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Solving perfect matchings by frequency-
grouped multi-photon events using a
silicon chip

Pingyu Zhu 1, Qilin Zheng1, Kun Wang 1, Miaomiao Yu1, Gongyu Xia2,
Jiacheng Liu2, Yong Liu1, Zhihong Zhu 2 & Ping Xu 1,3

Computing the number of perfect matchings of a graph is a famous #P-com-
plete problem. In this work, taking the advantages of the frequency dimension
of photon, we propose and implement a photonic perfect matching solver, by
combining two key techniques, frequency grouping and multi-photon count-
ing. Based on a broadband photon-pair source from a silicon quantum chip
and a wavelength-selective switch, we configure graphs up to sixteen vertices
and estimate the perfect matchings of subgraphs up to six vertices. The
experimental fidelities are more than 90% for all the graphs. Moreover, we
demonstrate that the developed photonic system can enhance classical sto-
chastic algorithms for solving nondeterministic-polynomial-time(NP) pro-
blems, such as the Boolean satisfiability problem and the densest subgraph.
Our work contributes a promising method for solving the perfect matchings
problem, which is simple in experiment setup and convenient to transform or
scale up the object graph by regulating the frequency-correlated photon pairs.

Both NP and #P are well-known complexity classes that computing
resources for solving an NP or a #P problem grow exponentially as the
size grows1,2. NP and #P problems have distinct purposes: While an NP
problem usually focuses on determining whether a solution exists, #P
addresses counting solutions, which is generally considered compu-
tationally harder. Counting the number of perfect matchings of a
graph, also called the perfect matchings problem, as one of the
famously #P-complete problems3, has a broad range of applications,
including stable marriage problem4, Fries number of a fullerene5,
dimer problem6, andHosoya index7. A perfectmatching is amatch that
covers all vertices in an undirected graph. There is nopolynomial exact
algorithm nor a fully polynomial approximation algorithm for the
perfect matchings counting of a general graph. The most efficient
existing exact algorithm is proposed by Andreas with a polynomial
space and a time complexity of O(poly(n)2n/2)8.

Optical methods based on classical light fields have been pro-
posed for solving NP problems9, such as the max-cut problem10–12, the

max-clique problem13, and the Hamilton path problem14,15. However,
classical methods are inefficient in hard counting tasks. The quantum
multiphoton source can introduce special properties beyond classical
light fields for solving perfect matchings problem16,17. Due to the fact
that the number of perfect matchings of an undirected graph equals
the hafnian value of the graph’s adjacency matrix, the number of
perfect matchings can be estimated by Gaussian boson sampling with
a specific setting16. Recently, such a theoretical scheme was experi-
mentally realized in a silicon photonic chip17. Alternately, hafnian can
also be achieved from multi-photon coincidence of the cascade non-
linear crystals by the path identity method18–20, that experiments of
interference up to four-photon were reported21,22. However, due to the
strict requirements of coherence, including thehighpurity of photonic
source, the stabilization of relative phase, and the difficulty for path
and arrival-time identity, realizing large-scale photonic hardware by
these two methods remains challenging. Though a smart scheme
simplifies the experiment by avoiding the cascadeof photon sources, it
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introduces an extra exponential attenuation because of the beam
combination of photons from different sources23.

In this work, we focus on solving the perfect matchings problem
and introduce the frequency degrees of freedom as an auxiliary to
circumvent the strict challenges. We propose an optical perfect
matching solver based on frequency grouping and multi-photon
coincidence.We group a frequency-entangled photon-pair source to
several outputs according to different frequencies, to configure the
given graph. Then, the coincidencemeasurement of the outputs will
automatically keep states corresponding to perfect matchings and
filter out unwanted states. Owing that multi-photon terms are dif-
ferent in frequency, this method avoid destructive interference and
do not need to consider the indistinguishability of photons. In the
experiment, we utilize a silicon waveguide to produce broad photon
pairs and a wavelength-selective switch(WSS) to group photons. We
configure graphs up to sixteen vertices and recorded coincidences
up to six photons. The distribution fidelities are more than 90%,
showing a significant improvement compared to previous experi-
ments. It is convenient to transform or scale up the graph by pro-
gramming wavelength-selective switch without changing the
photonic source. Moreover, we show the samples generated from
the perfect matching solver can enhance classical stochastic algo-
rithms for solving Boolean satisfiability(SAT) and densest subgraph.
Our work takes surprising advantages of frequency dimension and
provides a promising tool for solving the perfect matchings
problem.

Results
In elegant theories from Krenn et al., perfect matchings of graphs are
related to quantum experiments, and optical setups are mapped to
undirected graphs18–20. The photon pairs produced from nonlinear
crystals correspond to the graph’s edges, and the output paths are
regarded as the graph’s vertices. Erasing the source information of the
photonpairs by path identity and arrival time indistinguishability, then
an n-fold coincidence with one and only one photon per output can be
seen as a subset of edges that contains every vertex only once, that is, a
perfect matching of an n-vertex graph. The n-fold coincidence will
correspond to ∣Hafnian∣2, that is, when all the relative phases of n-
photon terms are zero, it will become ∣#PM∣2. A simple example is
shown in Fig. 1a, b, where the photon pairs are respectively produced
by four crystals, and form four edges of the 4-vertex graph, respec-
tively. The four-fold coincidence can happen only when crystals I and
III or crystals II and IVmotivate together20. The four-fold counts will be
proportional to ∣#PM∣2 = 4 if the relative phase between two perfect
matchings is zero.

However, due to the strict requirements of coherence and stabi-
lity, increasing the graph’s scale in practical experiments is challen-
ging. For example, the required high purity of photon sources will
dramatically reduce the effective photon or complicate the structure
of photonic source. Besides, coherent interference caused by inevi-
table phase deviation will destroy the perfect matchings, that is, the
multi-fold counts in the practical experiment will be proportional to
the value vibrating from 0 to ∣#PM∣2. Therefore, in this work, we

Fig. 1 | Principle and experimental setup of perfect matching solver. a A path-
identity experimental setup with four crystals producing horizontally polarized
photon pairs. b The corresponding undirected graph of the setup. All the perfect
matchings construct the final quantum state. c Broadband photon pairs produced
by optically nonlinear process. dAn artistic figure depicts the process that photons
are grouped according to frequency and the corresponding graph after the fre-
quency grouping. e Multi-photon coincidence rate with one and only one photon

each output is determined by the number of perfect matchings of the graph.
f Experimental setup for estimating perfect matchings by frequency grouping of a
broadband photon-pair source. FPC fiber polarization controller, DWDM dense
wavelength division multiplexing module, PD power detector, WSS wavelength
selective switch, SNSPDs superconducting nanowire single photon detectors, CLM
coincidence logic module.
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consider to introduce frequencydimension to simplify the experiment
and avoid destructive interference while the consistency of the arrival
times of photons must be maintained. Frequency can support very
large dimensions and naturally transmit in a single-mode optical fiber
or waveguide24. We take frequency degree of freedom as an auxiliary
and propose a multi-photon perfect matching solver based on the
frequency grouping of broadband photon pairs, whichmainly consists
of three parts: 1) Generate a broadband photon-pair source, as shown
in Fig. 1c; 2) Group the photon pairs at different frequency channels
according to the given graph which achieves the frequency-
distinguishable path identity, as shown in Fig. 1d. Each frequency-
associated photon pair constructs an edge, and such two photons are

distributed respectively to two outputs which are seen as the two
vertices linked by this edge. As a critical step, frequency grouping can
be realized by WSS. 3) Count the multiphoton coincidence with one
and only one photon per output, which is naturally proportional to the
number of perfectmatchings, as shown in Fig. 1e. The correspondence
between graph theory and optical setups of our method are listed in
Table 1. See detailed theoretical description in Methods.

Figure 1f shows the main experimental devices of our demon-
strations. A pulse laser was injected into a silicon waveguide, and then
broadband photon pairs were generated in the waveguide by the
spontaneous four-wave mixing(SFWM). The original two-photon gen-
eration rates of 15 pairs of channels with 60 GHz bandwidth are shown
in Fig. 2a. Photon pairs entered aWSS for frequency grouping and then
were detected at superconducting nanowire single-photon detec-
tors(SNSPDs). WSS is an important device in our scheme, which can
freely control the outputs and attenuations of photons in different
frequencies. Compared with multi-layer cascaded DWDMs25,26, WSS
has higher programmability, and more importantly, it barely brings
delays between different frequency channels, and the time cost and
the insertion loss of each channel in the process of frequency grouping
are almost constant independent of the graph size27. As a simple
example, a four-vertex graph canbeconfiguredby frequency grouping
and multiphoton coincidence as shown in Fig. 1d, e, where the fre-
quency grouping should be implemented in WSS by distributing

Table 1 | The correspondence between graph theory and
optical setups of our perfect matching solver

Graph theory Our perfect matching solver

Vertices Optical outputs of WSS

Degree of a vertex The number of frequency channels in an output

Edges Broadband frequency-associated photon pairs pro-
duced from a silicon waveguide

Undirected graph Group photon pairs to specified outputs by WSS

#Perfect matchings n-photon counts

Fig. 2 | Experimental results for calculating the number of perfect matchings.
a Two-fold counts of channels in 20 s where the central wavelengths of channels
15 ~ 1 correspond to CH21 ~ CH35 of the standard DWDM and channels −1 ~ −15
correspond to CH39 ~ CH53. b–e The channel groups of two-vertex graphs (b) and

four-vertex graphs (d). The two-photon (c) counts in 20 seconds and four-photon
(e) counts in 30min in the experiments for corresponding graphs when pump is
fixed in 200 μW. The error bars (±1σ) are estimated from Poissonian photon
statistics.
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channels {1, 2} to output a, {−1,−4} to b, {−2, −3} to c, and {3, 4} to d. And
the four-fold counts of outputs {a–d} will correspond to two, i.e. the
number of perfect matchings of this four-vertex graph. See detailed
experimental setup in Methods.

Fixing the average power of pump with 200 μW in front of chip,
we group the photon pairs to configure four 2-vertex graphs and five
4-vertex graphs as shown in Fig. 2b, d, respectively. The bandwidth of
every channel is 60 GHz. The two-fold and four-fold coincidences are
directlymapped to the graph’s perfectmatching numbers, as shown in
Fig. 2c, e, respectively. The right Y-axis aligns 1 of the counts of graph
G1 andgraphG5, respectively,meaning the basic unit of coincidenceof
one perfect matching. We find that the estimated values can basically
correspond to the number of perfect matchings.

Next, we configure two six-vertex graphs, an eight-vertex graph
and a ten-vertex graph, and record all four-fold events in 1 hour,

respectively. As a simple example for understanding, we configure
the six-vertex graph in Fig. 3a by frequency grouping in WSS which
distributes channels {−2, −4} to output a, {−3, −5} to b, {1, 2, 3} to c, {4,
5, 6} to d, −1 to e, and −6 to f. The transmission state of outputs of
WSS is shown in Fig. 3b. We obtained raw four-photon distributions
of these four graphs as shown in Fig. 3. We use the similarity of
the distributions F = j~Dexp � ~Dthej=ðj~Dexpj � j~DthejÞ to characterize the
results. We obtain F = 99.33% and F = 99.48% for the sparse and
dense six-vertex graphs, respectively, F = 97.68% and F = 95.27% for
the eight-vertex graph and the ten-vertex graph, respectively.
Dashed lines are y = 0.5, y = 1.2, and y = 2.5 to separate the data to the
perfect matchings number of {0, 1, 2, 3}. An accuracy of 100% is
achieved for these simple graphs under the criteria. We further
configured an eight-vertex graph and recorded six-photon events.
For obtaining enough six-fold counts, we properly brighten the

Fig. 3 | Experimental results for calculating the numberofperfectmatchings of
subgraphs. a–c The channel groups of a sparse six-vertex graphs (a) and the
transmission setting of WSS, which result in the four-photon distribution (c),
recording 1584 four-fold counts. A six-vertex (d), an eight-vertex (e), and a ten-
vertex (f) graph, which are constructed in the experiment. Experimental (green)

and theoretical (orange) four-photon distributions (g–i) in one hour, for the graphs
in (a–c), respectively. There are 3909, 6919 and 7419 four-fold counts recorded,
respectively. j An eight-vertex configured in the experiment. k The six-photon
distribution in 18 hours for the graph in (j), with 1042 six-fold counts recorded in
total. The error bars (±1σ) are estimated from Poissonian photon statistics.
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pump and add the run time to 18 hours. The normalized six-photon
distribution is shown in Fig. 3g, with a fidelity of 94.54%.

In addition, multi-photon processors can enhance classical
stochastic algorithms for solving NP problems, such as SAT28, max-
clique28–30, and dense subgraph31–33. The enhancement comes from
the positive correlation between perfect matchings counts and the
density of the graph31. Thus, we can use biased randomness from
perfect matchings sampler to enhance stochastic algorithms for
these problems. The SAT is the problem of finding an assignment
that satisfy the given Boolean formula. A clausal formula can be
converted into a graph, and one SAT solution will correspond to a
clique of the graph28. We set a clausal formula with four clauses,
F = ðx1 + x3Þ � ðx2 + x1Þ � ðx2 + x3Þ � ðx1 + x2Þ. It can be reduced to a
4-Clique problem of an eight-vertex graph shown in Fig. 4a. The
four-photon distribution in 2 h is shown in Fig. 4b, with a fidelity of
98.25%. The four-vertex subgraph with the most samples is a clique,
plotted with the red line in Fig. 4a. It means that the formula F is
satisfiable, and the corresponding assignment is x1 = True, x2 = False,
and x3 = True. On the other hand, the densest subgraph problem is
defined to find the densest k-vertex subgraph with the largest den-
sity from a given n-vertex graph(k < n)34. No polynomial-time

approximation scheme exists for the problem. To avoid being
fooled by special graph structures, stochastic algorithms that
employ uniform randomness for exploration are always preferable
in solving the densest subgraph of a general graph35. We verify the
enhancement of random search by perfect matchings samples. For
example, to find the densest subgraph of a 16-vertex graph with
weighted edges as shown in Fig. 4c, we experimentally obtained the
four-photon distribution in 2 h shown in Fig. 4d, with a fidelity of
92.49%. Note that the perfect matching number of an edge-weighted
graph is a more general definition, that the weight of every perfect
matching contains a coefficient of the multiplication of the weights
of related edges. Then, we use the samples to identify the densest
four-vertex subgraph via random search31,32. In the random search,
we draw several samples, each containing four vertices, compare the
density of the samples, and select the one with the maximum den-
sity. We vary the number of samples drawn from 1 to 300 and repeat
400 times for each value. Figure 4e shows the mean density
obtained with a different number of samples. The ideal curve cor-
responds to the loss-free case. We can see that the protocol whose
samples are drawn from the perfect matching solver performs
markedly better than the uniform sampling.

Fig. 4 | Enhancing solving algorithms for graph-related searching problems.
aAn eight-vertex graph related to the SAT problem.b Experimental and theoretical
four-photon distribution for the graph of SAT problem in (a). The error bars (±1σ)
are estimated from Poissonian photon statistics. c A sixteen-vertex weighted graph
for finding densest subgraph. d Experimental and theoretical four-photon dis-
tribution for the graph in (c). e Mean density of the four-vertex subgraph as a

function of the number of samples drawn. The blue line indicates a random search
with uniform sampling. The red and purple lines use ideal and experimental sam-
ples from distributions of perfect matching sampler in (d), respectively. The sha-
dows represent one standard deviation. Thedashed line indicates the density of the
densest four-vertex subgraph.
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The experiments achieve high fidelities beyond 90%, sig-
nificantly higher than the previous experiments for perfect match-
ing tasks with coherent interferences17,28, present the conveniences
and scalability of graph configuration, and show the potentials for
practical applications. The imperfection of distributions should be
caused by the accidental coincidences of single photons and inex-
haustive filtering.

Discussion
The solving process of the proposed perfect matching solver is not a
conventional searchoroptimization but to naturally reserve and count
perfectmatchings from the superpositionof all possible states arriving
at detectors simultaneously, which is incapable in classical methods.
On theother hand, different fromcommonpath-encoded experiments
in which the depth of optical operation and the number of photon
sources need to increase when the graph scales up15,17,28, in our optical
perfect matching solver, the photon source is fixed and the optical
length of nonlinear process is a constant, independent of the pro-
blem’s size. Moreover, it is simple to transform the graph by WSS
without changing the optical paths or crystals.

In the experiments, the dispersion of the waveguide and fibers is
much less than 1 ps, thus do not need to be considered, because the
resulting time difference is much smaller than the coincidence win-
dow. On the other hand, our scheme avoids destructive interference
between perfect matchings, so it can achieve high fidelity, and more-
over, the experiment do not need to consider the indistinguishability
of photons. Therefore, it avoids the requirement of additional filtering
process or structural design for photon’s spectral purity36. And thus it
also prevents the decrease of performance in common interference
methods caused by inevitable distinguishability of photons.

Due to the method being purity-independent, one can con-
tinuously divide the channels at arbitrary intervals, which means
that the available channels can be greatly increased by reducing
the bandwidth of each channel and supplementing the pump light
intensity. The size of the graph, specifically, the maximum num-
bers of edges and vertices are determined by the total bandwidth
of the photon pair and the number of outputs of the WSS,
respectively. The bandwidth of photon pairs is more than 5 THz in
our chip, and the minimum transmission bandwidth of WSS is 10
GHz, which means it can support about 500 edges at most the-
oretically. Moreover, schemes for ultrabroadband phase-
matching up to hundreds of nanometers in various materials
have been reported37–39, which can support larger experiments.
On the other hand, the number of outputs of our WSS in hand is
16, but there is no theoretical limit to the number of outputs,
which can be increased as required. As with the other multi-
photon experiments, our experiment exists the tradeoff between
the brightness of the photon-pair source and the strengh of high-
order excitation. Reducing the loss rate, raising the filtering level,
or increasing the repetition rates of the pulse can promote the
signal-to-noise rate to obtain coincidence with more photons.
When optimize the experiment conditions and extend the graph,
the event of hundreds of photons can be detected, which may
lead to computational superiority due to the hardness of the
exact simulation of a perfect matchings sampler, even though
constantly developing approximation methods with errors may
minish the advantage.

For the problems that may be more hard to simulate, such as
estimating the Hafnian of a complex-value matrix, multiphoton inter-
ference may be required. It is promising to engineer different non-
linear processes to construct graphs40–42, which can take advantages of
frequency dimension while maintain the coherence. In this case,
the high-purity source is required that the microresonator structure
may help36,43,44.

In summary, we have proposed and experimentally demonstrated
amulti-photon scheme for solvingperfectmatchingproblemsutilizing
broadband photon pairs and frequency grouping. Our perfect
matching sampler can enhance the random search in solving NP pro-
blems, including SAT and dense subgraph, showing potential for
practical applications. The experimental scale of the graph in thiswork
reaches 16 vertices. Additionally, in terms of the coincidence scale, we
measure the six-photon distribution. Meanwhile, the detected dis-
tributions have high fidelities beyond 90% for all configured graphs.
Our work provides a promising tool to take advantage of frequency
dimension for perfect matching solving, which can simply transform
or scale up the object graph by programming a WSS. A wider photon
pair source and aWSSwithmore outputs are requiredwhen extending
the experiment. More explorations are needed to further develop the
potential applications and find the practical benefit of the proposed
perfect matching solver.

Methods
Theoretical description
Broadband photon-pair source can be realized by χ(2) nonlinear pro-
cesses such as spontaneous parametric down-conversion, or χ(3) non-
linear process such as spontaneous four-wavemixing(SFWM).We take
SFWM on the silicon waveguide for example. Silicon waveguide
pumpedby pulse laser probabilistically creates photonpairs in a broad
range of spectrum from SFWM. We can describe the creation process
as

Û � 1 + g
Z Z

dωsdωiâ
y
ωs
ây
ωi

� �
+
g2

2

Z Z
dωsdωiâ

y
ωs
ây
ωi

� �2

+Oðg3Þ, ð1Þ

where ây
ωs

and ây
ωi
are single-photon creation operators with frequency

ωs andωi, and g≪ 1 is the four-wavemixing amplitude.Wepartition the
spectrum of photons to discrete frequency modes, that the state can
be be approximate to

jψi= Ûjvaci � 1 + g
X
k

ây
ωk
ây
ω�k

 !
+
g2

2

X
k

ây
ωk
ây
ω�k

 !2

+Oðg3Þ
2
4

3
5jvaci

= g
X
k

jωk ,ω�ki
 !

+
g2

2

X
k

jωk ,ω�ki
 !2

+ 1 +Oðg3Þ� �jvaci,
ð2Þ

where jvaci is the vacuum state, and k = 1, 2, 3, … represent the fre-
quency modes. Then these modes will be send to different paths
according to the target graph. The total n-fold(n is even in our
description) coincidence rate of any n paths {a, b, c, d, …} can be
expressed as

Rtot
n = M Rtot

ab
M

Rtot
cd
M � � � + � � � +M Rtot

ac
M

Rtot
bd
M � � � + � � �

+M Rtot
ad
M

Rtot
bc
M � � � + � � � ,

ð3Þ

which contains (n − 1)!! terms in total, that is, the number of perfect
matchings of an n-vertex complete graph. In the Eq. (3), M is the
repetition rate of the pulse for pumping, and

Rtot
ij =Rij +

Ri

M
� Rj

M
�M ð4Þ

is the total two-fold coincidence of two paths {i, j} (ij = ab, ac,…). The
first termof Eq. (4),Rij, is the true coincidence of twopath i, jproduced
by SFWM, and the second term is the accidental coincidence of the
single photons in two paths i, j. If M is large enough and Ri(j)/M is too
small to be considered, the second term can be neglected, that
is Rtot

ij � Rij .
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Assuming that the two-photon counts of each edge have been
balanced to R2, that is

Rij =
neR2, ne edges between vertices i&j

0, no edgebetween vertices i&j

�
, ð5Þ

we can calculate or experimentally measure a standard unit of n-fold
coincidence corresponding to one perfect matching, which is

Rn, s �
R2

M

� �n=2

�M: ð6Þ

Then we can estimate the number of perfectmatchings by Eqs. (3) and
(6) as

#PM � Rtot
n

Rn, s
: ð7Þ

We then take the frequency grouping shown in Fig. 1d for example,
where frequency modes ω1 and ω2 are distributed to path a, frequency
modes ω−1 and ω−4 are distributed to path b, frequency modes ω−2 and
ω−3 are distributed to path c, and frequency modes ω3 and ω4 are dis-
tributed topathd. Theeffect causedbyhigh-order terms inEq. (2) canbe
neglectedbecause of the small coefficient g. Thuswe keeponly the four-
fold terms for second-order SFWMandneglect theother terms in Eq. (2),
that the state after frequency grouping can be expressed as

jψi= g2

2
jω1,a,ω�1,b,ω1,a,ω�1,bi+ jω2,a,ω�2, c,ω2,a,ω�2, ci
�

+ jω3,d ,ω�3, c,ω3,d ,ω�3, ci+ jω4,d ,ω�4,b,ω4,d ,ω�4, bi
�

+ g2 jω1,a,ω�1,b,ω2,a,ω�2, ci+ jω1,a,ω�1,b,ω3,d ,ω�3, ci
�

+ jω1,a,ω�1,b,ω4,d ,ω�4, bi+ jω2,a,ω�2, c,ω3,d ,ω�3, ci
+ jω2,a,ω�2, c,ω4,d ,ω�4, bi+ jω3,d ,ω�3, c,ω4,d ,ω�4,bi

�
,

ð8Þ

where ωk,h represents a photon at path h with frequency ωk that
k = ±1, ±2, ±3, ±4, and h = a, b, c, d. If we do the coincidence mea-
surement that each path has one and only one photon, only the sixth
and the ninth terms in Eq. (8) can be detectedwhich are correspond to
two perfect matchings as shown in the right figure of Fig. 1d. Thus the
coincidence rate should be proportional to the number of perfect
matchings of the target graph. If we have balanced the two-photon
coincidences, the number of perfect matchings can be estimated as

#PMabcd � Rtot
abcd

R4, s
�

Rab
M � Rcd

M �M + Rac
M � Rbd

M �M
R2
M

	 
2
�M

=2: ð9Þ

This theory can also be extended to cases ofmore than one photon
in the sameoutput. In general, when construct anN-vertex graphwith an
N × N adjacency matrix A, the measurement probability is given by

Prð�nÞ= 1
Z
#PMðAsÞ, ð10Þ

where �n= fn1,n2, . . . ,nNg means nj photons in the j-th out-
put(j = 1, 2, …, N) and Z is the normalization coefficient. When con-
straining nj = {0, 1}, As is the sub-matrix of A that keeps the j-th row and
columnofA for allnj = 1. If we lift the the constraint of photon numbers
in the outputs,As is thematrix that repeats the jth rowand columnofA
with nj times, for all j from 1 to N.

Experimental details
A pulsed laser with a repetition rate of 60 MHz, a bandwidth of 0.11
nm, and a central wavelength of 1547.68 nm is filtered by a dense

wavelength division multiplexing module(DWDM) at first to filter
noises except the pump laser. The filtered pump passes through a
fiber polarization controller before being coupled to the on-chip
grating coupler. Broadband photon pairs are generated by the
spontaneous four-wave mixing(SFWM) in the silicon waveguide.
Then, three cascaded single-channel DWDMs are set to filter out
the pump. Photons in different frequency channels are grouped
into specific outputs simultaneously in the WSS, which consists
of a grating mirror, a liquid crystal, and a cylindrical mirror, for
configuring graphs. We adjust the attenuation of WSS to make the
two-photon counts of each channel as equal as possible. After fre-
quency grouping, photons in each output are adjusted by a polar-
ization controller and then detected by a superconducting nano-
wires single-photon detector(SNSPD). Photons are converted into
electrical signals in detectors and are analyzed by a coincidence
logic module.

The chip was fabricated on a silicon-on-insulator material system,
where the single-modewaveguide was designedwith a length of about
1.5 cm, a width of 500 nm, and a thickness of 220 nm. The average
losses of photons from generation to detection are about 1.5 dB for
transmission loss in the waveguide, 5 dB for coupling loss of the
grating coupler, 4.5 dB for the WSS, 2 dB for the total insertion loss of
three DWDMs and polarization controller, and 0.7 dB for the single-
photon detectors.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.
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