
Article https://doi.org/10.1038/s41467-025-58674-w

Tensor-FLAMINGO unravels the complexity
of single-cell spatial architectures of
genomes at high-resolution

Hao Wang1, Jiaxin Yang1, Xinrui Yu 1, Yu Zhang 2 , Jianliang Qian 1,3 &
Jianrong Wang 1

The dynamic three-dimensional spatial conformations of chromosomes
demonstrate complex structural variations across single cells, which plays
pivotal roles in modulating single-cell specific transcription and epigenetics
landscapes. The high rates ofmissing contacts in single-cell chromatin contact
maps impose significant challenges to reconstruct high-resolution spatial
chromatin configurations. We develop a data-driven algorithm, Tensor-FLA-
MINGO, based on a low-rank tensor completion strategy. Implemented on a
diverse panel of single-cell chromatin datasets, Tensor-FLAMINGO generates
10kb- and 30kb-resolution spatial chromosomal architectures across indivi-
dual cells. Tensor-FLAMINGO achieves superior accuracy in reconstructing 3D
chromatin structures, recovering missing contacts, and delineating cell clus-
ters. The unprecedented high-resolution characterization of single-cell gen-
ome folding enables expanded identification of single-cell specific long-range
chromatin interactions, multi-way spatial hubs, and the mechanisms of
disease-associated GWAS variants. Beyond the sparse 2D contact maps, the
complete 3D chromatin conformations promote an avenue to understand the
dynamics of spatially coordinated molecular processes across different cells.

Because it is the structural foundation of diverse molecular processes,
the spatial conformation of chromosomes in the three-dimensional
(3D) space plays important roles in modulating gene regulation1, epi-
genetic plasticity2, genome stability3 and cell differentiation4. Com-
prehensive profiling of the 3D chromosomal structures across
different cell types and species5–8 using genome-wide 3C-based tech-
nologies, such as Hi-C6, Capture-C9,10 and ChIA-PET11, has shed light on
the patterns of genome folding, including chromatin
compartments12,13, topologically associated domains (TADs)14 and
chromatin loops15. These multi-scale conformation units and their
associated signatures16–18, such as CTCF and the cohesin complex15,19,
have led to specific biological models of the underlying principles of
the 3D genome organization, including the loop extrusion15,20 and
phase separation21,22 models. Quantitative analyses of the 2D matrices

of chromatin contact maps have improved the insights into the basic
patterns of chromatin configuration and loops (e.g. SnapHiC, Fit-Hi-C
and DeepLoop)23–26. Moreover, computational reconstruction of the
chromosomal architecture in 3D space (such as the pioneering land-
mark algorithms MCMC5C and BACH that defined this topic)27–34,
based on pairwise spatial distances converted from chromatin contact
frequencies between genomic regions12, has further advanced the
understandings of spatially orchestrated regulatory interactions,
including the long-range ones (>100 kb), linking specific genes,
enhancers, transcription factors, open chromatin loci, and distal
genetic variants into 3D spatial neighborhood35.

Despite these biological discoveries enabled byHi-C experiments,
the bulk level chromatin contact frequency maps represent averaged
signals across large numbers of cells, andmost existing computational
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algorithms are designed to predict the consensus structures27–32.
Hence, these experiments and computational tools are unable to
capture the cell-to-cell structural variabilities of single-cell chromatin.
Although there are algorithms proposed to predict structure ensem-
bles (i.e. populations of chromatin structures) using either machine
learning or simulation approaches36–38, significant difficulties exist in
justifying the validity of predicted ensembles, distinguishing noisy
fluctuations frombiological variations, verifying the sensitive influence
of prior assumptions and parameters, and interpreting individual
structures within the inferred ensembles. Although ensemble-based
methods can predict groups of structures, the interpretations and
insights are limited to variance analyses of the overall distribution
landscape, usually at low-resolution and for relatively homogeneous
pools of cells. The predicted structure ensemble cannot be explicitly
assigned to individual cells, restricting in-depth comparative 3D gen-
ome analysis between specific cells. The lack of explicit single-cell
specific structures of ensemble methods also limits the functional
genomics research for single-cells, such as annotations of single-cell
specific long-range regulatory interactions, gene regulation, and long-
range genetic associations. Due to these restrictions, large-scale
quantitative modeling methods of the single-cell spatial genome
configurations are currently under-developed.

Recent years have seen a breakthrough in single-cell 3C-based
technology of profiling genome-wide chromatin contacts from indi-
vidual cells (Fig. 1a). Theseexperimental approaches include single-cell
Hi-C (scHi-C)39–41, single-cell combinatorial indexed Hi-C (sciHi-C)42,43,
single-nucleosome Hi-C (snHi-C)44, diploid chromatin conformation
capture (Dip-C)45,46, single-nucleus methyl-3C sequencing (snm3C)47,
and Methyl-HiC48. Applied on a mixed pool of cells, these techniques
can generate single-cell specific chromatin contact maps for a large
number of cells, whichmay belong to heterogeneous cell types within
the sample. Analyses of the single-cell specific chromatin contactmaps
profiled by these techniques revealed large-scale cell-to-cell structural
variabilities of TADs and chromatin loops and also demonstrated
chromatin reorganization through the processes of cell cycles or cell
differentiation39–48. These valuable resources have also helped the
delineation of cell types and cell-type specific chromatin contacts from
the mixed pool of cells42–47, which further facilitates the investigation
of spatially coordinated gene expression, regulatory elements (e.g.
enhancers), and epigenetic signals (e.g. DNA methylation)45,47. How-
ever, because of the low sequencing depth allocated for each indivi-
dual cell, the single-cell chromatin contactmaps aremuch sparser than
bulk-level experiments and contain numerous entries with missing
data39–48. The sparsity issue is even more challenging at higher reso-
lutions. Taking the single-cell Dip-C dataset of GM12878 as an
example45, even at the low 300kb-resolution, 94.3% entries of the
single-cell level chromatin contact maps are missing data and do not
have any observed signals based on the experiment. Moreover, at the
high 10kb-resolution, the missing rate is >99.9%. Thus, the high miss-
ing rates of single-cell chromatin contacts, especially at higher reso-
lution, raise the unique demand for advanced computational models
to efficiently extract the information of chromatin conformation from
limited observations and to generate accurate 3D structure predic-
tions for individual cells.

Impeded by the challenge of sparsity, the available computational
infrastructure of predicting single-cell 3D chromosomal structures is
lacking and is mostly confined to only low-resolution reconstructions,
which are not capable of characterizing the detailed transcriptional
regulation and QTL associations in 3D coordination. As data-driven
approaches, RPR30 has been developed to predict single-cell 3D chro-
mosomal structures using the method of recurrent plots, and
ShRec3D27, which was originally developed for bulk-level predictions,
has also been suggested to handle single-cell Hi-C data using an MDS-
based approach. Relying solely on the observed data of chromatin
structures, these methods alleviate the dependence on specific prior

assumptions of genome structures. However, due to the significant
fraction of missing data in single-cell chromatin contact maps, their
reconstruction accuracy degrades significantly for high-resolution
predictions (e.g. 10kb- or 30kb-resolution). To improve the perfor-
mance at higher resolutions, specific prior assumptions about chro-
mosomal structures and potential mechanisms are explored to
complement the highly sparse input data, which lead to polymer
simulation-based approaches, including isdHi-C49, Si-C50 and
NucDynamics40. With the observed chromatin contacts of different
cells serving as the optimization constraints, these three algorithms
simulate single-cell 3D chromosomal structures based on a variety of
pre-assumed biophysical properties40,49,50, which are themselves sus-
ceptible to more investigations for validation andmay not hold across
different datasets. In addition, the strong pre-assumed biophysical
properties, along with the pre-defined parameters, join into the mod-
els as invariants and dominate the inference procedure, which effec-
tively smoothen out the cell-to-cell variabilities, resulting in decreased
ability of capturing single-cell specific structural signatures.

Despite the computational difficulties, high-resolution 3D recon-
struction of single-cell chromosomal structures is highly needed and is
crucial to promote the understanding of spatial organizations of gene
regulation to a greater extent from the single-cell perspective39–42, as
also demonstrated in this study. Compared to traditional analyses of
2D matrices of pairwise chromatin contacts, 3D characterization of
spatial configurations yields crucial information about the genome
architectures. Advantages of 3D genome modeling against 1D or 2D
analyses include, but are not limited to, 1) identifying multi-way
chromatin interactions beyond pairwise contacts and 2) producing
completed chromatin contact maps and imputing numerous missing
contacts based on the global structural information of whole chro-
mosomes instead of the local contexts. Both advantages will facilitate
the annotation of the TAD dynamics across single cells, enable the
discovery of detailed higher-order chromatin organization signatures
(e.g. spatial hubs), and boost the delineation of single cell clusters. In
addition, compared to low-resolution modeling, high-resolution
reconstruction is essential to generate specific biological under-
standings, such as pinpointing the interdependent long-range cis-
regulatory interactions of genes and interpreting the functionally
relevant genetic variants of complex diseases, especially distal non-
coding variants.

In this study, to expedite biological insights into the dynamic
single-cell 3D genomes, a low-rank tensor completion based model,
Tensor-FLAMINGO, is developed to reconstruct high-resolution 3D
chromosomal structures based on single-cell chromatin contact maps
(Fig. 1a). The key feature of Tensor-FLAMINGO is to systematically
utilize the low-rank property of the observed single-cell chromatin
contact maps, which can efficiently address the critical challenge of
high missing rates in input data. Moreover, the low-rank property
holds its validity for diverse single-cell chromatin contact experiments
and datasets because of two fundamental facts: 1) for a given sample,
single cells belonging to each cell cluster are biologically related or
similar to each other; and 2) the chromatin contacts in each cell are
generated from the underlying low-rank 3D structure. By quantita-
tively exploring these two types of low-rank properties, the low-rank
tensor completion technique is guaranteed to recover the variable
single-cell specific 3D chromosomal structures at high-resolution from
a small set of observed pairwise chromatin contacts. Moreover, the
sophisticated tensor completion framework employed by Tensor-
FLAMINGO simultaneously delineates the latent sub-clusters of cells,
which demonstrate distinct chromosome structures across sub-
clusters. Therefore, Tensor-FLAMINGO can effectively handle the
structural heterogeneity among the mixed pool of different cells,
which is also justified in this study (see Results). Analogous to video
compression and reconstruction, for which the low-rank tensor com-
pletionmethods were originally designed51, consider every single cell’s
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chromatin contactmapas a frameand thewholedataset as a video, the
low-rank tensor completion strategy leverages the relationship across
and within frames and facilitates information-sharing to infer missing
pixels and to capture the underlying latent structures of each frame.
To note, the low-rank tensor completion technique based on the t-SVD

framework (see Methods) enables the unique capability of Tensor-
FLAMINGO to address the large sparsity of single-cell chromatin con-
tact datasets, beyond bulk datasets, which is the fundamental advan-
tage of Tensor-FLAMINGO compared to our prior model of
FLAMINGO.
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Fig. 1 | Tensor-FLAMINGO reconstructs high-resolution 3D chromatin struc-
tures from single-cell Hi-C experiments. a Schematic figure of the Tensor-
FLAMINGO algorithm. Biologically, scHi-C experiments generate highly sparse
contact maps for N cells. For every single cell, the chromatin contact map derived
from the scHi-C experiment is a low-rank matrix (rank ≤ 5). In addition, single cells
belonging to similar cell types are biologically similar. Thus, the tensor organizing
the chromatin contact matrices of N cells is a low-rank tensor and the missing
values can be completed using the low-rank tensor completion method based on
the small subset of observed values. To accurately reconstruct the 3D chromatin

structures of single cells at high resolution, Tensor-FLAMINGO utilizes the tube-
wise Fourier Transformation to borrow information across single-cells, and
employs tSVD to borrow information across contacts within the same cells. Based
on the completed dense tensor of single-cell chromatin contact maps, Tensor-
FLAMINGO leverages FLAMINGO to reconstruct the 3D chromatin structure for
every individual cell. b Reconstruction of the 3D chromatin structures for 14 single
cells at 10kb-resolution by Tensor-FLAMINGO based on the GM12878 Dip-C data
(missing rate = 99.95% at 10kb-resolution). Source data are provided as a Source
Data file.
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To demonstrate its superior performance, Tensor-FLAMINGO
(https://github.com/wangjr03/Tensor-FLAMINGO) is implemented on
a variety of single-cell chromatin conformation datasets generated by
different types of experiments, including scHi-C, snHi-C, Dip-C and
snm3C, and reconstructed the 3D chromosomal structures for indivi-
dual cells at both 10kb- and 30kb-resolution, the highest resolutions
for single-cell level predictions to date. The accuracy of predicted
structures is systematically evaluated and compared to othermethods
based on both simulations and extensive experimental datasets as
orthogonal gold-standards. Tensor-FLAMINGO robustly outperforms
existing methods across all comparisons. Based on the reconstructed
3D structures, completed chromatin contact maps are also produced
simultaneously for each cell, where the missing data of single-cell
chromatin contacts are explicitly imputed at high-resolution. The
completed single-cell chromatin contact maps substantially enhance
the clustering of different groups of cells, boosting the deconvolution
of mixed cell types or subtypes. The inferred single-cell specific 3D
genome configurations capture the cell-to-cell structural variabilities.
They facilitate the analysis of chromatin dynamics with respect to the
formation of chromatin compartments and TADs in single cells and
their cross-cell variances coupled with the landscape of transcription
and epigenetic states. Moreover, Tensor-FLAMINGO enables the
identification of high-resolution significant chromatin interactions in
single cells, the majority of which cannot be observed in the original
sparse contactmaps. Thesedynamic single-cell chromatin interactions
also uncover long-range links mediating specific distal cis-regulatory
elements to 3D spatial proximity for single-cell gene regulation,
allowing mechanistic interpretations of eQTLs and disease-associated
non-coding genetic variants at the single-cell level. The discoveries of
single-cell multi-way chromatin interactions and the spatial hubs of
cell-type specific genes further reveal the interplay between higher-
order genome folding and gene expression, leading to biological
insights into the spatial organization of transcriptional regulation and
its dynamics.

Results
Tensor-FLAMINGO reconstructs high-resolution 3D chromo-
some structures for single cells
For a given dataset of single-cell 3 C experiment39–48, the observed
chromatin contacts from tens to hundreds of cells are summarized
into a sparse 3-mode tensor as input, where each frontal slice of the
tensor represents the chromatin contact map of a single cell and the
majority of entries in the tensor are un-observed missing data due to
limited sequencing depth per cell (Fig. 1a left). The genomeof each cell
has its own 3D spatial conformation featured by single-cell specific
structural variabilities. Every chromosome in a single cell ismodeled as
a chain of ‘beads’, based on the ‘beads on a string’ polymer model,
where each ‘bead’ represents a genomic locus under the specified
resolution. The observed chromatin contact map of a single cell is
biologically induced from the underlying 3D coordinates of different
genomic loci. To reconstruct single-cell 3D spatial structures of each
chromosome, Tensor-FLAMINGO employs a two-step strategy based
on a low tubal-rank tensor completion framework (see Methods). In
the first step, the objective function aims to recover a dense tensor
with the minimum tubal rank, while optimally maintaining the con-
sistency with the set of observed single-cell chromatin contacts from
the input (Fig. 1a right). An Alternating DirectionMethod ofMultipliers
(ADMM) based tensor tubal-rank-minimization algorithm51 is imple-
mented. In each iteration, the low-rank latent structure is updated
using the tensor-SVD (t-SVD) approach51, which first transforms the
input tensor to the Fourier domain and then carries out SVD analysis
(see Methods). This strategy enables simultaneous modeling of single
cells jointly, instead of separate analyses as done by previous
methods27, by exploring the low-complexity relationship between cell
groups. Through optimization, the t-SVD approach in each iteration

enables the model to use information both across different cells and
across different chromatin contacts within a cell (Fig. 1a right). The
output generatedby thefirst step is a dense low tubal-rank tensor, with
explicitly imputed signals of high-resolution chromatin contacts for
large portions of missing data in each cell. As a highlight, the t-SVD
approach employed by Tensor-FLAMINGO to generate the dense low
tubal-rank tensor is the critical algorithmic innovation toovercome the
fundamental challenge of highly sparse single-cell chromatin contact
data. The second step of Tensor-FLAMINGO takes the recovered dense
tensor as input and employs our recently developed algorithm FLA-
MINGO to further reconstruct single-cell 3D spatial structures, based
on an extended low-rankmatrix completion technique35 (Fig. 1a right).
With its performance already justified before35, FLAMINGO is applied
on each frontal slice of the recovered dense tensor from the first step
to predict the final output of high-resolution 3D chromosomal struc-
tures of each single cell, along with the completed single-cell chro-
matin contact maps derived from the predicted 3D structures (see
Methods). To note, FLAMINGO by itself cannot be directly applied on
the original single-cell chromatin contact dataset due to the high
sparsity at the single-cell level. The dense low tubal-rank tensor gen-
erated by the first step of t-SVD tensor completion coherently inte-
grates with FLAMINGO, leading to the combined performance
advantage of Tensor-FLAMINGO.

The key design of Tensor-FLAMINGO is to quantitatively exploit
the low-complexity structures of the sparse single-cell chromatin con-
tact tensor. Two sources of pervasive inter-dependencies among
observed signals, both of which are fundamental facts holding their
validity for all different types of single-cell 3 C techniques, guarantee
the underlying low-rank signatures. First, within a mixed pool of single
cells, the cells can be grouped into multiple clusters corresponding to
different cell types or subtypes, and hence, the cells in each cluster are
biologically related to each other and share similar cluster-specific
consensus structures. For a specific pairwise chromatin contact
between two genomic loci across different cells, i.e. a specific ‘tube’ of
the input tensor, itsmissing value in one cell can be inferred fromother
cells belonging to the same cluster (Fig. 1a right). Because of this tube-
wise dependency across single cells, the first step of Tensor-FLAMINGO
jointly models the cells together. Algorithmically, in each iteration, the
t-SVD approach conducts tube-wise Fourier transformation on the
observed tensor, with subsequent steps carried out in the Fourier
transformed domain, allowing information sharing across different
cells. Second, because the numerous pairwise distances between
genomic loci are induced from the underlying 3D spatial coordinates of
each locus, the matrix rank of each single cell’s chromatin contact map
is at most five, as we have previously justified in the design of
FLAMINGO35. Therefore, the intrinsic degrees of freedom of single cell
chromatin contact maps are very small compared to the size of the
matrix, suggesting that the pairwise chromatin contact information can
be significantly compressed and can be efficiently reconstructed based
on just a small set of observed entries (Fig. 1a right). Algorithmically, in
the first step, the soft-thresholding SVD analysis of each transformed
frontal slice in the Fourier domain explicitly explores the latent low-
rank dependency to recover a dense tensor with the minimum tubal
rank (see Methods). Additionally, in the second step, Tensor-
FLAMINGO implements FLAMINGO to further leverage the depen-
dency among chromatin contacts within each cell, based on a low-rank
matrix completion strategy (see Methods), leading to the final predic-
tion of high-resolution 3D spatial coordinates of chromosomes in each
cell. The superior and robust performance of FLAMINGO against high
rates of missing data is especially desired for high-resolution recon-
structions since the read-depth allocated in each high-resolution
genomic locus is much lower and sparser. Overall, by delineating the
two sources of low-complexity latent structures corresponding to the
low tubal-rank of the 3-mode tensor and the low rank of the chromatin
contact map, Tensor-FLAMINGO thoroughly addresses the core
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challenge of sparsity of single-cell 3C-based experiments and sig-
nificantly promotes single-cell 3D genome modeling, without
demanding increased experimental burden of sequencing depths.

Tensor-FLAMINGO is systematically implemented on four
single-cell 3C-based datasets profiled by different techniques,
including scHi-C40, snHi-C44, Dip-C45 and snm3C47, to predict single-
cell 3D chromosomal structures at both 10kb- and 30kb-resolution.
These predictions represent the largest cohort of spatial conforma-
tions of 3D genomes for single cells at the highest resolution to date
(Fig. 1b, Supplementary Figs. 1–3). As an example, the single-cell Dip-
C experiment of GM1287845, after quality control, profiled the chro-
matin contact maps for 14 individual cells. As a representative
example, based on this Dip-C dataset, Tensor-FLAMINGO success-
fully reconstructed the 10kb-resolution 3D structures of chromo-
some 21 for all 14 cells (Fig. 1b), with more than two-fold of boost in
accuracy compared to othermethods (average Spearman correlation
to the benchmark >0.42, (Fig. 4a). The overall foldings of the
reconstructed 10kb-resolution single-cell specific structures highly
align with the consensus structure inferred from bulk Hi-C data of
GM12878 (Supplementary Fig. 16c). In addition to the overall con-
sensus of chromosome folding, all 14 predicted structures show

single-cell specific structural variabilities (Fig. 1b), which are further
quantified with respect to distinct TAD formation, specific long-
range chromatin interactions involved in gene regulation, and multi-
way interaction hubs across different cells (Fig. 8a–i). To note, the-
se detailed evaluations of single-cell structural variabilities are
made feasible only by the high-resolution reconstructions, while
low-resolution predictions are not sufficient to depict the specific
variations in 3D genomes. Remarkably, Tensor-FLAMINGO can
build the high-resolution spatial structures based on the highly
sparse Dip-C data, which has a missing rate >99.95% at 10kb-
resolution (Fig. 1b).

Benchmark performance based on simulations
The performance of Tensor-FLAMINGO is first benchmarked by a
series of simulated pools of single-cell structures, for which the gold-
standard structures are known (Fig. 2a, Supplementary Fig. 4a). In each
pool of simulations, multiple cell types are mixed together and each
cell type has its cell-type specific consensus chromosome structure, in
order to account for the underlying heterogeneity of single-cell sam-
ples. Based on the consensus structure of each cell type, a number of
single-cell specific chromosome structures and their corresponding
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Fig. 2 | Performance evaluation of Tensor-FLAMINGO based on a diverse panel
of simulations. a Schematic figure of the simulation procedure. Three consensus
structures are included with parameter W controlling the similarity between con-
sensus structures. Each consensus structure is repeated ten times and mixed with
different levels of noise (no noise, noise level 1, andnoise level 2) to generate single-
cell specific benchmark structures. The corresponding single-cell distancematrices
are subsequently down-sampled to simulate a sparse dataset of 30 single cells. The
highly noisy and incomplete sparse tensor is used as the input for Tensor-
FLAMINGO to reconstruct the single-cell specific structures. The accuracy is

evaluated by calculating the correlations and RMSE, compared to the original
simulated single-cell benchmark structures. b Performance of Tensor-FLAMINGO
under different values of similarity (W ), which quantifies the heterogeneity across
the underlying mixed cell types, and different noise levels (1000 beads, and 0.5%
down-sampling rates = 99.5% missing rates). The error bars represent the standard
deviations across frontal slices (i.e. single cells). c Examples of the consensus
benchmark structures and Tensor-FLAMINGO’s single-cell predictions for the three
mixed cell types (W= 0.6), where the cell-type specific 3D structures are recon-
structed correctly (correlations = 0.783, RMSD=0.133).
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chromatin contactmaps are generated by randomly down-sampling of
chromatin contacts and by adding white noise to represent both
experimental missing data rates and single-cell specific structural
variabilities (Fig. 2a), see Methods. A combination of simulation para-
meters is systematically varied to generate different pools of simulated
structures and chromatin contact maps, which are used to thoroughly
test the performance of Tensor-FLAMINGO under a diverse panel of
conditions (see Methods). Prediction accuracy is quantified by two
metrics, i.e. Spearman correlations and RMSD values, with respect to
the benchmark single-cell structures (see Methods), both of which
have been suggested by previous studies as quantitative performance
indicators27,49,50.

Remarkably, Tensor-FLAMINGO robustly achieves high accuracy
of single-cell 3D structure reconstructions under a wide range of
structural heterogeneities among the mixed cell types, with respect
to performance metrics of both Spearman correlations (>0.6) and
RMSD ( < 0.16) to the real benchmark structures (Fig. 2b). Lower
structural similarity among mixed cell types corresponds to higher
heterogeneity within the pool of single cells and causes more strin-
gent challenges to recover the structures of individual cells belong-
ing to different cell types. In addition, the accuracy is robust to the
different levels of noise added to each single cell (Fig. 2b), which
represent different degrees of cell-to-cell variabilities within each cell
type. As an example of Tensor-FLAMINGO’s performance, (Fig. 2c)
shows the representative predictions when it is applied to a pool of
simulated heterogeneous single-cell chromatin contact maps where
three underlying cell types are mixed. Additional predictions are
shown in Supplementary Fig. 4b. The consensus structures of the
three mixed cell types contain distinct cell-type specific 3D structure
signatures (Fig. 2c,) and ten variable single-cell structures are simu-
lated per cell type based on the consensus structures. Although
challenged by the two levels of structural variabilities (i.e. cell-type
level and single-cell level), Tensor-FLAMINGO successfully recon-
structed the single-cell 3D structures with high accuracy (RMSD<
0.08) and recovered the cell-type specific chromatin folding sig-
natures (Fig. 2c and Supplementary Fig. 4b). The predicted single-cell
structures also form three clear clusters, which are found to be
consistent with each cell’s membership to the three underlying
mixed cell types (Supplementary Fig. 4c). These striking results
strongly support Tensor-FLAMINGO’s capability of delineating dis-
tinctive 3D structures for individual cells from heterogeneous
datasets.

Furthermore, tested on different pools of simulated structures
with a wide range of down-sampling rates (≥0.5%), Tensor-
FLAMINGO consistently demonstrates high reconstruction accu-
racy Spearman correlations>0.97, RMSD <0.0018, (Supplementary
Fig. 5). Even with a down-sampling rate of 0.1% (that is 99.9% missing
data), Tensor-FLAMINGO can still achieve high reconstruction accu-
racy Spearman correlations>0.6, RMSD < 0.23, (Supplementary
Fig. 6). These results systematically suggest its superior performance
against high rates of missing data, which is the fundamental chal-
lenge of sparse single-cell chromatin contact datasets. In addition,
the robustness of Tensor-FLAMINGO’s performance is further
extensively justified across diverse simulated datasets with different
chromosome sizes (Supplementary Fig. 7a), different numbers of
single cells for each mixed cell type (Supplementary Fig. 7b), differ-
ent number of cell types mixed in the sample (Supplementary
Fig. 7c), and different order of organization of frontal slices in the
chromatin contact tensor (Supplementary Fig. 7d). Furthermore, we
also tested the low-rank property of the simulated pool of single-cell
contact map tensor with high-level of noise added to the inputs. The
singular values of the noisy input tensor can be robustly estimated
where only the few top-ranking singular values are non-zero, sug-
gesting that the low-rank property can be effectively captured by
Tensor-FLAMINGO (Supplementary Fig. 7e).

Superior performance of reconstructing single-cell 3D
structures
To directly compare the performance on real experimental data, the
image-based K562 single-cell structures of a 2Mb region in human
chromosome 21 (chr21:29,372,390-31,322,257) from the STORM
dataset52 are collected as the benchmark testing structures. These
image-based experimental data provide 30kb-resolution structures
across a large number of cells. Tensor-FLAMINGO is applied on the
snHi-C dataset of K562 cells44, which contains single-cell chromatin
contact maps of 16 cells, to reconstruct the 30kb-resolution 3D spatial
configurations of chromosome 21. As comparison, the state-of-the-art
algorithms, including Si-C50, isdHiC49 andRPR30, are also applied on the
same snHi-C dataset based on their suggested settings (see Methods).
Since the STORMdataset is profiled from a different pool of K562 cells
than the snHi-C dataset, the predicted 3D structures by each algorithm
are first evaluated with respect to the number of highly correlated
(Spearman correlation>0.8) STORM single-cell structures, which indi-
cates the degree of supports from a de-coupled pool of single cells
belonging to the same cell type. Examples of Tensor-FLAMINGO’s
single-cell predictions and the supporting structures from the STORM
dataset are shown in Fig. 3a, where Tensor-FLAMINGO characterizes
the complicated chromatin folding of this specific 2Mb region con-
sistent with the observations from the image-based STORM dataset.
Strikingly, for each of the 16 cells in the snHi-C dataset, Tensor-FLA-
MINGO’s predictions are supported by an average of 73 image-based
single-cell structures from the STORM dataset, while the state-of-the-
art methods are supported by much fewer structures (Fig. 3b).

Moreover, the image-based STORM dataset is further filtered to
identify the subset of top-matching single-cell structures that are
highly aligned to each of the 16 experimental snHi-C input chromatin
contact maps as the benchmark structures for specific cells (see
Methods). Based on these unbiased benchmark structures of each cell,
Tensor-FLAMINGO demonstrates the highest accuracy across all tes-
ted methods (Fig. 3c). The predicted single-cell chromatin structures
by Tensor-FLAMINGO are strongly correlated to the benchmark
STORM structures for each cell (median Spearman correlation=0.56),
while the other state-of-the-art algorithms show much lower correla-
tions to the benchmarks (0.25<median Spearman correlations<0.5). As
a representative example, (Fig. 3d) shows the aligned image-based 3D
structure and its associated pairwise distance matrix for a specific cell
from the snHi-C dataset. The predicted 3D conformation by Tensor-
FLAMINGO accurately recapitulates this structure Spearman correla-
tion=0.85, (Fig. 3d), while other algorithms lead to large deviations
from the benchmark and only achieve much lower accuracy (Spear-
man correlations<0.4). Overall, these performance comparisons
benchmarked by the image-based single-cell structures directly sup-
port the drastic improvement in 3D reconstruction accuracy by
Tensor-FLAMINGO at high resolution.

Robust accuracy across diverse experimental contexts
The performance of Tensor-FLAMINGO, when it is applied on a variety
of input datasets profiled by different single-cell experimental tech-
niques (i.e. scHi-C, snHi-C, Dip-C, and snm3C), is further evaluated by
the corresponding orthogonal benchmark evidence frommatched cell
types, including Hi-C6,53, 3D ATAC-PALM54, and GAM55 data (see
Methods). Based on extensive evaluations across different cell types,
including GM12878, K562, and mESC, Tensor-FLAMINGO consistently
achieves superior accuracy compared to the state-of-the-art algo-
rithms in reconstructing 3D chromosome structures at both 10kb-
resolution (Fig. 4a) and 30kb-resolution (Fig. 4b). At 10kb-resolution,
the highest resolution for single-cell 3D reconstruction to date, Ten-
sor-FLAMINGO’s predictions robustly demonstrate high correlations
to the benchmark structures across all tests (Fig. 4a) top, Spearman
correlation>0.4). In comparison, other models show much lower
accuracy, with correlations to the benchmark structures largely below
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0.2. Notably, the 2-fold improvements in these global accuracy eva-
luations suggest that Tensor-FLAMINGO not only recapitulates the
observed chromatin contacts in single cells but also recovers the
spatial distances for un-observed missing values in the original single-
cell chromatin contact maps. Restricted to the subset of observed
single-cell chromatin contacts in the original input datasets, Tensor-
FLAMINGO also consistently achieves the highest accuracy (Fig. 4a)
bottom, Spearman correlation>0.55, see Methods compared to other
methods (Spearman correlations<0.4). The relative contributions of
the t-SVD-based tensor completion step and the FLAMINGO-based
matrix completion step to the overall performance of Tensor-
FLAMINGO are also evaluated respectively, both of which are found
to be important (Supplementary Fig. 7f and g). Similar advantages in
accuracy are observed for Tensor-FLAMINGO across all comparisons
for predictions at 30kb-resolution (Fig. 4b), seeMethods, although the
relative accuracy improvements over other models are less drastic
than those for comparisons of 10kb-resolution predictions. This

extensive panel of tests provides quantitative supports of the sig-
nificant boost in performance by Tensor-FLAMINGO, especially at
higher resolutions, which is due to its algorithmic design of exploring
the ground truth of the low-rank structures embedded in all different
types of single-cell chromatin contact experiments, instead of relying
on specific pre-assumed polymer models.

Furthermore, the predicted 3D chromosome structures by dif-
ferent algorithms are evaluated with respect to characterizing cell-
type specific structural variations and delineating different cell types
mixed within a sample, which are two of the core biological goals of
single-cell experiments. The snm3C dataset47 is used for this eva-
luation since it contains 351 mESC cells and 96 NMumG cells.
Although these cells are mixed together, the identity of each single
cell is known. Because a large majority of single-cell chromatin
contacts (>99.9%) are missing data in the original dataset at 30kb-
resolution, the snm3C data cannot directly distinguish the two cell
types when the original single-cell chromatin contact maps are
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Fig. 3 | Superior accuracy of Tensor-FLAMINGO benchmarked by multiplexed
STORM image-based single-cell 3D structures. Tensor-FLAMINGO, RPR, Si-C and
isdHi-C are applied on the K562 snHi-C data of 16 single-cells at 30kb-resolution to
reconstruct the single-cell 3D chromatin structures. a Examples of predicted single-
cell 3D chromatin structures using Tensor-FLAMINGO and the supporting struc-
tures from the STORM image-based dataset. b The number of image-based struc-
tures from the STORMdataset supporting the predicted single-cell structures from
each algorithm. The STORM single-cell structures with correlations>0.8 to the
predicted structures (n = 16) are considered as the supporting structures. The
center lines of boxplots show the median; the upper and lower box limits show the
25th and 75th percentiles, respectively. The whiskers extend up to 1.5 times the
interquartile range away from the limits of the boxes. c, d Tensor-FLAMINGO
accurately reconstructs the single-cell 3D structures from snHi-C data. For each cell

in the snHi-C dataset, the correlations between the original input snHi-C distance
matrix and the STORM distance matrices are calculated and the top 20 STORM
structures with the highest correlations, top-matching STORM structures, are fil-
tered to represent the true underlying structures of the specific cell. c Tensor-
FLAMINGO predictions show the highest correlations with the top-matching
STORM structures of each cell. The center lines of boxplots show the median; the
upper and lower box limits show the 25th and 75th percentiles, respectively. The
whiskers extend up to 1.5 times the interquartile range away from the limits of the
boxes. d Examples of the predicted 3D chromatin structure based on snHi-C for
single cell 1 and the top-matching STORM structure. Tensor-FLAMINGO shows the
highest correlation with the top-matching STORM structure (correlation=0.676).
Source data are provided as a Source Data file.
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projected onto the two-dimensional space by UMAP (Fig. 4c). In
Fig. 4c, the two cell types (mESC and NMumG)merge together as one
single cloud of cells. Similar problems remain when the completed
single-cell chromatin contact matrices are used based on the pre-
dicted structures by other algorithms, including Si-C, isdHiC, RPR
and ShRec3D, where the missing values are completed by the

corresponding predicted spatial distances (Fig. 4c). The two cell
types are still not separable based on the predictions from these
state-of-the-art models. In contrast, the complete single-cell chro-
matin contact matrices from Tensor-FLAMINGO’s predicted 3D
structures clearly group the single cells into two separable clusters,
which are highly consistent with the real cell identity of the two cell

b
GM12878 Dip-C K562 snHi-C mESC scHi-C mESC snm-3C

Sp
ea

rm
an

 c
or

re
la

tio
n

isdHiC
ShRec3D
RPR
Si-C
Tensor-
FLAMINGO

c

mESC

NMuMG

Raw single-cell snm-3C

UMAP1
-8 -6 -4 -2 0 2 4 6

-5

0

5

U
M

AP
2

RPR

-20 -10 0 10 20 30

-6

6

4

2

0

-2

-4

UMAP1

U
M

AP
2

Tensor-FLAMINGO

-15 -10 -5 0 5 10
-15

-10

-5

0

5

10

15

UMAP1

U
M

AP
2

isdHiC

-5

5

10

0

-10
-10 -5 0 5

UMAP1

U
M

AP
2

ShRec3D

-10 -5 0 5
UMAP1

-15

-10

-5

0

5

10

15

U
M

AP
2

-10 -5 5 10
UMAP1

0

-10

-5

5

10

0

U
M

AP
2

Si-C

a

30kb-resolution

0

0.4

0.2

0.6

Bulk Hi-C Bulk Hi-C3D ATAC-PALM
0

0.4

0.2

Sp
ea

rm
an

 c
or

re
la

tio
n

0
0

0.4

0.2

3D ATAC-PALM Bulk Hi-C

mESC scHi-C

G
lo

ba
l a

cc
ur

ac
y

Ac
cu

ra
cy

(s
ub

se
t o

f o
bs

. d
is

ta
nc

es
)

10kb-resolution

0

0.4

0.2

Bulk Hi-C

GM12878 Dip-C

0

0.4

0.2

Sp
ea

rm
an

 c
or

re
la

tio
n 0.6

Bulk Hi-C

0.4

0.2

0

Bulk Hi-C

K562 snHi-C

3D ATAC-PALM Bulk Hi-C

0.4

0.2

mESC snm-3C

0

0.4

0.2

0.6

3D ATAC-PALM Bulk Hi-C

Input dataset

Gold standard 
dataset

Gold standard 
dataset

Input dataset

Gold standard 
dataset

ShRec3D
NucDynamics
RPR
Si-C
isdHiC
Tensor-
FLAMINGO

Ac
cu

ra
cy

(s
ub

se
t o

f o
bs

.d
is

ta
nc

es
)

Sp
ea

rm
an

 c
or

re
la

tio
n

0.8

Bulk Hi-C Bulk Hi-C 3D ATAC-PALM GAM Bulk Hi-C 3D ATAC-PALM GAM Bulk Hi-C
0

0.4

0

0.4

0.6

0.2

0 0

G
lo

ba
l a

cc
ur

ac
y

Bulk Hi-C Bulk Hi-C 3D ATAC-PALM GAM Bulk Hi-C 3D ATAC-PALM GAM Bulk Hi-C
0

0.4

0.6

0.2

0

0.2

0.3

0.1

0.4

0

0.2

0.3

0.1

0.4

0

0.4

0.6

0.2

Gold standard 
dataset

0.5

0.75

0.25

0.5

0.75

0.25

Article https://doi.org/10.1038/s41467-025-58674-w

Nature Communications |         (2025) 16:3435 8

www.nature.com/naturecommunications


types (Fig. 4c). This remarkable result further suggests the boosted
accuracy of the predicted 3D structures and the completed single-
cell chromatin contacts for missing data at high-resolution. It also
underscores the advantage of Tensor-FLAMINGO, by jointly model-
ing single cells simultaneously, in capturing the cell-type specific
structural variations and deconvolving heterogeneous types of cells.

Enhanced high-resolution imputation of single-cell chromatin
contacts
The identification of high-resolution chromatin contacts in single cells
is significantly impeded by the sparsity of single-cell datasets, hinder-
ing detailed analysis of chromatin dynamics and cis-regulatory inter-
actions across different cells. The predicted single-cell 3D structures
provide the information of all pairwise spatial distances along chro-
mosomes,which can further generate the complete chromatin contact
maps (see Methods). Therefore, Tensor-FLAMINGO can also serve as
an efficient imputation algorithm for single-cell chromatin contacts at
high-resolution. Unlike the state-of-the-art imputation method
Higashi56, Tensor-FLAMINGO leverages the global information of the
whole chromosomal 3D structure to complete the missing values,
instead of relying on local chromatin contexts.

To evaluate the performance of high-resolution imputation, both
Tensor-FLAMINGO and Higashi are implemented on the snm3C data-
set of 351 mESC cells47. The accuracy of imputed single-cell chromatin
contact maps at 30kb-resolution from the two methods is bench-
marked, respectively, by their correlations to orthogonal datasets of
mESC53–55 (i.e. 3D ATAC-PALM, GAM, and Hi-C). Tensor-FLAMINGO
achieves substantially higher correlations (Spearman correla-
tions>0.44) than Higashi across all comparisons using different
benchmark datasets (Fig. 5a). As a representative example of imputed
chromatin contacts for a single cell in the dataset, Tensor-FLAMINGO
recovers clear TAD structures along the chromosome (chr19) in the
completed single-cell chromatin contact map, while the imputed sig-
nals by Higashi do not demonstrate chromatin organizing patterns
(Fig. 5b, Supplementary Fig. 8d). Furthermore, the recovered TAD
boundaries by Tensor-FLAMINGO are largely supported by the ChIP-
seq signals of CTCF and Rad21 binding clusters (Fig. 5b).

The imputed single-cell chromatin contacts are further evaluated
with respect to their capability of capturing cell-type specificity, by
applying Tensor-FLAMINGO and Higashi on the mixed snm3C dataset
with 351 mESC cells and 96 NMuMG cells. Imputations are carried out
and compared at different resolutions, including 1Mb-, 250kb- and
30kb-resolutions, and cell clusters are identified based on the imputed
single-cell chromatin contactmaps using k-means clustering. Adjusted
Rand Index (ARI) is used as the performance metric to quantify the
consistency between predicted cell-cluster memberships and the real
cell-type identities of all cells (seeMethods). Across all the three tested
resolutions, Tensor-FLAMINGO consistently demonstrates higher
accuracy of cell-type identification (Fig. 5c). Notably, at 30kb-resolu-
tion, the imputed signals by Tensor-FLAMINGO can still classify the
single cells into their corresponding cell types with high accuracy

(ARI = 0.53), which is a significant improvement over Higashi (ARI =
0.13). As shown in Fig. 5d, based on the imputed single-cell chromatin
contacts at low resolutions (1Mb- and 250kb-resolution), both Tensor-
FLAMINGO and Higashi can classify the two mixed cell types into
distinct clusters. However, at higher resolution (30kb-resolution), the
imputed signals by Higashi cannot distinguish the two cell types, while
Tensor-FLAMINGO can group them into clearly separable clusters.
These results not only suggest the vigorous performance of Tensor-
FLAMINGO in high-resolution imputation of single-cell chromatin
contacts, but also the strong capability in capturing cell-type specific
signatures of spatial genome architectures.

Single-cell specific spatial chromatin organization patterns
revealed by Tensor-FLAMINGO
The predicted high-resolution spatial chromosomal conformations in
single cells enable systematic characterizations of 3D genome folding
patterns and the cell-to-cell variations (see Methods), which cannot be
analyzed based on the highly sparse input data. Chromatin compart-
ments, TADs and TAD boundaries across individual cells are identified
based on the single-cell 3D structures. Their overall landscapes along
the chromosome largely align with the patterns from bulk samples
(Fig. 6a–d, Supplementary Fig. 8a–c), while each cell demonstrates
cell-specific variations. The cross-cell structural variabilities are sig-
nificantly associatedwith different chromatin compartments and gene
expression specificities (Fig. 6e and f). Based on the joint profiled
single-cell chromatin contacts and DNA methylation signals (Fig. 7a),
the cell-specific hypomethylated genomic loci are found to be spatially
proximal in the reconstructed single-cell 3D structures (Fig. 7b), sug-
gesting spatially coordinated 1D epigenetic activities. Sub-clusters of
cells are delineated based on each cell’s 3D structures (Fig. 7c, Sup-
plementary Fig. 9). Interestingly, the differentially hypomethylated
genes are more densely organized on the cluster-specific chromoso-
mal structures (Fig. 7d, e, Supplementary Fig. 10), suggesting the
coordinated interplay between gene regulation and the spatial gen-
ome architectures. Detailed analyses of these findings can be found in
the Supplementary Notes.

Dynamic single-cell long-range chromatin interactions identi-
fied by Tensor-FLAMINGO
As a major contribution to single-cell chromatin analysis by Tensor-
FLAMINGO, the completed high-resolution chromatin contact maps
facilitate the identification of significant long-range chromatin inter-
actions in single cells, revealing not only the dynamics of chromatin
interactions but also the functional impacts of distal genetic variants
and cis-regulatory elements. Applied on the Dip-C dataset of 15
GM12878 cells, Tensor-FLAMINGO generated the 30kb-resolution 3D
chromosomal structures, along with the completed single-cell chro-
matin contact maps. Significant long-range chromatin interactions at
30kb-resolution (i.e. scCI) are called for each cell using FitHi-C57 (see
Methods) based on the completed contact maps. ~1000 significant
single-cell long-range interactions are identified per cell at 30kb-

Fig. 4 | Extensive performance comparisons at different resolutions based on
diverse input datasets and gold-standard benchmarks support Tensor-FLA-
MINGO’s superior performance in reconstructing single-cell 3D chromatin
structures. a Performance comparison at 10kb-resolution across four different
input single-cell datasets (GM12878Dip-C datasetn = 14,K562 snHi-Cdatasetn = 16,
mESC scHi-C dataset n = 8, and mESC snm3C dataset n = 351). The chromatin con-
tactmaps (Hi-C and 3DATAC-PALM) profiled from thematching cell types are used
as gold standards. Spearman correlations are used as the performance metric,
including both global accuracy for all pairwise distances in the gold-standard
datasets and the accuracy for the subset of pairwise distances also observed in the
input datasets. The error bars represent the standard deviations across single cells.
b Performance comparison at 30kb-resolution across four different input single-
cell datasets (GM12878Dip-C dataset n = 14, K562 snHi-C dataset n = 16,mESC scHi-

C dataset n = 8, andmESC snm3C dataset n = 351). The predictions of NucDynamics
provided by Si-C are directly used. The chromatin contactmaps (Hi-C, GAMand 3D
ATAC-PALM) profiled from the matching cell types are used as gold standards.
Spearman correlations are used as the performance metric, including both global
accuracy for all pairwise distances in the gold-standard datasets and the accuracy
for the subset of pairwise distances also observed in the input datasets. The error
bars represent the standard deviations across single cells. c UMAP visualization of
the reconstructed single-cell structures from the snm-3C dataset, which contains
two cell types: mESC and NMuMG. Tensor-FLAMINGO’s predictions capture the
cell-type specific structural signatures and lead to clear separations between the
two cell types, while othermethods result inhighlymixed cells of the twocell types.
Source data are provided as a Source Data file.
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resolution (p-value cutoff = 0.05). To note, although cell-type level
interactions can be inferred (e.g. SnapHiC)25, it is not easy to identify
single-cell specific long-range interactions based on the original Dip-C
contact maps due to their high rates of missing data (99.9%) at high-
resolution. As a representative example, (Fig. 8a) shows the significant
single-cell chromatin interactions in a 5.5Mb genomic region on chr21
(chr21:15,500,000-21,000,000), which demonstrate substantial vari-
abilities across 15 different cells at 30kb-resolution. Overall, the single-

cell long-range chromatin interactions show high consistency with
bulk-level interactions profiled by the Capture-C experiment10, with
73% single-cell interactions supported by the Capture-C data (Fig. 8b).
In addition, the single-cell interactions that are also captured by
Capture-C tend to be stronger interactions at the bulk-level (Fig. 8c),p-
value = 3.47 × 10−3, Mann-Whitney U test, suggesting they are more
stable across single cells.On theother hand, theCapture-Cdatamissed
27% single-cell interactions, emphasizing the limitation of bulk-level
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Clear TAD patterns are observed in Tensor-FLAMINGO’s imputed contact map,

which overall align with the CTCF and Rad31 ChIP-seq peaks. c, d Performance
comparison in identifying cell types based on the imputed single-cell contact maps
across different resolutions. c The quantitative accuracy of cell-type identification
is evaluated by the Adjusted Rand Index (ARI). d UMAP of distance matrices pre-
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Source data are provided as a Source Data file.
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experiments in identifying the variable chromatin interactions that
occur only in small subsets of cells.

Furthermore, the landscapes of chromatin interactions across
different cells signify the variable TAD organizations at the single-cell
level that differ from the emergent TAD patterns observed at the bulk-
level. As shownby the example in Fig. 8a, the bulk-level Hi-C chromatin
contact map suggests three TADs in this specific genomic region.
However, the single-cell level chromatin interaction landscapes dras-
tically change across cells so that distinct TAD organizations are found
in different subsets of cells (Fig. 8a). Detailed information of single-cell
chromatin interactions and genome folding for this region can be
found in Supplementary Fig. 11. In the first subset of cells, the chro-
matin interactions are densely organized into three domains, resulting

in three TADs that are consistent with the bulk-level observations. For
these cells, their completed chromatin contact maps are also highly
similar to the bulk-level contact map. The reconstructed 3D spatial
conformation of these cells demonstrates closely folded loops along
this genomic region (Fig. 8a), top-right. Interestingly, in the second
subset of cells, the landscape of chromatin interactions is densely
organized into two TAD domains, which is also shown in the com-
pleted single-cell chromatin contact maps and the reconstructed 3D
conformation (Fig. 8a), middle-right. Compared to the three-TAD
configuration observed at the bulk-level, two of the TADs on the 3’ end
merge together into one larger TAD. Moreover, in the third subset of
cells, the landscape of chromatin interactions only shows one highly
interacting domain, either on the 5’ or the 3’ end, depending on the
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specific cells (Fig. 8a), bottom-right. For these cells, the chromatin
interactions in some of the bulk-level domains disappear, resulting in
the mutually-exclusive vanishment of TADs at the single-cell level,
which is also shown by the completed single-cell chromatin contact
maps and the reconstructed spatial conformation. These remarkable
observations underscore the sophisticated dynamics of chromatin
interactions in single cells that is not distinguishable based on the
collective patterns profiled at the bulk-level experiments.

Spectrum of variable chromatin interactions in single cells
across different resolutions
The variability of long-range chromatin interactions in single cells is
systematically evaluated across a diverse range of resolutions. Based
on the completed high-resolution single-cell chromatin contact maps
of the GM12878 Dip-C dataset45, contact maps at lower resolutions are
also generated, which are used to call the significant long-range

interactions57at corresponding resolutions. As expected, at lower
resolutions, the long-range chromatin interactions are more likely to
be sharedbymultiple cells. For example, at 250kb-resolution, over 50%
interactions are shared by at least two cells and around 40% are shared
by at least three cells (Fig. 8d), suggesting the aggregated bulk-level
chromatin interactions can be reasonable approximations to single-
cell signals at low resolutions. In contrast, at higher resolutions, the
frequencies of long-range chromatin interactions shared bymore cells
dramatically decrease. For instance, at 50kb-resolution, only around
10% interactions are shared bymore than two cells and less than 5% are
shared by more than three cells, with the vast majority of chromatin
interactions being specific to one single cell (Fig. 8d). Collectively, the
spectrum of variabilities indicates the relatively stable backbone of
genome folding at low resolutions, coupled with dynamic chromatin
architecture and epigenetic plasticity across different cells at high
resolutions.
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Functional interpretation of genetic variants based on single-
cell chromatin interactions
A unique advantage of high-resolution reconstruction of 3D chroma-
tin, compared to low-resolution predictions, is the capability of inter-
preting the functional effects of specific genetic variants. Themajority
of significant genetic variants discovered in GWAS and eQTL studies

are non-coding and located distal to genes58. A prevailing mechanistic
assumption for these genetic variants is that they may disrupt long-
range chromatin interactions involved in gene regulation59. Consistent
with this hypothesis, the acute myeloid leukemia (LAML) associated
somatic mutations profiled from the TCGA dataset60 are found to be
significantly enriched in genomic loci that participate in long-range
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single-cell chromatin interactions, which are predicted by Tensor-
FLAMINGO based on the GM12878 Dip-C dataset (Fig. 8e). The
enrichment is statistically significant, compared to the stringent
background of genomic distance-controlled random interactions (p-
value = 7 × 10−3, Mann-Whitney test), suggesting the potential
mechanisms of LAML-association for these somatic mutations are
likely mediated by long-range chromatin interactions. Strikingly,
among these LAML-associated mutations involved in single-cell chro-
matin interactions, 46% of which overlap with interactions that are
only observed in less than ten cells (totally 15 cells in the GM12878Dip-
C dataset) and 16.6% of which overlap with interactions that are only
observed in less than three cells (Fig. 8f). In addition, the SNP-gene
pairs of eQTLs profiled from blood tissues are significantly enriched in
the predicted single-cell specific long-range chromatin interactions,
compared to the background of genomic distance-controlled random
interactions p-value = 0.0013, Mann-Whitney test, (Fig. 8g). To note,
here, the efficient interpretability of eQTLs is achieved by the com-
pleted single-cell 3D chromatin structures from Tensor-FLAMINGO.
Using the original Dip-C dataset, the single-cell chromatin interactions
can only interpret a much smaller fraction of eQTLs overlapping
fraction = 0.017, (Fig. 8g), because of the very high rates of missing
contacts in the original dataset. These results imply the importance of
single-cell specific chromatin interactions in mediating the functional
effects of genetic variants, beyond common interactions.

As a representative example of GWAS SNPs, the Crohn’s disease
associated SNP rs1736135 is predicted to have single-cell specific long-
range chromatin interactions to the promoter of RBM11 (Fig. 8h),
which has been previously documented to be functionally important
and related with the survival rates of patients61. Based on Tensor-
FLAMINGO’s predictions, significant long-range chromatin interac-
tions are discovered for three single cells, highlighting the necessity of
delineating the heterogeneity of chromatin across cell populations. As
another example for the SNP-gene pairs of eQTLs, the SNP rs2252175 is
statistically linked to the gene RUNX1 based on genetic association
studies58. Interestingly, in two single cells, significant long-range
chromatin interactions are identified by Tensor-FLAMINGO, which
suggest that the SNP rs2252175 is spatially proximal to the promoter of

RUNX1 gene in a single-cell specific manner (Fig. 8i). These observa-
tions further highlight the potential limitation of bulk-level interac-
tions in interpreting disease-associated genetic variants or eQTLs,
since the dynamic or transient interactions in subsets of cells may not
be captured. Notably, Tensor-FLAMINGO’s predictions substantially
improve the single-cell level interpretations of genetic variants and
reveal the underlying mechanistic basis of genetic associations.

Predicting functional gene regulatory links in single cells
The single-cell specific 3D spatial distances between genomic loci
predicted by Tensor-FLAMINGO lead to avenues of decoding the long-
range transcriptional regulatory programs in individual cells, which
may not be observable based on bulk-level Hi-C due to the transient
and dynamic nature of regulatory activities. As shown in Fig. 8j, genes
linked by predicted single-cell chromatin interactions have higher
expression specificity in GM12878 (p-value =0.0032, Mann-Whitney
test), suggesting precise transcriptional regulation is spatially facili-
tated in 3D space. Based on the snm3C dataset, which jointly profiled
the coupled single-cell information of chromatin contacts and DNA
methylation signals from the same set of cells, a LASSO model is built
for each gene across cells to identify the single-cell specific regulatory
elements involved in its transcriptional regulation (Fig. 8k), see
Methods. The predicted single-cell 3D spatial distances between a
genomic loci and the target gene’s promoter across individual cells are
incorporated as features. The single-cell DNA methylation signals of
the target gene’s promoter, from the same set of single cells, are used
to quantify its expression activities, based on the anti-correlation
between the promoter’s DNA methylation signals and the gene’s
expression level62. Based on the LASSO models, specific genomic loci,
whose single-cell spatial distances to the target gene’s promoters are
strongly associatedwith thepromoter’sDNAmethylations across cells,
are prioritized as the linked candidate regulatory elements for each
gene. The inferred effect sizes from LASSO for each candidate reg-
ulatory element represent the quantitative regulatory strengths and
are used to rank the linked elements. Remarkably, the top-ranking
regulatory elements linked to each gene are highly enriched with
previously annotated enhancers in mESC63 (Fig. 8l), suggesting the

Fig. 8 | Prediction of the long-range high-resolution single-cell chromatin
interactions based on the imputed contact maps by Tensor-FLAMINGO.
aPredicted single-cell long-rangechromatin interactions across 15GM12878 cells at
30kb-resolution, alongwith the bulkHi-C contactmaps andCapture-C interactions.
Across single cells, different 3D chromatin structures and the landscape of long-
range chromatin interactions are observed, revealing the structural variability
across cells. Only statistically significant chromatin interactions in each cell are
shown (FitHi-C p-value < 5 × 10−5). b The fraction of predicted single-cell chromatin
interactions supported by Capture-C interactions. c Bulk Capture-C interactions
overlapping with predicted single-cell chromatin interactions (scCI) have lower p-
values (p-value= 3.47 × 10−3, one-sided Mann-Whitney U test, non-overlapped
n = 11,967, overlappedn = 2663), suggesting strong consistency betweenCapture-C
and predicted scCI. The center lines of boxplots show the median; the upper and
lower box limits show the 25th and 75th percentiles, respectively. The whiskers
extend up to 1.5 times the interquartile range away from the limits of the boxes.
d Variability of single-cell chromatin interactions across 15 cells at different reso-
lutions. At a specific resolution, fractions of chromatin interactions that are
observed in different numbers of cells are shown. e Single-cell chromatin interac-
tions are enriched with TCGA-LAML somatic mutations compared with distance-
controlled random interactions (one-sided Mann-Whitney U test p-value =0.007,
the count of somatic mutations n = 419). The center lines of boxplots show the
median; the upper and lower box limits show the 25th and 75th percentiles,
respectively. The whiskers extend up to 1.5 times the interquartile range away from
the limits of the boxes. f Frequency of the TCGA-LAML somatic mutations being
captured by the predicted single-cell chromatin interactions that are shared by
different numbers of cells, including rare interactions shared by only 1-3 cells and
conserved interactions shared by 13-15 cells. g Single-cell chromatin interactions
are enriched with eQTLs compared with distance-controlled random interactions

and the contacts in the raw Dip-C data (one-sided Mann-Whitney U test p-value =
0.0022, the count of eQTLs n = 65). An eQTL is considered to be captured by the
raw Dip-C data if the corresponding read count is greater than 1 (i.e. not missing
data) in each single cell. The center lines of boxplots show the median; the upper
and lower box limits show the 25th and 75th percentiles, respectively. Thewhiskers
extend up to 1.5 times the interquartile range away from the limits of the boxes.
h Example of GWAS SNP overlapping with predicted single-cell chromatin inter-
actions. rs1736135 (GWAS test p-value = 7 × 10−9) is linked to the gene RBM11
through predicted long-range chromatin interactions in three single cells.
i Example of eQTL (rs2252175-RUNX2 pair, eQTL test p-value = 5.8 × 10−6) over-
lappingwith predicted single-cell chromatin interactions in two single cells. jGenes
linked by the predicted single-cell chromatin interactions have higher expression
specificity in GM12878 (one-sided Mann-Whitney U test p-value = 0.0032, the total
number of genes n = 18,324). The center lines of boxplots show the median; the
upper and lower box limits show the 25th and 75th percentiles, respectively. The
whiskers extend up to 1.5 times the interquartile range away from the limits of the
boxes. k Schematic figure showing the prediction of functional regulatory links
based on Tensor-FLAMINGO’s predicted spatial distances and the coupled DNA
methylation scores of genes in mESC from the snm3C data. LASSO regression is
used to prioritize theDNA fragments whose 3Ddistances to the gene promoter can
best predict the promoter DNAmethylation scores of the target gene. The longest
distances between DNA fragments and target gene promoters are limited to 3Mb.
l Enrichment of enhancers in top-ranking DNA fragments prioritized by the LASSO
effect sizes. As comparison, the correlations of DNAmethylation between the DNA
fragments and target gene promoters across single cells are used as the predictive
score to prioritize DNA fragments for enhancer enrichment analysis. The result of
distance-controlled random chromatin interactions is also shown. Source data are
provided as a Source Data file.
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accuracy and efficiency of Tensor-FLAMINGO’s results in delineating
transcriptional regulatory networks. Additionally, the enrichment is
consistently higher than the results obtained using the activity corre-
lations of DNA methylations between candidate loci and target gene’s
promoters across single cells (Fig. 8l). The strikingly elevated enrich-
ment indicates the importance of the dynamic high-resolution chro-
matin contacts in modulating gene expressions across single cells,
beyond the information from 1D epigenetic landscapes.

Single-cell specific multi-way interactions revealed by Tensor-
FLAMINGO
Beyond the pairwise two-way chromatin contacts annotated in chro-
matin contactmaps, the spatial architecture of chromosomes contains
numerous multi-way interactions. Multi-way chromatin interactions
establish spatial hubs of interacting loci and facilitate coordinated
molecular processes. The predicted high-resolution 3D chromosomal
structures by Tensor-FLAMINGO enable the probing of spatial dis-
tances among multiple genomic loci so as to identify multi-way inter-
actions directly in the 3D space. Taking three-way interactions as
examples, the averaged 3D chromosomal structures based on Tensor-
FLAMINGO’s predictions across 351mESC cells are first used to call the
stable three-way interactions, based on the spatial compactness and

the associated statistical significance see Methods, (Fig. 9a). Totally
973 statistically significant three-way interactions (p-value <0.05) were
discovered, compared against 1D genomic distance controlled back-
grounds. Using the single-cell SPRITE (scSPRITE) data as the orthogo-
nal gold-standard formulti-way interactions64, the predicted three-way
interactions by Tensor-FLAMINGO demonstrate significantly higher
enrichment of overlapping with scSPRITE multi-way clusters (Fig. 9b),
strongly supporting the accuracy. To note, this is a significant
improvement since the original single-cell chromatin contact data is
too sparse to identify three-way interactions. Figure 9c shows an
example of predicted three-way interactions, where three interacting
anchors are brought to the same 3D neighborhood based on the pre-
dicted high-resolution chromatin folding. Interestingly, the predicted
three-way interactions are consistently observed across single cells in
the scSPRITE dataset and appear as a strong scSPRITE three-way
cluster.

To further delineate the structural heterogeneity of multi-way
interactions across single cells, the 15 GM12878 cells are divided into
three groups based on their predicted chromosomal structures. For
each cell group, cell-group specific three-way interactions are then
identified (see Methods). On average, each cell group contains around
1000 significant group-specific three-way interactions. As one
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interesting example shown in Fig. 9d, the significant three-way inter-
action brings the genomic loci into the proximal 3D neighborhood,
which is only specific in one cell group.As comparison, in theother two
cell groups, the three genomic loci are far away from each other in 3D
space, due to the altered chromatin folding (Fig. 9d). These observa-
tions not only suggest the complicated variability of higher-order
chromatin organizations across single cells, but also indicate that the
predicted high-resolution 3D structures by Tensor-FLAMINGO open
up additional ways of understanding the spatial cooperation among
multiple genomic regions, beyond the conventional analyses of two-
way contacts.

Discussion
In this work, we developed Tensor-FLAMINGO to reconstruct single-
cell specific 3D chromosomal structures at high-resolution from the
sparse single-cell chromatin contactmaps. Uniquely equippedwith the
low-rank tensor completion technique, Tensor-FLAMINGO mitigates
the very high rates ofmissing contacts in single-cell chromatin contact
maps. The application of Tensor-FLAMINGO across four different
single-cell chromatin conformation capture datasets provides a rich
resource of single-cell 3D chromosome structures at 10kb- and 30kb-
resolution. Based on the extensive performance evaluations, Tensor-
FLAMINGO achieves superior accuracy over the state-of-art methods
in: (1) reconstructing single-cell 3D chromosomal structures, (2)
imputing single-cell chromatin contact maps, (3) capturing the cell-
type specific structural variations, and (4) delineating different cell
types or clusters. The high agreement between the experimental
super-resolution imaging data and the Tensor-FLAMINGO’s predic-
tions further supports the accuracy ofTensor-FLAMINGO in predicting
the dynamic and heterogeneous spatial chromatin configurations
across single cells. Biologically, Tensor-FLAMINGO enables the sys-
tematic evaluation of the cell-to-cell structural variations of chromatin
compartments and TADs, along with the relationship to transcription.
Coupled with the single-cell DNA methylation landscape, Tensor-
FLAMINGO unveils single-cell specific interplays between the dynamic
gene regulation and spatial chromosomal structures. The in-depth
characterizations of high-resolution 3D structures facilitate the iden-
tification of single-cell specific long-range chromatin interactions
involved in gene regulation andprovidemechanistic interpretations of
GWASSNPs and long-range eQTLs. Beyond conventional analysis of 2D
chromatin contact maps, the reconstructed chromatin conformation
in the 3D space further reveals complex multi-way chromatin inter-
actions, leading to insights into the higher-order spatial organizations.

As a data-driven model, Tensor-FLAMINGO solely relies on the
input single-cell chromatin contact maps and the low-rank property,
which is intrinsic due to the nature of 3D spatial coordinates and the
dependency among individual cells. It does not rely on any specific
biophysical assumptions, whichmay not be true for different genomic
regions or different datasets and may introduce unexpected bias into
themodel. This is crucial for reconstructing high-resolution single-cell
3D chromosomal structures, considering the critical challenge
imposed by the highly sparse data of single-cell chromatin. On the
other hand, the simulation-based constrained polymer models rely on
both pre-assumed biophysical properties of the DNA sequences and
the single-cell chromatin contact maps to predict 3D structures. This
strategy can reconstruct low-resolution chromosomal structures (i.e.
1MB-resolution) when most of the DNA fragments have regular con-
straints in the relatively dense low-resolution single-cell chromatin
contactmaps. However, the predictive accuracy at high-resolution (i.e.
10 kb) usually decreases drastically for two reasons. Because the high-
resolution chromatin contact maps are incredibly sparse, the
simulation-based prediction is essentially dominated by the pre-
assumed biophysical properties, which are invariant across single cells
and cell types and may contradict the observed chromatin contact
maps. In this case, themodel cannotfind anoptimal structure to satisfy

both constraints, thus deviating from the observed chromatin contact
signals and diluting the cell-to-cell structural variabilities. Further-
more, because the underlying chromatin loop formation mechanisms
are still being actively investigated, the pre-assumed biophysical
properties may not hold for the specific dataset. It is also possible that
different mechanisms establish chromatin loops at different genomic
regions or in different species. Thus, since no prior assumptions of
chromatin folding are used, Tensor-FLAMINGO achieves robust per-
formance in reconstructing high-resolution 3D structures across dif-
ferent single cells and distinct cell types. Considering the
complementary advantages of the data-driven Tensor-FLAMINGO
model and the biophysical-assumption based methods, combining
these two types of approaches for 3D genomemodeling across diverse
panels of single-cell chromatin contact datasets is a promising strategy
for deriving mechanistic insights into the dynamics of chromatin
folding.

Three directions are envisioned for future developments of
Tensor-FLAMINGO. First, due to the large-scale tensor of high-
resolution chromatin contacts across cells, the computational scal-
ability needs to be further improved. Currently, Tensor-FLAMINGO
requires >36 hours to complete the 10kb-resolution single-cell recon-
structions for 15 cells, based on 20 GPUs and 100Gmemory. Given the
fast development of single-cell Hi-C techniques, the number of cells
studied by one experiment is expected to increase in the near future,
requiring a substantial boost in computational scalability andmemory
efficiency of 3D genome reconstruction. Advanced algorithm design
and parallelized optimization are thus desired for future development.
Second, the reconstructed single-cell specific 3D structures by Tensor-
FLAMINGO simultaneously generate the completed single-cell specific
chromatin contact maps. Therefore, Tensor-FLAMINGO can also be
considered as a single-cell Hi-C imputation algorithm, based on the
global spatial folding information across individual cells, providing
more candidate single-cell chromatin interactions for statistical test-
ing. On the other hand, to gain insights into gene regulation and epi-
genetics, it is important to identify statistically significant long-range
chromatin interactions. The state-of-the-art method SnapHiC25 can
take single-cell Hi-C data and predict significant chromatin loops.
Therefore, based on the complementary advantages of Tensor-
FLAMINGO and SnapHiC, it is expected to have promising future
developments to integrate the two types of models and expand sys-
tematical annotations of long-range cis-regulatory interactions at both
cell-type and single-cell levels (Supplementary Fig. 12). Third, to enable
precise interpretation of functional non-coding regulatory elements
and genetic variants, the resolution of 3D chromosomal configuration
needs to be improved. Currently, Tensor-FLAMINGO is able to achieve
robust reconstructions at 10kb-resolution for single cells. Although
10kb-resolution is the highest for single-cell level reconstructions to
date, future developments are demanded to further increase the
resolution to ~1 kb, so that specific regulatory genetic variants can be
pinpointed to study detailed gene regulation and diseasemechanisms.
Higher resolutions will also facilitate the analysis of small-scale struc-
tural variations across single cells.

Methods
Single-cell chromatin contact maps and data preprocessing
Different types of single-cell chromatin contact maps are collected
from four studies, including the Dip-C experiment of GM12878 cells45,
the snHi-C experiment of K562 cells44, the snm3C experiment of mESC
cells47, and the scHi-C experiment of mESC cells40 (see details in the
Data Availability Statement). Single-cell chromatin contact frequencies
are normalized and scaled using band-wise log-linear regression
models, where the bands of contact maps represent groups of chro-
matin interactions sharing similar 1D genomic distances as suggested
by previous work65 and our own comparisons of single-cell and bulk
chromatin contacts at different scales (Supplementary Fig. 13). For

Article https://doi.org/10.1038/s41467-025-58674-w

Nature Communications |         (2025) 16:3435 16

www.nature.com/naturecommunications


each pairwise chromatin contact, the band-specific log-linear regres-
sion model systematically controls the confounding effects of geno-
mic distances, missing rates, single-cell specific sequencing depths,
and loci-specific interaction frequency backgrounds Supplementary
Figs. 14–15. Regression parameters are estimated for each band sepa-
rately. The scaled and normalized single-cell chromatin contact fre-
quency maps are then organized into sparse tensors as inputs for
Tensor-FLAMINGO. To note, as suggested by the previous studies66,67,
we also evaluated the potential bias induced byGCcontents and found
that our normalized signals do not have significant correlations with
GC contents (Spearman correlation=0.0146, p-value = 0.35, randomly
sampled signals n = 4107).

Bulk-tissue chromatin contactmaps generated from the same cell
types are collected from the GEO68 and 4D Nucleome69 databases (see
more details in the Data Availability Statement), including bulk Hi-C
experiments in GM12878 and K562 (GSE63525), GAM experiment in
mESC (GSE64881), 3D ATAC-PALM experiment in mESC (GSE126112)
and bulk Hi-C experiment in mESC (4DNFI5IAH9H1)6,53–55. The GAM
dataset of mESC only provides chromatin contact maps at 30kb-
resolution. All other bulk-tissue chromatin contact maps are used in
analyses at both 10kb- and 30kb-resolution. Chromatin contact maps
are normalized by the Knight-Ruiz normalizationmethod70. The single-
cell SPRITE data (scSPRITE) of multi-way chromatin interactions64 is
collected from the GEO database (GSE154353) and preprocessed
according to the instructions from the original dataset.

Model framework of Tensor-FLAMINGO
Single-cell chromatin contact maps are summarized into a sparse
3-mode tensor (Tobs, Fig. 1a), with the frontal slices representing the
chromatin contact maps of individual cells and each tube along the
third mode of the 3-mode tensor representing a specific pairwise DNA
fragment interaction across different cells. The dimension of Tobs is
M ×M ×N, whereM corresponds to the number of genomic loci under
the specified resolution and N corresponds to the number of
single cells.

Tensor-FLAMINGO (https://github.com/wangjr03/Tensor-
FLAMINGO) employs the low tubal-rank tensor completion techni-
que to reconstruct high-resolution single-cell 3D chromatin structures
by taking advantage of the hidden low-complexity structures in single-
cell chromatin contact maps from two fundamental perspectives: the
first is the low tubal-rank structure of the 3-mode tensor correspond-
ing to multiple single cells, and the second the low-rank structure of
the chromatin contact maps corresponding to each single cell. First,
Tensor-FLAMINGO uses information across cells and jointly models
the chromatin contact signals from different single cells simulta-
neously. Biologically, it leverages the relationships among individual
cells under consideration by viewing that chromatin maps from cell to
cell are highly correlated and such correlation is captured by a
convolution-type operation. The t-SVD is based on such an operation
along the third mode using the discrete Fourier transform, so its
application to the 3-mode tensor results in a much efficient repre-
sentation, leading to efficiency in recovering the missing data in the
3-mode tensor. Moreover, the low-complexity structure induced by
this correlation can be characterized by the low tubal-rank property of
the 3-mode tensor and can be captured by minimizing the tensor
nuclear norm which is closely related to minimizing the tubal rank of
the 3-mode tensor. Second, Tensor-FLAMINGO explores the low-rank
property of chromatin contacts within each cell. Biologically, it makes
use of the fact that the numerous pairwisedistances are inducedby the
underlying low-rank 3D spatial coordinates of genomic loci35. Com-
putationally, an Alternating Direction Method of Multipliers (ADMM)
based tensor tubal-rank-minimization algorithm51 is first implemented
to impute themissing values of single-cell chromatin contactmaps and
to recover a dense tensor, followed by our low-rankmatrix completion
based structure reconstruction algorithm, FLAMINGO35, to infer the

high-resolution spatial chromosomal conformations for each
single cell.

Jointly impute single-cell chromatin contact maps based on low
tubal-rank tensor completion
Based on the sparse input tensor of observed single-cell chromatin
contact maps (Tobs), Tensor-FLAMINGO first employs a low tubal-rank
tensor completion strategy51 to impute missing values and recover a
dense tensor (Fig. 1a) from the set of limited observed entries (Ω). The
recovered dense tensor (X) captures the low-complexity structure
embedded in the input high-dimensional tensor, whilemaintaining the
minimum error on the set of observed pairwise entries of single-cell
chromatin contact frequencies. The overall low-complexity structures
consisting of the low tubal-rank structure at the 3-mode-tensor level
(the chromatin contact maps of multiple single cells) and the low-rank
structure at thematrix level (the chromatin contactmap of each single
cell) enables efficient imputation of missing data of un-observed sin-
gle-cell chromatin contacts by leveraging the biological relationship
across different cells and by leveraging the inter-dependency among
pairwise chromatin contacts within each cell. Therefore, the objective
function for the low tubal-rank tensor reconstruction is:

min jjX jjTNN , s:t:ΩðTobsÞ = ΩðX Þ, ð1Þ

where Tobs represents the sparse input tensor of single-cell chromatin
contact maps, X represents the dense tensor to be recovered, Ω
represents the set of observed chromatin contact entries in Tobs, and
TNN represents the Tensor Nuclear Norm, which is closely related to
the tubal rank of a 3-mode tensor.

Tensor-FLAMINGO employs an efficient Alternating Direction
Method of Multipliers (ADMM) strategy to solve the optimization
problem. For ADMM, the objective function can be re-written in the
equivalent form as:

min
X, Z

jjX jjTNN , s:t: y =A×VecðZ Þ, X =Z ð2Þ

where y=A×VecðTobsÞ. Here, A 2 RðijkÞðijkÞ is a binary matrix, which has
the value of 1 on ΩTobs and 0 otherwise. Vec represents the vectoriza-
tion process of a tensor. And the Lagrangian can be written as:

L X ,Z , λ1, λ2
� �

= jjX jj* + λ1, y� A×Vec Zð Þ� �
+ λ2,X � Z
� �

+ μ
2 y� A×Vec Zð Þ
�� ��2 + μ

2 X � Zj j2
ð3Þ

Accordingly, X ,Z and the Lagrangian multipliers λ1, λ2 can be
updated through iterations as:

Xl + 1 = argminX jjX jj* +
μ
2
jjX � Zl + λl2=μjjF

Z l + 1 = ðATA+ IÞ�1ð�AT λl 1=μ+Vecðλl2Þ=μ+ATy+VecðXl + 1ÞÞ
λl + 11 = λl1 +μðA×VecðZl + 1Þ � yÞ
λl + 12 = λl2 +μðXl + 1 � Zl + 1Þ

ð4Þ

In each iteration, the update of X involves an optimization, which
is solved by the t-SVD method (see below)51.

Through iterations, the updating scheme of X is equivalent to
solving the optimization problem

min jjXl + 1jj*, s:t:X =Tl
obs

where Tobs
l =Zl � λl2 =μ represents the optimal approximation of the

observed data in the lth ADMM iteration. This optimization problem
can be solved using the t-SVD algorithm51. The t-SVD decomposes a
3-mode tensor (A) into the multiplication of three tensors:
A=U *Σ *VT , where * represents the circular convolution product (t-
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product) of tensors, U and V are orthogonal in the t-product sense,
and Σ is an f-diagonal tensor with all frontal slices being diagonal
matrices. Based on the t-SVD, the tubal rank of tensor (A) is defined as
the number of nonzero singular tubes of Σ51. Nowwe apply the t-SVD to
decompose the tensor of observed data (Tl

obs) into the multiplication
of three tensors: Tl

obs =U*Σ*VT . According to the tensor-completion
theory51, the tensor completion problem can be solved by calculating
the matrix SVD across all frontal slices of the tensor in the Fourier
domain. Thus, the observed 3-mode tensor Tl

obs is transformed into
the Fourier domain using a tube-wise Fourier transformation:

T̂
obs
l;i, j, k =

XN

n= 1

Tobs
l;i, j,ne

�2πikn
N ð5Þ

Intuitively, the contact between DNA fragment i and DNA fragment

j for single cell k in the Fourier domain (T̂
obs
l; i, j, k) is calculated from the

same contact across all single cells (Tobs
l; i, j,n for all n). Therefore, if any

single cell chromatin contact map contains observed values for the

contact (i, j), all values in the tube T̂
obs
i, j,: will be completed in the Fourier

domain by aggregating the observations of all cells. Given the tensor

T̂
obs
l in the Fourier domain, the soft-thresholding SVD is appliedon every

frontal slice of T̂
obs
l (T̂

obs
:, :, k) to calculate the dense low tubal-rank tensor

Xl : Xl =Uobs
k *ðΣobs

k Þ1::m*ðVk
obsÞT , where ðΣobs

k Þ1::m represents them largest

singular values in Σobs
k . The SVD procedure captures the low-rank

structures of the frontal slices and uses information across all contacts
within each cell. The recovered tensor is then transformed back into the
original domain using the inverse Fourier transformation, and the
resulting tensor can maximally approximate the input one.

The updated X facilitates the use of information across all dif-
ferent single cells and across different chromatin contacts within each
cell. The updated Z guarantees that the predicted values are close to
the observed signals on the observed set (Ω). To note, all model
parameters are jointly inferred through iterations adaptively based on
the input data and there are no free parameters requiring prior set-
tings. Upon convergence, the first step of Tensor-FLAMINGO imputes
much denser contact maps for every cell, which maximally align with
the observed single-cell chromatin contact signals and will be used to
construct the final single-cell specific 3D structures in subsequent
steps (Supplementary. 16).

Reconstruct single-cell 3D chromatin structures based on low-
rank matrix completion
Based on the imputed low-rank single-cell chromatin contact tensor,
Tensor-FLAMINGO further implements our low-rank matrix comple-
tion based algorithm, FLAMINGO35, to reconstruct the 3D chromoso-
mal structures for each single cell (Fig. 1a). The imputed single-cell
chromatin contact maps of interaction frequencies (IF) are converted
to pairwise spatial 3D distance (PD) matrices using the exponential
conversion function: PDij = IFij

�α ðα =0:25Þ, which has been estimated
and justified by previous studies12. By explicitly exploring the low-rank
dependence among the large amounts of pairwise spatial distances
(matrix rank is at most five), FLAMINGO achieves (1) high-resolution
reconstruction of 3D conformations, (2) strong robustness against
high rates of missing values, and (3) orders of magnitudes boost in
scalability35. The superior accuracy of predicted 3D structures by
FLAMINGO at 5kb- and 1kb-resolution, along with their functional
impacts on gene regulation and distal genetic variants, has been sys-
tematically benchmarked by both simulations and different orthogo-
nal chromatin contact datasets35. Applied on the converted spatial
distance matrices of single cells, FLAMINGO generates the high-
resolution spatial coordinates of 3D structures for chromosomes of
each individual cell.

Performance evaluation based on simulated chromatin
structures
The performance of Tensor-FLAMINGO is extensively benchmarked
by a series of simulations, with a number of parameters system-
atically varied. For each simulated dataset, multiple different con-
sensus structures (m structures) with equal chromosome size l (i.e. l
beads) are used to generate a mixed pool of single cell structures, in
order to account for the heterogeneity of different cell types. The
underlying consensus structures are generated with structural var-
iations to each other, and the structural similarity across different
consensus structures are controlled by the similarity parameter
W ð0<W < 1Þ. The l by l pairwise spatial distance matrix of each
consensus structure is used to generateN different distancematrices
of single cells, based on random down-sampling of entries and
adding randomnoise. Therefore, each simulated dataset is organized
into a sparse tensor withmN frontal slices, which is used as the input
for Tensor-FLAMINGO to reconstruct the 3D structures ofmN single
cells. To test the performance of Tensor-FLAMINGO under different
conditions, a series of simulated datasets are generated based on
combinatorial settings of the key parameters with different values,
including: (1) the similarity parameter W ð0<W < 1Þ to control the
similarity across different cell types in the pool; (2) the down-
sampling rate γð0< γ < 1Þ to control the missing rate in single-cell
distance matrices; (3) the noise level to control the random varia-
tions of single-cell specific observations; (4) the number of mixing
cell-types, m, in the simulated pool of structures; (5) the number of
single cells, N, belonging to each cell type; (6) the length of the
chromosome structure l, and (7) the organizing order of frontal sli-
ces in the input tensor. The added white noise takes three different
levels as suggested by previous studies71, including level-zero: no
noise; level-one: generated by the normal distribution Normalðδ, δÞ;
and level-two: generated by Normalð2δ,δÞ; where δ represents the
minimum value from the down-sampled pairwise distances71. For
other parameters, a wide range of values of each parameter is used to
create different sets of simulated structures to benchmark the robust
performance systematically.

The reconstructed single-cell structures from Tensor-FLAMINGO
are compared to the benchmark structures of simulations for perfor-
mance evaluation based on two metrics: (1) Spearman correlations of
the distance matrices between the predicted and the benchmark
structures; and (2) the RMSD of 3D coordinates between the predicted

(Cpred) and the benchmark structures (Cbenchmark):

RMSD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Pl
i= 1jjCpred

i � Cbenchmark
i jj2

q
. Both of these two metrics have

been widely used in previous studies for performance
quantifications27,49,50.

Performance comparison based on STORM 3D genome imaging
data of single cells
To quantitatively evaluate the performance of predicting single-cell
specific 3D structures, the multiplexed single-cell STORM 3D genome
imagingdata52 of the human chromosome21 in K562 is collected as the
orthogonal benchmark testing dataset. This dataset is used to com-
pare the accuracy of different algorithms’ predictions based on the
K562 snHi-C chromatin contact data of 16 cells as inputs44. As data
quality control, single-cell structures measured by the STORM dataset
withmissing rates greater than0.5 are first excluded from the analysis.
Because the STORMand snHi-C datasets used different populations of
K562 cells, the single-cell structures from these two experiments are
not directly matched to each other. Therefore, the cells of the STORM
dataset are furtherfiltered to identify theones that arehighly similar to
the 16 cells of the snHi-C dataset, by calculating their correlations to
the input snHi-C chromatin contact maps. For each single cell of the
snHi-C dataset, the top 20 STORM structures with the highest corre-
lations are considered as the matched structures and are included for

Article https://doi.org/10.1038/s41467-025-58674-w

Nature Communications |         (2025) 16:3435 18

www.nature.com/naturecommunications


the downstream benchmark analysis. Hence, in total, 320 high-quality
cells from the STORMdataset withmatching structures are used as the
benchmark structures for the performance evaluation at the single-cell
level (Fig. 3c and d). Different algorithms, as summarized in the next
section, are tested, and the predicted single-cell specific structures
based on the same input snHi-C dataset are evaluated based on their
Spearman correlations to the same benchmark STORM single-cell
structures.

Performance comparison across diverse experimental contexts
based on orthogonal chromatin contact data
The performance of Tensor-FLAMINGO is further evaluated across
different cell types (i.e. human GM12878, human K562 andmouse ESC
cells), different types of inputs of single-cell chromatin contacts (i.e.
Dip-C, snHi-C, scHi-C and snm3C)40,44,45,47, different levels of resolu-
tions (i.e. 10kb- and 30kb-resolution), and different types of bench-
mark datasets as gold-standards (i.e. 3D ATAC-PALM, GAM, and bulk
Hi-C). To compare with predicted structures, the chromatin contact
frequencies of benchmark datasets are converted into spatial pairwise
distances of genomic regions, based on the exponential transforma-
tion function as explained above12. Spearman correlations between the
predicted and the observed benchmark spatial pairwise distances are
used as themetric of accuracy as suggested by previous studies27. This
metric, termed ‘Accuracy (global)’, evaluates the overall accuracy of
predictions for both observed and imputed entries in single-cell con-
tact maps. In addition, to specifically evaluate the accuracy of pre-
dicted spatial distances for the subset of observed entries (Ω) in single-
cell contact maps, a second metric of accuracy based on Spearman
correlations, termed ‘Accuracy (measured subset)’, is calculated in the
same way as ‘Accuracy (global)’ but restricted to the subset of single-
cell observed entries.

There are currently only six algorithms that have been developed
or suggested to reconstruct single-cell chromosomal structures, while
other methods28,29,31,32 can only work on bulk-level data. Out of the six
algorithms, MBO72 is excluded from the analysis due to the unavail-
ability of code. Therefore, Tensor-FLAMINGO is compared to five
algorithms: ShRec3D27, NucDynamics40, RPR30, isdHi-C49 and Si-C50.
Because the code of NucDynamics is unable to run, the available pre-
dictions of NucDynamics based on mESC scHi-C are directly down-
loaded for the corresponding comparisons. The other four algorithms
are all applied on the same datasets using their suggested parameter
settings to predict single-cell 3D chromatin structures at 10kb- and
30kb-resolution. The same performance evaluations using Spearman
correlations to orthogonal gold-standard datasets as described above
are implemented on the predicted structures from different
algorithms.

In addition, the cell-type specificity of predicted single-cell 3D
chromosomal structures are evaluated and compared across different
algorithms. Tensor-FLAMINGO and the four algorithms are applied on
the snm3C data47, which contains 351 mESC cells and 96 NMuMG cells,
to reconstruct the 3D chromatin structures for every cell. For each
algorithm, UMAP plots based on the predicted distance matrices are
generated to visualize the two types of single cells. An improved
separation of cell-type clustering of single cells is expected if an
algorithm achieves better performance of reconstructing 3D struc-
tures of single cells that belong to different cell types.

Performance comparison in imputinghigh-resolution single-cell
chromatin contacts and classifying cell types
The reconstructed 3D structures fromTensor-FLAMINGOgenerate the
completed matrices of single-cell chromatin contacts. The completed
matrices provide high-resolution imputed values for the missing data
of the sparse single-cell 3C-based experiments. The accuracy of the
imputed high-resolution single-cell chromatin contacts by Tensor-
FLAMINGO is evaluated by their correlations to the observed

chromatin contacts from bulk-tissue experiments. The usefulness of
the imputed chromatin contacts in classifying single cells belonging to
different cell types is quantified by the Adjusted Random Index (ARI)
between the predicted cluster memberships (based on k-means clus-
tering) and the real cell-type identities of single cells. The performance
is benchmarked by applying Tensor-FLAMINGO on the snm3C dataset
at different resolutions (i.e. 1Mb-, 250kb- and 30kb-resolution). In
comparison, the Higashi algorithm56, which imputes single-cell chro-
matin contacts, is applied on the same dataset and is evaluated by the
same metrics.

Identify single-cell chromatin compartments, TAD boundaries
and structural variabilities
The completed chromatin contact matrices of single cells are derived
from the reconstructed 3D structures and are further normalized
based on the standard protocol of previous studies6. Principal com-
ponent analysis is implemented on the normalized chromatin contact
matrix of each single cell and the PC1 scores are calculated to identify
chromatin compartments A/B5. Topologically associated domains
(TADs) and their boundaries are called based on the completed single-
cell chromatin contact matrices by the TADCompare software73.

To quantify the structural variation of specific genomic regions
across different cells, the RMSD metrics between single-cell
structures and the pooled average structure is calculated:
RMSDk

i = jCoordk
i � Coordpooled

i j, where RMSDk
i represents the RMSD

in single cell k at genomic location i. The distribution of RMSD:
i values

across all single cells demonstrates the overall degree of structural
variability for the specific genomic location i.

Differentiallymethylated gene analysis across clusters of single-
cell structures
The 351mESC cells from the snm3C dataset47 are analyzed to delineate
the relationship between high-resolution 3D chromatin structures and
gene regulation. Hierarchical clustering is applied on the recon-
structed single-cell structures by Tensor-FLAMINGO for these 351 cells.
Two cell clusterswith distinct 3D structures are identified based on the
highest average Silhouette score. The coupled single-cell DNA
methylation signals from the same snm3C dataset at gene promoters
are used to quantify the epigenetic environment and regulation of
genes in different cells. DEseq2 package74 with default settings is used
to call differentially methylated genes across the two clusters of
single cells.

Identify statistically significant single-cell chromatin
interactions
To predict significant single-cell chromatin interactions of GM12878,
the distance matrices induced by the predicted high-resolution 3D
structures are converted to chromatin contactmatrices using the same
exponential conversion function as described above. FitHi-C57 is then
applied to identify the statistically significant chromatin interactions.
To control the false positive rates, a stringent p-value threshold is
selected as 1 × 10−20 57. As support, the identified single-cell chromatin
interactions are compared to theGM12878Capture-Cdataset10 and the
fractions of overlapping with Capture-C interactions are calculated.
For each significant chromatin interaction, its occurrence frequency
among single cells is calculated. The overall variability across single
cells is further analyzedby thedistributions of occurrence frequencies,
i.e. the spectrum, of significant chromatin interactions, across a
diverse panel of resolutions.

Predict single-cell cis-regulatory links based on high-resolution
3D structures
Based on the snm-3C dataset with coupled single-cell chromatin con-
tact and DNA methylation signals47, Lasso regression models are built
to identify single-cell cis-regulatory regions linked to the promoters of
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specific target genes, using the predicted high-resolution 3D spatial
distances as the only features. For each gene, the promoter DNA
methylation signals across single cells are used to represent its single-
cell activities. All flanking genomic bins within +/-3Mb from its pro-
moter are considered in the model, and the predicted 3D spatial dis-
tances of each bin to the promoter are used as features. Based on the
fitted Lasso regressionmodel, the flanking genomic bins are ranked by
their Lassoeffect sizes,where larger Lasso effect sizes suggest stronger
association between the single-cell gene activity and the spatial
proximity of the specific genomic bins in 3D space. For each gene, the
top-ranking genomic bins are prioritized as the candidate cis-
regulatory elements, including long-range regulatory links from dis-
tal genomic regions.

Interpret disease-associated genetic variants and eQTLs
The genetic variants that are significantly associated with LAML are
collected from the TCGA dataset60. The fractions of these genetic
variants that overlap with genomic regions of predicted GM12878
chromatin interactions in different single cells are calculated. In
comparison, the background set of the same number of random
chromatin interactions in each cell is generated, with genomic
distances strictly controlled to follow the same distribution as
the foreground. The fractions of genetic variants overlapping
with genomic regions of random single-cell chromatin interactions
are also calculated. One-sided Mann-Whitney U test is used to eval-
uate the statistical significance of functional genetic variant enrich-
ments in genomic regions with predicted single-cell chromatin
interactions.

The SNP-gene pairs of cis-eQTLs are collected for immune-related
cell types58. The fractions of these eQTL SNP-gene pairs that overlap
with GM12878 chromatin interactions in different single cells are cal-
culated. The background set of randomchromatin interactions in each
cell is generated with genomic distances controlled and the fractions
of eQTL SNP-gene pairs overlapping with random single-cell chroma-
tin interactions are calculated. One-sidedMann-Whitney U test is used
to evaluate the enrichment of cis-eQTLs in predicted single-cell chro-
matin interactions. As comparison, the fractions of cis-eQTLs over-
lapping with single-cell chromatin interactions from the raw input
GM12878 Dip-C contact matrices are also calculated.

Discover single-cell three-way chromatin interactions at high-
resolution
Based on the predicted single-cell 3D chromatin structures, three-way
chromatin interactions are defined as groups of three genomic regions
that are spatially proximal to each other. For every combination of
three genomic regions along a chromosome, the average pairwise
spatial distances are calculated to quantify the spatial compactness.
Specifically, for a set of genomic regions i, j, k (i< j < k), the average 3D
pairwise distance is calculated as: Di, j, k =

1
3 ðDij +Dik +DjkÞ, where Dij

represents the predicted 3D genomic distance between genomic
regions i and j. As comparison, the average spatial distances of
1000 sets of genomic regions with the same 1D genomic distances are
calculated: Dbg

m,n,p =
1
3 ðDmn +Dmp +DnpÞ, where n�m= j � i and

p� n = k � j, in order to control the 1D genomic distances. The
empirical p-values are calculated as Pijk =

1
1000 ð1 + countfDbg <DijkgÞ.

As suggested by previous studies on the identification of two-way
chromatin interactions6, the adjacent three-way interactions are
pruned and the most significant ones are selec-

ted: SIi, j, k =argminm,n,p Pmnpjjm� ij< 5, jn� jj< 5, jp� kj< 5
n o

.

Statistics and reproducibility
In performance comparison, all methods are independently applied to
reconstruct the single-cell chromosomal 3D structures in the human
genome. The sample sizes of different algorithms are determined by

the number of completed reconstructions. In the analyses of bulk tis-
sue chromatin contact capture datasets and the eQTL datasets, the
sample sizes are determined by the original datasets and no data
points are excluded from the analysis. No statistical method was used
to predetermine the sample size. The preprocessing steps for the
STORM dataset are described above (see the section Performance
comparison based on STORM3D genome imaging data of single cells).
In the simulation analysis and the down-sampling analysis, the per-
formance is evaluatedbasedon randomly down-sampleddatasets, and
no data points are excluded from the analyses. To reproduce the
analysis, the predicted 3D structures from four single-cell datasets at
10kb- and 30kb-resolution and the simulated datasets are provided
(see Data Availability and Code Availability).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study, including the code of Tensor-FLA-
MINGO, the simulated data, the predicted single-cell chromosome
structures at 10 kb and 30 kb resolutions and the intermediate analysis
results, are available in Tensor-FLAMINGO GitHub repository: https://
github.com/wangjr03/Tensor-FLAMINGO. In addition, a Zenodo
repository is also created to access the results and the code of Tensor-
FLAMINGO: https://doi.org/10.5281/zenodo.13645233. Dip-C data in
GM12878 used in this study are available under GSE117876. snHi-C data
in K562 are available under GSE80006. scHi-C data in mESC are
available under GSE80280. snm3C data in mESC and NMuMG are
available underGSE124391. Bulk-tissueHi-Cdata inGM12878 andK562,
along with the annotations of chromatin compartments and TADs, are
available under GSE63525 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi]. Bulk-tissue Hi-C data in mESC are available at the 4D
Nucleome Data Portal under 4DNFI5IAH9H1. 3D ATAC-PALM data in
mESC are available under GSE126112. Capture-C data in GM12878 are
available under GSE86189. STORM data is downloaded from https://
github.com/BogdanBintu/ChromatinImaging/tree/master/Data.
Single-cell SPRITE data are available under GSE154353. ChIP-seq data
are downloaded from the GEO database (CTCF:, RAD21:). Gene
expression data are available at the Roadmap data consortia [https://
egg2.wustl.edu/roadmap/web_portal/processed_data.html]. The eQTL
dataset in K562 is collected from the MuTHER consortia (http://www.
muther.ac.uk/Data.html). TCGA-LAML mutations are available at the
GDC portal [https://portal.gdc.cancer.gov/projects/TCGA-LAML].
Source data are provided as a Source Data file. Source data are pro-
vided with this paper.

Code availability
The Tensor-FLAMINGO software, along with all the predicted 10kb-
and 30kb-resolution single-cell chromosomal structures, is available at
GitHub: https://github.com/wangjr03/Tensor-FLAMINGO. The reposi-
tory also provides scripts and instructions for structure visualizations,
sample codes, sample input data, intermediate results, and informa-
tion of relevant datasets to reproduce the analyses. In addition, a
Zenodo repository for Tensor-FLAMINGO75 is also created: https://doi.
org/10.5281/zenodo.13645233.
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