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Genomic, transcriptomic, and
immunogenomic landscape of over 1300
sarcomas of diverse histology subtypes
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Given their rarity and diversity, a fundamental understanding of the genomic
underpinnings for many sarcoma subtypes is still lacking. To better define the
molecular landscape of this group of diseases, we perform matched whole
exome sequencing and RNA sequencing on a cohort of 1340 sarcoma tumor
specimens.We identify recurrent somaticmutations and observe an increased
mutational burden in metastatic vs. primary samples (p <0.001). We observe
frequent copy number alterations including whole genome doubling, with this
feature being more common in metastatic tumors (p = 0.026). Estimation of
immune cell abundances followed by hierarchical clustering identifies five
immune subtypes ranging from low to high and we observe inferior overall
survival in immune deplete clusters compared to immune enriched (p <0.01).
Interestingly, GIST predominantly form a distinct “immune intermediate”
cluster that is marked by a specific enrichment for NK cells (FDR <0.01).

The term sarcoma encompasses a diverse group of rare malignancies
that arise from mesenchymal tissues. Though only accounting for
approximately 1% of cancer incidence, there aremore than 100distinct
sarcoma subtypes1. These features of rarity and diversity pose sig-
nificant challenges to both research efforts and the clinical manage-
ment of this group of diseases. Historically, sarcomas have been
grouped into broad categories (e.g. “soft tissue sarcoma”) despite
highly divergent disease biology and clinical behavior amongst these
diseases. Unfortunately, for most patients with advanced-stage sar-
coma, treatment options are limited and non-curative. Cytotoxic

anthracycline-based chemotherapy remains the standard first line
systemic treatment for most sarcoma varieties2.

In recent years, there has been an increasing emphasis on
improving the precision of sarcoma diagnosis, treatment, and clinical
management using molecular profiling. Clinical molecular profiling
efforts have consistently demonstrated the ability to enhance or refine
sarcoma diagnosis in a clinically meaningful percentage of patients
and, in some cases, uncover opportunities for molecularly guided
therapeutic strategies3–6. For several of the more common sarcoma
types, immunogenomic characterization might also help to select
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patients for checkpoint inhibitor therapy7, the subject of ongoing
clinical study. For several of the rarest subtypes, there have been new
diagnostic categorizations based largely on disease-defining genomic
features and the resultant recognition of distinct clinical behaviors, for
example round cell sarcomas with alternate non-EWS-ETS fusions8,9.

Despite the widespread use of next generation sequencing (NGS)
in both the lab and clinic, our fundamentalmolecularunderstandingof
many sarcoma subtypes remains limited. Most initial comprehensive
NGS efforts in adult sarcomas, such as The Cancer Genome Atlas
(TCGA) project and cohort studies, have focused only on a handful of
the more common sarcoma subtypes, and largely have characterized
only primary tumor samples10,11. Clinical molecular profiling efforts,
while including broader diagnostic categories and tumor stages, are
often limited to panel-based sequencing designed to capture mole-
cular features relevant in common cancer types and therefore poten-
tially less relevant to sarcomas3,6. To further our understanding of the
sarcoma molecular landscape across a broad group of sarcomas, we
performed comprehensive profiling including whole exome sequen-
cing and transcriptome sequencing on a cohort of >1,300 sarcomas,
includingbothprimary andmetastatic tumor samples collected aspart
of the Oncology Research Information Exchange Network (ORIEN)
collaborative. In addition to describing foundational genomic features
and a landscape of gene expression patterns, we assessed the immu-
nogenomic features of these tumors and the associated micro-
environments captured by bulk sequencing and evaluated these
immunogenomic features for prognostic relevance.

Results
A total of 1340 tumor samples from 1232 patients representing 42
different sarcoma subtypes were included in this analysis (Table 1). Of
these, 1162 samples underwent tumor and germline whole exome
sequencing (WES, Supplementary Table 1) and 974 samples underwent
RNA sequencing (Supplementary Table 2), with 796 having data
available from both. Patients with samples from the primary tumor
(n = 971), a metastatic site (n = 225), or both (n = 36) were included in
our cohort. Prior to disease-based clustering and analysis, we reclas-
sified the diagnosis in 14 (1.0%) samples based on the presence of a
pathognomonic driver fusion (Supplementary fig. 1; Supplementary
Table 3).

Somatic mutational analysis and tumor mutational burden
Somatic mutations were identified for all samples and were assessed
for enrichment at the gene level per histology subtype. To provide an
overview of the most recurrent and relevant findings, the top 10 most
significantlymutated genes from each histology were intersected with
theCOSMICTier 1 CancerGeneCensus andused to create anOncoplot
(Fig. 1A, Supplementary Data 1). As expected, TP53 showed the highest
mutation frequency across the entire cohort (18.2%). Additional known
disease-specific mutational patterns were recapitulated, such as
recurrent KIT and PDGFRA mutations in GIST.

Interestingly, the frequency of somaticmutations in these cancer-
associated genes was significantly higher in metastatic tumors com-
pared to primary tumors (medianmutations in COSMIC Tier 1 genes 3
vs. 2, Wilcoxon Rank Sum p <0.001). Notably, the higher mutational
rate in known oncologic drivers in metastatic vs. primary samples was
largely accounted for by an increase in frequency of themost common
tumor suppressors TP53 (26% vs. 16%, Chi-squared p =0.0007) and
ATRX (8.9% vs 5.2%, Chi-squared p =0.04) and not by an increase in
frequency of driver kinase mutations such as KIT (11% vs. 12%, Chi-
squared p =0.88).

We observed a wide range of tumor mutational burden (TMB),
both intra- and inter-histology, in our cohort (Fig. 1B). Undifferentiated
pleomorphic sarcomahad the highestmedianmutations perMB (mut/
MB; median = 1.3 mut/MB, range 0.06 to 28.2 mut/MB) amongst his-
tologic types evaluated.Overall,we found that98.3%ofORIEN samples

demonstrated a low ( < 5 mut/MB) or intermediate (>= 5 mut/MB and
<10 mut/MB) TMB (97.1% and 1.2%, respectively) which was not sta-
tistically different from the TCGA SARC cohort (94.6% and 2.1%,
respectively, Fisher’s Exactp =0.14; Fig. 1B). Average tumormutational
burden across the whole ORIEN cohort was 1.46 mut/MB, with a

Table 1 | Cohort description

Number Percent

ORIEN Avatars 1232

Total Tumors 1340

Tumor Site

Primary 1058 79.0

Metastatic 282 21.0

Preservation Method

Formalin-Fixed Paraffin Embedded 658 49.1

Fresh Frozen 671 50.1

Other 11 0.8

Molecular Data

Both 796 59.4

RNA 178 13.3

WES 366 27.3

Histology Subtype

Adenosarcoma 6 0.4

Angiosarcoma 24 1.8

Chondrosarcoma 28 2.1

Dedifferentiated Liposarcoma 80 6.0

Dermatofibrosarcoma 10 0.7

Desmoplastic Small Round
Cell Tumor

9 0.7

Endometrial Stromal Sarcoma 22 1.6

Epithelioid Sarcoma 11 0.8

Ewing Sarcoma 23 1.7

Fibrosarcoma, NOS 20 1.5

Gastrointestinal Stromal Tumor 216 16.1

Leiomyosarcoma 204 15.2

Liposarcoma, NOS 54 4.0

Malignant Giant Cell Tumor of
Soft Parts

35 2.6

Malignant Peripheral Nerve
Sheath Tumor

22 1.6

Myxofibrosarcoma 41 3.1

Myxoid Chondrosarcoma 12 0.9

Myxoid Liposarcoma 45 3.4

Osteosarcoma 50 3.7

Othera 37 2.8

Pleomorphic Liposarcoma 21 1.6

Rhabdomyosarcoma 18 1.3

Sarcoma, NOS 133 9.9

Solitary Fibrous Tumor Malignant 20 1.5

Synovial Sarcoma 54 4.0

Undifferentiated Pleomorphic
Sarcoma

92 6.9

Well Differentiated Liposarcoma 53 4.0
aHistological subtypes with n < 5, including Adamantinoma of Long Bones (n = 1), Alveolar
Rhabdomyosarcoma (n = 3), Alveolar Soft Part Sarcoma (n = 4), Chordoma (n = 4), Clear Cell
Chondrosarcoma (n = 3), Clear Cell Sarcoma (n = 3), Dedifferentiated Chondrosarcoma (n = 2),
Epithelioid Hemangioendothelioma (n = 2), Inflammatory Myofibroblastic Tumor (n = 2), Intimal
Sarcoma (n = 1), Kaposi Sarcoma (n = 1), Malignant Rhabdoid Tumor (n = 1), Mesenchymal Chon-
drosarcoma (n = 1), Myoepithelial Carcinoma (n = 1), Peripheral Neuroectodermal Tumor (n = 4),
Pleomorphic Rhabdomyosarcoma (n = 2), Round Cell Sarcoma (n = 2).
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significantly higher burden observed in metastatic samples (1.88 mut/
MB) compared to primary samples (1.34 mut/MB; Wilcoxon Rank Sum
p <0.001). For histology subtypes with both primary and metastatic
samples greater than 20 (GIST, Leiomyosarcoma, and Sarcoma, NOS),
we compared TMB between disease sites. Leiomyosarcoma was the
only of the three histology subtypes to display a significant increase in
mut/MB in metastatic disease (Wilcoxon Rank Sum p value = 0.022),
while GIST (Wilcoxon Rank Sum p value = 0.065) and Sarcoma, NOS
(Wilcoxon Rank Sum p value = 0.725) did not.

Microsatellite-instability (MSI) was identified in 6 of 1162 WES
samples (0.5%), including 4 sarcoma NOS, 1 leiomyosarcoma, and 1

malignant peripheral nerve sheath tumor.MSI tumors demonstrated a
higher TMB (median = 11.0mut/MB, range 1.1 to 56.5mut/MB) than the
overall cohort (median = 0.73 mut/MB, range 0 to 54.9 mut/MB). Non-
silent mutations in mismatch repair (MMR) genes were identified in
three of six MSI samples tumors, specifically in genes MLH3, MSH3,
MSH6, PMS2, and RFC3.

Copy Number Variations and Whole-Genome Amplification
Inmany sarcoma subtypes, copy number variations (CNV) are thought
to be the primary driving events, such as recurrent MDM2/CDK4
amplification in well-differentiated/de-differentiated liposarcoma
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Fig. 1 | COSMIC Tier 1 genes significantly mutated in sarcomas. Top 10 most
significantly mutated genes from robust regression in each histology subtype
intersectedwith theCOSMIC Tier 1 gene list (A) shows the highmutation frequency
of TP53 across all histology subtypes and histology-specific mutations like KIT.

Tumormutation burden of all non-silentmutations in sarcomas compared to TCGA
PanCancer Study (B) show similar tumor mutation burden in ORIEN compared to
TCGA SARC.
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(WD/DDLPS). To provide a landscape of CNV across our diverse
cohort, we summarized CNV by chromosome arm with length-
weighted average, plotted by sarcoma subtype and primary/meta-
static status (Fig. 2). Known histology specific arm changes, including
recurrent 12q gain in WD/DDLPS and recurrent loss of 14q in gastro-
intestinal stromal tumor (GIST), were readily identified. Overall,
chromosome/segment level copy number gains were more frequent
than losses (segment length with “gain” greater than segment length
with “loss” in 860 of 1162 samples; 74%). Whole genome doubling
(WGD) was a common feature across many sarcoma subtypes and this
feature was more frequent in metastatic samples as compared to pri-
mary samples for both the entire study cohort (23.4% vs. 17.0%, Chi-
squared p = 0.026) and well as for GIST, specifically (22.5% vs. 9.15%,
Chi-squared p = 0.038). Furthermore, several COSMIC Tier 1 genes
showed patterns consistent with recurrent arm losses at the histology
subtype level, suchas heterozygous losses of PDGFB and FOXA1 inGIST
samples (Supplementary fig. 2).

Transcriptional Landscape and Disease Clustering
Transcriptome sequencing was assessed for global expression pat-
terns across sarcoma subtypes. As expected, assessment of gene
expression similarities via dimension reduction (UMAP) showed that
tumors assigned to the same histology tended to be closer in the
multidimensional embedding, providing further support to the histo-
logical classification of the samples (Fig. 3A).We chose initially to focus
on several of the more common histologies of our dataset including
leiomyosarcoma, GIST, myxoid liposarcoma, and dedifferentiated and
well-differentiated liposarcomas (WD/DDLPS) that formed visually
obvious distinct expressional subgroups (Fig. 3B). We also noted that
fusion-driven sarcoma subtypes including Ewing sarcoma, synovial
sarcoma, DSCRT and solitary fibrous tumors comprised

transcriptomically distinct expression subgroups amongst this study
cohort (Fig. 3A, Supplementary Fig. 3).

To further probe the expression differences driving these sub-
groups, we performed differential expression analysis with limma12

comparing each of these divergent subtypes to the remaining samples
(Fig. 3C, Supplementary fig. 4, Supplementary Data 2). As expected,
disease subtypesmaintainedhigher expression levelsofmarkers of the
cell lineage of origin e.g. genes related to smooth muscle differentia-
tion such as MYOCD, TAGLN, JPH2, and CSRP1 amongst the top differ-
entially expressed genes in leiomyosarcoma and markers of
adipogenesis in WD/DDLPS including HMGA2 and CIDEC. Known
subtype-specific oncologic drivers were also amongst the top False
Discovery Rate (FDR)-corrected differentially expressed genes,
including KIT in GIST and MDM2 in WD/DDLPS.

Gene set enrichment analysis was performed using the differen-
tially expressed genes in these histology subtypes (Fig. 3D). In GIST,
the top upregulated pathways were IL2/STAT5 signaling and oxidative
phosphorylation. Interestingly, in addition to adipogenesis and fatty
acid metabolic pathways, DDLPS was highly enriched for multiple
inflammatory pathways, including JAK/STAT3 signaling and TNFα sig-
naling viaNFκB. As expected, the leiomyosarcoma groupwas enriched
for myogenesis but also several cell cycle related pathways as well as
mTORC1 signaling. Myxoid liposarcoma was marked by a relative
negative enrichment of most oncologic signaling pathways evaluated,
highlighting the expected unique oncogenic program of a transcrip-
tion factor fusion-driven malignancy.

Immunogenomic Profiling
To characterize the immune microenvironment across our diverse
sarcoma cohort, we estimated the immune infiltration based on gene
expression profiling of the bulk RNA sequencing followed by
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clustering analysis using these immune infiltration estimates from
MCPCounter13. This analysis yielded five distinct immune groups
(Fig. 4A) that exhibited a gradient of immune infiltration ranging from
low immune cell enrichment or “cold” (Groups A and B) to high
immune cell enrichment or “hot” (Groups D and E). Strikingly, the
immune “intermediate” group C was almost exclusively composed of
GIST (Fig. 4A, B). The enrichment scores for all 10 evaluated cell types
were significantly different across the five immune groups (Kruskal-
Wallis test FDR <0.001). For most immune cell subtypes, there was a
consistent and progressive increase from groups A to E, including in T
(median score -1.18 to 1.21) and B cells (-0.71 to 0.81), dendritic cells
(-1.17 to0.89), and cells ofmonocyte lineage (-1.22 to 1.10). One notable
exception is that Group C showed a specific infiltration enrichment for
NK cells (Wilcoxon Rank Sum test FDR <0.001) compared to all other
groups except the most immune “hot” Group E, despite modest or

intermediate enrichment of other immune cell subtypes. Group B was
marked by a higher abundance of endothelial cells and fibroblasts
compared to groups A and C.

The distribution of tumors amongst immune subgroups varied by
histology (Fig. 4B). Notably, angiosarcoma and undifferentiated pleo-
morphic sarcoma (UPS), diseases that have been reported to be more
responsive to checkpoint inhibitor therapy, clustered more pre-
dominantly in the immune hot groups D and E. Within individual sar-
coma subtypes, metastatic vs. primary status did not significantly
associate with a difference in the distribution of immune subgrouping
with the exception of dedifferentiated liposarcoma and synovial sar-
coma. In DDLPS, metastatic samples were deplete of Group E tumors
and in synovial sarcoma, primary samples were predominantly
assigned to Group A (Fisher’s test p <0.05) (Fig. 4B, Supplementary
fig. 5). In sarcomas with high immune infiltration (Group E) and with

Fig. 3 | The gene expression landscape of sarcomas. Sarcomas were grouped
according to their gene expression similarities and displayed in an UMAP projec-
tion (A). Four histologies (Leiomyosarcomas, GISTs, Myxoid liposarcomas, and
dedifferentiated/well-differentiated liposarcomas) showed cohesive clusters (B).

Differential expression analysis indicated that each of the four histologies expres-
sed a unique set of genes (C). Gene set enrichment analysis (GSEA) supported the
high-level differences observed in differential expression analysis (D).
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Fig. 4 | Sarcomas samples classified according to the level of immune infiltra-
tion. Cell type scores (MCPcounter) showed five distinct immune groups of sar-
comas, each with a distinct transcriptional profile. Tumor mutation burden (TMB),
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high fibroblast content (Group B), there was a trend towards higher
TMB (median log(TMB+ 1): 0.44 and 0.50 respectively), compared to
other immune groups (log(TMB+ 1): 0.39 – 0.43), but the difference
was not statistically significant (Kruskal-Wallis test p = 0.58).

We performed differential expression analysis between immune
subgroup A/B (“cold”), C (“intermediate/GIST”) and D/E (“hot”).
Tumors in groups D and E (“hot”) showed upregulation of immune
relevant genes PTPRC, IL2RG, CD53, CCL13, TRAV12-1, HLA genes, and
multiple immunoglobulins (Fig. 4A and Supplementary Data 3). In
contrast, we observed in Group A and B tumors upregulation of genes
predominantly involved in tumor proliferation, such asC1QL4, PRAME,
KLHDC8A, and CA9 (Fig. 4A). Gene set enrichment analysis (Fig. 4C)
confirmed the inverse relationship between gene sets related to cell
cycle/proliferation (consistently enriched in groups A/B) and those
related to immune signaling and response (consistently enriched in
groups D/E). We further identified enrichment of signaling pathways
potentially contributing to the observed immunological clustering,
including upregulation of MYC targets and Hedgehog signaling and
downregulation of KRAS signaling in the immune cold groups A/B.

Differentially expressed genes in Group C were driven mostly by
histology, predominantly resulting in genes also upregulated in the
GIST histology. Hence, we tested for differentially expressed genes
only among GIST specimens belonging to the various immune sub-
groups (Supplementary Data 4). Similar to the patterns observed
across the entire study cohort, GISTs that cluster in groups A and B
showed enriched expression of cell proliferation and apoptosis-related
genes suchasTYRO3 andCSRNP3, whereasGISTs that cluster inGroups
D and E exhibited upregulation of genes involved in immune regula-
tion and/or inflammation (e.g., CSF3R, ANXA1, ALOX5, ITPR3, CXCL1,
CXCL3, ZEB2). In group C GIST tumors, we detected upregulated
expression of immune-related genes associated with NK cells, includ-
ing KLRB1, KLRC1, KLRC3, KLRF1, KLRK1, GZMA, GZMK, NCR1, NKG7.

Using matched clinical data, we performed survival analysis to
evaluate the prognostic impact of immune subgroups. This analysis
revealed that there was a significant difference between groups in
overall survival, whether considered for the entire cohort (Fig. 4D,
Likelihood Ratio Test – LRT p <0.01) or stratified by primary/meta-
static status (Supplementary fig. 6, LRT p <0.01). Patients with tumors
assigned to Group C had higher overall survival, which was expected
given the predominance of GIST tumors in this group as GIST has
greater survival expectations compared to most other sarcoma sub-
types due to the availability of highly effective tyrosine kinase inhibitor
therapy and also excellent expected survival of early-stage tumors
included in the cohort treated with curative surgery. Patients with
tumors in the immune hot Groups D and E had higher overall survival
compared to those with tumors in immune cold Groups A and B. After
excluding GISTs from the survival analysis, the same pattern was
observed, in spite of non-statistical significance (Supplementaryfig. 6).

Discussion
In this study we analyze the mutational, transcriptomic and immuno-
genomic landscape of over 1,300 adult sarcomas of diverse histologic
representation. The molecular profiling generated from this work
provides a rich resource, expanding upon prior foundational work
such as TCGA10 towards a more comprehensive molecular profiling of
this set of diseases.Weprovide a broad scopeoffindings to further our
molecular understanding of previously understudied sarcoma sub-
types, perform cross-sarcoma comparisons to highlight the divergent
biology inherent to sarcoma, and generate novel insights into the
underpinnings of these diseases.

An overarching theme of our analysis is the observation of dif-
ferences in molecular findings between samples taken from primary
versus metastatic tumor samples. We observe a modest increase in
mutational burden between these groups that is primarily driven by an
increase in inactivating mutations of tumor suppressor genes rather

than an accumulation of additional oncogene drivers. Whole genome
doubling (WGD), a known frequent copy number variation pattern in
sarcoma, has previously been proposed as a potential negative prog-
nostic feature6, though prior analyses have been limited by small
sample sizes with matched clinical outcomes, particularly after sub-
grouping. Concordantly, we find WGD more frequently in metastatic
versus primary samples in our cohort. Interestingly, we found this
differencemost pronounced in GIST, a tumor type primarily driven by
activating kinasemutations, suggesting that CNV andWGD specifically
might be an important source of secondarymutation leading to tumor
progression in this disease.

Transcriptomic profiling of our cohort of sarcomas highlights the
diversity of this group of diseases. As expected, sarcoma subtypes
cluster predominantly by disease. The sarcomas that form the most
distinct transcriptional clusters include those known to be driven by a
transcription factor fusion such as Ewing sarcoma and myxoid lipo-
sarcoma. Comparing the expressional landscape of one sarcoma sub-
type to others may help to identify disease specific pathways of
interest for further testing and therapeutic development, such as the
identification of mTORC1 upregulation in leiomyosarcoma that was
identified in this work and is already a target for therapeutic
development14. To our knowledge this study represents the largest
database of whole transcriptome sequencing for adult sarcomas
reported in the literature to date and therefore a resource for
hypothesis generating comparisons in additional sarcoma types
beyond the scope of this initial landscape.

Success of immunotherapy in an increasing number of advanced
solid tumors has led to a desire to better understand the tumor-
immunemicroenvironment. In sarcoma, an immune subgroup schema
has been proposed based on a combined analysis of RNA sequencing
(from TCGA) and several microarray based expressional studies
totaling 608 tumors total and encompassing 6 sarcoma histologies7.
Our work differs from this prior in that it includes a greater diversity of
sarcoma subtypes, is larger in sample size, and is restricted only to the
analysis of RNAseq. Concordant to this prior work, we find that
immune cell enriched sarcoma clusters have a more favorable prog-
nosis than immune cell deplete sarcoma clusters. Intriguingly, in our
analysis, we find that most GIST form a unique cluster that has inter-
mediate levels of immune cell enrichment overall but is specifically
enriched for NK cell infiltrate. To our knowledge this specific asso-
ciation of GIST with NK cell infiltrate relative to other sarcoma sub-
types has not been previously reported or studied, though NK cells
have been reported to be relatively abundant in GIST based on prior
transcriptomics analyses15,16 as well as by immunohistochemistry17. NK
cell activity in GIST has also been shown to be predictive of tyrosine
kinase inhibitor efficacy and patient survival17,18. Further study is indi-
cated to assess the clinical relevance of our immune subtyping
schema, compare and/or combine our data with prior datasets for
refinement of sarcoma immune subtyping, and to confirm immune
associations identified in this study such as that between NK cells
infiltrate and GIST.

We acknowledge several important limitations of our study. The
diversity of our cohort, while overall a strength, equates to having
small sample sizes ( ≤ 5 tumors each) for many of the less common
disease subtypes. For the purposes of this initial landscape analysis, we
bluntly categorized these lower frequency sarcomas into the category
of “other,”which will obviously limit disease specific insights for these
rarer sarcomas. Additionally, while both primary and metastatic sam-
ples were available in this study, very few of these were matched
samples from the same patient. Finally, extended clinical data includ-
ing therapeutic outcomes were still being curated and therefore not
available for this analysis, limiting the ability to assess for molecular
determinants of response. Despite these limitations, we believe that
our study hasmany strengths and fills an important gap inmolecularly
profiling efforts in sarcoma.
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In conclusion, we report a landscape analysis of whole exome
sequencing and RNA sequencing performed on >1300 diverse sarco-
mas, representing one of the largest molecular profiling efforts in this
disease group. We identify the mutational and copy number variation
landscape and observe differences between primary and metastatic
samples. We highlight expression pathways that are enriched in his-
tologic subtypes that cluster most distinctly from others, providing a
subtype-specific roadmap for further translational efforts. Finally, we
define immune enriched or depleted sarcoma subgroupings that carry
a prognostic impact.

Methods
Patient Population and Study Design
The study was approved by the Institutional Review Board (IRB) at
Moffitt Cancer Center (Advarra, IRB#00000971, Pro00048786). The
Oncology Research Information Exchange Network (ORIEN) is an
alliance of 18 U.S. cancer centers established in 2014. All ORIEN
alliance members utilize a standard Total Cancer Care® (TCC) pro-
tocol that is approved by their local IRB. As part of the TCC study,
participants undergo written informed consent to agree to have
their clinical data followed over time, to undergo germline and
tumor sequencing, and to be contacted in the future by their pro-
vider if an appropriate clinical trial or other study becomes available.
TCC is a prospective cohort study with a subset of patients enrolled
to the ORIEN Avatar program, which includes research use only
(RUO) grade whole-exome tumor sequencing, RNA sequencing,
germline sequencing, and collection of deep longitudinal clinical
data with lifetime follow up. Aster Insights, the commercial and
operational partner of ORIEN, harmonizes all abstracted clinical data
elements and molecular sequencing files into a standardized,
structured format to enable aggregation of de-identified data for
sharing across the Network. 1242 ORIEN Avatar patients diagnosed
with sarcoma and consented to the TCC protocol from 13 partici-
patingmembers of ORIEN were included in this study. No sex and/or
gender analysis was carried out as this was felt to be out of the scope
of this report.

DNA/RNA Preparation and Sequencing
Tumor DNA was purified from frozen tissue and germline DNA was
purified from blood using QIASymphony DNA purification kit (Qiagen;
Venlo, The Netherlands), followed by ultrasonification to an average
size of 213 bp (Covaris; Woburn, MA). Alternatively, tumor DNA was
purified from formalin fixed paraffin embedded (FFPE) tissue using
truXTRAC FFPE DNA purification kit (Covaris, Woburn, MA), generat-
ing an average size of 165 bp. RNAwas purified from frozen tissue with
RNAeasy plus mini (Qiagen; Venlo, The Netherlands) to generate an
average size of 216nt; alternatively, RNA was purified from FFPE tissue
using truXTRAC FFPE RNA ultrasonification kit (Covaris; Woburn, MA)
generating an average size of 165nt.

DNA libraries were generated, then captured on custom WES
arrays (IDT; Coralville, IA (38.7Mb), or Nimblegen; Madison, WI
(63.38Mb)), with customprobes designed to increase capture of up to
676 cancer-related genes. Libraries were sequenced (100 bp, paired
end reads) on Illumina NovaSeq 6000 (Illumina, San Diego, CA) to a
target depth of 100x (200x for cancer-related genes) for germline
WES, and 300x (600x for cancer-related genes) for tumorWES.Quality
checks were performed for gender identity matches. Minimum hybrid
selection threshold was set at >80% of bases with >100x coverage for
tumor samples and >50x coverage for normal samples. RNA libraries
were generated using TruSeq RNA Exome adapters (Illumina; San
Diego, CA), captured on exome array, and sequenced (100bp, paired
end reads) at Hudson Alpha (Huntsville, AL) or sequenced (150 bp,
paired end reads) at Fulgent (Temple City, CA) to a target depth of
100M reads (50M pairs).

WES Quality Control and Alignment
Adapter sequences were trimmed with BBDuk (version 38.46;
sourceforge.net/projects/bbmap/). WES samples were processed
using the Sentieon App (sentieon_release_201911)19. Fastq files were
aligned to human reference genome (GRCh38/hg38) using BWA-
mem20. Resulting cram files underwent extensive quality control
checks using Picard (v2.9.0).

Identification of Somatic Mutations
Somatic single nucleotide variants (SNVs) and insertions/deletions
(INDELs) were called with TNseq (Sentieon; San Jose, CA) using mat-
ched tumor and germline cram files. Resulting vcf files were annotated
with Annovar21 and Funcotator (GATK v4.1.6.0; https://gatk.
broadinstitute.org/hc/en-us/articles/360037224432-Funcotator).

Filtering Somatic Mutations and Calculation of Tumor
Mutation Burden
Somatic variants were filtered for population polymorphisms and
recurrent sequencing artifacts using Aster Insights Panel of Normals
(PoN). Aster Insights PoN is constructed from the ORIEN AVATAR
germline variant catalog and is applied by checking every sample’s
reported somatic mutation against the catalog to add a VCF “pane-
l_of_normals” flag. A germline variant is included in the PoN if it is
present in > 0.5% of ORIEN AVATAR population of unrelated normal
samples. For a variant to pass all filters, it must not be present in the
PoN, have a variant allele fraction (VAF) greater than0.04 (4%), at least
1 ALT read inboth the F1R2 andF2R1 readorientations, and F1R2 + F2R1
must be greater than 10 ALT reads.

Protein coding length for all genes in HG38 (bp) were calculated
using a custom python script. For each collapsed histology subtype,
these lengths were modeled with robust regression against frequency
of samples that have mutations in that gene. Robust regression was
used due to its ability to better handle outliers22. Oncoplots were
constructed with maftools, ignoring variant classification of ‘silent’ or
‘unknown’23. Histology subtypes were collapsed to “Other” if they were
composed of less than 5 samples. Top 10 most significant genes from
robust regression were selected for each histology subtype and
intersected with COSMIC Tier 1 genes to identify cancer-related
genes24. TMBwas calculated with ‘tcgaCompare’, adjusting for WES kit
capture size. Comparisons of mutation frequency between primary
andmetastatic samples was performed with two-tailedWilcoxon Rank
Sum tests. Tumormutation burdenwas classified as low ( < 5mut/MB),
intermediate (>= 5 mut/MB and <10 mut/MB), and high (>= 10 mut/
MB)25 for ORIEN and TCGA SARC samples then compared with two-
tailed Fisher’s Exact tests due Chi-squared test producing a warning
about an expected value being less than 5.

Copy Number Calling
Somatic Copy Number Variation (CNV) was calculated by Sequenza
(v3.0.0, https://sequenzatools.bitbucket.io/#/home)26. Files were gen-
erated on the alignments of tumor and germline reads by sequenza-
utils and processed byCNTools v1.30.0 to generate the final output for
copy number at the gene level27. Copy number was classified into
homologous deletion (HOMDEL, 0), heterozygous loss (HETLOSS, 1),
normal (Normal, 2), gain (GAIN, 3), or amplification (AMP, 4 or greater).
Samples were determined to have whole genome doubling (WGD) if
more than 50% of all segment lengths were classified as amplified (i.e.
CN = 4 or greater). Differences between the number of primary and
metastatic samples with WGD was calculated using two-tailed Chi-
squared tests for all samples, as well as the top 5 histology subtypes by
sample number for consistency. Arm-level copy number change was
calculated as the weighted average of copy number segments on each
arm (i.e. longer segments contribute more to arm-level copy number)
and then classified as outlined above.
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Microsatellite Instability
Microsatellite instability is scoredusingMSIsensor 2 (Niu, et al. (2014)).
Briefly, the median number of microsatellites assessed per tumor-
normal pair was 21,648 (range: 9954–34,873), and MSI scores are
reported as the number of unstablemicrosatellites divided by the total
number of microsatellites assessed. For downstream analyses, a
threshold of 18% of sites being somatic (somatic microsatellites divi-
ded by total number of microsatellites) was used to separate high MSI
and stable MSI. TMBwas filtered to include non-silent mutations while
removing transcriptional start site and splice site mutations before
calculating differences between high and stable MSI samples.

RNA-seq Quality Control and Alignment
Adapter sequences were trimmed with BBDuk (version 38.46; sour-
ceforge.net/projects/bbmap/) and fastq files were aligned to the
human reference genome (GRCh38/hg38with Gencode transcriptome
version 32) using STAR (v.2.7.3a, https://github.com/alexdobin/
STAR)28. Resulting RNAseq expression data were then normalized at
the TPM level, using a linear scaling method based on the trimmed
mean among protein-coding genes (mean of TPMs between the 35th
and 95th quantiles) of each sample, log2 transformation of scaled
TPMs after adding 0.001, loess smoothing, and ‘ComBat’ normal-
ization (svaR package, v3.34.0), adjusting for batch effects induced by
sample preservation methods and sequencing capture kit (Supple-
mentary fig. 7)29. The resulting isoform-level counts were then col-
lapsed to gene-level by summing the transcripts originating from a
given gene. Gene counts mapped to Y RNAs,Metazoa SRP, 5.8S and 5S
rRNA, 7SK, Vault, SnoRNAs MIR, RNA5, and RNU were removed.

To ensure that repeated sampling from the same patient would
not overly bias results of downstream RNA-seq analysis, we repeated
selected analyses with removal of repeated measures (by random
selection of 1 tumor per patient when >1 tumor was available for ana-
lysis). The results closelymirrored the primary analysis, supporting the
inclusion of all available tumors for the analysis (Supplementary fig. 8).

RNA Gene Fusion Prediction and Identification of Histology
Subtype Changing Fusions
STAR-Fusion and Arriba Gene Fusion algorithms are applied to the
STAR aligner output files. Gene Fusion predictions from both STAR-
Fusion (v1.8.0, https://github.com/STAR-Fusion/STAR-Fusion/wiki)30

and Arriba (v1.1.0, https://github.com/suhrig/arriba)31 were merged
into a single output file that removes duplicate putative gene fusion
calls, putative gene fusion calls of low confidence – reporting gene
fusions with at least one (1) junction read and at least one (1) spanning
read, and gene fusion calls occurring within the same gene, within
SnoRNAs, within rRNAs, or mitochondrial genes – which are areas
considered to be contributing to high false-positive rate and generally
uninformative. Fusions in rRNA, mitochondrial genes, and fusions
within the same genes were removed. Fusions with poor supporting
evidence in the spanning and junction reads ( < 1 read), as well as gene
fusions that have multiple break-points were removed. Merged puta-
tive fusion callswere coalesced to themost dominate gene isoform in a
set of reported putative gene fusion calls that either share an identical
breakpoint or within a set of overlapping putative gene fusion calls.

Fusions associated with histology reassignment were derived from
Gounder et al. Thesewere then intersectedwithour fusion calls, ignoring
donor-acceptor gene order to identify candidate samples in need of
histology reassignment. Listof samplesalongwithclinical attributeswere
then reviewed todeterminewhether change in histology assignmentwas
appropriate given fusion confidence and disease location.

Assessment of Gene Expression and Immune Infiltration
After batch correction and normalization procedures, we applied
uniform manifold approximation and projection (UMAP) using the
expression from the 10% of genes with the highest standard deviation

to explore the gene expression similarities among sarcoma samples.
The umap R package was used with spread=2 and random_-
state=12345. Given the separation of Leiomyosarcomas, Gastro-
intestinal stromal tumors (GIST), Myxoid liposarcomas, and
liposarcomas (well- and dedifferentiated), the determination of dif-
ferentially expressed genes between each of those sarcoma groups
and the rest of the samples was completed using linear models as
implemented in the limma package12. The false discovery rate (FDR)
correction was used to adjust for multiple comparisons. Adjusted p-
values were used in the fgsea package to calculate enrichment scores
for the Hallmark gene sets32.

Immune infiltration scores were calculated with the deconvolu-
tion algorithm MCPcounter as conducted in a previous sarcoma
study7. MCPcounter provides abundance scores for multiple popula-
tions of immune cells, as well as other stromal cell types. In order to
detect sarcoma immune groups, the MCPcounter scores were used in
hierarchical clustering with Ward’s linkage. Unsupervised detection of
clusters was performed using hybrid Dynamic Tree Cuts with
deepSplit=1.7533. We collapsed the determined immune groups into
three categories: Immune “cold” (Groups A and B), immune “hot”
(Groups D and E), and Group C. Differential gene expression analysis
was conducted among the three collapsed immune groups by com-
paring the samples from each group against the samples in the two
other groups. We also used FDR-adjusted p-values to calculate GSEA
scores for the Hallmark gene sets. Analyses and visualizations were
generated in R34 and using ggplot235 and ComplexHeatmap36.

Immune group survival analysis
For survival analysis, the date of diagnosis was used as the left end-
point. For each patient, the sarcoma diagnosis most proximal in time
to the date of sample collection was used to determine the diagnosis
date (using a searchwindow that extended five years prior to and up to
onemonth beyond the date of sample collection). The date of death or
date of last contact was used as the right endpoint (censored for date
of last contact). Samples without a matching diagnosis record or
unknown right endpoint were excluded. In total, 781 samples were
included in the survival analysis. Cox proportional hazardmodels were
fitted to assess the differences in survival of patients with sarcomas
from each of the immune groups. In addition to testing for the effects
of immune group assignment, the models included terms accounting
for the sarcoma histology and tumor stage. To test for significant dif-
ferences between the overall survival of each immune group, Like-
lihood ratio tests (LRTs) were conducted. Analyses were performed in
R with the survival and survminer packages37.

Statistics and Reproducibility
No statistical power analysiswas completed to predetermine the study
sample size. No data were excluded from analyses. The experiments
were not randomized. All statistical analyses were completed using R
and RStudio. Differential expression analysis was performed by fitting
linear models using the limma (doi:10.1093/nar/gkv007) and edgeR
(doi:10.1093/nar/gkaf018) R packages. The Kruskal-Wallis test was
used to assess differences in immune cell enrichment scores across the
five identified immune groups. For specific comparisons, the two-
sided Wilcoxon Rank Sum test was applied to evaluate differences in
NK cell infiltration between Group C and other groups. Two-sided
Fisher’s Exact tests were used to determine the association between
immune subgroup distribution and metastatic versus primary status
for certain sarcoma subtypes. Survival analyses were conducted using
Cox proportional hazard models, with likelihood ratio tests (LRTs) to
assess differences in overall survival among immune groups. For all
analyses, p-values were adjusted using the Benjamini-Hochberg
method for multiple comparisons (i.e., False Discovery Rate or FDR),
unless otherwise stated. All other statistical methods are described in
their respective methods sections.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this research was generated through private funding
by Aster Insights (www.asterinsights.com) in collaboration with the
Oncology Research Information Exchange Network (ORIEN, www.
oriencancer.org). Requests for access to the data used in this study can
be submitted to the corresponding author and ResearchData
Request@AsterInsights.com.

Code availability
Code for analyses can be found at: https://github.com/FridleyLab/land
scape_sarcomas_orien and https://doi.org/10.5281/zenodo.14851789.
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