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Learning-based 3D human kinematics
estimationusingbehavioral constraints from
activity classification

Daekyum Kim 1,2,3, Yichu Jin 1,4, Haedo Cho 1,4, Truman Jones 1,
Yu Meng Zhou1, Ameneh Fadaie1, Dmitry Popov1, Krithika Swaminathan 1 &
Conor J. Walsh 1

Inertial measurement units offer a cost-effective, portable alternative to lab-
based motion capture systems. However, measuring joint angles and move-
ment trajectories with inertial measurement units is challenging due to signal
drift errors caused by biases and noise, which are amplified by numerical
integration. Existing approaches use anatomical constraints to reduce drift but
require body parameter measurements. Learning-based approaches show
promise but often lack accuracy for broad applications (e.g., strength train-
ing). Here, we introduce the Activity-in-the-loop Kinematics Estimator, an end-
to-end machine learning model incorporating human behavioral constraints
for enhanced kinematics estimation using two inertial measurement units. It
integrates activity classification with kinematics estimation, leveraging limited
movement patterns during specific activities. In dynamic scenarios, our
approach achieved trajectory and shoulder joint angle errors under 0.021m
and6:5°, respectively, 52% and 17% lower than errorswithout including activity
classification. These results highlight accurate motion tracking with minimal
inertial measurement units and domain-specific context.

Human motion capture has long been a core component of fields like
biomechanics, clinical research, sports science, and entertainment1–4.
Optical camera-based motion capture systems have been used as the
gold standard for measuring human partial or whole-body kinematics,
providing errors within 1-mm for movement trajectory estimation and
within 1°–3° for joint angle estimation5. However, these camera-based
systems are often limited by high costs, limited workspace, and visual
occlusion issues4,6,7.

To address these limitations, inertial measurement units
(IMUs) have been widely explored as a cost-effective and wearable
alternative for measuring human body movements8. IMUs contain
accelerometers, gyroscopes, and often magnetometers, which
measure linear accelerations, angular velocities, and magnetic
fields, respectively9. By numerically integrating the accelerometer

and gyroscope measurements, human limb positions and joint
angles can be estimated in varied environments. Despite being
cheap, portable, and ubiquitous, IMUs exhibit a wide range of
kinematic tracking accuracies compared to camera-based motion
capture systems, with some reports showing shoulder joint errors
close to 10° 5,10.

The main challenge with IMUs for kinematics estimation is the
presence of time-varying bias and noise in the raw linear acceleration
and angular velocitymeasurements. Fromnumerical integration, these
biases and noise result in drift errors that accumulate over time11,12. To
address the IMU drift issue, existing approaches utilize kinematic
constraints that are intrinsic to human anatomy to constrain drift
accumulation. TheMovella system from Xsens uses 17 IMUs placed on
all body segments and leverages full-body kinematic relationships to
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mitigate drift by constraining the estimation to biomechanically
plausible configurations13. Other approaches have aimed to leverage
similar information but with a reduced number of sensors. Prior work
has shown that leveraging an individual’s joint range of motion can
constrain knee angle estimates to a specific range using just two
IMUs14. Another example with a single IMU leverages the relationship
between the direction of the forearm and the position of the arm to
estimate the trajectory of both wrist and elbow15. These approaches
have demonstrated that kinematic constraints can effectively reduce
IMU drift. However, the performance of these methods is dependent
on the precision of bodyparametermeasurements (e.g., limb length or
joint range of motion, ROM) and the accuracy of the kinematics con-
straint formulations.

Learning-based methods can automatically infer the kinematic
relationships between different body segments and generate drift-
corrected kinematic estimates with a few inertial sensors. One
approach trained machine learning models with synthetic datasets
from optical motion capture (OMC) systems to measure full-body
kinematicswith only six IMUs16,17. Learning-based approaches have also
been utilized to estimate partial-body kinematics, like wrist or elbow
joint trajectory, using a single IMU on the wrist18,19.

Extending beyond the use of kinematic constraints, there are still
opportunities to further improve IMU-based motion tracking accu-
racy. Specifically, information about the activity a person is conducting
could be used as a behavioral constraint to further reduce tracking
errors from IMUdrift. Such a concept has been applied during walking
tasks via the zero velocity update method (ZUPT)20. During walking,
there is a period when the foot remains stationary relative to ground;
this information has been harnessed to re-initialize numerical inte-
gration per gait cycle, effectively mitigating any potential long-term
drift across strides21. These instances of stationary body points have
been estimated with heuristic22 or machine learning algorithms17,22

using accelerometer and/or gyroscope signals. However, despite its
effectiveness, especially in the demonstrated walking task, ZUPT is
mostly limited to cyclic activities with distinct zero velocity intervals,
whichmay not always exist for more random upper body movements.
Furthermore, in the context of machine learning-based kinematics
estimation, ZUPT functions as a post-processing step that is applied to
theoutput of a baselinemachine learningmodel17, rather thanbeing an
end-to-end model. Consequently, the accuracy of estimated

kinematics is still limited by the performance of the baseline machine
learning model.

In this work, we developed and evaluated an end-to-end machine
learning model, Activity-in-the-loop Kinematics Estimator (AIL-KE),
that incorporates human behavioral constraints within a learning-
based kinematics estimation model. AIL-KE learns and leverages the
behavioral constraints inherent to specific activities by integrating
activity classification information with the kinematics estimation. This
behavioral constraint-based model is designed based on the under-
standing that human motion, despite its high dimensionality, exhibits
limited patterns and reduced variability within a given activity23,24. To
maximize practicality of a wearable sensing system, we limit the
maximum number of IMUs used in this work to two and focused on
partial-body kinematics estimation. We evaluated the performance of
AIL-KE in two dynamic functional scenarios: (i) estimating wrist and
chest trajectories during various strength training exercises and (ii)
estimating shoulder joint angles during simulated industrial assembly
work. The approach presented in this paper aims to address the
challenges of obtaining accurate movement trajectories and joint
angles using IMUsover prolonged periods (3-10minutes)withminimal
sensors by leveraging behavioral constraints.

Results
Activity-in-the-loop Kinematics Estimator
The AIL-KE is composed of three sub-structures: Activity Classifier
(AC), Kinematics Regressor (KR), and Feature Aggregation Network
(FAN). Figure 1 depicts an overview of AIL-KE. AC classifies the activity
that a user is performing at every timestep. The inputs of AC are
3-dimensional accelerations, 3-dimensional angular velocities, and
4-dimensional unit quaternions obtained from IMUs. KR estimates
either trajectories and velocities of IMUs or joint angles between two
body segments at every timestep by taking the same inputs as AC. We
used stacked Dilated Convolutional Neural Networks (DCNNs) for AC
and KR because these networks have been widely used in IMU-based
drift and noise reduction11.

FAN is the core part of AIL-KE that incorporates the behavioral
constraint of activity classification. FAN passes the activity classifica-
tion information to the kinematics regressor. Specifically, the final
hidden layer of each stack of AC is processed in FAN, which is then fed
into each stack of KR.

Kinematics Regressor

AIL-KEIMU data

IMU 1

Trajectory & Joint angle

IMU 2
Acceleration (3 axis)

User performing an activity

Angular velocity (3 axis)

Quaternion (4 axis)

Feature Aggregator

Fig. 1 | Overview of activity-in-the-loop kinematics estimator (AIL-KE). AIL-KE consists of activity classifier (AC), feature aggregator network (FAN), and kinematics
regressor (KR).
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Trajectory estimation during strength training exercises (Exer)
Data were collected from fifteen healthy participants (3 females;
28:1 ± 5:6 years) with two IMUs, one placed on their chest and one on
their right wrist, to measure their 3D movement velocities and trajec-
tories (Supplementary Fig. S1). The participants were asked to perform
four sets of 11 different strength training exercises with 12 repetitions
per set (full list shown in Supplementary Fig. S2). The four sets were
performed at four different self-selected movement speeds: normal,
slow, fast, and variable. Kinematics data from IMUs and a ground truth
OMC system were time-synchronized and frame-aligned to ensure
proper evaluation25 (more detail in Methods). We used data from 11
randomly selected participants for training and one participant for
validating the classification model. Data from the remaining three
participants were used as the test dataset to evaluate the performance
of the model. For kinematics estimation, we compared our method
against two learning-based methods:

• Long short-termmemory (LSTM): a commonly useddeep learning
structure for time-series data analysis.

• DCNN: the samemodel architecture as our proposedmethod, but
without AC and FAN.

AC achieved an overall classification accuracy of 99.6%. It
demonstrated 100% accuracy across all the exercise labels except for
the triceps extension exercise (Fig. 2a). Triceps extensions were con-
fused with Biceps curls approximately 6% of the time.

Overall, AIL-KE achieved a velocity error (in RootMean Squared
Error, RMSE) of 0:020m=s versus DCNN with 0:040m=s and LSTM
with 0:063m=s (Fig. 2b, c). The errors of AIL-KE were 48% and 67%
lower than the errors of DCNN and LSTM, respectively. In addition,
for trajectory estimation, AIL-KE achieved an RMSE of 0:02m while
RMSEs from DCNN and LSTM were 0:044m and 0:050m, respec-
tively. Each of these errors was calculated from the three test par-
ticipants by averaging across both the chest and wrist IMU sensors.
The average RMSE across the chest and wrist IMUs for AIL-KE was
52% and 58% lower than the errors of DCNN and LSTM, respectively.
We further found that the improvement of AIL-KE over DCNN was
consistent across different numbers of stacks of DCNNs at both the
chest and wrist (Supplementary Table S4). Example time-series data
from a participant performing Bench Press Exercise is depicted in
Fig. 2d. Details of the performance of allmodels tested are tabulated
in Supplementary Tables S1 and S2; we also include the performance
of a Transformer-based model as a comparison. A movie containing
exercise demonstrations and the corresponding estimated trajec-
tories is shown in Supplementary Movie 1. In addition to time-series
comparisons, we also compared the true and estimated mean and
peak velocities, which are importantmetrics in strength training26,27,
across bench press repetitions in the test set (Supplementary
Figs. S5 and S6). We find that both point metrics show strong cor-
relations with the ground truth, with correlation coefficients ðrÞ
greater than 0.828.

We observed that AIL-KE had a lower RMSE of 0:017m from the
chest IMU compared to an RMSE of 0:023m from the wrist IMU. It is
worth noting that thewrist undergoes larger ranges ofmovements and
velocities compared to the chest in most exercises. In strength train-
ing, movement velocity is self-selected and significantly differs
depending on an individuals’workout strategy and level of fatigue29,30.
Therefore, it is important to validate the performance of themodels at
different movement speeds.

We conducted a comparative analysis of movement speeds and
assessed the corresponding effect onmethod performance (Fig. 2e, f).
For AIL-KE, trajectory and velocity errors for fast speed were higher
than the errors for the othermovement speeds,with RMSEs of 0:022m
and0:024m=s for trajectory and velocity estimation, respectively. Still,
these errors for the fast speedwere only 0:002m and0:003m=s higher
than the average errors of AIL-KE across all the speeds. At the fast

speed, the trajectory error of AIL-KE was 55.1% and 63.8% lower than
those of DCNNand LSTM, respectively, and the velocity error of AIL-KE
was 45% and 70.1% lower than those of DCNN and LSTM respectively.
Overall, AIL-KE outperformed the other twomethods across all speeds.
AIL-KE had a trajectory error standard deviation of 0:0007m across all
movement speeds. This value was seven times lower than those for
DCNN and LSTM, indicating that AIL-KE had lower variability in per-
formance across different speeds (more detail in Supplementary
Tables S6 and S7).

We further analyzed the errors of the estimated trajectory based
on different strength training exercises, depicted in Fig. 2g. Within
these exercises, the barbell lunge had the largest error (0:034m)
across all models. Still, this error was lower than the errors of 0:069m
for DCNN and 0:088m for LSTM. For all the other strength training
exercises, AIL-KE had errors lower than 0:030m. For trajectory esti-
mation, the RMSE when Triceps Extension was misclassified was
0:0172m, compared to the overall RMSE of Triceps Extension, which
was 0:0165m. This small difference is likely due to the similarity in
Triceps Extension and Biceps Curl in our participants as many biceps
curl motions were performed with the dumbbells oriented vertically,
similar to in triceps extensions. We also observed that the error of
DCNN for Shoulder Press was unexpectedly higher than the errors for
the other two models; further research is needed to systematically
analyze these errors by collecting additional data and identifying their
sources.

To assess the sensitivity of AIL-KE to individual variability, we
tested its performance across the test set participants. The standard
deviation values of the errors of our generalized model across the
three test participants for the wrist IMU trajectory were as low as 6:6 �
10�5m (more detail in Supplementary Table S1). Similarly, to evaluate
sensitivity to potential drift in the sensor, we conducted an additional
experiment that simulated rotational shifts in sensor data. We found
that the average error remains within 0:03m for up to 7° of artificially
added random sensor rotation (Supplementary Fig. S9).

We further performed theMann–WhitneyU test to determine the
statistical significance of the errors in the peak-to-peak distance, i.e.,
the distance between the maximum and the minimum peaks, for
LSTM,DCNN, andAIL-KE (moredetail inMethods).Wedid not observe
statistical significance between the peak-to-peak RMSEs of DCNN and
AIL-KEwhen consideringdata fromthe entire exercise (Supplementary
Fig. S8a). This was likely due to the high variance introduced by
including all exercises. However, for each individual exercise, we
observed statistical significance (p<0:001) between AIL-KE and DCNN
(Supplementary Fig. S8b).

Orientation estimation in simulated industrial assembly
work (Ind)
Six participants (allmales; 30 ± 5:5 years)wore three IMUs, oneon their
chest and another two on their right and left upper arms to measure
shoulder joint angles. They were asked to perform three tasks, simu-
lating a typical industrial assembly workflow: overhead drilling, desk
work, and treadmill walking. Each task was completed in three-minute
intervals, totaling more than 10minutes for each trial, with breaks and
transitions included. Each participant performed five trials of activities
for approximately one hour of data collected in total.

The inputs to AIL-KE were data from two IMUs (chest-right arm or
chest-left arm), and the corresponding ground truth data were from
motion capture cameras. Like in the strength training experiment, we
aligned the motion capture system and IMU coordinate frames25. We
performed Leave-One-Out Cross Validation (LOOCV) to assess the
generalizability of AIL-KE across participants: data from each partici-
pant was used as a test dataset to evaluate the model’s performance.
The training data included four participants, while the validation data
included one person. AC achieved an overall classification accuracy of
99.8% (Fig. 3a).
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We evaluated the estimation results, which represent the average
RMSE across participants for the 3D joint angles of the right and left
upper arms (see Eq. 8 in Methods: Orientation calculation for more
detail about how errors were computed) (Fig. 3b).

We evaluated the estimation results for 3D joint angles of the right
and left upper arms (see Eq. 8 in Methods: Orientation calculation for
more detail about how errors were computed) (Fig. 3b).We compared
AIL-KE against three methods: LSTM, DCNN, and Xsens. In Xsens, we
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calculated the angular difference between the chest and left/right
upper arms using the angles directly output from the Xsens’ proprie-
tary filters.

Overall, AIL-KE achieved an RMSE of 6:5 °, which was averaged
across all participants throughLOOCV fromboth shoulders, compared
to DCNN with 7:83 °, LSTM with 9:15 °, and Xsens with 8:84 °. AIL-KE
generated the best performance, with the angular error being 17.4%,
29.3%, and 26.8% lower than DCNN, LSTM, and Xsens, respectively,
highlighting the effectiveness of our approach in reducing angle esti-
mation errors. TheRMSE in Euler angle representation is also tabulated
in Supplementary Table S8.We further found that the improvement of
AIL-KE over DCNN was consistent across different numbers of stacks
for both the left and right shoulders (Supplementary Table S5).
Numerical details regarding the performance of all the models tested
are tabulated in Supplementary Table S3, which also includes the
results of another popular machine learning model, Transformers.
Figure 3c depicts a time-series error plot from a representative parti-
cipant. The first row in Fig. 3c shows a time-series motion magnitude
profile, which is calculated by finding the angular distance25,31 between
the shoulder kinematics in the first time frame and those in con-
secutive time frames (seeMethods: Orientationmagnitude calculation
for more detail).

We further analyzed the errors in joint angles during different
functional activities (Fig. 3d). The RMSE when the misclassification
happenedwas 6:36 °, compared to the overall RMSE, whichwas 6:50 °.
AIL-KE demonstrated the lowest error for all functional activities
compared to the other approaches with a standard deviation of 0:25 °
across activities.

Further analysis on how the model’s estimation performance
changes over time, known as long-term drift, is presented in Fig. 3e.
Our approach demonstrated a negative trendline slope from the first
minute to the last minute of −0.057 °/min with the lowest joint angle
errors across all minutes. Other approaches demonstrated positive
trendline slopes smaller than 0.04 °/min, but with higher joint angle
errors.

Like the strength training data, we assessed the sensitivity of AIL-
KE to individual variability for joint angle estimation. The standard
deviation values of the errors of our generalized model across parti-
cipants were as low as 0:24 ° (more detail in Supplementary Table S3).
In an additional experiment investigating the effect of shifts in sensor
location during simulated industrial assembly work, we found that the
average error remains below 6:8 ° with up to 13° of sensor rotation
(Supplementary Fig. S9).

Discussion
This paper presents a behavioral constraint-based machine learning
model, AIL-KE, which aggregates activity classification information to
improve kinematics estimation accuracy. AIL-KE outperformed other
learning-based approaches used for comparison, including an
equivalent model architecture without the feature aggregation net-
work, for applications in strength training (Exer) and industrial
work (Ind).

Our approach achieved enhanced kinematics tracking perfor-
mance by incorporating activity classification features as additional
behavioral constraints. The strategy of using additional information to
improve the performance of a machine-learning model has been
widely adopted in various studies32,33. Within the field of motion kine-
matics estimation, studies used additional sensory modalities, such as
full-body IMUs or visual information, to enhance model
performance32,33. While effective, this approach requires adding addi-
tional sensors, which limits their practical use in the real world. The
main advantage of our approach is that the additional information
does not come from extra sensory inputs. Rather, classification infor-
mation was derived using data from a minimal number of IMUs (two

IMUs in this case). We also show that expanding the size of the DCNN
by making the DCNN layer deeper did not enhance model perfor-
mance, suggesting that the additional classification information helps
improvemodel performance (see Supplementary Tables S4 and S5 for
more information).

The results suggest that aggregating classification information
also helps reduce long-term drift, which is an active challenge in the
field34,35. Our results showed Root Mean Squared Differences of <1°
between the first and the last minutes, with a net negatively sloped
RMSE trendline, representing near-zerodrift over 10minutes. Previous
studies have explored traditional filtering-based approaches including,
complementary filter and Kalman filter to reduce long-term drift but
mainly focused on lower-limb joint angle estimation34,35, or simulations
using a robotic arm36. A previous study on lower-limb joint angle
estimation conducted 10-minute trials and obtained linear fits to
RMSEs over time with slopes of �0:14 to +0:17 °=min33. The study
reported that this result was on par with the result obtained from the
proprietary filter from Xsens. In our case, the proprietary filter from
Xsens also had a trendline slope less than 0:1 °, which aligns with
results from theprevious study.However, it demonstrated error values
more than twice as large as AIL-KE across the trial. These results sug-
gest that ourmethod is both accurate and robust to drift over the span
of 10minutes, but further work is needed to understand the perfor-
mance over hours or days. For example, while a robotic arm is not
sensitive to sources of error inherent to a human arm such as the
relative movement of anatomical structures (e.g., skin-to-bone dis-
placement), this approach may allow for rapid characterization and
iteration of IMU-based estimation methods under idealized
conditions36.

Accurate estimation of human movement is challenging because
the same activity can be donewith differentmovement patterns37. The
standard deviations of AIL-KE’s errors across test set participants,
whichwere 6:65�10�5m for Exer and0:24 ° for Ind, were lower than the
other learning-based approaches used for comparison (see Supple-
mentary Tables S1 and S3 for more detail). The lower standard devia-
tions imply that there is less variability in estimation performance
across unseen participants. The Normalized Root Mean-Square
Deviation (NRMSD) across participants on test data, which evaluates
the dispersion of data across participants, was the lowest with AIL-KE
for both trajectory and angle estimation (detail in Supplementary
Information Tables S1 and S3). In particular, during Exer, the wrist IMU
NRMSD was less than 4% for trajectory and velocity estimates. Simi-
larly, during Ind, the NRMSD averaged across both shoulders for joint
angle estimates was also less than 4%. An NRMSD value closer to 0
indicates that the errors across participants are similar. Previous stu-
dies considered NRMSDs values of less than 4% as acceptable against
individual variability for joint angle estimation38,39. Moreover, the
NRMSDs for AIL-KE estimates were less than half of those from DCNN.
Furthermore, prior work on angle estimation on the same participants
across days using IMUs reported an NRMSD of 10% for the simple
flexion/extension tasks and slightly under 20% for complex tasks40.
Compared to this, the NRMSD value of AIL-KE across participants is
considered low; albeit examining different joint angles (shoulder
angles in this study vs. thorax and lumbar spine angles in Graham
et al40.). While these results support the potential use of the AIL-KE
across individuals without concerns of sensor-to-segment misalign-
ment, we expect there is a possibility to further improve accuracy by
using sensor-to-segment calibration approaches proposed by other
studies41,42.

The approach introduced in this paper has a broad range of
practical applications with the potential for utilization in commercial
wearable devices. As an example, the range of motion and movement
velocity of a body part lifting weights are important in strength train-
ing as they provide information regarding injury risk and muscle
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development19,30. While other groups have studied wearable IMUs to
measure movement velocity during strength training, there are chal-
lenges due to inaccurate velocity estimates. For example, in one study,
moderate to weak correlations of r =0:62 for mean velocity and
r =0:49 for peak velocity compared to ground truth during bench
press exercise were found43. Here, we showed that AIL-KE results in
strong correlations of r =0:81 and r =0:88 formean and peak velocity,
respectively, during bench press exercise across movement speeds
(see Supplementary Figs. S5 and S6). Velocity measures are also
important for estimating muscle strength, which is closely related to
physical function, risk of injury, and neuromuscular fatigue19,29,44. The
improved estimates from AIL-KEmay enable future work to accurately
estimate muscle strength changes using IMUs. Future work should
include rigorous biomechanical analysis45 to evaluate AIL-KE for
sports-related applications.

Another application investigated in this paper was estimating
joint kinematics and posture during overhead industrial work. Over-
head tasks in which the arm is elevated for extended durations are
known to be a significant contributing factor to work-related muscu-
loskeletal disorders, such as shoulder disorder46,47. We evaluated the
performance of AIL-KE for longer than 10-minutes and found that
shoulder angle estimation accuracy during the last minute was at least
20% better than with the other approaches we investigated (see Sup-
plementary Table S3 for more detail). Overall, the RMSE of AIL-KE at
the shoulder joint was less than 6 °. Given that the range of joint angles
for typical hand/tool positionings during overheadwork is reported to
be 70° 47, this performance corresponds to less than 10% error across
the range of motion. Our method provides accurate information on
shoulder elevation angles of an individual against long-term drift,
which is essential for ergonomics applications, such as risk assessment
and injury prevention46,47. This information could further be incorpo-
rated into wearable assistive robots47.

Our paper has several directions for future work. First, the effect
of the complexity of the AC architecture on the performance of AIL-KE
has not yet been evaluated. Further investigation is needed to deter-
mine whether a smaller AC model architecture can achieve the same
level of accuracy. Second, we did not evaluate AIL-KE on IMUs from
different vendors. Because each IMU has unique characteristics, such
as sensor bias and noise48, applying a pre-trained AIL-KEmodel to data
from different IMUs may result in degraded performance. Future
research should evaluate the performance of AIL-KE across IMUs from
different manufacturers. If performance degradation is observed with
different IMU products, transfer learning methods could be a pro-
mising approach tomitigate this issue49, by pretrainingAIL-KEwithone
type of IMU and fine-tuning with IMUs from a different vendor.

This paper presents an approach, the AIL-KE, that accurately
estimates human kinematics using two IMUs. It consists of an end-to-
end machine learning model incorporating human behavioral con-
straints for enhanced kinematics estimation by leveraging limited
patterns and reduced variability in motion during specific activities.
Our results show that by incorporating human activity information,
AIL-KE could estimate the movement kinematics and 3D joint angles
more accurately than the samemodel without activity information.We
expect that AIL-KE will be also compatible with other learning-based
partial-body18,19 and full-body16,17 kinematics estimation approaches to
further enhance estimation performance.

Methods
Participant & data collection for Exer
The IMUs (Bosch BNO0030, Bosch, Germany) were connected to the
Beaglebone Black (Texas Instrument, USA) to measure 3D accelera-
tion, 3D angular velocity, and 3D orientation (represented as 4D unit
quaternions) data at 100Hz. The quaternion values were obtained
from the internal Kalman filter of the IMUs. Each IMUwas mounted on
a custom 3Dprinted casewith fourmotion capturemarkers on each of

the corners to determine the orientation of the IMU (Supplementary
Fig. S1). IMU and OMCdata were time-synchronized using a 5V analog
trigger signal. A 5V signal was also used to obtain start and end times
for each exercise, which were used for labeling the dataset prior to
classification.

Data were collected on fifteen healthy participants (3 females;
28:1 ± 5:6 years) with two IMUs, one placed on their chest and one on
their right wrist, to measure their 3D movement velocities and trajec-
tories (Supplementary Fig. S1). Participants performed the following
strength training exercises, each for 12 repetitions, in randomized
order: Bench Press, Biceps Curl, Side Lateral Raise, Shoulder Press, Lat
Pull Down, Squat, Barbell Lunge, Barbell Row, Triceps Curl, Dumbbell
Fly, and Deadlift (Supplementary Fig. S2). The four sets were per-
formed at four different self-selectedmovement speeds, normal, slow,
fast, and variable. Six participants had one to three years of experience
in strength training, another six had about one year or less of experi-
ence, and the remaining three had no prior strength training experi-
ence. While we provided instructions on performing the exercises
before data collection, we did not verify whether the participants
executed the strength training exercises with the correct form. We
asked participants to place the sensors themselves and place them
tightly tominimizemovement during activities. Data were collected in
accordance with Harvard Institutional Review Board (Protocol IRB-20-
1847).Weuseddata from11 randomly selectedparticipants for training
and one participant for validation of the classification model. Data
from the remaining three participants were used as the test dataset to
evaluate the performance of the model.

Participant & data collection for Ind
Six participants (all males; 30± 5:5 years) wore three IMUs, one on
their chest and another two on their right and left upper arms, to
measure shoulder joint angles. Each participant performed 5 sets of
overhead drilling, desk work (such as typing and note-taking), and
treadmill walking (Supplementary Fig. S4). Each task was 3minutes.
We have “no action” as an additional label to indicate any activities
performed transitioning among the three tasks. The time duration of
“No action” between tasks was decided by each participant for each
trial, ranging between 60 seconds to 90 seconds. We used Xsens
MTI-3 IMUs collected at 100Hz. Each IMU was mounted on a custom
3D printed case with four motion capture markers on each of the
corners (Supplementary Fig. S3). IMU and OMC data were time-
synchronized using a 5V analog trigger signal. This trigger also
provided times for the start and end of a functional activity, which
were used for classification. Data were collected in accordance with
the Harvard Institutional Review Board (Protocol IRB19-1321). We
performed LOOCV to assess the generalizability across participants.
The training data included four participants, while the validation data
included one person.

IMU and OMC coordinate frame definition
To ensure a fair comparison between IMU and OMCmeasurements, it
is crucial to understand and align the coordinate frames of the two
systems. As illustrated in Supplementary Fig. S10, the IMU sensor
frame (SF) is defined by the physical placement of the sensing chip
within the IMU,while its inertial frame (IF) is definedby thedirection of
gravity and the Earth’s magnetic North. Conversely, the body frame of
OMC (BF) is defined by fourmarkers rigidly mounted on the IMU case,
and its lab frame (LF) is defined using an OMC L-frame calibration tool
that was placed flat on the ground at the start of the data collection.

The relationship between the sensor and inertial frames of the
IMU, and thebody and LFs ofOMCcanbemathematically expressed as
follows:

qLFBF =q
LF
lF qIFSF q

SF
BF ð1Þ
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where q represents the unit quaternion of the coordinate frame in
subscript, expressed in the coordinate frame in superscript. Specifi-
cally, qLF

BF and qIFSF correspond to the OMC and IMU orientation mea-
surements, respectively. The term qLF

IF and qSF
BF are the unknown

misalignments between the IMU and OMC coordinate frames. These
misalignments were determined using an optimization-based frame
alignment method presented in our prior work25.

For Ind, the 3D shoulder orientations are calculated using the
following equation:

qshoulder = q
torso
arm = ðqtorsoÞ*qarm ð2Þ

Where ðqÞ* denotes the conjugate of quaternion q, and qtorso and qarm

represent the unit quaternions of the torso and upper arm, respec-
tively, as measured by either the IMU or OMC. This equation assumes
that qtorso and qarm are expressed in the same coordinate frame (IMU
Inertial Frame in this case).

Detailed description of AIL-KE
We present an end-to-end machine learning model incorporating
human behavioral constraints for enhanced kinematics estimation
using IMU sensors. In this study, we used two IMU sensors, but the
number of IMU sensors for AIL-KE is not limited. We study two appli-
cations for AIL-KE: velocity and trajectory estimation (Fig. 4a) and
3-dimensional joint angle estimation (Fig. 4b). Although in this paper,
we used separate models for trajectory and joint angle for specific
purposes (i.e., Exer and Ind), these models can be merged to estimate
all metrics in an end-to-end manner. The trajectory estimation model
(Fig. 4a) used global accelerations, angular velocities, and quaternions
from IMUs - one on the chest and the other on the wrist—as an input to
predict 1) AC: exercise class fc1, :::, ctg and 2) KR: velocity V = fv1, :::, vtg
and trajectory Φ= fφ1, :::,φtg in each of the IMU global frames for
every time frame t = 1,…, T, whereT is the time length of each trial. The
joint angle estimation model (Fig. 4b) used global accelerations,
gyroscopes, and quaternions from the IMUs on the chest and each
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Fig. 4 | Detailed view of our model. a Overview schematic of how information
from Activity Classifier (AC) is incorporated with Kinematics Regressor (KR) for
velocity and trajectory estimation. bOverview schematic of how information from
Activity Classifier (AC) is incorporated with Kinematics Regressor (KR) for joint
angle estimation. cDetail view of Dilated Convolution layers (DC). The highlighted
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shoulder to predict activity class fc1, :::, ctg for AC, and 2) quaternion
angle errors fe1, :::, etg for KR at every time frame t = 1, . . . ,T . The
output of KR is thenmultiplied by quaternions obtained through initial
IMU calibration. AIL-KE is composed of stacked Dilated Convolutional
Neural Networks, shown in Fig. 4a, b with DC (Fig. 4c)50,51 and Feature
Aggregation Network or FAN (Fig. 4d). Each Dilated Convolutional
Neural Network, depicted in Fig. 4c, was composed of dilated 1-d
convolutions52 with a dilation rate of 20, 21, 22, . . . , 2d and kernel size 3.
This was followed by the Rectified Linear Unit (ReLU) activation
function and a 1×1 convolution. The output of the 1×1 convolution is
then summed with the input as a means of skip connection. The
stacked dilated convolution structure allows the model to take tem-
poral data with variable time lengths while the maximum dilation rate,
i.e., 2d must be smaller than the total time length of the one data
sample, T.

FAN is a structure that provides activity classification informa-
tion to KR (Fig. 4d). The last hidden layer (hi) of each DCNN in ACwas
processed using FAN, which was summed with the output of each
dilated convolutional neural network in KR. FAN was composed of
point-wise convolution blocks and ReLU. Each hi was fed into a one-
by-one convolution layer, followed by ReLU. The output was sum-
medwith hi as a residual structure, such that FðhiÞ+hi, where FðhiÞ is a
1×1 convolution. This was further processed by an additional 1×1
convolution layer to reduce depth size to fit into each DCNN in KR.

For every layer of DCNN, we used 1. LAC : the Categorical Cross-
entropy loss tominimize the classification error between ground truth
and predicted for AC, and 2. LKR: the Mean Squared Error function to
minimize the error between estimated and ground truth velocities and
trajectories or joint angles for KR. The integrated loss equation is
shown as follows:

LAIL�KE =
XS

s = 1

ðLAC +LKRÞ ð3Þ

LAC = �
XC

i = 1

yi logðbyiÞ ð4Þ

LKR =
1
N

XN

i = 1

V� bV
� �2

+
1
N

XN

i = 1

ðΦ� bΦÞ2 ð5Þ

Where s is sth stack given that s 2 f1, 2, . . . , Sg, and N is the number of
samples. V andΦ are the ground truth velocity and trajectory that can
be obtained from motion capture cameras, and bV and bΦ are the pre-
dicted velocity and trajectory based on IMU data.

For joint angle estimation, we used the following loss function for
KR to minimize angular error, based on the quaternion inner product.

LKR =
1
N

XN

i = 1

arccos qgt � qpred

���
���

� �
ð6Þ

Where qgt is the ground truth quaternion obtained from the OMC and
qpred is the quaternionobtained after normalizing themodel-predicted
orientation. This loss is reported to have numerical issues as there is a
discontinuous gradient in the interval (−1, 1) at point 0, which results in
extreme values at the points where arccosðjqgt � qpredjÞ ! 0. There-
fore, we used a gradient clipping approach, where the error derivative
is clipped to a threshold during backpropagation through the deep
learning network, and the clipped gradients are used to update the
weights.

Model training strategy
We first trained AC for the first 500 epochs. Once AC was trained, we
fixed the weights of AC and then trained KR for 1000 epochs. Then, AC

and KR were trained together for another 500 epochs. We used
4 stacks ofAC andKR. Thehiddendimensionwas set to64 for all layers,
including DC and FAN. The maximum dilation rate for each stack was
set to 29 = 512.Weused theAdamoptimizerwith a learning rate of 10�4

and weight decay of 10�7. These parameters were determined by grid
searches.

Existing models for comparison
We compared the performance of the AIL-KE approach against the
following models:

• DCNN: We used the same DCNN structure without FAN, i.e., we
only used KR. The model architecture is shown in Supplemen-
tary Fig. S7.

• Long short-term memory (LSTM): LSTM is a Recurrent Neural
Network architecture that has input, forget, and output gates in
each of its nodes. The forget gate determines what information to
retain or discard by applying a sigmoid function, which either
multiplies by a factor of 1 or 0. These gates allow the network to
handle long-rangedependencies that arise from the vanishing and
exploding gradient issues. LSTM structures are extensively
utilized for time-series data processing53–55, particularly for
estimating position and angle based on IMU data. Hyperpara-
meters of the LSTM, such as the number of layers and feature size,
were found by grid searches. We used a 3-layer LSTM with a
hidden feature size of 128, followed by two linear layers, eachwith
a hidden feature size of 128.

• Transformer: The Transformer architecture has been widely used
for training large languagemodels56. It is based on the scaled dot-
product attention and self-attention mechanism, offering an
alternative to traditional temporal models such as Recurrent
Neural Networks. The hyperparameters, including the number of
layers and feature size, were determined through grid searches.
We used the encoder part of the Transformer, consisting of a two-
layer Transformer with a hidden feature size of 128 and an
attention head size of 8. Following the Transformer encoder, we
added two fully connected layerswith a hidden feature size of 256.
The estimation results were tabulated in Supplementary
Tables S1–S3.

• Xsens proprietary filter (Xsens): For angle estimation, we com-
pared results from our model with the joint angle output from
Xsens’ proprietary sensor fusion algorithm. Xsens is one of the
world’s leading IMU companies and its proprietary algorithm is
generally considered as the state-of-the-art. Joint angles were
obtained by calculating the rotation matrices between chest and
shoulder IMUs.

Orientation calculations
In the simulated industrial work experiment, the time-series motion
magnitudewas defined as the angular distance between the shoulder’s
orientation at the initial time frame, qtorsoarm, 0, and its orientation at
subsequent time frames, qtorsoarm, t . Specifically, themotionmagnitude at a
specific time frame, θt , is calculated using

θt = 2� arccosðReðqtorsoarm, tðqtorsoarm, 0Þ*ÞÞ ð7Þ

where ReðqÞ denotes the real part of the quaternion q.
Similarly, the time-series error profile for shoulder orientationwas

calculated as the angular distance between the estimated shoulder
orientation and the ground truth. Specifically, the orientation error at a
specific time frame, ψt , is calculated as

ψt =2� arccosðReðqest, tðqOMC, tÞ*ÞÞ ð8Þ

where qest, t represents the shoulder orientation estimated by the
machine learning model at time frame, t, and qOMC, t represents the
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ground truth orientation captured by the OMC system. This equa-
tion differs from Eq. 6 as it calculates angular distance at specific
time frames, while Eq. 6 is a loss function for model training,
leveraging numerical simplifications like the absolute operation for
stability.

Statistical analysis on peak-to-peak errors
We calculated the peak-to-peak distances, i.e., the distance between
the maximum and the minimum peaks, of the ground truth and AIL-
KE, followed by calculating the RMSE between the positions of the
ground truth and AIL-KE predictions. Then, the same operation was
applied for DCNN and LSTM. We conducted the Mann–Whitney U
test to determine statistical significance between the models, i.e.,
AIL-KE vs. DCNN, LSTM vs. DCNN, and AIL-KE vs. LSTM, using a sig-
nificance level of 0.05.

Data availability
All data supporting the findings of this study are available within the
article and its supplementary files. Any additional requests for infor-
mation can be directed to and will be fulfilled by the corresponding
author. Source data are provided with this paper.

Code availability
All code for this work will be made available from the corresponding
author upon request.
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