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training
of deep bidirectional Transformers for language understanding.
https://doi.org/10.48550/ARXIV.1810.04805 (2018)

31. Ranaghan, M. J., Li, J. J., Laprise, D. M. & Garvie, C. W. Assessing
optimal: inequalities in codon optimization algorithms. BMC Biol.
19, 36 (2021).

32. Chandra, S. et al. The highmutational sensitivity of ccda antitoxin is
linked to codon optimality. Mol Biol Evol 39, (2022).

33. Liu, Y., Yang, Q. & Zhao, F. Synonymous But Not Silent: the Codon
Usage Code for Gene Expression and Protein Folding. Annu. Rev.
Biochem. 90, 375–401 (2021).

34. Liu, Y. A code within the genetic code: codon usage regulates co-
translational protein folding. Cell Commun. Signal. 18, 1–9 (2020).

35. Lyu, X. & Liu, Y. Nonoptimal codon usage is critical for protein
structure and function of the master general amino acid control
regulator CPC-1. MBio 11, (2020).

36. Walsh, I. M., Bowman, M. A., Soto Santarriaga, I. F., Rodriguez, A. &
Clark, P. L. Synonymous codon substitutions perturb cotransla-
tional protein folding in vivo and impair cell fitness. Proc. Natl Acad.
Sci. USA 117, 3528–3534 (2020).

37. Pechmann, S., Chartron, J. W. & Frydman, J. Local slowdown of
translation by nonoptimal codons promotes nascent-chain recog-
nition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100–1105 (2014).

38. Zhou, T., Weems, M. & Wilke, C. O. Translationally optimal codons
associatewith structurally sensitive sites in proteins.Mol. Biol. Evol.
26, 1571–1580 (2009).

39. Zhou,M.,Wang, T., Fu, J., Xiao, G. & Liu, Y. Nonoptimal codon usage
influences protein structure in intrinsically disordered regions.Mol.
Microbiol. 97, 974–987 (2015).

40. Zhou, M. et al. Non-optimal codon usage affects expression, struc-
ture and function of clock protein FRQ. Nature 495, 111–115 (2013).

Article https://doi.org/10.1038/s41467-025-58588-7

Nature Communications |         (2025) 16:3205 11

https://github.com/Adibvafa/CodonTransformer
https://huggingface.co/adibvafa/CodonTransformer
https://huggingface.co/adibvafa/CodonTransformer
https://pypi.org/project/CodonTransformer/
https://doi.org/10.1038/s41587-024-02214-2
https://web.expasy.org/docs/relnotes/relstat.html
https://web.expasy.org/docs/relnotes/relstat.html
https://mlcb.github.io/mlcb2019_proceedings/papers/paper_29.pdf
https://mlcb.github.io/mlcb2019_proceedings/papers/paper_29.pdf
https://doi.org/10.1101/2023.02.11.528149
https://doi.org/10.1101/2023.02.11.528149
https://doi.org/10.48550/ARXIV.1409.1259
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2007.14062
https://doi.org/10.48550/ARXIV.1810.04805
www.nature.com/naturecommunications


41. Clarke, T. F. 4th & Clark, P. L. Rare codons cluster. PLoS ONE 3,
e3412 (2008).

42. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6,
26 (2011).

43. Real, R. & Vargas, J. M. The probabilistic basis of jaccard’s index of
similarity. Syst. Biol. 45, 380–385 (1996).

44. Montgomery, K. T., Tardiff, J., Reid, L. M. & Krauter, K. S. Negative and
positive cis-acting elements control the expression of murine alpha
1-protease inhibitor genes.Mol. Cell. Biol. 10, 2625–2637 (1990).

45. Medina-Muñoz, S. G. et al. Crosstalk between codon optimality and
cis-regulatory elements dictates mRNA stability. Genome Biol. 22,
14 (2021).

46. Shabalina, S. A., Spiridonov, N. A. & Kashina, A. Sounds of silence:
synonymous nucleotides as a key to biological regulation and
complexity. Nucleic Acids Res. 41, 2073–2094 (2013).

47. Nuryana, I. et al. Codon optimization of a gene encoding DNA
polymerase from Pyrococcus furiosus and its expression in
Escherichia coli. J. Genet. Eng. Biotechnol. 21, 129 (2023).

48. Moss, M. J., Chamness, L. M. & Clark, P. L. The effects of codon
usage on protein structure and folding. Annu. Rev. Biophys. 53,
87–108 (2024).

49. Barrington, C. L. et al. Synonymous codon usage regulates trans-
lation initiation. Cell Rep. 42, 113413 (2023).

50. Outeiral, C. & Deane, C. M. Codon language embeddings provide
strong signals for use in protein engineering. Nat. Mach. Intell. 6,
170–179 (2024).

51. Lin, B. C., Kaissarian, N. M. & Kimchi-Sarfaty, C. Implementing com-
putational methods in tandem with synonymous gene recoding for
therapeutic development. Trends Pharmacol. Sci. 44, 73–84 (2023).

52. Bio.Data.CodonTable module—Biopython 1.75 documentation.
https://biopython.org/docs/1.75/api/Bio.Data.CodonTable.html.

53. Fallahpour, A., Alinoori, M., Afkanpour, A. & Krishnan, A. EHR-
Mamba: towards generalizable and scalable foundation models for
Electronic Health Records. https://doi.org/10.48550/ARXIV.2405.
14567 (2024).

54. Wolf, T. et al. HuggingFace’s transformers: State-of-the-art natural
language processing. https://doi.org/10.48550/ARXIV.1910.
03771 (2019).

55. Lee, B. D. Python Implementation of Codon Adaptation Index. J.
Open Source Softw. 3, 905 (2018).

56. Codon Usage Database. https://www.kazusa.or.jp/codon/.
57. Sakoe, H. & Chiba, S. Dynamic programming algorithm optimiza-

tion for spoken word recognition. IEEE Trans. Acoust. 26, 43–49
(1978).

58. Dynamic Time Warping. in Information Retrieval for Music and
Motion, 69–84 (Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2007).

59. Giorgino, T. Computing and visualizing dynamic time warping
alignments in R: The dtw Package. J. Stat. Softw. 31, 1–24 (2009).

60. Górska, A., Plucinska, M., Pedersen, L., Kielpinski, L., Tehler, D. &
Hagedorn, P. XNAString: efficient manipulation of modified oligo-
nucleotide sequences. R package version 1.14.0. https://doi.org/10.
18129/B9.BIOC.XNASTRING. (2024).

61. Fallahpour, A. et al. CodonTransformer: a multispecies codon
optimizer using context-aware neural networks. Adibvafa/Codon-
Transformer. https://doi.org/10.5281/ZENODO.15000833
(Zenodo, 2025).

Acknowledgements
This work was supported by the University of Toronto Excellence Award
(UTEA) provided by the University of Toronto Scarborough (A.F.), and
NSERC (Discovery Grant RGPIN-2020-06377), CIHR (Project Grant FRN-
192109) and the University of Toronto (G.J.F.), the MOPGA (Make Our
Planet Great Again) Young Researcher Fellowship by the French Gov-
ernment and ATIP-Avenir Research Group Leader Program by Inserm-
CNRS (A.P.), the Fondation Bettencourt Schueller (A.P. and A.B.L.). The
authors wish to thank Ali Yazdizadeh Kharrazi, Amir Zare, Aude Bern-
heim, Ernest Mordret, Mike Schäkermann, Rajeev Mylapalli, and Vincent
Libis for their insights, feedback and fruitful discussions.

Author contributions
A.P. conceived the study. A.F. constructed the model with the design
and under the supervision of G.J.F. A.F. and V.G. performed the simu-
lations. A.P., V.G., A.F., A.B.L., and G.J.F. analyzed the results. A.P., V.G.,
and A.F. drafted the manuscript with support from G.J.F. and A.B.L. All
authors approved the final draft.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-58588-7.

Correspondence and requests for materials should be addressed to
Guillaume J. Filion, Ariel B. Lindner or Amir Pandi.

Peer review informationNatureCommunications thanksCarlosOuteiral
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-58588-7

Nature Communications |         (2025) 16:3205 12

https://biopython.org/docs/1.75/api/Bio.Data.CodonTable.html
https://doi.org/10.48550/ARXIV.2405.14567
https://doi.org/10.48550/ARXIV.2405.14567
https://doi.org/10.48550/ARXIV.1910.03771
https://doi.org/10.48550/ARXIV.1910.03771
https://www.kazusa.or.jp/codon/
https://doi.org/10.18129/B9.BIOC.XNASTRING
https://doi.org/10.18129/B9.BIOC.XNASTRING
https://doi.org/10.5281/ZENODO.15000833
https://doi.org/10.1038/s41467-025-58588-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	CodonTransformer: a multispecies codon optimizer using context-aware neural networks
	Results
	A Transformer model with combined organism-amino acid-codon representation
	CodonTransformer learned codon usage across organisms
	CodonTransformer generates DNA sequences with natural-like codon usage patterns
	Model benchmark for heterologous expression of proteins
	CodonTransformer generates sequences with minimal negative cis-elements

	Discussion
	Methods
	Data
	Model input
	Embedding
	Model structure
	Training
	Inference
	Custom fine-tuning
	Evaluation metrics
	Codon similarity index (CSI)
	Codon frequency distribution (CFD)
	GC content (%GC)
	Negative cis-regulatory elements
	%MinMax
	Dynamic time warping (DTW)
	Jaccard index
	Sequence similarity analysis
	Minimum free energy of RNA structures
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




