
Article https://doi.org/10.1038/s41467-025-58716-3

Recent intensified riverine CO2 emission
across the Northern Hemisphere
permafrost region

Cuicui Mu 1,2,3 , Kun Li1, Shaoda Liu 4, Yuguo Wei1, Mei Mu1,
Xuexue Shang 1, Fumei Liu3, Chunling Zhang1, Hebin Liu1, Tanguang Gao 1,
Chunlin Song 5, Liwei Zhang 6 & Jan Karlsson 7

Global warming causes permafrost thawing, transferring large amounts of soil
carbon into rivers, which inevitably accelerates riverine CO2 release. However,
temporally and spatially explicit variations of riverine CO2 emissions remain
unclear, limiting the assessment of land carbon-climate feedback. Using new
and published 5685 riverine CO2 partial pressure data in the Arctic and Tibetan
Plateau, we show that current riverine CO2 emission across the Northern
Hemisphere permafrost zone is 200 ± 15 Tg C yr⁻1. The emission offsets
28.1 ± 2.1% of the land carbon uptake in the Northern Hemisphere permafrost
zone, with large regional variability of 13.1 to 63.1%. Our findings suggest that
CO2 emissions increased at a rate of 0.42 ±0.16 Tg C yr⁻1 during 2000 to 2020,
and this is primarily driven by increased precipitation and accelerated per-
mafrost thawing under climate change. This study highlights increased river-
ine carbon emission and strengthening of the permafrost carbon feedback to
climate after incorporating carbon release from rivers.

Carbon dioxide (CO2) emissions from rivers and streams account for
about 85% of global inland water CO2 emissions1, making it a crucial
component of the global carbon cycle. Permafrost covers up to 21
million km2 of the Northern Hemisphere (NH) land area2. Due to the
cold and wet environmental conditions, these permafrost areas store
large amounts of soil organic carbon, accounting for approximately
50% of global carbon storage3. Climate warming accelerates the
widespread thawing of permafrost, causing ground temperature
increase, ground ice melting, and permafrost loss4,5. Dramatic perma-
frost degradation has increased the lateral carbon exports to adjacent
freshwater ecosystems6, where it is partly mineralized and evaded as
greenhousegases into the atmosphere, further enhancing the strength

of permafrost carbon feedback to climate change. For now, although
terrestrial ecosystem in the NH permafrost regions serves as a carbon
sink, the CO2 emissions from inland waters largely offset the sink7.
However, terrestrial carbon budgets rarely incorporate rivers8,9, and
temporally and spatially explicit estimate of riverine CO2 emissions
and their impacts on land carbon sink in the NH permafrost regions is
still missing.

Several preceding studies have been dedicated to assessing the
magnitude of CO2 emissions from rivers and streams on regional,
national and global scales10–13. Meanwhile, riverine CO2 emissions in
permafrost regions11,14–17 are gaining recognitions due to their impor-
tant contributions to global carbon emissions. Based on the global

Received: 22 October 2024

Accepted: 31 March 2025

Check for updates

1Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and research
station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou 730000, China. 2State Key Laboratory of Cryospheric
Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. 3Academy of Plateau Science and
Sustainability, Qinghai Normal University, Xining 810016, China. 4State Key Laboratory of Water Environment Simulation, School of Environment, Beijing
Normal University, Beijing 100875, China. 5State Key Laboratory of Hydraulics andMountain River Engineering, College of Water Resource and Hydropower,
Sichuan University, Chengdu, Sichuan 610065, China. 6State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta EstuarineWetland Ecosystem
Observation and Research Station, East China Normal University, Shanghai, China. 7Climate Impacts Research Centre (CIRC), Department of Ecology and
Environmental Science, Umeå University, Linnaeus väg 6, 90187, Umeå, Sweden. e-mail: mucc@lzu.edu.cn

Nature Communications |         (2025) 16:3616 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0630-9423
http://orcid.org/0000-0003-0630-9423
http://orcid.org/0000-0003-0630-9423
http://orcid.org/0000-0003-0630-9423
http://orcid.org/0000-0003-0630-9423
http://orcid.org/0000-0002-0836-5085
http://orcid.org/0000-0002-0836-5085
http://orcid.org/0000-0002-0836-5085
http://orcid.org/0000-0002-0836-5085
http://orcid.org/0000-0002-0836-5085
http://orcid.org/0009-0007-1946-5077
http://orcid.org/0009-0007-1946-5077
http://orcid.org/0009-0007-1946-5077
http://orcid.org/0009-0007-1946-5077
http://orcid.org/0009-0007-1946-5077
http://orcid.org/0000-0002-3050-5590
http://orcid.org/0000-0002-3050-5590
http://orcid.org/0000-0002-3050-5590
http://orcid.org/0000-0002-3050-5590
http://orcid.org/0000-0002-3050-5590
http://orcid.org/0000-0003-3627-2350
http://orcid.org/0000-0003-3627-2350
http://orcid.org/0000-0003-3627-2350
http://orcid.org/0000-0003-3627-2350
http://orcid.org/0000-0003-3627-2350
http://orcid.org/0000-0002-1610-2816
http://orcid.org/0000-0002-1610-2816
http://orcid.org/0000-0002-1610-2816
http://orcid.org/0000-0002-1610-2816
http://orcid.org/0000-0002-1610-2816
http://orcid.org/0000-0001-5730-0694
http://orcid.org/0000-0001-5730-0694
http://orcid.org/0000-0001-5730-0694
http://orcid.org/0000-0001-5730-0694
http://orcid.org/0000-0001-5730-0694
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58716-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58716-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58716-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-58716-3&domain=pdf
mailto:mucc@lzu.edu.cn
www.nature.com/naturecommunications


river carbon flux dataset, the riverine CO2 emissions in the pan-Arctic
permafrost regions were estimated at 107–223 Tg CO2–C yr−1 7.
Nevertheless, for the whole NH permafrost regions, current estimate
of riverine CO2 release focuses on the multiyear-average emission
assessment18, but the annual spatio-temporal changes of riverine CO2

emissions remain unconstrained. This greatly hinders the under-
standing of the role of riverine CO2 emission in offsetting the terres-
trial carbon sink under future climate scenarios.

It is likely that impacts of climatewarming on the carbon cyclewill
vary across the permafrost zone. Notably, the extensive permafrost
regions in both the Arctic and Tibetan Plateau (the largest mountain
permafrost area globally) experience amplified warming compared to
the global average19,20. Compared to the Arctic, permafrost in the
Tibetan Plateau is characterized by higher ground temperatures,
deeper active layer thicknesses and lower organic carbon storage21,22.
Meanwhile, permafrost degradation in the Tibetan Plateau has been
more severe and extensive than in the Arctic5,23. However, previous
studies have often treated these permafrost regions separately, over-
looking the opportunity to compare their riverine CO2 emissions in a
unified framework. Thus, the driving mechanisms for riverine CO2

emissions between the Arctic and Tibetan Plateau permafrost regions
are poorly understood, implying uncertainty in understanding and
projecting the future coupled land-water carbon cycle.

Riverine CO2 emissions mainly depend on the supply of carbon
from soil and shallow subsurface input6. This process is influenced by
factors such as climate24, permafrost14 and land use25. However, for the
NH permafrost zones, knowledge of the influence of these factors on
the distribution and variations of riverine CO2 emissions remain lim-
ited. Furthermore, although aquatic CO2 emissions may offset a con-
siderable portion of the terrestrial carbon sink, terrestrial carbon
budgets for permafrost regions in Earth System Models (ESMs) typi-
cally do not account for the contribution of riverine carbon
emissions26. These limitations hinder accurate estimations of riverine
CO2 emissions from permafrost regions and future projections of

permafrost carbon–climate feedback. Therefore, given the accelerat-
ing permafrost degradation under future climate scenarios4, there is a
pressing need to assess how climatic and environmental factors affect
riverine CO2 emissions, and what changes have been seen in riverine
CO2 emissions across the NH permafrost region.

Here, we conducted field observations on the Tibetan Plateau and
synthesized previous measurements in the NH permafrost regions,
presenting a compilation of 5685 in situ riverine CO2 partial pressure
(pCO2) data between May and October from 2000 to 2020 (Fig. 1,
Table S2). We quantified the relative importance of environmental
variables influencing riverine pCO2 and emission across the Arctic and
Tibetan Plateau. We then upscaled the riverine pCO2 and efflux during
2000 to 2020 in NH permafrost regions using a random forest model.
To estimate the impacts of riverine CO2 emissions on land carbon sink,
we synthesized the model outputs of land carbon uptake from the
Coupled Model Intercomparison Project Phase 6 (CMIP6). Finally, we
examined the spatio-temporal changes of riverine CO2 emissions from
2000 to 2020, and quantified the contributions of environmental
factors to the inter-annual variations using a statistical model.

Results and discussion
Riverine pCO2 and efflux
Riverine pCO2 and CO2 efflux exhibit distinct patterns across different
permafrost types in the Arctic and the TibetanPlateau (TP). River pCO2

in the Arctic (1,532 μatm) was significantly higher than in the TP (470
μatm) (p < 0.05) (Fig. 1a). The average river pCO2 in the Arctic was
higher among the continuous, discontinuous and sporadic permafrost
zones compared to the isolated permafrost zone (Fig. 1b). In the TP,
river pCO2 was similar across the permafrost zones. The continuous
permafrost zone in the Arctic and TP had high riverine CO2 efflux
(1,167 gC m⁻2 yr⁻1, 187 g C m⁻2 yr⁻1) compared to the discontinuous
(375 g C m⁻2 yr⁻1, 53 g C m⁻2 yr⁻1), sporadic (285 gC m⁻2 yr⁻1, 12 g C m⁻2

yr⁻1) and isolated (119 gC m⁻2 yr⁻1, 58 gC m⁻2 yr⁻1) permafrost zones
(Fig. 1c). These observations are in line with the regional observations
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Fig. 1 | Observed riverine pCO2 and their influencing factors across the North-
ern Hemisphere permafrost region. a Locations of the observed riverine pCO2

across permafrost zones. The bar chart shows the comparison (Mann–Whitney U
test) of pCO2 between the Arctic and Tibetan Plateau (TP). The background of
Northern Hemisphere permafrost distribution is from ref. 2. b–c Distribution pat-
terns of riverine pCO2 and CO2 efflux with different permafrost zone types in the
Arctic and TP. The scatter plot illustrates themagnitude and distribution density of

riverine pCO2 and CO2 efflux of individual samples. The upper and lower ends of
boxes denote the 0.25 and 0.75 percentiles, respectively. The upper and lower
whisker caps indicate the 1.5 interquartile range of upper and lower quartile,
respectively. Dots outside whiskers indicate outliers. The black line indicates the
median value, and the black square represents the mean value. d Schematic illus-
tration of factors influencing spatial distribution riverine pCO2 across the Northern
Hemisphere permafrost zone.
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of Arctic riverine CO2 effluxes
11,27,28. The difference in spatial distribu-

tion of CO2 efflux across different permafrost types may be attributed
to variations in soil organic carbon content29 and respiration rates30,
highlighting the critical influence of permafrost distribution on river-
ine CO2 emissions across the whole NH permafrost region.

To upscale the riverine CO2 emissions on a hemisphere scale, we
examine the effects of environmental factors on spatial distribution of
riverinepCO2 using 15 environmental variables including six categories
of climate, terrain, permafrost, vegetation, human and soil properties
(Methods). Results show that soil properties have the greatest influ-
ence (44.0%) in the NH permafrost regions, followed by permafrost
(21.4%) and climate (21.3%) (Fig. 1d). In the Arctic, soil properties
(37.5%) have the highest contribution to the riverine pCO2 (Figure S1a),
whereas the effect of climate (28.6%) in the TP is comparable to the
terrain (23.8%) and permafrost properties (22.9%) (Figure S1b). Our
results suggest different controls on distribution of riverine CO2

emission between high-latitude and high-altitude NH regions, and
enablemore detailed assessments of riverine CO2 emissions across the
region.

Spatial distribution of riverine CO2 emissions
Based on simulated riverine pCO2 from the random forest model
(Figure S2), and gas transfer velocity and global monthly river surface
area calculated by Liu et al.12,31 using theHydroBASIN level 4 framework
dataset32, we calculated riverine CO2 emissions and their spatial dis-
tributions. Riverine CO2 emission rates showa range of between 14 and
41 Tg C per month in the NH permafrost regions (Table S1). Unlike
previous studies18, we estimated the riverine CO2 emissions by sepa-
rately upscaling pCO2 and CO2 efflux in the Arctic and TP permafrost
region considering the differences in environmental controls between
the two regions (Figure S1). Moreover, compared with the global-scale
study13, significantly more monitoring sites with 5685 monthly data
were synthesized for accurate estimates of CO2 emission for the Arctic
and TP. Taken together, our results suggest that average riverine CO2

emissions in May–October from 2000 to 2020 amount to 200 ± 15 Tg
C yr⁻1, with 188 ± 14 Tg C yr⁻1 in the Arctic and 11.7 ± 0.8 Tg C yr⁻1 in the
TP (Fig. 2). Our result is similar to the Arctic riverine CO2 emissions
during the sameperiod calculated froman earlier global study (202 Tg
C yr⁻1)12 andNorthernHemisphere (226TgC yr⁻1)18 studies, and slightly
lower than the riverine CO2 emissions in the TP during 2010s (18.6 TgC
yr⁻1)10. This may be attributed to the differences in study area between
this and previous works. Specifically, our study focuses on the rivers
within the TP permafrost region, whereas earlier studies encompassed
the whole TP, which may cause the slightly discrepancies in the esti-
mates. Notably, compared with the total estimation using boot-
strapping approach18, our result shows the annual spatiotemporal
distribution of riverine CO2 emission and regional disparities in the NH
permafrost region. The estimated riverine CO2 emissions across the
NH permafrost regions account for 10–11% of global riverine CO2

emissions12,13, which is slightly lower than the area proportion of
northern cryosphere rivers (20%, Table S1) to the area of global
rivers12,33. The results imply that riverine CO2 release play a critical role
in the permafrost carbon feedback to climate warming. Our findings
emphasize the importance of riverine carbon cycling in the permafrost
regions through comparing and quantifying the river area and carbon
emission on a global scale. Moreover, our study shows a significant
advancement in the simulation by supplementing more observed CO2

data on the TP and considering the impacts of permafrost conditions
and other environmental variables. Most significantly, given the
regional discrepancy between the Arctic and TP cold regions23, our
regionalized simulation in the Arctic and TP can better reveal the
spatial distribution of riverine CO2 emissions.

To estimate the relative importance of riverine CO2 emission in
the larger carbon cycle, we used the outputs of land carbon uptake
between May and October from the Coupled Model Intercomparison

Project Phase 6 (CMIP6) includingCMCC–CM2–SR5 andCMCC–ESM2.
We show that average land carbon uptake between May and October
from 2000 to 2020 in the NH permafrost regions was –711.6 (–783.8
to –639.5) (mean with the 95% confidence interval) Tg C yr⁻1, with
–661.5 (–733.4 to –589.7) Tg C yr⁻1 in the Arctic and –50.1
(–51.9 to –48.4) Tg C yr⁻1 in the TP (Figure S5). Unlike the spatially
inexplicit emission estimate in a previous study18, we show that riverine
CO2 emissions offset on average 28.1 ± 2.1% of annual land carbon sink
across the whole NH permafrost regions, with significant regional
differences in the offset ratios: 24.7 ± 2.3% in Alaska, 63.1 ± 3.8% in East
Siberia, 32.3 ± 2.3% in Canada, 39.3 ± 1.9% in North Europe, 13.1 ± 0.8%
in West Siberia and 23.4 ± 1.6% in TP (Fig. 2). Notably, we find that the
rate of increase in the proportion of land carbon uptake offset by
riverine CO2 emissions in the Arctic is about ten times higher than that
in the TP (Figure S7). Although uncertainties in estimated riverine CO2

emission and land carbon uptake, and exact numbers should be trea-
ted with caution, these data suggest that riverine CO2 emissions con-
stitute a significant component in the carbon cycle of NH permafrost
regions. Similarly, field observations in Western Siberia have shown
that CO₂ emissions from inland waters (including rivers, lakes, and
ponds) offset 35–50% of the terrestrial carbon sink11. On a global scale,
the estimated current regional ratio of annual riverine CO2 emissions
to terrestrial gross primary production can reach up to 18%, with high
ratios in the Arctic and TP12.

Changes in the emissions between 2000 to 2020
To reveal the changes of riverine CO2 emissions over time, we simu-
lated the riverine pCO2 year by year from 2000 to 2020 using the time-
varying watershed variables (Methods) identified to influence riverine
pCO2. Results show that the riverine CO2 efflux increased with an
average rate of 1.05 g Cm⁻2 yr⁻1 (1248 to 1283 gCm⁻2 yr⁻1, Fig. 3) in the
NH permafrost zone between 2000 to 2020. In 2020, the river CO2

emissions are highest in both the Arctic and TP permafrost regions,
thus we compare anomalies relative to the multiyear mean CO2 efflux
during 2000–2020 and key environmental conditions to identify dri-
vers. We further find that increases in riverine CO2 efflux are observed
in about 58% of the NH permafrost area from 2000 to 2020, with the
three hotpots of Central Siberia, Northeastern East Siberia and South-
central TP (Fig. 3a). Notably,wefind the temporal and spatial variations
of riverine CO2 emissions have similar trends with precipitation and
permafrost ground temperature. Specifically, the anomaly emission
hotspots in 2020 primarily overlap with regions of high precipitation
in the Arctic (Fig. 3b), and of high permafrost ground temperatures in
the TP (Fig. 3c). Additionally, these hotspots have also extensive
peatlands with vast organic carbon stocks34, likely contributing to the
pronounced responses in riverine CO2 emissions to changes in pre-
cipitation and permafrost degradation in these regions.

In the past 20 years, riverine CO2 emissions has increased at a rate
of 0.42 ±0.16 Tg C yr⁻1 in the NH permafrost regions (Fig. 3d), with a
rate of 0.33 Tg C yr⁻1 in the Arctic and 0.08 Tg C yr⁻1 in the TP
(Fig. 3e, f). Notably, a robust increase of riverine CO2 emissions in the
TP between 2010-2020 is consistent with the recent drastic mountain
permafrost degradation5,23. Given the expected/projected changes in
precipitation and permafrost ground temperatures over the next
decades35,36, our result suggests a significant acceleration of riverine
CO2 emissions in the future. The results of this study may also be
subject to various sources of uncertainty. Although machine learning-
based methods are widely used in upscaling and simulating regional
carbon fluxes37,38, the representativeness of riverine pCO2 measure-
ments and the inadequate selection of explanatory variables will cause
uncertainty in the riverine CO2 emission estimations. For example,
current observations do not involve the central and eastern Siberia.
Moreover, although total 15 environmental factors were used in the
Random Forest model, the explanatory variables applied in the ran-
dom forest models may not be sufficient to adequately capture the
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changes in riverine CO2 emissions, such as the river floodplain para-
meters. Taken together, despite the various sources of uncertainty, our
estimates of gridded CO2 emissions from rivers have reasonable
accuracy (Figures S2–S4) and uncertainty of the annual riverine CO2

emissions are relatively low.

Drivers of inter-annual variations
To further clarify the drivers for changes in riverine CO2 efflux in the
Arctic and TP over the recent 20 years, we quantified the contributions
of environmental factors to the inter-variability and trends using a
statistical model (Methods)39. The results show that climate factors
(57.3%), in particular precipitation (Fig. 4a), influence the most of
interannual variability of riverine CO2 efflux in the Arctic, followed by

permafrost characteristics (34.4%). This is attributed to the fact that air
temperature andprecipitation play crucial roles in the keyprocesses of
terrestrial carbon budget40. More precipitation enhances the land-
water connections, resulting in more lateral exports of terrestrial
organic and inorganic carbon24. Meanwhile, increasing temperature
can cause the thawing of permafrost, enhancing soil respiration and
decomposition of organic carbon in rivers41,42. It is also supported by
that soil respiration contributes most to the spatial distribution of
riverine pCO2 in the Arctic (Figure S1a). Our results imply that the
enhanced CO2 emissions from the Arctic rivers are mainly influenced
by the direct and indirect effects of climate change.

The increasing trend of riverine CO2 efflux in the TP is mainly
driven by permafrost factors (55.0%) including ground temperature at

Fig. 2 | Riverine CO2 emissions and land carbon uptake between 2000-2020.
a The distribution of riverine CO2 emissions at a spatial resolution of 1 km
between 2000 and 2020. The land boundary of the Tibetan Plateau is derived
from ref. 72, while the boundaries for other regions are obtained from Natural
Earth (https://www.naturalearthdata.com/). b–g Annual riverine CO2 emissions
and land CO2 uptake during May to October in Alaska, East Siberia, Tibetan Pla-
teau, West Siberia, North Europe and Canada, and (h) in the whole Northern

Hemisphere permafrost regions. The error bars represent the 95% confidence
interval. The percentages represent the average proportions of land CO2 uptake
offset by riverine CO2 emissions during 2000-2020. The dashed lines indicate the
linear fit for the annual offsetting ratios through the years and the S represents
the changing trends. The shadow represents a standard deviation of riverine CO2

emissions offsetting carbon sink. The significances are given as *P < 0.05,
**P < 0.01, and ***P < 0.001.
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1–m depth and active layer thickness, followed by climate (20.9%)
(Fig. 4b). Given that permafrost thawing is more dramatic in the TP
than in theArctic43, itmakes sense to infer that permafrostdegradation
is the dominant driver of carbon release. Permafrost ground ice
melting promotes rainfall infiltration and increases groundwater sto-
rage, enhancing groundwater discharge and carbon export into
rivers44,45. Particularly, dissolved organic carbon can be mineralized or
transported after being released from soils affected by permafrost
degradation46. The whole TP is warming andwetting since 2000, while
the increase in precipitation can further accelerate the thawing of
permafrost47,48. Although these processes suggest that riverine CO2

emissions is accelerated by permafrost degradation, the influencing
mechanism still need to be explored.

Implications
Our study shows the spatio-temporal distribution of riverine CO2

emission in the NHpermafrost regions and quantifies its impact on the
terrestrial carbon sink at an interdecadal scale. The findings yield
valuable insights with far-reaching implications for the understanding
of the role of riverine CO2 emission on the permafrost carbon feed-
back. The results not only advance our knowledge of the impacts of
river carbon dynamics on the land carbon sink, but also highlight the
urgency of integrating these emissions in ESMs in order to make
accurate assessments of the contemporary and future climate
change49.

By integrating field observations,machine learningmodeling, and
mechanistic analysis, our study has laid the groundwork for accurate
assessment of riverine CO2 emissions. Yet, due to the limitations in
in–situ observations, our estimates of CO2 emissions are constrained
to a monthly scale. However, significant CO2 fluxes can occur over a
short period in the Arctic, particularly during spring freshets50. Addi-
tionally, although we consider the seasonal variations in river surface
area using monthly resolved open water surface areas, the temporary
expansion of river surface area such as floodplain inundation during

high-flow seasons is not included in the estimates51. Thus, future
refined monitoring data is essential for the accurate estimation of
riverine carbon release. It is imperative to further expand land-water
monitoring networks, continue data synthesis efforts, and better
integrate field observations with ecosystem models. The uneven dis-
tribution of observations across sites results in additional uncertain-
ties, thus assessing the observation’s representativeness within the
heterogeneous permafrost regions and improving site-level coverage
will be crucial to constrain both the contemporary and future net
carbon budgets in the Northern Hemisphere permafrost regions.

Methods
Observed river CO2 data
Field observation of riverine CO2 emissions was conducted in August
and September of 2017 and from June to October of 2018 in the Heihe
River Basins, northeastern Tibetan Plateau (TP). CO2 concentrations
weremeasured at 93 sites (133 observations) using a LI–8100 CO2/H2O
gas analyzer (LI–COR)with a self–made floating chamber (Table S2). At
each sampling site three replicate 30 second measurements were
carried out. Also, water temperature (Tw, ◦C), pH, river flow velocity
(FV), atmospheric pressure, dissolved oxygen saturation, turbidity and
conductivity were measured at each site. Based on the atmospheric
pressure at each site, we calculated the pCO2

52.
For CO2 observations in Northern Hemisphere (NH) permafrost

rivers, our study primarily relies on the GRiMeDB dataset53, dataset
from Liu et al.31 and other published data10,11,16,54. Literature data were
obtained from theWeb of Science using following keywords “stream,”
“river,” “carbondioxide (CO2),” “pCO2,” “CO2 flux,” “carbon emissions,”
“carbon release,” “water chemistry,” “water quality,” “permafrost
region,” “Tibetan Plateau,” and “Northern Hemisphere”. Given the data
limitation of ice-off period in the study area, we used data fromMay to
October. In total, we obtained in-situ pCO2 data at 4917 sites (Fig. 1a),
with 9096 daily measurement data of riverine pCO2 (Supplementary
Materials). For multiple observations at the same site, we averaged the
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ground temperature at 1m depth (GT) in 2020 relative to multiyear mean values
from2000 to 2020. Thedashed boxes show thehotpots of their changes in Central
Siberia, Northeastern East Siberia and South-central Tibetan Plateau. d–f Changes

of annual riverine CO2 emissions during 2000-2020 in the Northern Hemisphere
(d), Arctic (e), Tibetan Plateau (f) permafrost zone. The dashed lines indicate the
linear fit for the riverine CO2 emissions and the S represents the changing trends.
The shadow represents a standard deviation of riverine CO2 emissions. The sig-
nificances of trend are given as *P <0.05, **P <0.01, and ***P <0.001.
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data to ensure that each site had a value for each month. Conse-
quently, a total of 5685 monthly observed riverine pCO2 data were
used in this study, with 5388 data in the Arctic, and 297 data in the TP.
For CO2 concentration data obtained from the GRiMeDB dataset, we
converted the unit fromμmol L⁻1 to μatm according to the Eqs. (1–3)53.
The van’t Hoff Eq. (4) modifying Henry’s law constant to account for
the effects of temperature, was used to calculate the solubility of gases
at non-standard temperatures.

CO2 concetrationðμmol=LÞ= kH ×PressureðatmÞ×CO2 concentrationðppmÞ
ð1Þ

CO2 concentrationðμmol=LÞ= kH ×pCO2ðμatmÞ ð2Þ

Pressure ðatmÞ= ð1� ð0:0000225577 × ElevationðmÞÞÞ5:25588 ð3Þ

kH = kH prime × e
C × 1

TemperatureðKÞ� 1
298

� �
ð4Þ

where kH prime is the original Henry’s law constant (3.4×10⁻2) (mol L-1

atm-1) (http://www.henrys-law.org), C is the temperature correction
constant 2400 used for the van’t Hoff equation, temperature is the
given water temperature and 298 is the standard temperature.

Water surface area of streams and rivers
We used a globalmonthly river surface area data created by Liu et al.12,
produced under the HydroBASIN level 4 framework32. This dataset
separates land surface area and accounts for both downstream and
at–a–station hydraulic geometry, providing monthly surface area
estimates that include streams as small as 0.3m in width. We then
clipped this dataset to the extent of the NH permafrost regions, cal-
culating the percentage of permafrost coverage within each basin. By
multiplying this percentage by the total river surface area of that basin,
we derived the monthly river surface area for the NH permafrost
regions during May to October. The final monthly river surface area

ranges from 69,737 to 200,304 km2 (Table S1). Additionally, we used
the Global Reach-level A priori Discharge Estimates for SWOT
(GRADES) river networks55 (http://hydrology.princeton.edu/data/
mpan/MERIT_Basins/), a new representation of global river networks
derived from the fine resolution (~90meters)Multiple–Error Removed
Improved-Terrain Digital Elevation Model (MERIT DEM), and related
hydrography datasets56, as the hydrographic infrastructure for riverine
CO2 estimates.

Predictor variables
For modeling riverine pCO2 (μatm) in the NH permafrost regions, we
collected 25 variables fromglobal geospatial datasets (Table S3). These
datasets included climate variables (monthly air temperature at 2m (K)
and monthly precipitation (mm)), vegetation parameter (monthly
gross primary production (g C m−2 d−1)), yearly permafrost variables
(active layer thickness (m) and permafrost ground temperature at 1m
depth (K)), topographic variables (elevation (m) and slope (%)), and
15 soil variables from the Harmonized World Soil Database (HWSD,
v1.2), including gravel content (%vol.), sand fraction (% wt.), silt frac-
tion (% wt.), clay fraction (% wt.), textures (name), bulk density
(kg dm−3), soil organic carbon (SOC) (% weight), pH (−log(H+)), cation
exchange capacity (CEC) (cmol kg−1), base saturation (%), total
exchangeable bases (TEB) (cmol kg−1), calcium carbonate (CaCO3)
(% weight), gypsum (CaSO4) (% weight), sodicity (%), salinity (dS m−1),
soil respiration rate (g Cm−2 yr−1), and peatland carbon stocks (hgm−2).
The yearly population density (people km−2) was from WorldPop
(https://hub.worldpop.org/). Utilizing stepwise regression, we
addressed multicollinearity by removing several predictor variables
with high intercorrelation (Variance Inflation Factor > 10) We retained
the variables deemed most representative of riverine carbon release
processes. Finally, we used the soil variables including soil organic
carbon (SOC) (% weight), pH (−log(H+)), cation exchange capacity
(CEC) (cmol kg−1), total exchangeable bases (TEB) (cmol kg−1), and bulk
density (kg dm−3). Details of the environmental variables and their
sources were shown in Table S3. All geospatial data were unified to the
same spatial resolution (1 km)before theupscalingofpCO2 to facilitate
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efflux annual anomalies (solid lines) and linearfit (dashed lines) using all drivers and
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percentage of climate (precipitation, air temperature), permafrost factor as ground
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factors. The size of the bar chart also represents the difference in slope between
each test and the upscaled CO2.
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subsequent comparisons and modeling. Specifically, we applied
bilinear interpolation57 to resample the geospatial data to a 1–km
resolution. This method, commonly used for continuous data, pro-
vides smoother transitions and superior performance compared to
other techniques, such as nearest neighbor interpolation. Although
someerror is inevitably introducedduring the resamplingprocess, this
approach is deemed acceptable considering the research objectives
and the need for consistency across datasets.

Spatial upscaling of riverine pCO2

The Random Forest model was used to simulate the yearly and
monthly riverine pCO2 in the NH permafrost regions. Compared to
other ML algorithms, RF has shown to have better accuracy and lower
uncertainty58. This approach has been previously applied to upscaling
CO2, CH4 and N2O fluxes in rivers59,60. Considering the limited obser-
vations and highly heterogeneous landscapes between the Arctic and
the TP, we separately conducted the simulation in the two regions.
Firstly, for the yearly riverine pCO2 upscaling, the observed riverine
pCO2 and corresponding environmental factors in the Arctic were
divided into a 7:3 ratio and used for model training and testing. The
7:3 split is a commonly used practice inmachine learning applications,
particularly for datasets with sufficient sample sizes, as it provides a
robust test set while ensuring adequate training data for model
learning61. In the TP, the 8:2 ratiowas adopted tomaximize the training
dataset, which was essential for capturing the region’s complex and
heterogeneous environmental characteristics despite the data limita-
tions. Then, we extended the default hyperparameter ranges of ran-
dom forest model, including the minimum size of data points before
splitting a tree (min_n), the number of variables to use in each split
(mtry), and the number of trees (n_trees). Meanwhile, random search
and standard 10-fold cross-validation were used to obtain a stable
performancemodel, with R2 and RootMean Square Error (RMSE) used
for the evaluation of model performance. Finally, the number of pre-
dictive variables to use for the min_n, mtry, and n_trees were set to be
10, 1, 1000 in the Arctic, respectively, and 12, 4, 1000 in the TP,
respectively. The performances of models were shown in Figure S2.
Themodels yielded good performance for yearly riverine pCO2 both in
the Arctic (R2 = 0.76; RMSE = 419.63 µatm; P < 0.001) and in the TP
(R2 = 0.47; RMSE = 203.48 µatm; P <0.01).

In addition, to quantify the variations in riverine pCO2 between
May and October, we constructed monthly models using the hyper-
parameter of corresponding yearlymodel. Unlike the yearlymodel, the
training and testing data used for monthly model incorporated
observations from the corresponding and adjacentmonths, which was
employed to increase the observations available for each model. The
modeling framework yielded reasonably good seasonal riverine pCO2

both in the Arctic (R2 = 0.19–0.88; RMSE = 287–780.73 µatm; P <0.001,
0.01, 0.05) and the TP (R2 = 0.40–0.96; RMSE = 42.48–244.14 µatm;
P <0.001) permafrost regions (Figure S3).

To upscale riverine pCO2 across the permafrost regions, the
trained yearly and monthly random forest models were coupled with
the relevant gridded predicting variables. Then, the yearly riverine
pCO2 of the Arctic and TP permafrost regions were estimated from
2000 to 2020, while monthly pCO2 was estimated from May to
October.

Changes of riverine pCO2 from 2000 to 2020
We trained the Random Forest model using the complete data from
2000 to 2020. To ensure accurate temporal and spatial alignment, we
matched eachpCO2observationwith its corresponding environmental
variables for the specific time and location, which improved the rela-
tionship between pCO2 and its predictors, thereby enhancing model
performance. Using the trained model, we substituted the environ-
mental variables with year-specific values to predict pCO2 on a
raster–by–raster basis for each year between 2000 and 2020. Key

variables that vary annually include temperature, precipitation, GPP,
population density, ALT, and permafrost ground temperature at 1m
depth. Since the ALT and permafrost ground temperature at 1mdepth
data only cover the period from2000 to 2019, we used the values from
2019 as proxies for 2020. All other variables, such as slope and soil
properties, remained constant over time. This method has also been
successfully used to estimate carbon and/or water fluxes in different
periods37,62,63.

Drivers of the riverine pCO2

To quantify the relative importance of each variable for riverine pCO2,
we conducted the statistical analyzes following the three steps. Firstly,
we employed the “varImp” method to obtain the feature importance
ranking of yearly predictive models using the “Caret” package in R
version 4.2.2. Secondly, the environmental variables were divided into
six major categories, including climate (air temperature at 2m (K),
monthly precipitation (mm)), terrain (elevation (m) and slope (%)),
permafrost (ground temperature at 1m depth (K) and active layer
thickness (m)), vegetation (monthly gross primary production (gCm−2

d−1)), human (population density (people km−2)) and soil (soil respira-
tion rate (g C m−2 yr−1), peatland carbon stocks (hg m−2), soil organic
carbon (% weight), soil bulk density (kg dm−3), soil pH (−log(H+)), soil
cation exchange capacity (cmol kg−1), and soil total exchangeable bases
(cmol kg−1). Thirdly, we calculated the percentage of each category
based on the relative importance of each variable. Besides, to quantify
the relative importance of each environmental variable for the whole
NH permafrost region, we synthesized the records from the Arctic and
TP as the input data, and constructed a random forest model suitable
for upscaling the riverine pCO2 in the NH (Figure S4).

Estimates of riverine CO2 fluxes
We calculated the riverine CO2 efflux (FCO2, g C m⁻2 yr⁻1) across the
water–air interface using the following equation14:

FCO2 = k × ð½CO2�w � ½CO2�aÞ× 12 ×N ð5Þ

where k is the gas transfer velocity (m d−1) obtained from Liu et al.31,
[CO2]w and [CO2]a represent CO2 concentration (mmol L−1) in water and
in equilibrium with a constant atmospheric pCO2 of 402 μatm, repre-
senting the average pCO2 from May to June 2016, sourced from 129
worldwide stations (https://community.wmo.int/wmo-greenhouse-
gas-bulletins), consistent with the 2016 record at Tiksi station64

(404 ±0.9 ppm). The number of 12 is the molar mass of carbon
(12 gmol−1) and N is the number of days during the ice-free period
(summed to be 180d from May to October). A temperature-sensitive
Henry’s Law constant (kH, in atm × L/mol) was used to convert partial
pressures to dissolved CO2 concentrations

65. River water temperature
(Tw) is calculated using the monthly air temperature (Ta).

½CO2�=pCO2 × kH ×0:001 ð6Þ

�log10ðkHÞ= � 7 × 105Twð°CÞ2 + 0:016Twð°CÞ+ 1:11 ð7Þ

Tw =0:67×Ta + 7:45 ð8Þ

The total CO2 emissions (FCO2 total, Tg C yr⁻1) from all streams and
rivers in the HN permafrost regions was computed as:

FCO2total =
X

FCO2 ×SA× 10�12
� �

ð9Þ

where the 10-12 is the convertor factor and SA is the surface area of
rivers (km2).

To better show the spatial distribution of riverine pCO2 and CO2

efflux, we used the moving window method to smooth the expanded
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GeoTIFF data. First, a moving window mean function was defined,
which applies a specified window size (17 × 17) to each pixel, calculat-
ing the mean of its neighborhood to smooth the data. During the
process, the original values at river network locations were preserved
to ensure that critical data remained unaffected by the smoothing.

Quantified contributions of variables to trends
We used a statistical linear regression model39 to quantify the con-
tributions of various factors to the trends of river pCO2 in the NH
permafrost regions. Firstly, we establish a model, referred to as
Modelall, which is driven by all factors. To understand the impact of
different factors, we iteratively held one group constant while
allowing others to vary. Specifically, we analyzed the scenarios in
which climate (temperature and precipitation), permafrost (ground
temperature and active layer thickness), vegetation factors
(GPP), and human (population density) are constant respectively,
with other factors change over time. For instance, we used
Modelclimate to represent the results that held temperature and pre-
cipitation constant in 2000 and allowed other factors change over
time. Similarly, we derived Modelpermafrost, Modelvegetation and
Modelhuman. The differences ΔCO2 (Climate), ΔCO2 (Permafrost),
ΔCO2 (Vegetation), and ΔCO2 (Human) (Eqs. 10–13) were regarded as
their impacts on riverine CO2 emission. The trend differences were
regarded as the contributions of each group to the increasing riv-
erine CO2 emissions.

ΔCO2ðClimateÞ=Modelall �Modelclimate = βClimateΔClimate ð10Þ

ΔCO2ðPermafrostÞ=Modelall �Modelpermafrost =βPermafrostΔPermafrost

ð11Þ

ΔCO2ðVegetationÞ=Modelall �Modelvegetation =βVegetationΔVegetation

ð12Þ

ΔCO2ðHumanÞ=Modelall �Modelhuman =βHumanΔHuman ð13Þ

Statistics
In this study, the Ordinary Least Squares (OLS) method was used to
calculate themagnitude of the linearfit trend.We used the slope of the
regressionmodel to quantitatively assess themagnitude and direction
of the trends. To assess the statistical significance of the fitted results,
we employed the Mann-Kendall Test, a nonparametric trend test
method that has been widely used in hydrometeorological time series
analysis66. This approach was used to estimate the level of significance
of the interannual trends in riverine CO2 emissions and their offset of
land carbon uptake. To evaluate the significance of the fit between the
model predictions and the observed values, a significance test of the
Pearson correlation coefficient was conducted. This was performed
using the (cor.test) function in R, which calculates thep-value based on
a t-distribution to assess the statistical significance of the correlation.
We considered the differences to be statistically significant
when P <0.05.

Terrestrial net ecosystem exchange
To estimate the impacts of riverine CO2 emissions on land carbon
sinks, we synthesized contemporaneous model outputs of land car-
bon sinks from the Coupled Model Intercomparison Project Phase 6
(CMIP6)67. This is because compared to the remote sensing datasets
such as SMAP L4 Global Daily 9 km EASE–Grid Carbon Net Ecosystem
Exchange, version 7 product68 (SPL4CMDL) and a terrestrial net
ecosystem exchange dataset inferred from the ACOS GOSAT v9
XCO2 retrievals (GCAS2021)69, CMIP6 data has a long temporal

period during 2000–2020. While the machine learning-based Global
250m Terrestrial Ecosystem Net Primary Productivity Remote Sen-
sing Big Data Estimation Product (2001–2020)70 provides a longer
temporal range, its annual resolution made it difficult to align with
the monthly temporal scale of the river carbon emissions. Thus, we
used the outputs of land carbon sinks from CMIP6 to estimate the
percentage of riverine CO2 release offsetting land carbon sink
between 2000 and 2020.

Furthermore, considering the large variability in Net Ecosystem
Productivity (NEP) results across models, we chose two available
models (CMCC–CM2–SR5 and CMCC–ESM2) with same experimental
settings, the finest spatial resolution (100 km) and the availability for
both historical and future projections. Since historical simulations end
in 2014, they were extended to 2020 using SSP2–4.5 projections.
SSP2–4.5 scenario represents a moderate emission pathway more
aligned with current development trends. To ensure equal weight for
each model, we used the average of the two models. We averaged the
NEP data for the months of May to October each year to represent the
annual land carbon exchange level. Following standard conventions,
NEP valueswere converted toNet EcosystemExchange (NEE) by taking
their negative, where positive NEE indicates carbon emissions, and
negative NEE indicates carbon uptake. Then we used Python for data
cropping and resampling to ensure consistency in spatial resolution
and alignment with the study region. To quantify the offset by riverine
CO2 emissions, we excluded river networks by setting grid cell values
containing rivers to zerowhen calculating landcarbonuptake. The95%
confidence interval of the estimated land carbon uptake was used to
represent uncertainty.

Uncertainty analysis
For each year, we conducted 100 iterations of random forest (RF)
model training. Each RF model was trained with the same optimized
hyper–parameters and different bootstrap samples (i.e., random
sampling of the original data with put–back). These 100 models were
then applied to the spatial grid predictors to generate pCO2 predic-
tions for each iteration. The mean of the 100 model predictions was
used to estimate the spatially upscaled pCO2 values, while the standard
deviation of these predictions quantified the associated prediction
uncertainty71. Finally, the predicted pCO2 mean and uncertainty were
multiplied by the area to quantify CO2 emissions and their
uncertainties.

Software used for the analysis
For data analysis and organization, we used SPSS software (available at
https://www.ibm.com/spss) and R version 4.2.2 (available at https://
www.R-project.org/), resampling and cropping, etc. were done using
python version 3.11 (available at https://www.python.org/), model
construction, importance ranking and visualization were done using R
statistical software. GIS processing and presentation was done using
ArcMap 10.8. (available at https://www.esri.com/en-us/arcgis/
products/arcgis-desktop/overview)

Data availability
All data supporting the findings are available in the Figshare data
repository (https://doi.org/10.6084/m9.figshare.28409006) and
Supplementary Information. Source data are provided with
this paper.

Code availability
The codes are also accessible through the same link documented in
data availability.
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