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Disease-specific subtype identification can deepen our understanding of dis-
ease progression and pave the way for personalized therapies, given the
complexity of disease heterogeneity. Large-scale transcriptomic, proteomic,
and imaging datasets create opportunities for discovering subtypes but also
pose challenges due to their high dimensionality. To mitigate this, many fea-
ture selection methods focus on selecting features that distinguish known
diseases or cell states, yet often miss features that preserve heterogeneity and
reveal new subtypes. To overcome this gap, we develop Preserving Hetero-
geneity (PHet), a statistical methodology that employs iterative subsampling
and differential analysis of interquartile range, in conjunction with Fisher’s
method, to identify a small set of features that enhance subtype clustering
quality. Here, we show that this method can maintain sample heterogeneity
while distinguishing known disease/cell states, with a tendency to outperform

previous differential expression and outlier-based methods, indicating its
potential to advance our understanding of disease mechanisms and cell

differentiation.

Uncovering disease-specific subtypes within recognized cell types is
crucial for understanding disease heterogeneity and responses to
therapeutic treatments, as these subtypes provide detailed insights
into the complexities of disease mechanisms'. This area of study
enhances our understanding of the various disease traits exhibited by
different cells and patients. Systematic exploration of these subtypes
across a spectrum of healthy and diseased conditions can contribute
to advances in personalized and effective treatment approaches,
which is particularly valuable given the diverse responses of cells and
patients to treatments.

The discovery of disease-specific cell subtypes in various diseases
began to emerge due to the capabilities of single-cell RNA-seq
analysis’. For instance, a previous study demonstrated that tran-
scriptionally distinct subpopulations of major brain cell types are
linked to the pathology of Alzheimer’s disease, involving myelination,
inflammation, and neuron survival’. Additionally, new pathological
subtypes of epithelial cells and fibroblasts were recognized to be

highly enriched in pulmonary fibrosis*. Beyond cell subtypes, the
impact extends to patient subtypes, where chromosomal transloca-
tions can give rise to different tumor types>, thereby influencing the
selection of optimal and personalized treatments’’. This underscores
the significance of uncovering the diversity and variability of specific
cell types, both within individual patients and across patient
populations'®™, Such insights are important for understanding the
molecular mechanisms that initiate and progress diseases, improving
patient classification, and aiding in the development of medical
treatments that are more closely aligned with individual characteristics
and needs'*™*.

Molecular signatures, including genes, mRNA transcripts, and
proteins, help delineate diverse cell types and states”. The advance-
ment of omics technologies over the past two decades has enabled the
simultaneous analysis of thousands of molecular entities, facilitating
the characterization of various cells and diseases®. This progress has
led to improved capabilities for describing complex biological
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conditions, which in turn demands more detailed classification of both
cells and diseases. However, the complexity of omics data, which is
inherently high dimensional, poses a challenge to downstream com-
putational processes. Moreover, identifying the molecular signatures
integral to data interpretation becomes a formidable task®. To cir-
cumvent this, a computational process, called feature selection should
be employed to extract a subset of features that are the most infor-
mative and pertinent from high-dimensional omics data to discern the
specific molecular patterns distinctive to each cell or disease subtype.
This process offers several benefits for omics data analysis, including
reducing noise and redundancy, improving sparsity and interpret-
ability, and enhancing computational efficiency. Feature selection is
proven by various theoretical and empirical studies to be effective for
different tasks, such as classification, regression, clustering, and
dimensionality reduction®. Nonetheless, conventional feature selec-
tion methods face limitations in the area of subtype identification,
primarily due to the ensuing reasons.

Traditionally, discriminative feature selection techniques have
been employed to examine the molecular patterns of cells or patient
samples under predefined conditions. The prevalent methods for this
approach fall within the area of differential feature expression analysis.
This category of methods identifies molecules, such as genes, that
display contrasting expression levels or associations with conditions
across two distinct groups, such as cancer and healthy individuals®*.,
It is important to recognize that features from these methods are
discriminative and differentially expressed (DE). However, in numer-
ous real-world scenarios, the complexity and heterogeneity of omics
data are not readily captured by differential expression methods.
Hence, while the discriminative feature selection paradigm centers on
distinguishing established conditions and states, it can inadvertently
stifle the exploration of diversity inherent within the data. As demon-
strated in Supplementary Fig. 1k-1, the discriminative DE features have
limited ability to separate AML and MLL subtypes. However, injecting
heterogeneity by adding HV features can reveal these subtypes (Sup-
plementary Fig. 1m, n). This limitation of discriminative DE features can
potentially simplify feature space, ultimately impeding the effective-
ness of in-depth subtyping*’.

To address this issue, Tomlins et al.** introduced a novel statis-
tical method called “cancer outlier profile analysis” (COPA). This
method was designed to identify subtypes within cancer patients by
focusing on the genes whose expression profiles exhibit minor out-
liers. This pioneering work inspired a series of studies that improved
COPA with more sophisticated statistical and machine learning
techniques for subgroup discovery within each experimental
condition***’, These methods involve ranking features based on
statistical metrics that gauge the degree of abnormal expression
across two experimental scenarios. Nonetheless, they are not well-
suited for tackling complex subtyping challenges, such as deci-
phering the population structure from single cells and detecting the
cell state transitions across conditions such as development pro-
cesses. The limitation lies in the fact that outlier genes do not
encompass the full spectrum of sample heterogeneity and often lack
the requisite discriminative potency. Conversely, the concept of
selecting highly variable (HV) genes gained prominence, particularly
in the context of single-cell RNA-seq analysis, for uncovering mole-
cular signatures linked to diverse cell types®®~. Often, these meth-
ods seek a set of HV features that exhibit significant variation across
samples, regardless of experimental conditions, employing these
features for subsequent clustering analysis. The downstream differ-
ential analysis among these clusters can be conducted to establish
associations with distinct molecular signatures. However, it is
important to note that HV features are not intended for uncovering
unknown subtypes within established conditions. Moreover, they
may lack the necessary discriminatory power and often incorporate
substantial irrelevant heterogeneity for specific subtyping tasks. This

phenomenon may significantly compromise the capability of sub-
type discovery.

Given the constraints inherent in current methods, the process of
disease-specific subtyping demands a substantial investment of time
and resources. Researchers must integrate differential expression
analysis, domain expertise, manual marker selection, and subsequent
verification to achieve accurate results. For example, a computational
framework was developed to integrate single-cell RNA-seq data with
other genetic information obtained from genome-wide association
studies to infer cell types, especially in cases where genetic variants
impact diseases™. However, the absence of a comprehensive compu-
tational framework adept at identifying subtypes solely from gene
expression data in a supervised setting involving two distinct disease
conditions remains a significant challenge. The algorithm should
possess the capability to identify features that exhibit both differential
expression and variability across latent subtypes. To overcome this
obstacle, we introduce a novel category of features that has largely
eluded the notice of existing methods, termed Heterogeneity-
preserving Discriminative (HD) features. Through our deep metric
learning approach, focused on gene embedding derived from single-
cell RNA seq datasets, we discovered the existence of a significant
proportion of HD features, effectively possessing both DE and differ-
entially variable (DV) features characterized by the distinct IQR dif-
ferences present between the two pre-defined experimental
conditions. Capitalizing on these HD features, we can achieve a more
refined clustering of patient samples or cells, facilitating a deeper
comprehension of the factors that influence their heterogeneity.
Therefore, this approach can reveal new molecular insights that might
otherwise remain obscured, effectively transcending the challenges
inherent in conventional methodologies.

To facilitate the identification of HD features, we developed a
novel computational framework, named Preserving Heterogeneity
(PHet), that leverages an iterative subsampling approach to determine
an appropriate and adequate set of features for subtype discovery
tasks from omics data. Striking a balance between heterogeneity and
discriminativeness proves to be challenging, as these aspects often
counteract each other. However, PHet is designed to find this balance,
optimizing both aspects while keeping the number of selected features
low. We evaluated the effectiveness of PHet by benchmarking it against
six single-cell transcriptomics, eleven microarray, and two simulated
datasets. PHet was compared to 24 computational methods using a
variety of performance metrics to ensure a fair and comprehensive
analysis. Our results suggest that PHet performs favorably compared
to other methods in identifying subtypes under binary experimental
conditions. Moreover, PHet has shown the capability to reveal novel
cell subtypes in both mouse and human airway epithelium single-cell
transcriptomics datasets™. PHet also demonstrates consistency and
robustness in handling high-dimensional data, distinguishing it from
other algorithms in our study.

Results

Identification of heterogeneity-preserving discriminative fea-
tures in omics data by deep metric learning

To better understand the key statistical attributes that contribute to
the preservation of subtype heterogeneity within features, we con-
ducted a feature statistic embedding through the utilization of deep
metric learning (DML)>* (see “Deep metric learning for feature
embeddings” in Methods). In the typical data format, rows and col-
umns of input data represent measurements and features, respec-
tively. For our analysis, this structure is transposed, with features as
rows and measurements as columns, previously used for transforming
non-image data into an image®. We then sorted feature measurements
within each disease or cell condition in ascending order to remove
biases from the original observation order, ensuring that comparisons
between diseases or cell conditions rely solely on the statistical
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Fig. 1| Characterization of features extracted by deep-metric learning (DML).
a A schematic of DML approach with triplet loss, which is used to analyze the
feature space. In this method, a UMAP is generated, where each point represents a
feature from a specific condition. Clustering is then applied to the UMAP space. The
resulting clusters and the original data are used as input for the triplet loss in DML.
The embeddings from the encoder are used to calculate the Euclidean distance

- -
between the same feature of different classes, where /; and [, are the embeddings
for the gene i in case and control conditions, respectively, and d— —s is the

0.5
Euclidean distance between these embeddings. Scatter plots of feature embeddings
using the Patel data with color representing the distance between the same feature
of different conditions (b), logged p-values from mean differences (using z-test)

between conditions of features (c), IQR difference between conditions (d), and
location of respective feature types on the plot (e). The p-values in ¢ correspond to
the adjusted p-values calculated at a significance level of 0.01 using the Benjamini &
Hochberg method. These adjustments were derived from the p-values obtained
through a two-sided, two-sample z-test that compares the means of the distribu-
tions. f Clustering performance results on the Patel data using the adjusted Rand
index (ARI) and V-measure (VM) metrics based on DE, HV, IQR Diff., and HD fea-
tures. g, h, i, j Heat maps of clustering results on the Patel data based on DE, HV, IQR
Diff., and HD features, respectively. UMAP visualizations of 1529 HV features (k)
(based on a dispersion threshold of >0.5), 1485 DE features (I) (based on the z-test
at significance level of 0.01), 904 AIQR features (m) (based on a threshold of >0.4),
and 468 HD features (n) that are intersection of both DE and AIQR features.

properties of the features, not the arbitrary order of the data. Fol-
lowing this, we employed Uniform Manifold Approximation and Pro-
jection (UMAP)*® or Principal Component Analysis (PCA) using the
feature values, both in case and control groups to cluster features
across disease or cell conditions based on the similarity of their
respective statistical distributions. These clusters served as a founda-
tion for calculating the triplet loss®® in our DML approach, where
positive or negative samples are within the same or different clusters
as anchor samples, respectively. This triplet loss brings the embedding
of similar features close together while simultaneously maximizing the
distance between dissimilar features (Fig. 1a). Our DML encoder

performed the task of embedding feature statistics from each condi-
tion into a lower-dimensional space, facilitated by the acquisition of a
meaningful distance between feature embeddings. The final step of
our process involved the calculation of the differences between the
feature embeddings of the same feature under different conditions.
This final subtraction step allows us to derive insights into the varia-
tions present across different disease states or cell conditions, thereby
enhancing our understanding of the heterogeneity preservation of
each feature.

Our implementation of DML based on UMAP-based clustering was
applied to the Patel data®, a single-cell RNA-seq dataset encompassing
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heterogeneous subtypes of primary glioblastomas. We computed the
Euclidean distance between feature (i.e., gene) embeddings across two
different conditions to measure the distances between genes based on
their statistical properties. In the context of the Patel dataset, we
employed DML to compare the embeddings of gene expression for
two disease conditions—progenitor states (MGH26 and MGH30) and
differentiated states (MGH28, MGH29, and MGH31). Upon observing
the resulting embeddings, it becomes apparent that genes with high
Euclidean distances are notably situated at a considerable distance
from the center (as depicted in Fig. 1b). While these embeddings
effectively illustrate the areas occupied by DE genes with substantial
mean differences between the two conditions (Fig. 1c), they fall short
of providing a comprehensive explanation for the acquired distance
metrics. Intriguingly, mapping the IQR differences between the two
conditions onto the embedding demonstrates a clear pattern: genes
with similar IQR differences cluster closely together, and a significant
proportion of genes characterized by large IQR differences between
the two conditions tend to cluster within regions of substantial dis-
tance (Fig. 1d). Moreover, the DML applied based on PCA-based clus-
tering revealed the same insights regarding the IQR differences,
suggesting our finding does not reply on specific dimensional reduc-
tion techniques (Supplementary Fig. 1la-h). This demonstrates the
potential of IQR differences as a valuable statistical attribute capable of
reflecting the underlying heterogeneity between the two conditions.

Based on our observations, we introduce a novel concept termed
Heterogeneity-preserving Discriminative (HD) features (Fig. 1e), which
combines the properties of DE®® and DV’ traits. DE features are char-
acterized by significant differences in expression or abundance across
distinct groups, while DV features are determined based on variability
between conditions. While previous studies have leveraged DV fea-
tures for cancer studies to uncover variations within a group®**, and
for cell type classification using a cascade of additional features for
enhanced accuracy®, the specific applications of DV features for sub-
typing within distinct conditions have not been extensively addressed
in the literature. HD features constitute a distinct category, uniquely
characterized by their combined representation of both mean
expression differences and variability discrepancies, as determined by
IQR differences between two conditions (Fig. 1e). This intersection of
attributes reveals a previously unexplored feature class with potential
implications.

To demonstrate the utility of HD features, we performed a com-
parative subtyping analysis using DE (identified through mean differ-
ences), DV (computed using IQR differences), and the novel HD
features within the context of the Patel dataset™ (Fig. 1k-n). We also
included HV features identified using dispersion-based selection, as
proposed by Satija et al.”, capturing inherent data heterogeneity
without considering predefined conditions. We applied the k-means
algorithm to cluster the data based on the four different feature types:
DE, HV, DV (IQR Diff.), and HD (Fig. 1g-j). Subsequently, we assessed
the clustering performances using adjusted Rand index (ARI) and
V-measure metrics on the reduced feature space following feature
selection, without applying any additional dimensional reduction
techniques such as UMAP or PCA. Our findings revealed that DE fea-
tures demonstrated weak clustering performance, with an ARI of
36.44% and a V-measure of 48.59%, similar to HV features (Fig. 1f). This
suggests that HV and DE features, which consisted of 1529 and 1486
features, respectively, were insufficient for accurately characterizing
the subtypes. However, DV features based on IQR differences reduced
the feature size to 904 and showed modest improvement in clustering
over DE and HV features. The most promising outcomes were obtained
when using the HD features, which comprise less than 15% (641 fea-
tures) of the total features in the Patel data, achieving an ARI of 82.67%
and a V-measure of 79.36%. When we visualized the cluster results
using ordered distance maps, HD features exhibited clear separation
of five clusters as opposed to the other feature sets (Fig. 1j),

underscoring the effectiveness of HD features in capturing sample
heterogeneity within the dataset. These HD features combine the
properties of both DE and DV, offering a valuable resource for gaining
a more refined understanding of the factors influencing disease states.
These results motivated the development of PHet, our computational
framework aimed at optimizing the integration of DE and DV, facil-
itating effective subtyping in omics data under two experimental
conditions. The emergence of HD features and their incorporation into
our methodology represents a promising step toward enhancing
approaches for disease subtyping.

Overview of PHet

PHet is a method designed to detect informative features for subtype
discovery from omics expression data. We employed iterative sub-
sampling to enhance PHet’s capability to handle sample heterogeneity,
based on Fisher’s method®®, which was previously used in DECO*. The
initial step involves annotating the data with two distinct conditions:
control and case (e.g., healthy and cancerous conditions). Subse-
quently, the data undergoes a series of preprocessing steps, including
removing low-quality samples and features and normalizing expres-
sion values to have zero mean and unit variance. This preprocessed
data is then fed to the PHet pipeline which is composed of six major
stages (Fig. 2 and “PHet framework”). (1) Iterative subsampling®®%:
This step calculates both p-values, using t-test or z-test, and mean
absolute interquartile range differences (AIQR) for each feature
between two randomly chosen subsets of control and case samples.
The size of these subsets is determined by the closest integer to the
square root of the minimum number of samples in either the control or
case group, i.e., min(n, m), where n and m correspond to the number of
samples in control and case groups, respectively. This approach
ensures even subsample sizes of both groups and has been applied to
detect features containing intrinsic heterogeneity*’ and rare cell sub-
types, such as ionocyte cells which represent only 1-2% of airway
epithelial cells**°. The p-values measure the statistical significance of
the difference in expression levels between the two groups, while the
AIQR values indicate the differences in expression variability between
them. To capture sufficient features that help in subtype identification,
the subsampling procedure is repeated for a predefined number of
iterations (default is 1000). (2) Fisher’s combined probability test:
Following subsampling, the collected p-values are summarized by the
Fisher’s combined probability test. The results from this test serve as
prior information to calculating feature statistics and ranking. (3)
Enhancing discriminatory power of features: While iterative sub-
sampling with Fisher’s score effectively detects mean differences in
heterogeneous samples, its ability to discriminate can be limited when
sample distributions deviate from unimodal patterns (Supplementary
Fig. 10). To address this issue, we have incorporated the nonparametric
Kolmogorov-Smirnov (KS) test, which assesses differences between
the cumulative distribution functions of control and case samples. This
method helps identify features that significantly contribute to
observed variations between the groups. Consequently, we enhance
the discriminative power of Fisher’s scores by leveraging the results
from the KS test. The p-values resulting from the KS test are grouped
into pre-defined bins, each with uniform width (default is four bins
with intervals defined as [0, 0.25], (0.25, 0.5], (0.5, 0.75], and (0.75,
1.0]). Each bin is assigned a specific weight based on the features
present within that bin. These weights reflect the discriminatory power
of respective features, allowing the regularization of the scores
obtained from Fisher’s method. Importantly, these weights (default is
(0.4, 0.3, 0.2, 0.1)) are empirically determined and may vary based on
the specific analysis conducted. (4) Feature statistics and thresholding:
Fisher’s scores (f) multiplied by the features discriminatory power (0)
are then combined with the absolute mean values of AIQR (r) to esti-
mate feature statistics, i.e., r + (f © 0), where © corresponds to the
Hadamard (element-wise) product. To ensure that the values of r and
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Fig. 2 | Schematic of PHet’s architecture. PHet pipeline is composed of six major
steps: (1)- an iterative subsampling to calculate p-values, using t-test or z-test, and
maximum absolute interquartile range differences (AIQR) for each feature between
two subsets of control and case samples, (2)- the Fisher’s combined probability test
to summarize the collected p-values, (3)- the Kolmogorov-Smirnov test to adjust
the Fisher’s scores. (4)- feature statistics estimation using a combination of the

AIQR values, the Fisher’s combined probability scores, and the weighted features
representing their discriminatory power, (5)- fitting feature statistics using the
gamma distribution, and features exceeding a user threshold are trimmed (<0.01),
and (6)- downstream analysis, such as clustering analysis on the reduced omics data
to reconstruct data heterogeneity. The symbol © represents the Hadamard (ele-
ment-wise) product.

f © o are on the same scale, standardization is applied. This involves
dividing the values of r by the sum of its values, and similarly, dividing
f ® o by the sum of its values. (5) Feature significance: the feature
statistics are fitted using the gamma distribution, and features
exceeding a user threshold () are trimmed. By default, « is set to 0.01.
(6) Downstream analysis: In the final step, the selected features are
used for various downstream tasks, such as clustering to reveal the
heterogeneity within the dataset.

The key hyperparameters in PHet consist of the binning weights w
and the user threshold a. Through an extensive analysis using the ARI
metric on separate test datasets (Supplementary Tables 1 and 2), we
determined that setting a to 0.01 and w as (0.4, 0.3, 0.2, 0.1) led to
empirically optimal clustering outcomes with an average ARI score of
61.02% across all test datasets (Supplementary Fig. 36). Furthermore,
this configuration also resulted to a reduction in the number of features,
with an average of 395.1 features retained across the test datasets
(Supplementary Fig. 36). Therefore, these specific settings serve as the
default hyperparameters for PHet throughout the entirety of this
manuscript. For a more comprehensive understanding of these hyper-
parameters tuning process for PHet, refer to Supplementary Note 1.

Evaluation of PHet’s performance in identifying subtypes of
single cells and patients

To assess the effectiveness of PHet in subtyping tasks, we benchmarked
PHet against six publicly available single-cell transcriptomic (scRNA-seq)
datasets and eleven well-known microarray gene expression datasets
(Supplementary Tables 4, 5). We categorized cells in the scRNA-seq
datasets and patient samples in the microarray data into two experi-
mental conditions: control and case. An effective algorithm should
accurately identify cell/patient subtypes while preserving biological
integrity and heterogeneity with a small set of features. Prior to algo-
rithm execution, we conducted clustering analysis on each scRNA-seq
dataset using all features. The results revealed that cells in the Baron™
dataset exhibited little sign of distinct clusters, with a low ARI score of
5.66% (Supplementary Fig. 20). Additionally, the Darmanis”, and Patel®
datasets showed moderate ARI scores of 25.88% and 19.72%, respec-
tively, suggesting the presence of cell subclusters that partially aligned
with true subclasses (Supplementary Figs. 22 and 24). Conversely, the

Camp”?, Li”%, and Yan’* scRNA-seq data already displayed discernible cell
subpopulations using all the features (Supplementary Figs. 21, 23, and
25, respectively) with above-average ARI scores of 53.22%, 58.07%, and
58.04%, respectively, allowing for evaluation of subtype detection
methods to select a small meaningful feature set to retain the true cell
heterogeneity. Similar analyses were performed on the microarray
expression datasets, revealing that all datasets were composed of
admixed patient subtypes (Supplementary Figs. 9-19).

In our analysis of both types of datasets, we performed a com-
prehensive comparison of PHet and PHet (ADispersion) against 11 well-
established methods as well as eight additional PHet variants intro-
duced in this work (“Benchmark evaluation compared to existing
tools” and Table 1) for cell/patient subtypes identification across
multiple performance metrics including F1 score for identifying DE
features, ARI, adjusted mutual information, homogeneity, complete-
ness, and V-measure for subtype discovery. The pre-annotated types of
cells and patients in the benchmark datasets are considered the
ground truth labels to quantify ARI (Supplementary Tables 4, 5), and
the top 100 DE features from LIMMA were used as the ground truth DE
features to calculate the F1 scores of the algorithms (see “Evaluation
metrics” for details on metrics), because LIMMA is considered a stan-
dard benchmark for comparing DE features identified by each method
(see “Benchmark evaluation compared to existing tools” for LIMMA).
This comparative analysis allows us to assess the extent of dissimilarity
between the discriminatory features identified by each method and
those identified by LIMMA. Moreover, this measurement aids in iden-
tifying the specific subset of DE features that facilitate the clustering of
samples into two primary categories. The evaluated methods included
four DE feature analysis tools and their variants: the standard Student
t-test’””, Wilcoxon rank-sum test’®, Kolmogorov-Smirnov test”’, and
LIMMA’%”°_ Additionally, we evaluated the variants of PHet that utilize
methods based on dispersion® and IQR*°. Furthermore, seven outlier
detection algorithms were included in the evaluation: COPA®, OS*,
ORT*, MOST*¢, LSOSS*, DIDS*, and DECO*. More elaboration about
these methods are provided in “Benchmark evaluation compared to
existing tools” and Table 1.

The results showed that PHet consistently outperformed other
baseline methods, achieving an average ARI score above 65.72% for
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Fig. 3 | Performance comparison of PHet against 16 baseline methods across 6
single-cell transcriptomics and 11 microarray datasets. F1 scores of each method
for detecting the top 100 DE features that are obtained using LIMMA for both
microarray and scRNA-seq (N=17, a), six single-cell transcriptomics (V= 6, d), and 11
microarray (N =11, g) datasets. The number of selected features by each method
using both microarray and scRNA-seq (N=17, b), six single-cell transcriptomics
(N=6, e), and 11 microarray (N =11, h) datasets. The adjusted Rand index of each
method for both microarray and scRNA-seq (N=17, ¢), six single-cell tran-
scriptomics (N=6, f), and 11 microarray (V=11, i) datasets (Supplementary

Tables 2 and 3). The box plots show the medians (centerlines), first and third
quartiles (bounds of boxes), and 1.5 x interquartile range (whiskers). A ¢ symbol
represents a mean value. A green dashed line indicates the best-performing result
on a dataset of PHet on each metric, while a red dashed line represents the worst-
performing result on a dataset of PHet on each metric. Dot plots of F1 scores (j),
number of selected features (k), and adjusted Rand index scores (I) are presented
for each method applied to both microarray and single-cell transcriptomics data-
sets. All values are provided as a Source Data file.

subtype detection (Fig. 3¢) while maintaining a competitive F1 score
for identifying DE features (Fig. 3a) and selecting a smaller number of
features (less than 300 on average; Fig. 3b; see Supplementary Fig. 4
for additional results using multiple performance metrics). Statistical
significance was assessed through a paired, two-tailed ¢-test, after
obtaining no indication of non-normality in the data (D’Agostino’s
K %2 p-value: 0.498). This analysis demonstrated that PHet’s ARI
scores (65.7%) are higher than those of the most competitive DE-

based methods, KS+Gamma (54.32%, p-value of 0.023, Cohen’s d
effect size of 0.57), LIMMA (50.55%, p-value of 0.007, Cohen’s d
effect size of 0.69), and the most competitive outlier-based method,
DECO (47.04%, p-value of 0.001, Cohen’s d effect size of 0.91) (see
Supplementary Fig. 2a, b). PHet’s average F1 score (74.10%) was also
higher than KS+Gamma (49.16%, p-value of 0.001, Cohen’s d effect
size 1.14) and DECO (47.13%, p-value less than 0.001, Cohen’s d effect
size of 1.1) (see Supplementary Fig. 2c, d). The comparison of F1 with
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LIMMA was not conducted because LIMMA'’s features were regarded
as ground truth DE features. While the average number of selected
features of PHet (294.59) is less than those of KS+Gamma (793.71), it
was much smaller than those for LIMMA (3783.59, p-value of 0.001,
Cohen’s d effect size of 1.310) and DECO (3303.00, p-value of 0.002,
Cohen’s d effect size of 1.218) (see Supplementary Fig. 2e, f).

Further investigation of PHet’s performance on an individual
dataset basis revealed its consistency and robustness in terms of
average ARI scores, particularly for the scRNA-seq datasets (Fig. 3j-I).
While PHet is not the only method capable of detecting meaningful
subtypes, it consistently exhibited high ARI and F1 values across all six
scRNA-seq datasets (Fig. 3j, I). In contrast, other baseline methods
performed well only on subsets of the scRNA-seq datasets. Even the
competitive baseline methods did not demonstrate acceptable ARI
performance with two or three datasets (KS+Gamma with Darmanis,
Patel, and Yan; LIMMA with Baron and Darmanis; DECO with Baron,
Darmanis, and Patel). Although PHet exhibited robust performance
with scRNA-seq datasets, it performed poorly in detecting subtypes in
four microarray datasets, including GSE412, Braintumor, Glioblastoma,
and Lung. Similarly, none of the baseline methods were able to suffi-
ciently identify subtypes in these datasets. This may be attributed to
the limited information available in these microarray datasets for sub-
type discovery. When PHet successfully detected subtypes in the
microarray datasets, some other baseline methods also detected sub-
types. However, their performances were still inconsistent and highly
specific to individual datasets, similar to the scRNA-seq data case.

Due to differences in sample numbers and the levels of hetero-
geneity, we performed quantitative comparisons among the meth-
ods with scRNA-seq and microarray datasets, separately. For scRNA-
seq datasets (Supplementary Table 5), we observed that PHet out-
performed established outliers detection methods (e.g., DECO)
across all scRNA-seq datasets with a mean F1 score exceeding 85%
(Fig. 3d) with respect to discriminative performance. Notably, PHet
was able to strike a balance between keeping the feature number low
with an average of fewer than 450 features and maximizing the dis-
criminative performance for all single-cell transcriptomic datasets
(Fig. 3e). Since the DE features were derived from LIMMA, the aver-
age F1 score for LIMMA is 1. The results obtained from a basic
t-statistic method were found to be consistent with those obtained
from LIMMA, which is expected given that LIMMA’s approach is
similar to the t-statistic but incorporates different variance calcula-
tions and advanced functionalities. As a result, there is a high level of
agreement in the top 100 differentially expressed features identified
by these two methods. By fitting feature statistics using the gamma
distribution, most DE-based methods struggled to match PHet’s
performance.

In terms of average ARI, which measures the agreement between
ground truth and clustering results, PHet outperformed existing
methods across six SCRNA-seq datasets and achieved >10% and >14%
gain over the competitive performing algorithm, KS+Gamma, and
LIMMA, respectively (Fig. 3f), and over 15% and 20% increase from PHet
(ADispersion) and DECO, respectively. This suggests that the IQR-
based approach is more effective than dispersion-based feature
selection, leading to improved clustering quality and better recovery
of cell types. The KS test is useful for detecting DE features because this
test does not require any assumptions about the shape or parameters
of data distributions. Instead, the KS test compares the cumulative
distributions of features, which makes it sensitive to any changes in the
data®. This sensitivity allows the KS to effectively detect variations in
expression levels that other tests (e.g., t-statistic and Wilcoxon rank-
sum test) may not be able to capture®. PHet leverages the benefits
from both AIQR and KS, leading to better clustering results as indi-
cated by multiple performance metrics, such as adjusted mutual
information, homogeneity, completeness, and V-measure, across six
scRNA-seq datasets (Supplementary Fig. 6).

To visualize the effectiveness of the PHet’s feature selection, we
compared pairwise similarity heatmaps using the selected features
from each method and annotated cell types in the scRNA-seq data-
sets against other competing methods (KS+Gamma, LIMMA, DECO).
Notably, among the 14 cell types in the Baron dataset (Supplemen-
tary Table 5), PHet selected 748 features that contribute to at least 7
clusters of cells (Fig. 4a). Moreover, in this dataset, four cell types—
alpha, beta, gamma, and delta—representing the endocrine cells,
exhibit inherent hierarchical relationships due to their shared
expression profiles’ (Fig. 4a). Specifically, the alpha and gamma cells
were observed to form a closely related group. Furthermore, delta
cells were positioned as a group connected with the alpha/gamma
cell group in the subsequent hierarchy, followed by the integration of
beta cells into this configuration. PHet’s similarity heatmap pre-
served this hierarchical information (Supplementary 20). In contrast,
the three baseline methods lost it entirely, even if KS+Gamma pro-
duced a higher ARI value (Fig. 4b, c). In the Camp dataset, while PHet
achieved a lower ARI value, it also preserved the inter-cluster dis-
tances with much fewer number of features than LIMMA and DECO
(Fig. 4e-h). In the other four scRNA-seq datasets where PHet
achieved the highest ARI values, PHet produced more distinct clus-
ters and better retained the hierarchy of cell types compared to the
three baseline methods (Fig. 4i-x). This suggests that PHet can not
only identify cell subtypes but also excels at revealing their hier-
archical structures.

In the microarray gene expression datasets (Supplementary
Table 4), which aim to uncover patient subtypes, the performance of
all algorithms was generally lower in terms of F1 and ARI scores
compared to the scRNA-seq datasets. Additionally, the similarity
heatmaps exhibited less distinct cluster structures and hierarchical
information than those in the scRNA-seq dataset (Supplementary
Figs. 7, 8). This is likely due to the limited heterogeneity and sample
numbers within these datasets. Nonetheless, in terms of clustering,
we observed that PHet outperformed other baseline methods,
achieving an average ARI score exceeding 60% while selecting fewer
features (less than 130 on average; Fig. 3g-i). For example, in the
analysis of the MLL dataset®* (Supplementary Table 4), 72 patient
samples were examined and categorized into three types of leuke-
mia: acute lymphoblastic leukemia (ALL), mixed-lineage leukemia
(MLL), and acute myeloid leukemia (AML). The ALL patients were
considered the control group, while the MLL and AML patients were
categorized as the case group. PHet recognized three clusters of
patients with an ARI score of 88% that closely matched their true
sample types (Fig. 31). In contrast, none of the competing algorithms,
including LIMMA, were unable to clearly identify these three patient
subtypes (Supplementary Fig. 8n—p). For the Leukemia® dataset, KS
+Gamma and DECO displayed three distinct clusters on par with PHet
(Supplementary Fig. 8a-d) with similar ARI scores in the range of
84-90%. In the evaluation of ten other microarray datasets, different
algorithms displayed varying levels of effectiveness in identifying
sample heterogeneity and subtypes. For example, KS+Gamma
exhibited strong performances in the GSE89* dataset, as evidenced
by average ARI scores of 65.48%, while PHet demonstrated slightly
weaker performance with average ARI scores of 61.38% (Supple-
mentary Fig. 7i, j). DECO, an outlier detection method, performed
remarkably well in the GSE2685% dataset with an average ARI score
of 60%, marginally surpassing PHet’s 59% (Supplementary Fig. 7q-t).
Across the other benchmark microarray datasets, PHet consistently
demonstrated competitive or superior results across various metrics
(Supplementary Figs. 7 and 8). Despite PHet’s slight under-
performance in certain specific datasets, it is important to note that
other baseline methods exhibited varying results across all ScCRNA-
seq and microarray datasets, whereas PHet consistently demon-
strated consistent performance across various metrics, such as F1
and the number of predicted features.
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Fig. 4 | Heatmaps displaying the clustering results of PHet and the top three
methods are presented for six single cell transcriptomics datasets. The datasets
(N =6) are: Baron (a-d), Camp (e-h), Darmanis (i-1), Li (m-p), Patel (q-t), and Yan

(u-x). For each method, the selected features are used. The bold font ARI score
indicates the best-performing method for the corresponding data in the compar-
ison. All values are provided as a Source Data file.

Ablation studies of PHet’s components

To further explore the impact of PHet's components on feature
selection for subtype detection, we conducted ablation studies on the
same microarray and single-cell transcriptomics datasets discussed in

“Evaluation of PHet’s performance in identifying subtypes of single
cells and patients”. We systematically examined the impact of
removing and reintegrating three main components of PHet while
keeping a and w at their optimal values: Fisher’s scores, the absolute
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mean values of AIQR, and feature discriminatory power (“Overview of
PHet”). The integration of the first two components necessitates PHet
to employ iterative subsampling, while the last component does not
entail the subsampling process. The outcomes of these experiments
revealed that relying solely on AIQR (PHet(+AIQR,-Fisher,-Dis-
criminatory)), while disabling the other two components, led to sub-
optimal ARI scores for microarray and scRNA-seq datasets
(Supplementary Fig. 37). This suggests that the exclusive reliance on
AIQR limits the discriminatory power in extracting DE features,
thereby impeding the accurate delineation of subtypes within condi-
tions. Conversely, when exclusively utilizing Fisher's method (PHet(-
AIQR,+Fisher,-Discriminatory)),  notable  improvements  were
observed, with gains over 10% and 30% average ARI scores on micro-
array and scRNA-seq datasets. These improvements can be attributed
to the subsampling process, which effectively captured variations in
condition and case samples. Importantly, when all three components
were incorporated, i.e., PHet(+AIQR,+Fisher,+Discriminatory) or PHet,
the most favorable outcomes were achieved, with average ARI scores
exceeding 60% and 75% on microarray and scRNA-seq datasets,
respectively. These results demonstrate statistical significance based
on ARl scores, supported by a paired two-tailed t-test with a p-value of
0.026 when compared to the second-best method, PHet (+AIQR,+-
Fisher,-Discriminatory). These findings underscore the significance of
feature scores derived from discriminatory and AIQR components,
highlighting their valuable contribution to subtype detection.

We also conducted test experiments to assess the importance of
the iterative subsampling component of PHet on clustering outcomes
by excluding it while maintaining the same hyperparameters. The
findings demonstrated that the exclusion of iterative subsampling
resulted in suboptimal performance (with a p-value of 0.0004 using a
paired two-tailed t-test), with an average ARI score of 48.78%, in
comparison to the standard configuration of PHet, which achieved an
average ARI score of 65.72% (Supplementary Fig. 38). These results
underscore the significant role of iterative subsampling in subtype
detection.

Evaluation of PHet’s discriminative performance on

simulated data

While PHet exhibited competitive discriminative performance in our
previous benchmark test, the evaluation was confined to comparing
the selected features with LIMMA-based DE features. To bolster the
validation of PHet’s ability to capture features that can discriminate
two conditions while also retaining a small set of these features, we
conducted a comprehensive evaluation of 25 algorithms (outlined in
“Benchmark evaluation compared to existing tools” and Table 1) using
two sets of simulated data where ground truth of DE features is
available. These datasets correspond to the “minority” and “mixed”
model schemes, as proposed by Campos et al.*’, and are also designed
to capture sample heterogeneity under the supervised settings. In the
“minority” model, a small fraction of case samples exhibited changes in
specific features, while the “mixed” model displayed substantial intra-
group variation in both case and control samples for those features.
Each dataset consists of 40 samples, evenly split between control and
case groups with 1100 features, including 93 DE features between the
two groups. We generated 5 datasets based on the minority model,
varying the proportions of perturbed samples in the case group from
5% (1in 20) to 45% (9 in 20). Those perturbed samples were introduced
by modifying the expressions of 100 randomly selected features,
which encompassed DE features. Similarly, we constructed five data-
sets following the same procedure for the mixed model, with per-
turbed samples evenly distributed between a subset of both case and
control groups. Further details about these datasets are provided in
“Simulated datasets”. For quantitative analysis, the F1 score was used
to compare the top 100 predicted features of each method with the
top 100 true features. Furthermore, we recorded the number of

informative features with high scores (at a<0.01; see “Benchmark
evaluation compared to existing tools”) for each method. We followed
the model-specific parameters recommended by the respective
authors of each method, thus avoiding any bias or error stemming
from inappropriate parameter choices. A best-performing algorithm
should attain high F1 scores across both model schemes, while also
exhibiting the capability to predict a small set of important features
that contribute to the perturbed samples.

Both PHet and PHet (ADispersion) retained a fewer set of infor-
mative features (at a<0.01) for both minority and mixed changes
under all settings (Fig. 5c, d; Supplementary Fig. 3¢, d), indicating that
both methods have a robust ability to detect important features,
contributing to perturbed samples. The unsupervised Dispersion
(composite) method performed on par with PHet (F1 score of 0.92 on
average) for both model schemes, achieving an F1 score of 0.88 on
average. However, the supervised approach of the ADispersion
+AMean method resulted in lower F1 scores (averaging 0.36) com-
pared to the AIQR+AMean method, which achieved an average F1score
of 0.88 (Fig. 5a, b; Supplementary Fig. 3a, b). These findings indicate
that the IQR statistic is more effective in capturing DE features than
dispersion under the two group comparisons. Despite the suboptimal
performance of ADispersion, the similar performances across both
model schemes between PHet and PHet (ADispersion), can be attrib-
uted to the Fisher’s scores and discriminative power, which was also
observed in the previous “Ablation studies of PHet's components”. A
majority of DE-based methods, DIDS, and DECO demonstrated com-
parable performance with PHet, suggesting that PHet has a sufficient
discriminative performance (Supplementary Fig. 3).

Analysis of PHet’s ability to identify markers with low signals
The presence of outlier DE genes with low signals creates unique
challenges in cancer studies, as they contribute to the observed het-
erogeneity in tumor samples. Specific algorithms such as COPA*,
categorized as “outlier detection”, have been proposed to address this
issue. In this study, we further assessed PHet’s capability to identify DE
features with low signals, referred to as outlier features. To achieve
this, we evaluated the effectiveness of 25 algorithms, including seven
outlier detection algorithms (Table 1), in identifying biomarkers using
1000 batches of HER2 (human epidermal growth factor receptor 2)
data (“HER2 datasets”; Supplementary Table 3). Each batch consisted
of 188 samples, with 178 fixed HER2 non-amplified samples in the
control group and 10 randomly drawn samples from 60 HER2-
amplified samples in the case group, following the methodology
described by de Ronde et al.*®. The objective is to identify the true 20
biomarkers, located on ch17q12 or ch17q21 chromosome regions, from
a pool of 27,506 features in each batch. It is worth noting that these
20 specific features have limited signals. The performance of 25 algo-
rithms was evaluated using the F1 score, which measures the algo-
rithm’s ability to accurately identify the true 20 markers among its top
predicted features. The study involved varying the number of top
features from 1 to 50.

Despite not being specifically designed to detect outlier features,
PHet displayed a competitive performance with a mean F1 score ran-
ging from 4% to 39% across batches (Fig. 5e). PHet was able to identify
10 true biomarkers within its top 20 features. This ability to detect true
biomarkers sets PHet apart from dispersion features selection and
several DE and outlier detection algorithms, such as KS, Wilcoxon, OS,
ORT, and COPA (Supplementary Fig. 3e). The performance of the DIDS
method in terms of mean F1 score over batches was notable, sur-
passing all other models with a score greater than 44%. However, DIDS
demonstrated suboptimal performance in extracting features for
subtype detection, especially when dealing with single-cell RNA-seq
datasets (“Evaluation of PHet’s performance in identifying subtypes of
single cells and patients”). This is not surprising considering that DIDS
was primarily designed to extract features contributing to outliers in
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for each algorithm based on their top k predicted features, with k ranging from1to
50. All values are provided as a Source Data file.

tumor samples, rather than for subtype detection. Although DECO has
proven its ability to identify DE features under various complex sce-
narios, and outperformed DIDS in subtype detection (“Evaluation of
PHet’s performance in identifying subtypes of single cells and
patients”), its performance fell short and achieved a mean F1 score of
less than 1% over 1000 batches. This underperformance can be
attributed to expression values of 20 true markers, which impedes
DECO’s ability to accurately identify these features. Consequently,
DECO prioritizes other strong features, which have distinct expression
profiles that differ significantly from the features of interest. Further-
more, the potential influence of batch effects may have adversely
impacted the results, which represents a limitation of this
experimental study.

PHet uncovers distinct differentiation lineages in airway
epithelium

Preserving inherent complex relationships among cells is a funda-
mental challenge in the analysis of cell differentiation. To gain insights
the mechanisms of cell differentiation, it is essential to capture the
interactions and dependencies that occur among various cell types in
terms of changes in gene expression. In order to assess the capability
of PHet in detecting subpopulations constituting differentiation tra-
jectories, we utilized two established scRNA-seq data of the respiratory
airway epithelium®*: 14,163 mouse tracheal epithelial cells (MTECs) and
2970 primary human bronchial epithelial cells (HBECs). The MTECs
dataset comprises cells collected from injured and uninjured mice at
different time points (1, 2, 3, and 7 days) after polidocanol-induced
injury. Previous studies of lineage tracing and the regeneration process
of post-injury have confirmed that basal cells differentiate into a het-
erogeneous population consisting of secretory, ciliated, and tuft cells,
as well as other rare cell populations, such as PNECs, brush cells, and
pulmonary ionocytes*****’, For both datasets, basal cells were con-
sidered as the control group while the remaining cell types were
grouped under the case category (Supplementary Table 6). Similar to
the results obtained using pre-annotated markers in the previous
study** (Fig. 6a, h; Supplementary Figs. 26a and 28a), the UMAP
visualizations of PHet’s features revealed distinct cell clusters includ-
ing basal and secretory cells, within both HBECs and MTECs data

(Fig. 6b, i; Supplementary Figs. 26b and 27a). These visualizations also
identified clusters corresponding to rare cell populations encom-
passing brush and PNECs, pulmonary ionocytes, and SLC16A7.

To assess the role of PHet’s HD features in delineating cell dif-
ferentiation trajectories, we performed SPRING visualization®s,
SPRING is a graph-based method that constructs a cell similarity
network based on their expression profiles. This aids in uncovering
the structures underlying cellular differentiation trajectories. We
employed the known pre-annotated markers and PHet features to
generate the SPRING plots from HBECs and MTECs datasets. This
comparative analysis allowed us to examine which approach more
effectively captures the differentiation trajectories of cell popula-
tions. While the pre-annotated markers and PHet features displayed
similar basal cell differentiation processes, only PHet revealed the
presence of two distinct trajectories for the HBECs spanning basal-to-
luminal differentiation, including rare cells, such as ionocytes (indi-
cated by two red arrows in Fig. 6¢, d; Supplementary Fig. 26c-f). By
examining the metadata of HBECs, we found that each trajectory was
closely linked to a subset of donors (Fig. 6e; Supplementary Fig. 26f).
For instance, cells in the black cluster were specifically associated
with Donor 1 that exhibited enrichment in cytokeratin genes KRT4
and KRT13* (Fig. 6g; Supplementary Fig. 26i). These cells could
potentially serve as progenitors initiating luminal differentiation.
Furthermore, an assessment of the relative abundance of cell types
revealed that the secretory and basal to secretory cells were more
prevalent in the red cluster (Donors 2 and 3; Fig. 6f; Supplementary
Fig. 26g). These cells have a significantly higher expression of the
CYP2FI gene compared to those in the black cluster (Fig. 6g, Sup-
plementary Fig. 26h-i). The CYP2FI gene encodes a cytochrome P450
enzyme crucial for the metabolism of xenobiotics and endogenous
compounds, aligning with the primary roles of the secretory club
cells’. Moreover, we also pinpointed several genes with diverse
functions that were differentially expressed between the clusters
(Fig. 6g; Supplementary Fig. 26h-i). These include a member of a BPI
fold protein (BPIFAI) that plays a role in the innate immune
responses of the conducting airways”’.

UMAP visualizations of the MTECs data using both pre-annotated
markers and PHet features yielded comparable observations regarding
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cell types (Fig. 6h-i; Supplementary Figs. 27a and 28)). Similar to the
HBECs analysis, when SPRING was applied to both known pre-
annotated markers and PHet features, two identified distinguishable
cell trajectories emerged within the MTECs dataset (Fig. 6j, k; Sup-
plementary Figs. 27b and 28b). Subsequently, we characterized cell
populations within these two trajectories (Fig. 6l; Supplementary
Fig. 27c) using cell-specific gene signatures. The lower cluster of cells

was enriched with basal cells while the upper cluster contained a sig-
nificant proportion of cycling basal cells (>20%) (Fig. 6m; Supple-
mentary Fig. 27(d)). This implies a regenerative function for these cells,
responding to injury by undergoing proliferation and differentiation
into other cell types (Supplementary Figs. 27e-h and 29). Moreover,
the upper cluster contains abundant transitional cells uniquely
expressing KRT4 and KRT13 genes. These cells may represent an
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Fig. 6 | Differentiation trajectory reconstruction of HBECs and MTECs single-
cell transcriptomic datasets. a, b, c, d UMAP visualizations (N =2970 cells) using
pre-annotated markers and PHet's selected features and their corresponding
SPRING plots, respectively. Coloring represents the previously annotated cell
types. The trajectories are visually represented by red-colored arrows. e A SPRING
plot using PHet’s features displaying two distinct trajectories: Donor 1 (black) and
Donors 2 and 3 (red). f A bar plot representing the relative abundance of cell types
grouped by donors. g SPRING plots of the selected top features predicted by PHet.
The color gradient from black to green indicated cells enriched with the

corresponding feature. h, i, j, k UMAP visualizations (N =14163 cells) using pre-
annotated markers and PHet’s selected features and their corresponding SPRING
plots, respectively. Coloring represents the previously annotated cell types. The
trajectories are visually represented by red-colored arrows. I Two distinct clusters
are displayed in the SPRING plot, with one cluster (injured) located at the top and
another (uninjured) at the bottom. m The relative abundance of cells between these
clusters is shown as a bar plot. Pre-annotated markers and PHet’s selected features
of HBECs and MTECs are provided as a Source Data file.

intermediate population positioned between tracheal basal stem cells
and differentiated secretory cells as suggested by previous
studies®***%°, Similar cell subpopulation analysis was performed using
the pre-annotated markers (Supplementary Fig. 28). The results sug-
gest that the cycling basal cells exhibited a lower proportion in the top
cluster compared to PHet’s features, as the pre-annotated markers
placed cycling basal cells farther from basal cells. Therefore, this top
cluster does not fully capture the information on airway regeneration
following injury. In contrast, PHet’s features brought cycling basal cells
closer to basal cells on both UMAP and SPRING plots (Fig. 6i, k). This is
not only biologically more plausible but also makes the upper cluster
more comprehensive in representing the post-injury differentiation
trajectory. Taken together, these results suggest that PHet’s feature
selection may provide additional insights into discovering cell sub-
populations for HBECs and MTECs compared to manual marker-based
analysis.

PHet effectively identifies subpopulations of basal cells in the
MTECs dataset

Cell subtype identification is one of the most fundamental applica-
tions in single-cell data analysis. This endeavor involves assigning
each cell to a specific group based on its feature expression profile,
thereby shedding light on the heterogeneity and diversity inherent
within cell populations in complex biological contexts, such as tis-
sues, organs, or tumors. Moreover, the process of cell subtype
identification holds great potential to uncover new biomarkers, while
enhancing the understanding of cellular functions and interactions.
Hence, it becomes paramount to investigate PHet’s features for the
discovery of cell subtypes. In this specific case study, we re-examined
the heterogeneity of basal cells in the MTECs®. The research findings
reported by Carraro et al.”> served as a catalyst for our exploration
into the existence of potential basal cell subtypes in MTECs data. We
used PHet's features to detect basal cell clusters and compared them
with dispersion-based HV features and pre-annotated basal cell
markers®*. To perform the clustering analysis, the Leiden community
detection algorithm from the SCANPY package’® was utilized, and the
resolution hyperparameter was fixed to 0.5. The cluster quality was
evaluated using the silhouette score, which measures how well each
cell belongs to its assigned cluster. This metric was used due to the
absence of labeled information pertaining to the basal cell sub-
populations. A higher silhouette score implies a better quality of
clustering.

PHet-based features revealed four distinct clusters of basal cells
(Fig. 7a; Supplementary Figs. 30 and 33a), thereby achieving the
highest silhouette score (47%) (Fig. 7h). Each basal cluster is char-
acterized by distinct gene expression profiles and biological functions,
as observed by Carraro et al.”>. Basal-1 and Basal-3 clusters for PHet
exhibited elevated expression of the canonical basal cell markers,
including TPR63 (tumor protein P63) and the cytokeratin 5 (KRT5)
(Fig. 7d, f; Supplementary Fig. 33d-f). Conversely, cells in Basal-2 and
Basal-4 clusters exhibited the reduced expression of the basal cell
markers and showed enrichment for SCGB3A2/BPIFAI for Basal-2 and
MSLN/AGR2 and members of the serpin family (e.g. TSPANI) for Basal-
4, respectively (Fig. 7d and f; Supplementary Fig. 33(d)-(f)). This
finding suggests that these clusters represent two distinct basal cell

subtypes undergoing transitions toward a luminal secretory pheno-
type (Supplementary Figs. 30 and 33b, c). Of note, BPIFAI was
expressed in Basal-2 predominantly and was also differentially
expressed between the two donor groups in the HBECs dataset (“PHet
uncovers distinct differentiation lineages in airway epithelium”;
Fig. 7i), providing further evidence that these cells are undergoing
differentiation into secretory cells. A previous study has established a
connection between BPIFAI secretion and the appearance of secretory
cells during mucociliary differentiation of airway epithelial cells®.
Furthermore, BPIFAI is known to be upregulated in one of the secre-
tory cell subtypes in cystic fibrosis lungs®. PHet effectively identified
the specific basal cell subtype linked to these phenomena. It also
underscores that PHet’s features can accurately reflect the develop-
mental trajectories of cell differentiation.

In contrast to the results obtained from PHet, the pre-annotated
markers displayed a less distinct four basal subtypes, with a relatively
low silhouette score of 41% (Fig. 7b and h; Supplementary Fig. 34a).
This suggests that the pre-annotated markers may not accurately
capture the unique characteristics associated with basal cell sub-
types. One particular challenge was observed in identifying the Basal-
3 subpopulation, as it appeared to be situated between the Basal-1
and Basal-4 subtypes (Fig. 7b). This arrangement made it difficult to
identify unique characteristics associated with the Basal-3 cells.
Moreover, cells in the Basal-2 cluster exhibited a complex expression
pattern, where both basal and secretory cell markers are being
enriched in these cells, while simultaneously losing expression of
BPIFA1 (Fig. 7e, g, and j; Supplementary Figs. 31 and 34d-f). This
presents a challenge in accurately interpreting biologically mean-
ingful signals related to cells in this cluster. These findings highlight
the necessity for updating the annotated markers to characterize
basal cell subtypes. The current markers may not adequately capture
the diversity and distinctiveness of these subpopulations. The dis-
persion based HV features displayed three basal clusters with a sil-
houette score below 40% (Fig. 7c, i; Supplementary Fig. 35a). A
subpopulation of basal cells is observed to have a mixture of sig-
natures from both Basal-2 and Basal-3, so it is referred to as Basal-2/3
(Supplementary Figs. 32 and 35d-f). Overall, these HV features were
not adequate in delineating basal subpopulations.

In an attempt to gain insights into the occurrence of basal sub-
types in both injured and uninjured conditions of MTECs data
(Fig. 7k-m), we analyzed the distribution of basal cell clusters. Lever-
aging the PHet’s features, the Basal-4 population was observed to be
almost exclusively present in the injured condition (Fig. 7n). In con-
trast, when examining the pre-annotated markers, we found that a
small fraction (5%) of the Basal-4 population was present in the unin-
jured case (Fig. 70), confirming that these markers are insufficient for
uncovering accurate subtypes at a higher resolution. The HV features
constituted three clusters of basal, but their significance and biological
relevance are unclear (Fig. 7p).

Discussion

Subtype discovery within the growing number of omics expression
datasets is important for studying tissue heterogeneity, understanding
cellular differentiation pathways, and identifying molecular signatures
linked to different biological states or complex diseases like cancer
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and diabetes. Inaccurate detection of subtypes could negatively affect
clinical decision-making, the development of targeted therapies, and
patient treatment planning. Additionally, finding molecular signatures
in high-dimensional omics data presents challenges due to factors like
noise, sparseness, and heterogeneity. A crucial initial step is the
selection of features associated with specific subtypes. Many current
methods focus on identifying DE features, which are features that show
distinct expression levels across certain biological conditions. Recent

single-cell RNA-seq analyses have introduced a novel category known
as HV features, representing genes with high variability regardless of
conditions. In this paper, based on our deep metric learning, we
introduce a new feature set called HD features, characterized by both
mean expression differences and variability (IQR) discrepancies
between conditions. These HD features are important for capturing
the heterogeneity and diversity of subtypes while remaining dis-
criminative between known biological conditions.
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Fig. 7 | Basal cell subtype discovery in MTECs single-cell transcriptomics data
(N=6009 cells). UMAP visualizations using PHet’s selected features (a), pre-
annotated markers (b), and HV features (c). Coloring represents the detected basal
cell types. PHet'’s selected features and pre-annotated markers are provided as a
Source Data file. Dot plots of the expression levels of selected basal and secretory
cell markers among the four basal subtypes for PHet (d) and pre-annotated markers
(e). Violin plots of the distribution of z-scaled feature expressions for selected basal
and secretory cell markers, indicated on the y-axis labels, among the four basal cell
subpopulations represented on the x-axis labels for PHet (f) and pre-annotated

markers (g). Silhouette scores (h) for clustering results based on PHet’s features,
pre-annotated markers, and HV features. The cluster quality results are provided as
a Source Data file. UMAP plots of basal cells for PHet (i) and pre-annotated markers
(§). These plots provide insights into the expression patterns of the secretory cell
marker BRIFA1. UMAP visualizations of injured vs uninjured conditions using PHet’s
selected features (k), pre-annotated markers (I), and HV features (m). The pro-
portion of each basal subtype in the injured and uninjured cell groups given PHet
(n), pre-annotated markers (0), and HV features (p).

Several approaches, such as DIDS* and DECO*’, have been
developed to extract relevant features from expression data and to
identify subtypes. However, these methods are limited in capturing
subtype-related features because they focus on a specific type of
outlier features, which means they may miss important information
that could be useful for subtyping. PHet overcomes these limitations
by using IQR differences, iterative subsampling, and statistical tests.
PHet assigns scores to features based on their heterogeneity and dis-
criminability across experimental conditions and filters out irrelevant
features by fitting a gamma distribution to the scores. The resulting
features can then be used to cluster the data into subtypes that reflect
the underlying biological heterogeneity. Based on our benchmark
studies, PHet tended to outperform the existing methods by retaining
a small set of features while ensuring high clustering quality for sub-
types detection. Furthermore, PHet’s versatility allows for extension to
multiple conditions (e.g., basal, secretory, and ciliated cells), over
different omics measurements (e.g., single-cell RNA-seq, proteomics,
or metabolomics), and different experimental designs (e.g., time-series
or multi-factorial experiments). For optimum subtypes detection using
PHet, the data should be batch-corrected and prepossessed before-
hand, and the framework is not designed to account for confounding
factors or artifact noise that may affect the expression
measurements’”’. In evaluating the performance of algorithms using
DE features, the absence of verified ground truth DE features neces-
sitates relying on the top DE features identified by LIMMA. This
dependence on LIMMA-selected features introduces uncertainty, as
these features may not accurately represent the true differential
expression within the data.

The establishment of comprehensive atlas datasets for various
organisms and tissues, exemplified by initiatives like the Human Cell
Atlas’® and the Mouse Cell Atlas’, has paved the way for discovering
and characterizing novel cell types'®'%%. These endeavors provide
invaluable insights into the diversity and functions of cellular pheno-
types across various biological contexts and conditions, illuminating
how cell populations change in disease conditions'*'**. PHet is well-
positioned to support this initiative by enhancing the identification of
unknown cell subtypes and providing deep insights into the cellular
diversity of both healthy and diseased tissues. This contribution is
facilitated by its detailed analysis of the essential heterogeneity in
large-scale omics expression data at single-cell resolution, aligning
with the goals of comprehensive atlas initiatives.

Methods

Throughout this paper, the default vector is considered to be a column
vector and is represented by a boldface lowercase letter (e.g., x) while
matrices are denoted by boldface uppercase letters (e.g., X). If a sub-
script letter i is attached to a matrix (e.g., X;), it indicates the i-th row of
X, which is a row vector. A subscript character to a vector (e.g., X;)
denotes an i-th cell of x. Occasional superscript, X?, suggests a sample
or an iteration index.

Data preprocessing

Omics data, represented asM e RY'?, refers to the expression profiles
(e.g., gene expressions) used as input. Here, N=n + m denotes the total
number of samples, which are divided into two experimental groups:

control (comprising n samples) and case (comprising m samples). Both
groups are characterized by the same set of features, where p ¢ N
represents the dimensionality of the feature space. Formally, let the
data matrix X ¢ M be control samples of size n € IN where each ele-
ment in X;; represents the expression value for samplei € {1, ..., n} and
featurej € {1, ..., p} while the data matrix Y ¢ M be a set of case samples
of size m € N where Y represents the expression value for sample
k € {1, ..., m} and feature j € {1, ..., p}. We filtered out low-quality
samples and features in the omics data. Specifically, features expres-
sed (as non-zero) in more than 1% of samples and samples expressed as
non-zero in more than 1% of features were retained. All the data were
log-transformed. We did not scale datasets to unit variance and zero
mean, as scaling is an intrinsic property of methods. No other addi-
tional preprocessing and normalization was performed on the data. It
is important to note that throughout the manuscript, the terms
“samples” and “cells” were utilized interchangeably.

Deep metric learning for feature embeddings

Deep metric learning (DML) aims to learn a distance metric that can
measure the similarity or dissimilarity between data samples'®. In the
context of triplet loss that considers three types of sample types:
positive, negative, and an anchor, the goal of DML is to maximize the
distance between the anchor-negative samples while minimizing the
distance between the anchor-positive samples by a predetermined
margin. This way, DML can generate low-dimensional embeddings that
effectively represent the original high-dimensional features.

In order to leverage DML for obtaining feature embeddings within
specific disease or cell conditions, a series of steps were followed.
Initially, the preprocessed data M was transposed, and the values of
each sample were sorted in ascending order (M). This resulted in a
modified omics dataset encompassing both control and case condi-
tions. However, due to the uneven size of control and case samples in
M, we have utilized the “RandomUnderSampler” function from the
imblearn package'® to downsample from a condition that had a
larger sample size. This allowed us to balance the dataset and ensure
that our results were not biased towards one condition.

Prior to the DML approach, it is essential to reduce the dimen-
sionality of the features and subsequently perform clustering. In this
study, we employed UMAP'”” or PCA to reduce their dimensions. For
UMAP, the minimum distance parameter and the number of neighbors
were set to 0 and 15, respectively while for PCA the number of principal
components was set to 5. After applying UMAP or PCA, we performed
clustering using the k-means algorithm to partition features with the
number of clusters being set to 200. This choice was informed by
empirical studies considering a range of cluster numbers
100, 200, 300, 400, 500 using the Patel dataset. The analysis revealed
distinct patterns when using 200 clusters from UMAP or PCA, as
depicted in Supplementary Fig. 1i, j. Specifically, the HD features with
elevated Euclidean distances were observed to be situated at a con-
siderable distance from the center when employing 200 clusters.
Conversely, the use of under or over 200 clusters was not able to
exhibit this distinct pattern. Based on these findings, we have opted to
utilize 200 clusters in our analysis for discovering feature types using
the Patel data. It is important to note that the number of clusters may
differ across datasets. The resulting clustering labels were then used to
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construct triplets for deep metric learning. Each triplet consisted of
three features: an anchor (a € M), a positive (p € M), and a negative
(n € M). The process begins with the selection of a randomly chosen
anchor feature @' from a specific cluster i, which serves as the reference
point for the triplet. Next, a positive feature p’ is randomly selected
from the pool of features sharing the same cluster label as the anchor.
Then, a negative feature ' is chosen from features that have a different
cluster label than the anchor, i.e., i #j. It is noteworthy to mention that
the selected negative feature (/) possesses the property of being
situated within a specified margin (m) while still maintaining a sub-
stantial distance from the anchor-positive features. As a result, this
negative feature is referred to as semi-hard. The process of con-
structing triplets is repeated for each individual feature. Finally, these
triplets are fed to DML to learn feature embeddings using the triplet
loss function:

L(a, p, n)= max(d(a, p) — d(a,n)+m, 0) 1)

This function utilizes the Euclidean distance d between anchor,
positive, and negative samples, along with a margin hyperparameter m
(default is 1) to control the separation between similar and dissimilar
pairs. To optimize the triplet loss function, the semi-hard triplet loss is
used. This method selects triplets in which the negative feature is
farther from the anchor than the positive feature, but still within a
margin, i.e. d(a, p)<d(a, n)<d(a, p) + m. By doing so, meaningful
embeddings can be generated that accurately distinguish between
similar and dissimilar pairs. The semi-hard triplet loss ensures that the
negative feature is neither too easy nor too hard, which further
enhances the quality of the embeddings.

The architecture of our DML is a simple fully connected three-
layer neural network. The input layer has a dimension of 25, followed
by a hidden layer with a dimension of 10, and an output or embedding
layer with a dimension of 2. To optimize the learning process for DML
with triplet loss, we employed a mini-batch strategy with a batch size of
128. The Adam optimizer is utilized, and the activation function used is
ReLU. We trained the network for 200 epochs to ensure convergence
and optimal performance. The resulting embeddings, which have a
dimension of 2, were used to calculate the Euclidean distance between
any two features belonging to the same class (Fig. 1a). The entire
process starting from sorting value was repeated 30 rounds to account
for uneven sample size between case and control groups and the
Euclidean distances were averaged. The implementation of our DML
system is based on the TensorFlow framework'®,

PHet framework

PHet is a framework that identifies features that can separate different
groups of samples in a control-case study. PHet accomplishes this goal
in a pipeline procedure that is composed of six steps (see Fig. 2): (1)
iterative subsampling, (2) Fisher’s combined probability test, (3)
measuring features discriminatory power, (4) computing feature sta-
tistics, (5) features ranking and selection, and (6) downstream analysis,
such as clustering.

Iterative subsampling. Given an annotated omics dataset (M), PHet
computes p-values of mean differences and absolute differences in the
interquartile range (AIQR) between control and case samples to collect
feature signals. A p-value indicates the probability that, under the null
hypothesis of no difference between groups, the difference calculated
from the data is equal to or greater than the difference actually
observed. Under the null hypothesis of no difference between groups,
the p-value follows a uniform distribution between 0 and 1. Therefore,
a low p-value relative to a predetermined threshold associated with
statistical significance suggests that the observed difference is unlikely
to be explained by chance. This, in turn, indicates that there is support
for rejecting the null hypothesis in favor of an alternative hypothesis

that the feature, under consideration, is indeed differentially
expressed®.

In order to identify DE features that contribute to subtypes
determination within and across conditions, we employed the iterative
subsampling with even subsampling size. The size of both subsets is
determined by the closest integer to the square root of min(n, m). This
process, called “iterative subsampling”, is repeated for a predefined
number of iterations ¢ € N to obtain a distribution of p-values for each
feature. These p-values are stored in a matrix, denoted as P, which has
dimensions p x t, where p represents the number of features and ¢
represents the number of iterations. PHet employs the two-sample
Student t-test (or Z-test if the subset size exceeds 30) as a test statistic
to compute p-values.

However, p-values alone are not sufficient to extract features by
their biological relevance, as they do not fully capture the hetero-
geneity of changes in expression for subtype detection. To address this
issue, PHet utilizes AIQR between each condition as a measure of data
variability. The IQR is defined as the difference between the first and
third quartiles of the data, denoted as g; and g3 respectively'”. By
considering both p-values and AIQR, features are scored in a way that
addresses complex sample distributions, which may deviate from
conventional unimodal patterns, thereby improving subtype detec-
tion. The formula for AIQR of a subset s is:

AIQR® =|IQR(X®) — IQR(Y®)| 2

The AIQR values are stored in R e R?*f, and then the mean
operation for each feature is applied to obtain a vector of size p, i.e.,
r ¢ RP. This vector and the corresponding p-values (P) serve as inputs
in the PHet pipeline.

Fisher’'s combined probability test. In the second step of the pipeline,
PHet summarizes the obtained p-values from the previous step into

test statistics using Fisher’'s method for combined probability’:

f= — 2xdiag(log PlogP") 3)

where diag corresponds to the matrix-to-vector diagonal operation.
The Fisher’s scores, represented by f € RP, provide a measure of
differential consistency of probabilities across the number ¢ of tests or
iterations. When p-values for a feature, across t iterations, are small,
the corresponding Fisher’s score will be large, implying that this
feature is likely to be differentially expressed, and vice versa. By
ranking and filtering out the features with low Fisher scores, we can
reduce the dimensionality of the omics data and obtain a smaller set of
DE features. The output of this step is a set of Fisher's combined
probability scores (f).

Determining features of discriminatory power. The obtained Fisher’s
scores can effectively detect mean differences between samples in two
experimental conditions; however, its discriminative ability may be
constrained when confronted with complex sample distributions that
deviate from the typical unimodal patterns, as alluded in “Overview of
PHet”. To address this issue, PHet uses the nonparametric two-sample
KS test between control and case samples to readjust the Fisher’s
values. The KS test identifies a set of features by measuring the max-
imum difference for each feature between the two cumulative dis-
tributions without considering the type of distribution of control and
case samples™. To address the potential disparity in sample sizes, PHet
employs a fixed sample size that is determined as the nearest integer to
the square root of the smaller sample size between the control and
case groups. Then, PHet compartments (binning) p-values into a pre-
determined number of bins b € IN, each with uniform width (default is
four bins with intervals defined as [0, 0.25], (0.25, 0.5], (0.5, 0.75], and
(0.75,1.0]) and assigns each bin i € b a weight w; € [0, 1]. These weights
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are then associated with a specific subset of features falling within that
particular interval. This weighting mechanism serves as an indicator of
the discriminatory strength of each feature, enabling PHet to identify
and prioritize the most relevant features for subtype detection:

W= {w;: 0sw; <1}  ,andw'l=1 “)

By default, the weights are set to w =
obtains the feature profile matrix as:

(0.4, 0.3, 0.2, 0.1). Finally, PHet

0=0w )

where 0 € R” and O € {0,1)”*?. Each row in 0 represents a one-hot
encoding vector with only one element equal to 1 and the rest equal to
0. This element indicates the discriminatory strength that the
corresponding feature displays. The output of this step is a vector
representing the discriminatory power of each feature (0).

Estimating feature statistics. In this step, PHet computes overall
feature scores, referred to as the s statistics, using the outputs from
previous steps: (1)- the average AIQR scores (r), which measures the
difference in interquartile range between conditions, (2)- the Fisher’s
scores (f), which indicates how discriminant each feature is, and (3)-
the features discriminatory power (o), which links features to its dis-
criminatory weight:

s=r+(foo) (6)

where © corresponds to the Hadamard (element-wise) product. To
ensure that the values of r and f ® o are on the same scale, we stan-
dardize both metrics. This involves dividing the values of r by the sum
of its values and similarly, dividing f © o by the sum of its values. As can
be seen in Eq. (6), o also adjusts Fisher’s scores to prevent the over-
estimation of DE features. The matrix s € R” holds the final statistics,
where a high feature score indicates its importance for subtype
detection.

Features selection. The statistics, s, from the previous step are used to
rank and select features. These statistics exhibit a distribution that can
be effectively represented by a gamma distribution with shape y and
scale 8 parameters, denoted as Gamma (y, ). The estimation of these
parameters is facilitated using the SciPy package'. Subsequently, we
identify features whose scores are higher than the 1-a quantile of the
distribution, where a € (0, 1) is a user-defined threshold (set to 0.01 by
default). The output of this step is a reduced set of features,
i.e, P C{1,.,p}.

Downstream analysis. In this step, PHet leverages the identified fea-
tures (7') to perform a range of subsequent tasks. One of the key
applications is employing clustering techniques, such as k-means'
and spectral clustering™, to detect subtypes within sample groups.
Other applications include visualizing high-dimensional single-cell
data by compressing the reduced expression matrix into a low-
dimensional representation with an appropriate dimensionality
reduction algorithm, enabling the identification of clusters, trajec-
tories, or patterns that are difficult to discern in high-dimensional
space. The default dimensionality reduction algorithm in PHet is UMAP
(Uniform Manifold Approximation and Projection)® which is currently
considered to be the superior method to collapse high-dimensional
features in omics data. Other alternative methods are PCA™ and
t-SNE". The UMAP algorithm uses the stochastic gradient descent
approach to minimize the difference between distances among sam-
ples in a higher-dimensional space and their projected lower-
dimensional space. PHet also provides outputs in a tabular format

that can be used in SPRING application® to explore cell differentiation
trajectories.

Benchmark evaluation compared to existing tools

The performance of the PHet algorithm was evaluated in comparison
with four DE feature analysis tools and their variants: the standard
Student ¢ test”, Wilcoxon rank-sum test’®, Kolmogorov-Smirnov test”’,
and LIMMA’%; a dispersion-based method and its variants®; an IQR-
based approach and its variations®’; and seven outlier detection
algorithms: COPA®, 0S**, ORT*, MOST*¢, LSOSS*, DIDS*¢, and DECO*.
In addition, we also assessed the performance of PHet using the
ADispersion metric instead of AIQR. For all these methods, features
were selected using either p-values or their scores with a cutoff
threshold determined by the gamma distribution. Descriptions of each
method are included below.

Student ¢ test (t-statistic). The t-statistic, also known as the
Student t-test, is a conventional statistical method that measures the
difference in mean values between two groups of samples for each
feature”. This test assumes that the data follows a normal distribution
and that the variance is equal across the two groups. The t-statistic can
be used to find DE features between the two groups, which can help to
understand the biological processes that are associated with the dis-
ease or the treatment outcome. The two-class t-statistic for a featurej is
defined as:

Y. - X ;
) o) (7)
Sj

statistic =

where Y and X. ,j are the mean expression values of case and control
samples, respectlvely s; is the pooled standard error estimate as:

:\/leisn(xi,j — X)) Srcrem(¥iy — V) ®)

n+m-2

A high statistic means that the feature j has a large difference in mean
expression between the groups, while a low statistic means that the
feature j has a similar expression in both groups. To select important
features, we followed two approaches: 1)- a p-value cutoff based on
controlling false discovery rate (FDR) at <0.01 significance level using
the Benjamini and Hochberg method" and 2)- fit a gamma distribution
to statistics and then trim features at <0.01 significance level. The first
approach is termed ¢-statistic and the later method is called ¢-statistic
+Gamma. For both approaches, we applied a two-tailed test using the
SciPy package.

Wilcoxon rank-sum test. This is a nonparametric statistical
approach to determine whether samples from control and case groups
are derived from the same distribution. The test statistic is computed
as the sum of the ranks for the n samples from the control group. If the
null hypothesis of identical population distributions holds true, these
ranks represent a random sample from the n+m integers. It is
important to note that under this null hypothesis, and for a larger
sample size exceeding seven for both groups"®, a normal approxima-
tion can be applied to report the Wilcoxon statistic:

statistic = Won
WJ = z;l rank(x,-'j)
le
u n(n+ 2m +1) (9)

- nm(n+m+1)
12

For more details, refer to Hogg et al."®. Having obtained p-values for all
features, the important features can be determined based on con-
trolling FDR at <0.01 significance level using the Benjamini & Hoch-
berg method™. Alternatively, we can fit a gamma distribution to
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statistics and then select features at <0.01 significance level. These two
approaches are referred to as Wilcoxon and Wilcoxon+Gamma,
respectively. For both approaches, we applied a two-tailed test using
the SciPy package'™. It is worth mentioning that the Wilcoxon rank-
sum test is robust to outliers and does not assume any specific
distribution of the data; however, this test may exhibit reduced
effectiveness when the sample size per condition is small'”.
Kolmogorov-Smirnov (KS) test. This is a nonparametric two-
sample test that is used to compare the distributions of two groups of
samples, such as control and case, without making any assumptions
about their shapes or parameters”’. The test statistic for the KS test, for
a given feature j, is the maximum absolute difference between the
empirical cumulative distributions of control and case samples':

statistic = sup |[F(X_ ;) — G(Y. )| (10)
J

where F(.) and G(.) are the empirical distribution functions of control
and case samples, respectively, and sup is the supremum function. To
identify important features, we employed two approaches: KS and KS
+Gamma. The KS method involves setting a p-value threshold based on
false discovery rate (FDR) at a significance level of less than 0.01 using
the Benjamini and Hochberg method'. In contrast, the KS+Gamma
method involves fitting a gamma distribution to the test statistics and
trimming features at a significance level of less than 0.01. The two-
tailed test was performed using the SciPy package' for these two
strategies.

LIMMA. Linear Models for Microarray Data (LIMMA)® is a pack-
age designed to perform differential expression analysis for large-scale
expression studies while remaining reasonably easy to utilize for sim-
ple experiments and small sample sizes. The package takes expression
data as input, which can be log ratios or log-intensity values from
microarray technologies. LIMMA then fits a linear model for each
feature to the expression data and applies empirical Bayes (eBayes)
and other shrinkage methods to improve the statistical inference. We
applied the limma-trend” in our benchmark analysis. Similar to the t-
statistic, features are determined using two approaches: 1)- a p-value
cutoff at <0.01 significance level implemented by LIMMA, termed as
LIMMA method, and 2)- fit a gamma distribution to statistics, obtained
from LIMMA, and then trim features at <0.01 significance level, which
is named as LIMMA+Gamma.

LIMMA has been a popular choice for feature detection through
differential expression analyses of microarray, RNA-seq, and other
types of data. However, as with the t-statistic, LIMMA assumes that the
data follows a normal distribution, which may not be true for large-
scale population studies. Furthermore, the increase in sample size
raises the presence of potential outliers, which may violate the nor-
mality assumption and affect the p-value estimation and the false
discovery rate control.

Dispersion-based HV Features Satija et al.” developed a method
based on the normalized dispersion analysis to identify HV features.
The method computes dispersion measures (variance/mean) for each
feature from all samples and then groups features, based on their
mean expression, into a fixed number of bins (20 by default). Within
each bin, the dispersion measures of features are standardized to
identify features that have higher variability than the great majority of
the features in the bin. Typically, selecting the top HV features requires
the configuration of various hyperparameters. In our methodology, we
adopt an alternative approach. Rather than specifying hyperpara-
meters, we collect the normalized dispersion values for all features and
fit a gamma distribution to these values. We then select features at a
significance level of less than 0.01. This approach allows us to deter-
mine HV features without the need for manual parameter tuning. We

Furthermore, we extend this process by introducing three addi-
tional strategies to collect statistics or dispersion values. The first
strategy, Dispersion (per condition), computes dispersion values for
features separately for each condition. The second strategy, ADisper-
sion, calculates the absolute differences of dispersion values between
samples of control and case groups for all features. The third strategy,
ADispersion + AMean, takes the feature-wise sum of the absolute dif-
ferences of both dispersion and mean values between samples of the
two conditions. For all these methodologies, we fit a gamma dis-
tribution to the collected values and select features at a significance
level of less than 0.01.

Interquartile range (IQR). This is a statistical measure that pro-
vides insight into the spread of the middle half of a feature. We pro-
pose four methods to calculate the IQR for each feature: 1)- /QR
(composite) which involves combining the control and case samples
and computing the IQR of their composite distribution. This approach
takes into account the overall variability in the data; 2)- IQR (per con-
dition) which calculates the IQRs of samples for each condition sepa-
rately. By considering the IQRs within each condition, this method
provides insights into the variability specific to each condition; 3)-
AIQR, which finds the absolute differences of the IQRs between sam-
ples of the two conditions. This method highlights the features that
exhibit the greatest variation between the control and case samples;
and 4)- AIQR + AMean, which combines the absolute differences in
IQRs with the absolute differences in means between samples of the
two conditions. By considering both IQR and mean differences, this
method captures both variability and shifts in the data. The formula for
AIQR+AMean for a feature j is defined as:

statistic = [IQR(X, ;) — IQR(Y,, j)‘ + ‘X Y j] an
where X_ ; and Y ; represent the mean expression values for control
and case samples, respectively, for the feature j. To ensure that the
absolute IQR difference and the absolute mean difference for each
feature are on the same scale, we standardize both metrics. This pro-
cess involves dividing the absolute IQR difference for each feature by
the sum of the absolute IQR differences across all features. Similarly,
the absolute mean difference for each feature is divided by the sum of
the absolute mean differences across all features. For all IQR-based
methods, a precondition to computing scores is that the expression
values for each feature should be normalized to a unit variance and
zero mean.

COPA. While the t-statistic is an effective way to determine the
DE features, this method does not account for the heterogeneity of
samples within each group. This is because the ¢-statistic computes
the mean difference of features between control and case samples
without providing a way to discern outliers. Typically, outlier sam-
ples have high expression values for a set of features within a group.
This phenomenon is common for cancer studies where mutations
can either amplify or down-regulate feature expression in only a
minority of cancer (or case) samples. To address these extreme
values of feature expression in the case group, Tomlins et al.”* pro-
posed Cancer Outlier Profile Analysis (COPA) which is defined for a
featurej as:

4,(Y;;:1<i<m}) - MED,

MAD;

statistic = 12)

where g,(. ) is the rth percentile of the expression data. MED; is the
median expression value for all samples for the feature j and is defined
as:

apply this method to a combination of control and case samples, which MED; = median({X;; : 1<i<n},{Y;; : 1<i<m}) 13)
is why we refer to it as Dispersion (composite).
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MAD; is the median absolute deviation of expression values in all
samples and is defined as:

MAD; =1.4826 x median({|X; ; — MED;| : 1<i<n}, 14)
{IY;; — MED;| : 1<i<m})
The COPA statistic utilizes the median and median absolute deviation
to define outliers, where samples with high outlier scores for many
features are considered to be outliers.

0S. A major limitation in calculating the COPA statistic is the rth
percentile, which is a tuning parameter that depends on the data. To
overcome this problem, Tibshirani and Hastie** proposed the Outlier
Sum (OS) statistic. For a feature j, it is defined to be the sum of
expressions in case samples that have values beyond g-s(.) + IQR(. ) for
that feature as:

Y jeR; (Y;; — MED))

MAD;

DY
statistic =

15)
where,

R = {Yi,j Yoy 1< i<n), (Y 1<i<m)) (16)

+IQR((X;; : 1<i<n) (Y, : lsism})}

ORT. Wu*® proposed another variant to the OS statistic where the
median of expression values for a feature j is computed per group
based as:

v,yen,(Yij — MEDY)
iotic = —Yuht Tl 17
statistic MAD, 17
The definition of R; is:
Ri={Y;; : Y; >q75({X; j : 1<i<n}) +IQR({X; ; : 1<i<n})} 18)

The set R; is comprised of those samples in the case condition that
deviate significantly from the control samples, based on the 75th
percentile (g;s) and the IQR values of the control samples for the fea-
ture j. The MAD; is defined as:

MAD; =1.4826 x median({|X; ; - MED{*| : 1<i<n}, {|Y;; - MED}")| : 1<i<m})
19)

where MED{® and MED}"' are the median expression values for control
and case samples, respectively. Here, the medians are computed
separately for each condition, rather than using all the samples to get a
global median value. This method, called Outlier Robust T-statistic
(ORT), showed good performance compared to OS and COPA on a
breast cancer microarray dataset'?.

MOST. Following the ORT statistic, Lian*® proposed the Maximum
Ordered Subset T-statistics (MOST) as a method to identify a subset of
case samples exhibiting aberrant feature expressions. This method
leverages the median expression value for control samples pertaining
to a specific feature j, in order to locate outliers within the case con-
dition that display abnormal signals for that particular feature. The
detection of outliers is achieved by arranging the gene expression
values of the case condition for a feature j in descending order (ij))
and determining an outlier threshold k that maximizes the statistic
value (see below). Once the k value is determined, the top k sorted case

samples are considered outliers. The MOST statistic is calculated as:

ot = leisk(v‘ivs/'LMED}x’)
statistic  max { MIAD; He | /0
Hy = E[3 <k zi] 20)
O = Var (s cisk )

where 21 > ... > z,, is the order statistics of m case samples generated
from a standard normal distribution, as described in the original paper
by Lian et al.**. The median absolute deviation of expressions(MAD))
has the exact formula as in the ORT statistic (Eq. (19)). In practical
implementation, a naive iterative approach is employed to collect
statistics for the m case samples for each feature. Subsequently, the
optimal MOST statistic associated with a feature is determined by
identifying the maximum statistic.

LSOSS. Wang and Rekaya*” proposed an approach for identify-
ing outliers in case samples by detecting distinct peaks (or modes) of
expression values compared to the rest of the inactivated case
samples. Their approach is similar to MOST, where they found that a
higher peak corresponds to activated case samples, while a lower
peak indicates inactivated case samples. This outlier issue can be
addressed through the concept of detecting a “change point” or
“break point” in the ordered gene expression values of the case con-
dition. This observation led them to introduce a novel statistical
method, the Least Sum of Ordered Subset Square (LSOSS) method.
The primary objective of this method is to identify the specific peak
in expression values that corresponds to the outliers in case samples.
By doing so, the LSOSS method endeavors to maximize the disparity
between case and control samples. The LSOSS statistic for a feature j
is defined as follows:

Yoox.
statistic=k—L——*/ 21
Sj

where X_ ; represents the mean expression value for control samples
for the feature j. 7(  is the mean expression value of the k largest
expression values of the case samples and is calculated based on the
sorted case samples in descending order of their expression values for
the feature j. This approach aims to facilitate the identification of
distinct peaks within the case samples. To determine an optimal k
value, which corresponds to the breakpoint for the feature j, the case
samples are divided into two distinct groups: S = {Y;;: 1<i<k} and
T={Y,j: k+1<i< m}. Then, the mean and sum of squares for the feature
j are calculated as:

V(Sj) =mean({Y;; : 1<i<k})
v _
Y=

589 =

mean({Y;; : k+1<i<m})
<=(S) 2
> (Yi,j - Y;,j)

1<i<k

ssh=

k+l<ism

(22)

<—(T) 2
Yy, =Y. ;)

The optimal k(< m-1) is determined by selecting the minimum value
representing the pooled sum of squares:

; ) 4 ¢

arglsﬂlﬂil(ss S§) (23)

The s; in the denominator of the LSOSS statistic corresponds the
pooled standard error:
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where =3, _;_,(X;; — X, J-)2 represents the sum of squares for the
control samples for the feature j.

DIDS. de Ronde et al.*® developed the Detection of Imbalanced
Differential Signal (DIDS) algorithm that calculates the absolute dif-
ferences in expression values by comparing the case samples with the
maximum expression value observed in the control samples. These
differences are then aggregated using one of three statistical func-
tions: tanh, square, or square root to obtain the DIDS statistics:

m
statistic = Z FQY,; =X 17) (25)
i-1
where )/(?j:maxk({xk,j :1<i<n})and |. | is:
wifw=0
t= ’ 26
! { 0 otherwise (26)

The fin the DIDS statistics is a strictly increasing function of either:

Sfrann(W)=1+ tanh(Qw — 3)
fquad(w) =uw?

fsqrt(w) =Jw

DECO. Campos-Laborie et al.*’ developed a method, called
DEcomposing heterogeneous Cohorts using Omic data profiling
(DECO), for studying the changes in feature profiles between control
and case samples. DECO leverages recurrent differential analysis in
combination with non-symmetrical correspondence analysis to cate-
gorize each feature into one of four model-type schemes to facilitate
subtypes detection: complete, majority, minority, and mixed. The
classification of a feature into those four categories is applied using the
raw omics data before normalization. For a more comprehensive
understanding of this method, refer to the paper by Campos-Laborie
et al.*’. DECO was shown to deliver promising results for the analysis of
heterogeneity, biomarker identification, and subtype discovery*.
Furthermore, DECO has the capability to detect subpopulations with-
out the need for labeled samples, thereby making it particularly valu-
able for unsupervised outlier detection.

@7

Parameter settings for benchmark algorithms

We implemented the standard Student ¢ test, Wilcoxon rank-sum test,
Kolmogorov-Smirnov test, COPA, OS, ORT, MOST, LSOSS, DIDS, AIQR,
and PHet in Python. The same settings were utilized on all benchmark
problems. For the Student ¢ test, Wilcoxon rank-sum test, Kolmogorov-
Smirnov test, and LIMMA, we used a two-tailed test with default set-
tings. For COPA and OS, we assigned g, to 75%. We employed the “tanh”
scoring function for DIDS and IQR for OS, ORT, the four variants of
IQR, and PHet. Additionally, we set the vector of feature weight w for
discriminatory power to [0.4, 0.3, 0.2, 0.1] for PHet. To ensure a
comprehensive analysis, we applied up and down regulations for OS,
ORT, MOST, LSOSS, DIDS, all variants of IQR, and PHet. For LIMMA and
Dispersion-based methods, we used the LIMMA (limma-trend)’®”° and
the SCANPY*° packages with default settings, respectively. To collect p-
values and statistics from the Student t-test, Wilcoxon rank-sum test,
and Kolmogorov-Smirnov test, we utilized the SciPy package'. Finally,
for DECO analysis, we employed the deco package written in R and
applied the decorDA module with 1000 iterations while keeping the
remaining parameters at their default configurations.

Evaluation metrics

Performances of algorithms on different datasets were compared
using seven evaluation metrics: F1, adjusted Rand index (ARI), the
adjusted mutual information (AMI), silhouette, homogeneity, com-
pleteness, and V-measure. We applied these metrics to the original or
reduced feature space before performing dimensionality reduction.

F1. The F1 metric is a widely used measure of the effectiveness of a
classifier. It is calculated as the harmonic mean of the precision and
recall, which are two metrics that evaluate how well the classifier can
identify the positive and negative classes. Precision is defined as the
ratio of true positive predictions to the total number of positive pre-
dictions, while recall is the ratio of true positive predictions to the total
number of actual positive instances. The F1 metric is defined as:

_ 2tp

= Stpfpefn @
where tp, fp, and fn correspond to the true positive, false positive, and
false negative features, respectively. The F1 metric ranges in [0, 1], and
higher values indicate higher classification accuracy. We used the
F1score to compare the performances of algorithms on the microarray,
single-cell RNA-seq, simulated, and HER2 datasets in Figs. 3a, d, g, and j
and 5a, b and e, and Supplementary Figs. 2¢, d, 3a, b and e, and 4-6.

Adjusted Rand index (ARI). This metric is used to quantify the
similarity between two different clustering results, such as comparing
the current clusters with previously clustering outcomes or pre-
annotated true labels. This measure is adjusted to account for random
permutations, as follows:

+ .. . . +
m(") - (5=
ARI= 1 a; b; a; b; n+m
2(3)=(3)]- =G )= G (S)
where (n+m);; represents the number of samples that are concurrently
classified into both clusters i andj based on the ground truth labels and
the clustering results, respectively. a; signifies the total number of
samples belonging to cluster i as per the true labels, whereas b; denotes
the count of samples assigned to cluster j in accordance with the
clustering labels. The ARI ranges in [0,1] with higher values indicating
greater similarity between the current clustering results and either
previous clustering or pre-annotated true labels. The ARI metric was
used in Figs. 1(f) and 3(c), (f), (i), and (I), and Supplementary
Figs. 2(a)-(b), 4-6 and 36-38.
Adjusted mutual information (AMI). This metric is based on the
mutual information (MI) between true labeled subtypes and clustering

labels of a dataset, adjusted against chance. The AMlI s calculated using
the following formula:

(29)

I MI — E[MI]
Average(H(t), H()) — E[MI]

(30)

where t € N"*™ and t ¢ N"*™ are the true subtypes and predicted
clusters, respectively. E[. ] is the expectation of random labeling. Ml is
defined as:

MI(t, 7) = Z Z \%SIZJ log(n+m)|tc Nl

P (3D
celtl ket LAY

where H(t) is the entropy of the truly labeled subtypes, which mea-
sures how much information is needed to identify the true labels of a
sample without any clustering information while the term (¢) is the
entropy of the predicted clusters:

HE) = - Zmnifmlog(,,’ifm)
ce

HE) = -3 Fslogs 32
kelt|

where x; represents the total number of samples in the predicted
cluster k and x. is the number of samples that have the true subtype c.

Nature Communications | (2025)16:3593

20


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58718-1

The AMI ranges in [0,1] where a higher score entails that both true
labeled subtypes and clustering labels are near identical. We used the
AMI metric to compare the clustering performances of algorithms for
microarray and single-cell RNA-seq datasets in Supplementary
Figs. 4-6 and 36-38.

Silhouette. This metric aims to determine whether a clustering
solution has successfully minimized the within-cluster dissimilarity
while maximizing the inter-cluster dissimilarity. The formula for cal-
culating the silhouette score is as follows:

b—a

Silhouette = Wa,b)

(33)

where a is the average intra-cluster distance, i.e., the average distance
between each sample within a cluster and b is the average inter-cluster
distance, i.e., the average distance between all clusters. The silhouette
score ranges from —1to 1, where a high silhouette value indicates that
samples are close to their own cluster and far from other clusters. We
used this metric to compare the clustering performances of PHet, pre-
annotated markers, and HV features for MTECs single-cell RNA-seq
data in Fig. 7(h).

Homogeneity. This metric measures the distribution of subtypes
within each predicted cluster:

Lo HED
Homogeneity =1 HO

(34)
where t and ¢ are the true subtypes and predicted clusters, respec-
tively, and H(¢) is defined in Eq. (32). The term H(t|¢) is the conditional
empirical entropy, which quantifies how much information is required
to determine the true labels of a sample based on its predicted cluster
assignment:

. X X,

H(t|t)= — ok lo(“k>
(tl) ;Mkezmmm g% (35)

where x4 corresponds to the number of samples in cluster k that
belongs to the true label ¢ and x; represents the total number of sam-
ples in the predicted cluster k. The homogeneity score ranges in [0, 1],
where 1 denotes that each cluster contains only samples from a single
true subtype (i.e., zero entropy), and O entails that each cluster contains
samples from all subtypes. A higher homogeneity value indicates a
better clustering performance. This metric was applied to compare the
clustering performances of algorithms for microarray and single-cell
RNA-seq datasets in Supplementary Figs. 4-6 and 36-38.

Completeness. This metric measures the clustering distribution
over each true subtype. A clustering result satisfies completeness if all
samples that are members of a given subtype belong to the same
cluster:

Completeness=1— o

- 36
o (36)

where ¢ and ¢ are the true subtypes and predicted clusters, respec-
tively, and (%) is defined in Eq. (32). H(Z|t) is the conditional entropy
of the predicted cluster distribution given the true subtypes:

= - 33 Xekion ()

kelt| celt]

@37)

where x4 corresponds to the number of samples in cluster k that
belongs to the true label c and x, is the number number of samples that
have the true subtype c. The completeness score ranges in [0, 1] where
a higher value indicates a better clustering completeness. This metric
was applied to compare the clustering performances of algorithms for

microarray and single-cell RNA-seq datasets in Supplementary
Figs. 4-6 and 36-38.

V-measure. This metric is the harmonic mean of two scores,
homogeneity and completeness:

Homogeneity x Completeness
S x Homogeneity + Completeness

V — measure =(1+p) x

(38)

where Homogeneity and Completeness are defined in Eq. (34) and
(36), respectively. B € R is a tuning parameter to favor the con-
tributions of homogeneity or completeness. By default, f is set to 1.
The V-measure score ranges in [0, 1] where a higher value quantifies
the goodness of the clustering result. This metric was applied to
compare the clustering performances of algorithms for microarray
and single-cell RNA-seq datasets in Fig. 1f and Supplementary
Figs. 4-6 and 36-38.

Cohen’s d statistic

To quantify the effect size, we used results metrics, such as ARI scores,
F1 scores, and predicted features from 25 methods (“Evaluation of
PHet’s performance in identifying subtypes of single cells and
patients”; Supplementary Fig. 2b, d, and f). These metrics allowed us to
calculate the absolute values of Cohen’s d statistic'” to assess the
magnitude of differences between the compared methods, and is
defined as:

Cohen’s d statistic | Eaa)

(ng—D)s2 + (n,—1)s? 39
s ng+n,—2
where x, and X, represent means of a clustering metric results for
methods a and b, respectively, and s represents the pooled standard
deviation. n, and n, represent the number of data points.

Clustering

We applied spectral™ and k-means™ clustering algorithms to two
types of data: microarray gene expression and single-cell RNA-seq
(Supplementary Table 7). The clustering process was conducted using
the Scikit-learn package'”’. To ensure robust evaluation and perfor-
mance comparison against pre-annotated true labels, we set the
number of clusters equal to the original patient sample types and cell
types in both datasets. Other hyperparameters were maintained at
their default settings. The quality of clustering results was assessed
using a range of metrics including ARI, AMI, silhouette, homogeneity,
completeness, and V-measure (refer to “Evaluation metrics” for
details).
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UMAP settings

We utilized the UMAP package'” in Python and fine-tuned several
hyperparameters to optimize the generation of embeddings. Specifi-
cally, we set the minimum distance to O in order to improve the dif-
ferentiation of subtypes, utilized 5 neighbors to effectively capture
smaller subtypes, and executed 1000 iterations to ensure the acqui-
sition of high-quality embeddings. The remaining UMAP hyperpara-
meters were fixed to their default settings. We applied UMAP to
generate several figures, such as Figs. 1k-n, 6a, b and h-i, 7a-c and k-1,
and Supplementary Figs. 9-25, 26a, b, 27a, 28a, 30-32, 33a, b, 34a, b,
and 35a, b.

SCANPY settings

We used SCANPY*° to normalize cells, select HV features based on the
minimum dispersion criterion of 0.5, perform clustering using the
Leiden algorithm at resolution ranges in [0.4, 0.8], apply differential
expression analysis between cell clusters using Wilcoxon rank-sum
test, and visualize results using various plots, such as heatmaps. We
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employed SCANPY to obtain the results for Dispersion (composite),
Dispersion (per condition), ADispersion, ADispersion+AMean, and
PHet (ADispersion) methods in “Evaluation of PHet’s performance in
identifying subtypes of single cells and patients”, “Evaluation of PHet’s
discriminative performance on simulated data”, “Analysis of PHet’s
ability to identify markers with low signals”, and “PHet effectively
identifies subpopulations of basal cells in the MTECs dataset”. Addi-
tionally, we created several figures using this library in Fig. 7a-g and
i-p and Supplementary Figs. 27e-h, 28e-h, 30-32, 33a, b and d-f, 34a,
b and d-f, and 35a, b and d-f.

SPRING settings

We employed SPRING®*® to uncover complex high-dimensional struc-
tures within single-cell gene expression data. Specifically, we config-
ured the number of PCA dimensions to 50, the minimum number of
cells for each gene to 3, the gene variability percentile to O, the number
of nearest neighbors to 5, and the minimum number of genes for each
cell to 0. SPRING was applied to generate several figures, such as
Fig. 6¢c-e, g, and j-1, and Supplementary Figs. 26¢c-f and i, 27b, ¢, 28b, c,
and 293, b and e.

Differential feature expression

In the analysis of Fig. 5a, b and Supplementary Fig. 3a, b, we used
LIMMA (limma-trend)’®”° to conduct the differential expression ana-
lysis. We specifically focused on identifying the top 100 DE features
with adjusted p-values below 0.01 for evaluating the performance of
various algorithms.

Simulated datasets

A base synthetic data was generated using the madsim package
with specific configurations. The lower and upper bounds of log,
intensity values were set to 2 and 16, respectively. The proportion of
DE features was set to 0.1. The remaining parameters in the madsim
package were set to their default values. The resulting dataset
consisted of 1100 features, with 93 of them being DE features. There
were a total of 40 samples, evenly distributed between control and
case conditions (Supplementary Table 3). The purpose of creating
this base dataset was to establish a prior distribution for simulating
two additional sets of data. Each of these sets consisted of five
datasets drawn from the same underlying base synthetic data. The
first set represented the minority model type, where random per-
turbations were applied to 100 features in the case condition,
including some DE features. The number of perturbed case samples
ranged from5%to45%, correspondingto1to9outofthe20samples.
The second set represented the mixed model scheme, which fol-
lowed a similar procedure as the minority model. However, in this
case, the perturbed samples were distributed equally among a
subset of cases and controls. These two sets of simulated data were
designed to represent balanced situations, where the number of
case and control samples was exactly the same. We used these
datasets to evaluate the performance of 25 algorithms in Table 1 as
discussed in “Evaluation of PHet’s discriminative performance on
simulated data”.
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HER2 datasets

We followed the approach described by de Ronde et al.** to produce
1000 synthetic batches of HER2 (human epidermal growth factor
receptor 2) data. Each batch consisted of 27,506 features and
188 samples. To create these batches, we incorporated 178 fixed con-
trol samples from a breast cancer dataset (NCBI Gene Expression
Omnibus (GEO) accession ID GSE34138 representing the HER2-
negative group, and 10 case samples randomly selected from 60
HER2-positive tumor samples (GEO accession ID GSE41656). It's
important to note that the case samples varied for each batch, while
the control samples remained constant. The main objective behind

generating this dataset was to assess the effectiveness of algorithms in
predicting 20 true outlier genes. These genes are specifically located
on either ch17q12 or ch17g21 (see “Analysis of PHet’s ability to identify
markers with low signals”). These regions were chosen due to their
well-established association with HER2 amplification and breast
cancer.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets analyzed in this study are publicly accessible and were
sourced from various repositories. HER2 datasets were retrieved from
the NCBI GEO under accession numbers GSE34138 and GSE41656. We
downloaded twelve microarray datasets from the GEO database with
accession numbers of GSE412; GSE3726; GSE89; GSE68956 (the
Braintumor data; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE68956); GSE2685; GSE83227 (the Lung data; https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83227); GSE1987;
GSE25055 (the BCCA data; https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE25055); GSE2191; GSE2535; GSE19429 (the MDS data;
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19429); and
GSE68907 (the Prostate data; https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE68907). The Glioblastoma, Leukemia, MLL,
SRBCT, and DLBCL data were downloaded from Bioinformatics
Laboratory at the University of Ljubljana from https:/file.biolab.si/
biolab/supp/bi-cancer/projections/index.html.  Furthermore, eight
single-cell RNA sequencing (scRNA-seq) datasets were downloaded
from GEO: GSE67835 (the Darmanis data; https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE67835); GSE36552 (the Yan data;
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36552);
GSE81252 and GSE96981 (the Camp data; https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE81252and  https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE96981); GSE84133 (the Baron data;
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133);
GSE81861 (the Li data; https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE81861); GSE57872 (the Patel data; https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE57872); GSE75140 (the Knoblich
data; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE75140); and GSE83139 (the Wang data; https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE83139). The Segerstolpe data was
downloaded from the EMBL’s European Bioinformatics Institute
database with accessions number of E-MTAB-5060 and E-MTAB-5061
(https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-
5060and  https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-
MTAB-5061). The Lake data was downloaded from the dbGaP reposi-
tory under accession number phs000833.v7.pl (https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000833.v7.
pl). The HBECS and MTECs datasets were obtained from the GEO
repository with accession numbers of GSE102580. Detailed informa-
tion about these datasets can be found in Supplementary Tables 1-6.
All processed data in this work have been deposited on Zenodo
(https://doi.org/10.5281/zenodo.14460056). All data supporting the
findings described in this manuscript are available in the article and in
Supplementary Information and from the corresponding author upon
request. Source data are provided with this paper.

Code availability

The codebase for PHet is publicly available at https://github.com/
kleelab-bch/phet. The version used in this work corresponds to the
release available at the following link: https://zenodo.org/records/
14957206. PHet is licensed under the MIT License. For reproducibility,
all the scripts for benchmarks and case studies presented in this
manuscript are available at https://doi.org/10.5281/zenodo.14460056.
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