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% Check for updates The rapid accumulation of biomedical cohort data presents opportunities to

explore disease mechanisms, risk factors, and prognostic markers. However,
current research often has a narrow focus, limiting the exploration of risk
factors and inter-disease correlations. Additionally, fragmented processes and
time constraints can hinder comprehensive analysis of the disease landscape.
Our work addresses these challenges by integrating multimodal data from the
UK Biobank, including basic, lifestyle, measurement, environment, genetic,
and imaging data. We propose UKB-MDRMF, a comprehensive framework for
predicting and assessing health risks across 1560 diseases. Unlike single dis-
ease models, UKB-MDRMF incorporates multimorbidity mechanisms, result-
ing in superior predictive accuracy, with all disease types showing improved
performance in risk assessment. By jointly predicting and assessing multiple
diseases, UKB-MDRMF uncovers shared and distinctive connections among
risk factors and diseases, offering a broader perspective on health and multi-
morbidity mechanisms.

The consistently increased accumulation of biomedical cohort data? The health status of individuals is influenced by various factors

offers significant opportunities for robust and comprehensive modeling
in clinical diagnosis and disease analysis®’. However, many studies
remain focused on predicting or assessing risks for specific diseases or
broad disease categories’, which limits the exploration of risk factors
and inter-disease correlations’. Additionally, the exploration process is
often fragmented, lacking a standardized framework for integrating
multiple tasks, leading to low data utilization and resource wastage®.
Furthermore, time and cost constraints for data preprocessing and
model implementation pose barriers to healthcare professionals’.

such as demographics, lifestyle, environment, and genetics™.
Leveraging this rich information can lead to more accurate predic-
tions and deeper analyses”. While numerous methods have been
developed to predict and assess single-type diseases using multi-
modal data’, the coverage of diseases remains insufficient. There
has been a lack of research integrating multidimensional health
information with various disease types in large-scale biomedical
datasets. Some approaches model a large number of diseases
simultaneously”, but the multitude of disease risk factors and
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complex connections between diseases pose significant challenges,
making it difficult to comprehensively explore these relationships.
Existing methods for constructing health information models may
lack thorough consideration from data preprocessing through
analysis and modeling stages, and they often lack further analysis
and application extensions®.

In this work, we integrated rich multimodal data from the UK
Biobank data', encompassing basic information, lifestyle, measure-
ments, environmental factors, genetics, and imaging data. We intro-
duced UKB-MDRMF, a Multi-Disease Risk and Multimorbidity
Framework designed for individual multi-disease prediction and
health risk assessment across 1560 diseases. UKB-MDRMF is a com-
prehensive biomedical prediction and risk assessment model applied
at a large scale. This comprehensive model outperforms single-
category disease risk assessments and effectively uncovers potential
connections among multiple risk factors and diseases, providing a
broader perspective on health risk factors and multimorbidity
mechanisms. Additionally, we streamlined the entire process from
data input to model construction, enhancing the flexibility and con-
venience of using the UKB-MDRMF framework across various down-
stream tasks. We also developed an interactive platform (https://
luminite.shinyapps.io/ukb-mdrmf/) to showcase detailed results of
UKB-MDRMF, allowing exploration of disease predictions, variable
importance, and comorbidities for specific risk factors and disease
categories.
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Fig. 1| Construction pipeline of UKB-MDRMEF. This pipeline utilizes input data
from the diverse UK Biobank data, including six categories: basic, lifestyle, mea-
surement, environment, genetic, and imaging data. Following field selection, data
cleaning, and missing data preprocessing, predictors are generated. Response
variables are derived from inpatient, self-reported, and primary care data, initially
standardized to ICD-10 codes before conversion to Phecodes. After the temporal
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For the UK Biobank data, we developed a comprehensive standardized
process to construct the UKB-MDRMF framework for the joint pre-
diction and risk assessment of multiple diseases. The entire workflow
encompasses data preprocessing, model construction, and applica-
tions, as shown in Fig. 1.

In the data processing phase, we integrated data from six cate-
gories: basic (e.g., demographics), lifestyle (e.g., activity, diet), mea-
surement (e.g., biochemistry, blood tests), environment (e.g., social
and natural environmental factors), genetic (e.g., genetic principal
components and polygenic risk scores), and imaging (e.g., heart MRI,
brain MRI). This integration forms the initial input for the workflow. We
manually integrated and screened variables based on their meanings in
each data type, referencing the collection of phenotypic information
from genome-wide association studies (GWAS)™. The selected vari-
ables were categorized into three hierarchical levels (essential,
detailed, and minor) based on the specific information they provide
(see Supplementary Note 2.2, Supplementary Tables 1-3, and Supple-
mentary Fig. 3 for more details). Next, we conducted data cleaning and
imputation, integrating information from three sources (inpatient,
self-report, and primary care data) into response variables. The data
was randomly divided into training, validation, and test sets in an 8:1:1
ratio. To ensure consistency and independence among these sets, we
partitioned the data randomly before data preprocessing. During
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alignment of independent and dependent variables, the data is used to construct
the UKB-MDRMF framework, encompassing disease prediction and risk assessment
models. These models facilitate diverse applications, including establishing base-
line conditions for multiple diseases, analyzing significant risk factors, exploring
multimorbidity, and assessing survival risks. Icons are provided by Icons8 (https://
icons8.com).
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preprocessing, the treatment of the training, validation, and test sets
was entirely independent, eliminating the risk of data leakage between
datasets. Following time alignment, we developed a modeling strategy
for individual joint disease prediction and risk assessment that
accounts for the complex interplay between different disease pre-
dictors and risk factors. The UKB-MDRMF framework serves as a basis
for comprehensive analyses and investigating relationships between
diverse health indicators and disease outcomes in the UK Biobank
data. It can be used for establishing baseline predictions for specific
diseases, exploring health risk factors, and conducting multimorbidity
analyses. For detailed information about each step in the pipeline,
refer to Section “Methods”.

UKB-MDRMF offers an efficient and flexible solution for lever-
aging large-scale biomedical data for analysis and modeling. It sur-
passes single-disease models by jointly predicting and assessing
thousands of diseases (Phecodes), capturing potential multimorbidity
mechanisms among numerous diseases and resulting in superior
predictive performance. Additionally, we have developed an inter-
active platform for visualization and exploration, as detailed in Sup-
plementary Note 1 and Supplementary Fig. 1.

Data preprocessing

To construct the multi-disease risk framework, we separately built and
processed predictors and response variables. The first step in processing
predictors was field screening. Including all variables in the model
introduces noise and affects accuracy. Therefore, from 7228 phenotypes
collected in GWAS, we subjectively selected 542 phenotypes based on
their relevance and importance, grouping them into six categories. The
UK Biobank data, a large-scale biomedical data, includes diverse data
types with unique encoding methods. We employed customized data
cleaning and organization strategies to accommodate these diverse
formats. Different encoding techniques were applied to enhance data
quality and optimize model performance: continuous and integer vari-
ables were standardized or binned, and categorical variables were con-
verted into binary or ordered categorical variables. As a result, we
obtained 1106 input variables, with several phenotypes generating
multiple variables during preprocessing.

Large biomedical data often contain substantial amounts of
missing information, and the UK Biobank is no exception. Following
data cleaning, we examined the data collection procedures and sys-
tematically analyzed missing patterns. The UK Biobank provides
details on data collection, including the participation subgroup for
each variable and the time and location of data collection for each
participant. By considering this detailed information, we understood
the mechanisms behind missingness and handled missing values
appropriately. We categorized missing variables into different types
and filled in missing information using strategies such as deletion of
low-quality individuals, imputation with special values, incorporation
of missingness indicators, and imputation with models. High missing
rates for many variables were due to the systematic design of data
collection procedures. By leveraging the knowledge of the data col-
lection process, we achieved accurate and interpretable imputation
results, facilitating the UKB-MDRMF construction.

For response variables, we used 1560 Phecodes to systematically
summarize diseases”. The corresponding data originated from four
sources: hospital inpatient, death register, self-report, and primary
care data. These data were encoded separately and standardized as
ICD-10 codes. After integration, the standardized codes were mapped
to Phecodes using Phecode Map 1.2 with ICD-10 Codes” to serve as the
final response variables.

Since our goal is disease prediction rather than imputation, it is
crucial to ensure that responses occur after predictors. Therefore,
after separately preprocessing the two major data parts, predictors
and response variables, we performed time alignment before inputting
them into the model, enhancing the study’s significance.

Model construction

To develop the UKB-MDRMF framework, we focused on two primary
aspects: individual disease prediction and risk assessment. Here, the
information from different disease types was not used as input vari-
ables in the model.

In the disease prediction task, we evaluated various approaches,
including Logistic Regression’®, Random Forest”, XGBoost'®,
LightGBM", FCNN*, and specialized models such as POPDx” and
CATI”. A comprehensive comparative analysis was conducted to
assess their performance across different disease predictions, using
the AUC (area under the receiver operating characteristic curve) as the
evaluation metric. The comparison between the training and testing
sets is shown in Supplementary Fig. 15.

We employed a stepwise approach for predictor types, starting
with basic information variables and gradually incorporating dif-
ferent feature types, ultimately including genetic variables. Fig-
ure 2a illustrates the performance of different disease prediction
models across various data categories. The FCNN model performed
best, achieving an overall median AUC exceeding 0.7 after the
addition of measurement data. Traditional non-parametric machine
learning methods such as Random Forest, XGBoost, and LightGBM
exhibited moderate performance in multi-task learning, while
methods like POPDx and CATI, which incorporate multi-disease
semantic information, did not significantly improve predictive
accuracy. Moreover, with more feature information for prediction,
the predictive accuracy of all models consistently improved. Fig-
ure 2b shows the performance of disease prediction models con-
sidering varying numbers of positive individuals in the training set.
For rare diseases (with positive individuals ranging from 0 to 200,
where the occurrence rate is typically defined as 1 in 2000)*%, we
used 200 cases as the threshold, given the training set of 400,000
data points. CATI and FCNN achieved higher AUCs for rare diseases,
while for common diseases, CATI, FCNN, and Logistic Regression all
performed well. Figure 2c compares the performance of two dif-
ferent modeling strategies: individual disease modeling versus joint
modeling for all diseases, where the latter directly outputs predic-
tions for all Phecodes. For disease prediction tasks, the AUC in joint
prediction across all disease categories is comparable to single-
disease prediction. Focusing on the predictive accuracy of various
types of diseases reveals that oral and intestinal diseases have rela-
tively lower AUC values. In contrast, diseases related to the repro-
ductive system demonstrate notably high predictive accuracy, with
the AUC exceeding 0.95 for pregnancy-related diseases and 0.8 for
genital diseases.

Similar to disease prediction, the risk assessment process fol-
lowed a stepwise addition strategy for each category of predictors. We
used traditional Cox proportional hazards (CoxPH) models*,
DeepSurv®, and advanced models such as POPDxSurv?? and
CATISurv?. Performance was evaluated using the C-index®. As shown
in Fig. 2d, among the four survival models, DeepSurv outperformed
others, followed by CATISurv, with their median C-index around or
above 0.7. In comparison, POPDxSurv showed relatively poor perfor-
mance, requiring all six data categories as input to achieve better
predictive results. Figure 2e presents the predictive capabilities of
different models for both rare and common diseases in risk assess-
ment. Accuracy for the CoxPH model improved with more positive
cases, and deep learning methods consistently outperformed across
both rare and common diseases, especially DeepSurv. Similar to
Fig. 2¢c, f shows the DeepSurv model’s risk assessment performance
across 21 disease types in a survival analysis setting. In this scenario,
joint predictions consistently yield higher C-index values for all disease
types, significantly outperforming single-disease models at a sig-
nificance level of 0.05. Consistent with the results from disease pre-
diction models, the highest-performing disease types include
pregnancy-related conditions, genital disorders, mental disorders,
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Fig. 2 | Comparative performance of prediction and survival models across
data categories, disease types, and prevalence levels. Model performance in
disease prediction (a-c) and risk assessment (d-f) on the test set. a Performance of
disease prediction models across different data categories. The prediction process
initiates with basic information and gradually integrates additional categories.
Seven machine learning and deep learning methods are compared. b The box plot
illustrates model performance on the testing set with different numbers of positive
patients in the training set (horizontal axis). ¢ Disease prediction performance of
the FCNN model using six data categories. Individual FCNNs were trained for each
disease type and compared with FCNNs trained collectively for all Phecodes. The
numerical values above each box plot represent the p values from two-sided Wil-
coxon tests in each disease type, and no multiple comparison correction was

applied. d Performance of risk assessment models (survival models). Testing set
C-index comparisons across four models are used to assess risk assessment model
performance, considering various input data categories. e Model performance on
the testing set under different numbers of positive patients in the training set
(horizontal axis). f Risk assessment performance of the DeepSurv model across 21
disease types. Similar to (c), the numerical values above each box plot represent the
p values from two-sided Wilcoxon tests in each disease type, and no multiple
comparison correction was applied. Box plots depict the median (central line),
interquartile range (box), and whiskers extending to the minimum and maximum
values, excluding outliers—defined as points beyond 1.5x the interquartile range
from the first and third quartiles.
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Fig. 3 | Model performance forest plot for different disease types with FCNN
and DeepSurv. The accuracy of disease prediction and survival modeling for each
disease type gradually adding data categories. Med. AUC represents the median
AUC of the best-performing disease prediction model, FCNN, for each disease type,
using only basic information for prediction. Med. C-Index represents the median
C-Index of the best-performing survival model, DeepSurv, for each disease type,

using only basic information for survival modeling. All points in the plot represent
the median values of the corresponding metrics, with the ends of the lines indi-
cating the 25th and 75th percentiles of disease performance. The number of valid
diseases in each category is recorded in parentheses following the disease type
name. Additionally, models using image data show slight differences in the number
of valid diseases due to variations in truncation times.

and lung diseases. For additional comparisons of disease prediction
and risk assessment between single-disease models and joint disease
predictions for high-prevalence diseases, refer to Supplementary
Note 4.3.3 and Supplementary Figs. 13, 14.

For disease prediction and risk assessment tasks, we further
investigate the incremental improvement in model performance for
different types of diseases by gradually adding various data cate-
gories (basic information, lifestyle, measurement, environment,
genetic, and imaging data). Figure 3 shows that for almost all disease
types, both disease prediction and survival models improved with
more data categories. After adding each data category, we calcu-
lated the p-value for the difference in the distribution of test set
prediction metrics before and after adding this category. This
allowed us to determine the significance of the improvement in
prediction metrics brought by adding different categories of data, as
shown in Supplementary Tables 6 and 7. Significant improvements
were achieved after adding lifestyle, measurement, and imaging
variables. For the disease prediction task, lifestyle and imaging
variables contributed to significant performance improvements in
90.5% and 100% of disease types, with an average AUC increase of

2.3% and 2.4%, respectively. In contrast, environmental and genetic
variables yielded fewer improvements. A significant improvement
was achieved by adding lifestyle variables for digestive and nervous
diseases, whereas for reproductive diseases, highly accurate pre-
dictions were obtained using only basic information.

Baseline model for multi-disease prediction and risk assessment
UKB-MDRMF provided a baseline for multi-disease prediction and risk
assessment. We conducted comparative analyses between our UKB-
MDRMF and several existing methods, which were fine-tuned for
specific medical applications via transfer learning. The results are
summarized in Table 1. UKB-MDRMF, leveraging diverse data types,
demonstrated superior predictive performance for specific diseases
compared to other methods. For disease prediction, we employed the
FCNN model, while the DeepSurv model was used for risk assessment.
The comparative results for other methods were based on the best-
performing strategies reported in their respective studies. Additional
comparisons are provided in Supplementary Note 4.3.5 and Supple-
mentary Table 8. Since some studies use ICD codes while others use
Phecodes, the correspondence can be found in Supplementary Data 4.
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Table 1| Comparative results between other methods and our
approach

Disease prediction (AUC) Article’s UKB-MDRMF
approach

Mamouei M, et al.*® (CVD, 2023) 0.73 0.78

Blass I, et al.*® (Endometriosis, 2022) 0.80 0.85

Petrazzini B, et al.°° (CAD, 2022) 0.88 0.76

A. Papadopoulou, et al.*" (Atrial 0.72 0.78

fibrillation, 2022)

A. Papadopoulou, et al.”' (Atrial fibril-  0.63 0.77

lation+Stroke, 2022)

Risk assessment (C-index) Article’s UKB-MDRMF
approach

You J et al." (40 diseases, 2023) 87.5% diseases

better

Mars N,et al.>? (CHD, 2020) 0.83 0.84

Mars N, et al.> (AF, 2020) 0.75 0.69

Mars N,et al.>* (T2D, 2020) 0.84 0.94

Mars N,et al.>* (BC, 2020) 0.75 0.82

Mars N,et al.”* (PC, 2020) 0.86 0.79

Markovitz A, et al.*> (Pregnancy, 2019)  0.79 0.88

Sun L, et al.** (CVD, 2021) 0.72 0.87

Sun L, et al.>* (CHD, 2021) 0.74 0.83

Sun L, et al.>* (Stroke, 2021) 0.71 0.86

Disease prediction models are evaluated using the AUC metric, while risk assessment models
use the C-index metric. Results from other methods represent the best-performing strategies
from their respective studies. Bold numbers in the table indicate the model that performs better
between our UKB-MDRMF and their article’s approach.

Analysis of important risk factors

Our UKB-MDRMF utilized interpretable tools, such as SHAP (SHapley
Additive exPlanations)”, to analyze risk factors and evaluate the
impact of features on various diseases.

Figure 4 displays SHAP-based results. Figure 4a shows the nor-
malized proportion of the top 30 significant risk variables across
six categories for 21 diseases. Basic information was most predictive
for pregnancy, vessel, and genital diseases. Lifestyle variables
were significant for pregnancy and cortex neural diseases, while
measurement variables impacted genital diseases. Environmental
variables affected upper respiratory diseases, image variables
influenced heart, blood, and urinary diseases, and genetic variables
had a relatively uniform impact across several diseases, such as heart
and eye diseases. Figure 4b-d highlight specific variable importance
across different data categories. Figure 4b reveals that “Bipolar and
major depression status” and “Age at recruitment” were consistently
top factors. “Carotid ultrasound”, “Length of longest manic/irritable
episode”, and “Body fat percentage” were also significant. Figure 4c,
d illustrates the overall positive and negative effects of certain
variables on disease outcomes. The absence of “Bipolar or Depres-
sion” reduced the incidence of all diseases. Conversely, increases in
“Waist circumference”, “Body mass index”, “Cholesterol”, “Seated
height”, and “Microalbumin in urine” promoted the occurrence of
various diseases. Figure 4d indicated that a higher “Age at recruit-
ment” significantly increased the risk of pregnancy-related diseases.
To highlight the similarities and differences in importance between
disease prediction and risk assessment models, we compared the
top ten variables of the best-performing FCNN and DeepSurv mod-
elsin Fig. 4e. Similarities were observed in the importance indicators
from prediction and survival models, such as imaging-related,
depression-related, fat-related, and age-related variables. Further
details on the importance of risk assessment survival models are
available in Supplementary Fig. 16.

Multimorbidity and trend analysis of disease risks

By exploring the capabilities of UKB-MDRMF, we harnessed the
advantages of multi-disease joint prediction and assessment to analyze
disease multimorbidity and trends in disease risk. Using a data-driven
approach, we identified the best-performing neural network models.
We extracted the weight matrices connecting the penultimate layer to
the output layer, generating a corresponding vector for each output
disease Phecode. The distance between vectors delineated the corre-
lation between different diseases, effectively capturing multimorbidity
patterns and revealing how certain diseases may co-occur or influence
each other within the context of the model. Figure 5 illustrates the
multimorbidity mechanisms and age-related risk trends across multi-
ple diseases. In Fig. 5a, the projection of final layer features obtained by
training with different network structures (FCNN and DeepSurv)
characterized multimorbidity patterns of various diseases. Strong
clustering effects in both sub-figures indicated consistency, notable in
the six clusters highlighted in Fig. 5a. Figure 5b corresponds to the
clustering within the two red circles in Fig. 5a. For projections across all
categories, refer to Supplementary Fig. 17.

The network on the left was predominantly composed of purple-
blue dots representing genital diseases, along with bladder neck
obstruction from the urinary category and testicular-related diseases
from the endocrine category in Fig. 5b. The network on the right
displayed the inherent associative disease mechanisms of mental
illnesses. The thicker line connecting anxiety disorder with mood
disorders, major depressive disorder, and bipolar indicated a higher
frequency of their co-occurrence in practice. Figure 5c demonstrated
the hazard function extraction for DeepSurv, revealing the incidence
of different diseases across various ages. With increasing age,
digestive and circulatory diseases darkened significantly, suggesting
a faster increase in risk, while the risk of reproductive diseases
remained almost unchanged with age. For detailed information on
the clusters highlighted within the remaining four black circles in
Fig. 5a, refer to Supplementary Fig. 18. In addition, the multi-
morbidity network was constructed using embeddings from neural
network models (FCNN for disease prediction and DeepSurv for risk
assessment) to identify clusters of diseases with strong comorbid
relationships. Six primary clusters spanning various disease cate-
gories were identified, revealing shared mechanisms and comorbid-
ity patterns. For detailed methodology and visualizations, refer to
the Supplementary Figs. 10 and 11.

Multi-center validation using all of us data

The All of Us cohort provided an additional validation dataset to assess
model performance across a broader, more diverse population®. Due
to differences in variable definitions between the datasets, we
retrained the FCNN and DeepSurv models from the UKB-MDRMF using
the All of Us data. The UK Biobank field selections are detailed in
Supplementary Data 1, while the All of Us data dictionary is provided in
Supplementary Data 3. Our results indicated that, while introducing
new variable categories enhanced prediction accuracy and survival
metrics, similar to findings with the UK Biobank, the improvements
were less marked. This was primarily because the basic information
already achieved high predictive performance, as detailed in Supple-
mentary Note 4.3.2 and Supplementary Fig. 12. Furthermore, joint
modeling of all phecodes within the All of Us data yielded high pre-
diction AUCs and survival C-Index values, with diseases of the repro-
ductive system consistently showing the highest predictive accuracy.
This validation demonstrates the robustness of UKB-MDRMF and its
potential applicability to varied datasets.

Discussion
UKB-MDRMF represents a significant advancement in the field by
offering a comprehensive solution for multi-disease prediction, risk
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Fig. 4 | Assessing the importance of various disease risk factors using SHAP
value from FCNN. a Normalized proportion of the top 30 significant risk factors
among six categories of independent variables for each of the 21 disease types.

b Frequencies for the top 5, top 10, and top 20 important variables in each of the 21
types of diseases. ¢ Distribution of variable importance for all Phecodes, with colors
ranging from blue (negative effect) to red (positive effect). d Average importance

values for each variable category and disease type, with blue indicating negative
effects and red indicating positive effects. e Comparison of risk factor importance
for disease prediction (left, from FCNN) and risk assessment (right, from Deep-
Surv). Diseases were aggregated into nine major types derived from the 21 disease
types. Thicker lines indicate greater importance. Icons provided by Icons8 (https://
icons8.com).

assessment, and diverse applications. It not only achieves higher pre-
dictive accuracy but also effectively uncovers potential connections
among multiple risk factors and diseases, as well as between diseases
themselves. Its streamlined and user-friendly nature makes it

accessible for various research and clinical settings. The versatility of
UKB-MDRMF is a key strength, allowing for insightful results at every
stage of the process through a combination of statistical analyses and
deep learning modeling.
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Fig. 5 | The multimorbidity mechanisms and age-related risk trends across
multiple diseases. a Two-dimensional projection of the disease prediction model’s
multimorbidity mechanisms using t-SNE, where each point represents a predicted
Phecode, and each color represents a major disease type. Closer points indicate
similar disease patterns. The six circles in the figure delineate specific multi-
morbidity patterns. b Multimorbidity patterns of selected clusters' internal Phe-
codes. The size of each data point indicates the number of affected individuals, with

larger points representing higher frequencies of occurrence. The thickness of the
lines represents the frequency of comorbidity, with thicker lines indicating higher
frequencies. ¢ Risk profiles of nine major disease types estimated by the DeepSurv
model across different age groups. The size of the circles indicates the cumulative
number of affected individuals, with larger circles representing higher numbers.
The shading represents the magnitude of risk, with darker shades indicating higher
risk levels. Icons provided by Icons8 (https://icons8.com).

The data preprocessing phase in UKB-MDRMF was not merely a
preparatory step but provided valuable insights for clinical research®.
We categorized the input data into six categories and conducted
modeling and analysis step by step, starting from easy to difficult. This
approach facilitates the application of UKB-MDRMF to datasets from
different centers, regardless of the amount of collected information.
We also incorporated polygenic risk scores (PRS) into the genetic
categories, which are crucial for disease prediction and further
enhance the model’s performance®

By delving into the data missingness mechanisms, we uncovered
valuable information that influences the robustness of subsequent
analyses. In large cohort studies such as the UK Biobank, various
missing patterns are common®. We conducted a thorough investiga-
tion of the complex data missing patterns for each variable type.
Various reasons contributed to missing data, and we did not blindly
remove or impute data with high missing rates*’. Instead, we con-
sidered the data collection process, enabling a comprehensive
understanding of the reasons for missing data. This strategy not only
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enhances the model’s predictive performance but also mitigates
potential biases in the data, making it more practically meaningful.

The advantage of our UKB-MDRMEF lies in its simultaneous con-
sideration of individual disease prediction and risk assessment. This
approach outperforms methodologies that focus solely on one aspect,
capturing the intricate interplay between diseases and providing a
more comprehensive view of an individual’s health landscape. The
flexibility embedded in our framework allows for the incorporation of
diverse model types, making it adaptable to the distinct characteristics
of various large-scale biomedical datasets. The provision of a swift
baseline, compared across multiple methods, underscores the effi-
ciency and competitiveness of our approach, making it an invaluable
resource for researchers in diverse medical domains. Additionally, the
adaptability of UKB-MDRMF enables the incorporation of disease-
specific diagnostic models tailored to different medical conditions.
This versatility empowers clinicians to efficiently diagnose and manage
a wide spectrum of diseases, ultimately improving patient care and
treatment outcomes®. Furthermore, our UKB-MDRMF facilitates the
assessment of multiple risk assessment models, allowing for a rigorous
evaluation of their performance. A comparison of multiple methods
helped users identify the most appropriate model and modeling
approach for their specific medical background. The results of method
comparisons also indicated the advantages of deep learning methods,
particularly in modeling large-scale biomedical data, due to their
ability to capture latent information from heterogeneous and noisy
datasets*. Interestingly, for the prediction of rare diseases, embedding
matrix-based methods incorporating textual prior information” did
not improve model performance in our approach, contrary to some
existing methods. This observation may be attributed to the sub-
stantial volume of data in the UK Biobank, allowing deep learning
models to achieve superior performance without the need for addi-
tional textual information.

Given the complexity of predictors and diseases, UKB-MDRMF
excels in identifying correlations and pinpointing key risk factors that
significantly influence specific diseases. This not only aligned with the
complexity of real-world clinical research but also had the potential to
unveil insights into disease etiology and progression. The applications
of UKB-MDRMEF allowed for risk factor assessment and analysis for
different diseases, such as the discovery of significant variables. We
offered a straightforward means of invoking interpretable methods to
elucidate variable importance”. This interpretability is essential for
clinicians and researchers seeking insights into the factors®. Our
results highlighted the significance of imaging information and the
variable importance variations across different diseases.

Age, mental health, and obesity-related variables have emerged as
key contributors to disease risk across multiple categories, under-
scoring their significant roles in disease progression. As depicted in
Fig. 4, conditions such as bipolar disorder and depression are asso-
ciated with increased susceptibility to various diseases. This heigh-
tened risk likely stems from disruptions in the neuroendocrine system,
including imbalances in neurotransmitters like serotonin, dopamine,
and norepinephrine, and immune dysfunction, which compromise
immune responses and elevate disease vulnerability***. Similarly,
aging is linked to accelerated declines in metabolism, immune reg-
ulation, and cellular repair, increasing susceptibility to chronic
diseases™. Obesity-related variables, including body mass index (BMI),
waist circumference, and body fat percentage, contribute to disease
risk by promoting insulin resistance, chronic inflammation, and dysli-
pidemia, which are pivotal in the development of metabolic disorders,
cardiovascular disease, and liver conditions®*°. Furthermore, lym-
phocyte percentage, a marker of immune function, is indicative of
immune dysregulation and chronic inflammation, processes closely
linked to autoimmune diseases, infections, and cancer progression*..
Microalbumin in urine serves as an early indicator of kidney damage,
signaling glomerular dysfunction and systemic vascular injury,

especially in individuals with diabetes or hypertension*. Collectively,
these findings highlight the critical contributions of mental health,
aging, obesity, immune function, and early biomarkers in under-
standing disease risk and enhancing prediction accuracy.

The joint modeling of multiple diseases enhanced our method’s
ability to characterize multimorbidity patterns, providing a data-
driven exploration of how diseases co-occur and revealing the
underlying mechanisms of mutual connections and influences among
diseases within large-scale biomedical datasets. This understanding is
crucial, offering patients and healthcare providers insights into
potential complications that may arise in tandem with a primary dis-
ease diagnosis. Our modeling approach revealed similarities between
different diseases and uncovered associations between coexisting
diseases that might be challenging to identify through individual stu-
dies. Unlike multimorbidity analyses based on clinical experience or
ICD-10 codes®, the multimorbidity captured by UKB-MDRMF depicted
potential comorbidity situations within large-scale biomedical data,
determined by similar risk factors. Figure 5 highlights several instances
of diseases co-occurring outside their traditional categories, based on
the hierarchical classification of disease coding. Additionally, by con-
sidering the community clustering effects among diseases, we identify
several of the largest clusters (Supplementary Figs. 10 and 11), which
align with findings in existing literature>. Our approach uncovers
unconventional connections, such as linking urinary-related diseases
at the intersection of cardiovascular and kidney systems (e.g., Hyper-
tensive chronic kidney disease) and blood disorders (e.g., Anemia of
chronic disease), consistent with real-world clinical outcomes* and
holding significant clinical implications. Furthermore, the age-
dependent multi-disease risk analysis added another layer of sophis-
tication to our framework. It enabled the categorization and targeted
management of different disease patterns across various age groups,
facilitating early interventions and treatments where they are most
effective. This capability holds the promise of not only improving
patient outcomes but also reducing the overall burden on healthcare
systems.

The validation of the UKB-MDRMF framework using the All of Us
data underscores its adaptability and potential for analyzing multi-
morbidity across diverse populations. After adjusting the variables to
align with the All of Us data, we found that the results and interpret-
ability of the UKB-MDRMF were effectively transferable. Notably, the
inclusion of new variable types consistently improved prediction
accuracy. Furthermore, the demonstration of results comparable to
those observed with the UK Biobank data highlights the model’s cap-
ability to generalize key disease mechanisms across different popula-
tions. This robust performance confirms the framework’s utility in a
broad array of clinical settings and underscores its potential for
widespread application in multimorbidity analysis.

UKB-MDRMF represents a significant step toward more accurate
and comprehensive disease prediction and risk assessment, but sev-
eral limitations remain. Our framework is primarily based on UK Bio-
bank data, and while validation using the All of Us dataset has
demonstrated the effectiveness of the modeling process, population-
specific biases may still affect generalizability, necessitating further
validation across more diverse, multi-center datasets. Additionally, by
excluding pre-baseline diseases, the model may overlook important
correlations between past and future health conditions. While our joint
learning approach captures disease interdependencies, it does not
explicitly model competing risks, which could improve the precision
of survival modeling. Future work should focus on enhancing gen-
eralization, integrating real-time data, providing a more detailed
characterization of disease interactions, and fostering multi-center
collaborations to maximize the clinical utility and impact of UKB-
MDRMEF in real-world healthcare settings.

Our UKB-MDRMF stands as a powerful and versatile tool poised to
make substantial contributions to the healthcare system. With its
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comprehensive approach to multi-disease prediction and risk assess-
ment, UKB-MDRMF offers insights that can inform more effective
healthcare strategies and interventions. Its ability to uncover connec-
tions among risk factors and diseases provides a deeper understanding
of health dynamics, paving the way for more targeted and persona-
lized approaches to patient care.

Methods

Data description

This study was conducted using the UK Biobank Resource under
Application Number 98327, with ethical approval from the North West
Multi-Center Research Ethics Committee as a Research Tissue Bank.
The UK Biobank study protocol is available online (https://www.
ukbiobank.ac.uk/), and all participants provided written informed
consent for data provision and linkage. UK Biobank is a large-scale
biomedical resource comprising 502,467 individuals aged 37 to 72,
recruited between 2006 and 2010 in the United Kingdom. The dataset
includes demographic, biological, lifestyle, environmental, measure-
ment, mental health, and imaging data. To assess the generalizability
of our model beyond UK Biobank, we performed external validation
using the All of Us dataset®, a diverse U.S. cohort designed to include
underrepresented populations in biomedical research. The dataset
integrates electronic medical records and participant surveys, with all
participants providing informed consent. Ethical oversight is provided
by the All of Us Institutional Review Board. This dataset was used for
model validation, leveraging its broad demographic and clinical
diversity to evaluate performance across populations.

Overview of UKB-MDRMF

UKB-MDRMEF developed using the UK Biobank data, aims to forecast
and assess disease risk. The data undergoes rigorous preprocessing to
ensure data quality, predictive accuracy, and generalizability. The
prediction pipeline of the UKB-MDRMF framework consists of two
main components: data preprocessing and data modeling, as shown
in Fig. 1.

To build a robust prediction model, we first constructed and
preprocessed independent and dependent variables, denoted as X and
Y, respectively. For X, we carefully selected fields, cleaned and trans-
formed the data, and handled missing values. For Y, we used Phecodes
as labels extracted and transformed from in-hospital, self-reported,
and primary care data. Time alignment was performed to synchronize
data points for practical value and significance in constructing the
prediction model.

After data preprocessing, we employed advanced machine
learning models, including deep learning techniques, to aid in auxiliary
disease prediction and future disease risk prediction. These models
were trained on the preprocessed data to evaluate an individual’s risk
of developing a disorder. The output included predictions such as
individual disease prediction, classification of disease types, or com-
prehensive predictions covering all Phecodes. The detailed process is
outlined as follows.

Data preprocessing

Data filtering. Data screening is divided into two parts: GWAS data and
non-GWAS data. For GWAS data, we utilized a total of 7228 phenotypes™.
First, to prevent information leakage of disease information (¥) and
ensure the robustness of the UKB-MDRMF framework, we excluded all
health-related outcomes for creating the predictor variables (X). This
includes disease diagnoses, medication records, prescription data, sur-
gery details, and hospital registration summaries. Second, online follow-
up data from around 2016 were omitted due to the need for temporal
alignment. After initial screening, 1011 phenotypes remained. In the
subsequent filtering step, composite data (such as the Albumin/Globulin
ratio), ECG (with low participation), and family history (strongly related
to disease but not relevant) were removed. Other extraneous factors

(mostly early life factors such as birth month, birthplace, and some test
results) were also excluded, leaving 542 phenotypes mapped to 365 data
fields. Additionally, there are 12 meaningful measurement fields for
carotid artery ultrasound measurements. Among them, the Index of
Multiple Deprivation (England, Wales, Scotland) (Data-Fields 26410,
26426, 26427) represents the same data for different regions. Therefore,
the data from these three regions were combined into a single Index of
Multiple Deprivation.

For the non-GWAS part, specifically including MRI and ultrasound
data, we mainly focused on the imaging data of Heart MRI and Brain
MRIfor some participants in the UK Biobank, which are structured data
analyzed beforehand. After retaining meaningful measurement data,
there are 27 for Heart MRI and 884 for Brain MRI. Some fields required
related data fields for imputation, such as the number of live births
(Data-Field 2734) and whether the participant ever had a stillbirth,
spontaneous miscarriage, or termination (Data-Field 2774). These
fields were not initially included in the GWAS data but were introduced
later. For further details on genetic and imaging data processing, refer
to Supplementary Notes 2.5, 2.6 and Supplementary Fig. 5.

Finally, based on their specific contents, the data were categor-
ized into six groups: basic characteristics (height, weight, waist-to-hip
ratio, age, gender, ethnicity, occupation, education, appearance, etc.),
measures (blood, urine, biochemical indicators, auditory and visual
assessments, bodily pain perception, physical measurements, etc.),
lifestyle (smoking and drinking habits, mental health, exercise, elec-
tronic device usage, sleep patterns, diet, early life factors, etc.), natural
and social environment (working environment, living environment,
early life environment, air/noise pollution, poverty index, etc.), ima-
ging (MRI and ultrasound data), and genetics (genetic principal com-
ponents and PRS information). The comprehensive screening
procedure is shown in Fig. 6. We also empirically assigned a priority
level to each of these data fields according to their importance to our
downstream tasks. Specifically, the selected variables were prioritized
as essential information, detailed information, and minor information,
respectively. A brief summary of selected data fields is presented in
Supplementary Fig. 2. For more details on the specific selection of
variables, refer to Supplementary Data 1.

Data cleaning. Although the UKB raw data is structured, several pre-
processing steps are still necessary. We adopted a targeted approach
to clean and preprocess variables based on their specific character-
istics, as illustrated in Fig. 7.

For continuous and integer variables, if the data field was encoded
in a non-quantitative manner, we created binary indicator variables for
each special code and then reassigned them as “NA” or their corre-
sponding quantity. For instance, for Data-Coding 100290, indicator
variables were created for codes -1and - 3, denoting “Do not know”
and “Prefer not to answer”, respectively, and assigned as “NA”. Code
- 10, signifying “Less than a year”, was reassigned to 0.5. Subsequently,
we checked whether more than 20% of the values in the data were
identical. If so, we performed equal frequency binning (n=3) and
represented the variable with its “level” as an ordered categorical
variable. Otherwise, we standardized the variable by subtracting the
mean and dividing it by the standard deviation.

For single-response and multiple-response categorical variables, if
the coding lacked a natural order, we created a binary indicator vari-
able for each code (including “NA”). If there was a natural order, we
followed the same procedure as for continuous and integer variables,
creating binary indicator variables for any special codes and reas-
signing the variable as an ordered categorical variable. For instance, for
Data-Coding 100327, we created indicator variables for codes -1 and
-3 and assigned them as “NA” until the next subsection to perform
missing imputation. Additionally, the meanings of 7 ("No friends/
family outside household”) and 6 ("Never or almost never”) were nearly
identical, so we reassigned 7 as 6 to reduce coding redundancy.
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Icons provided by Icons8 (https://icons8.com).

Process of phecodes. The health-related records of UKB participants
come from multiple sources, including hospital inpatient data, mor-
tality records, coded primary care data, and self-reported health con-
ditions. These sources provide a comprehensive view of participants’
health status, but the heterogeneity of diagnostic codes across these
sources poses a challenge for analysis. Phecodes offer a recognized
approach to grouping ICD codes to capture clinically meaningful

concepts for research®. To address this, we transformed inpatient,
death register, primary care, and self-report data into 1560 Phecodes,
creating a unified set of codes to represent Y, as shown in Fig. 8. First,
we used coding mapping tables to transform self-report and primary
care data into ICD-10 codes. We then integrated multi-source ICD-10
diagnosis codes for each subject and recorded the corresponding
disease occurrence time for each ICD-10 code for time alignment.

Nature Communications | (2025)16:3767

n


https://icons8.com
https://icons8.com
www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58724-3

Data source Multi source

ﬁ Death
register

(Data Fields 40001)

Data-Coding 609

\

ICD-10 codes

® Multi-source
e data integration

ICD-10 codes

. Map raw codes

UKB clinical and
diagnosis data

Data Fields 20001, 20002 .
(Data Ficlds : ) Official UK
[ ]

Primary

Biobank document

— Phecodes

to ICD-10 codes - transformation

Map Read CTV3 and

> SNOMTED CT Code Wu P, Gifford A, Meng X, et al.

care

i

(Data Fields 42040)

B2

&b
(Data Fields 1712)

First
occurrence

Fig. 8 | Process of response variables. Data originates from three sources: hospital
inpatient, self-report, and primary care data. They were separately encoded and
standardized as ICD-10 codes. After integration, the standardized codes were

Mapping ICD-10 and ICD-10-CM
codes to phecodes: workflow
development and initial
evaluation[J]. IMIR medical
informatics, 2019, 7(4): e14325.

to ICD-10 codes

|
|
I
|
|
|
| s
|
|
|
|
|
ICD-10 codes :

N 4

mapped to Phecodes to serve as the final response variables. Icons provided by
Icons8 (https://icons8.com).

Finally, the ICD-10 codes were transformed into one-hot encoded
Phecodes to ensure consistency and clinical relevance**. For additional
details on Phecode processing, refer to Supplementary Note 2.4 and
Supplementary Table 4.

Missing data processing
The UK Biobank data includes numerous variables, many with missing
values. We analyzed and handled the missingness in various ways,
detailed in Supplementary Note 4.1. Here, we outline our procedure for
dealing with missing data.

We first removed 3792 participants whose data was collected in
the pilot assessment center due to high missing rates and low data
quality. After examining the data collection procedure, we assumed
missing completely at random (MCAR) or missing at random (MAR)
mechanisms for our selected variables, making multiple imputations
viable. It is important to note that there is no empirical way to distin-
guish MCAR from MAR. Our assumption is based on data collection
knowledge. As shown in Supplementary Note 4.1, high missing rates
are mainly due to related data fields, collection time, and assessment
centers.

Moreover, we carefully identified and handled missingness rela-
ted to other variables during data collection. This process is sum-
marized in Supplementary Fig. 4. Specifically, some missingness was
associated with other variables. We categorized such patterns into
three types. Pattern-l involves instances where missing data can be
precisely imputed using related variables, informed by data collection
procedures. For example, participants were exempt from the query
regarding “weekly usage of red wine” (Data-Field 1568) due to negli-
gible or no alcohol consumption, as determined by Data-Field 1558.
Such missingness was directly imputed based on other variables.
Pattern-Il missingness occurs when data is absent because the variable
is not applicable to certain subgroups. For instance, sex-specific fac-
tors relevant only to one gender would be missing for the other. To
address this in our analysis, we implement two distinct strategies: For
categorical variables affected by Pattern-Il missingness, we introduce a
new category labeled ‘inapplicable’. This modification helps maintain
the integrity of the dataset without distorting the analysis due to
missing values. For continuous variables, we opt to impute missing
values using the mean of the observed data. This approach aligns with

the popular missing indicator method®, facilitating consistent statis-
tical treatment across different types of data. Unlike the conventional
missing indicator method, where missing indicators are added sepa-
rately in the prediction model, we integrate these indicators directly
within our existing variable set to avoid redundancy. For example, the
sex variable itself serves as the missing indicator for sex-specific vari-
ables. This integrated approach streamlines the model by reducing
unnecessary complexity and enhancing the efficiency of our analyses.
Pattern-lll encompasses missingness associated with other variables
but does not meet the criteria of the previous types. For this type, we
constructed binary indicator variables for the remaining missing
values to account for potentially informative missingness. We provide
a detailed classification of missing patterns in Supplementary Table 5
and Supplementary Data 2.

Finally, we used MissForest, implemented in the R package Mis-
sRanger, to impute the remaining missing values. MissForest* is a
robust imputation method widely adopted in various scientific fields*.
MRI data were collected for a subgroup of about 50,000 participants.
We treated this subgroup as our population when incorporating MRI
data, directly imputing the imaging data using MissForest. For addi-
tional results on missing data analysis, refer to Supplementary Note 4.1
and Supplementary Figs. 6-9.

Model construction

Model construction process. Our model construction focused on two
primary objectives: disease prediction and risk assessment. For disease
prediction, when not considering the timing of covariates and
response variables, the problem becomes a straightforward prediction
task. In this case, the model for X and Y disregards time, making it
useful for disease diagnosis. For risk assessment, we considered each
variable’s recording time and built a survival analysis model. Each
patient’s age served as the timescale.

As shown in Fig. 9, the modeling process begins by aligning the
input variables based on their types and recording times. These vari-
ables are grouped into six categories: basic information, lifestyle,
measurement, natural and social environment, genetics, and imaging,
and are used as covariates in the model. For disease prediction, we
employed machine learning algorithms such as logistic regression,
boosting, and deep learning to predict over 18500 Phecodes as a multi-
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of the same Phecode post-enrollment is retained. Next, various multi-disease pre-
diction and risk assessment models are applied for comprehensive evaluation.
These models are trained separately using distinct loss functions. Finally, model
interpretability analysis is performed, incorporating associations between different
diseases and risk factors for integrated analysis. Variable importance results are
derived from all model weights, while multimorbidity relationships are inferred
from the embeddings in the penultimate network layer. Icons provided by Icons8
(https://icons8.com).

label classification problem. In contrast, for risk assessment, we
incorporated each variable’s recording time and built a survival ana-
lysis model, using each patient’s age as the timescale. The UKB data
used in our study has a follow-up period extending until September
2023, with events occurring at the end of this period treated as right-
censored to ensure that individuals still at risk by that time remain
appropriately accounted for. Additionally, we considered the impact
of deaths occurring post-enrollment in survival analysis. If a participant
died before developing a specific disease of interest, their time-to-
event data for that disease was censored at the time of death. This
adjustment ensures that mortality effects are properly integrated into
the survival models.

In the final modeling framework, we adopted neural network-
based approaches that demonstrated the best performance for both
disease prediction (FCNN) and risk assessment (DeepSurv), which
were subsequently applied to various downstream analyses. Ensuring
strict temporal alignment of input variables was a critical aspect of
model construction. Specifically, covariates (X) must occur before the
diagnosis of the target disease (Phecode, Y) to maintain causality. As
depicted in Fig. 9, disease occurrences before the enrollment time are
marked in gray and excluded from training. Additionally, if a disease
appears multiple times in the records, only the earliest diagnosis post-
enrollment is retained for time alignment. This setup ensures that the

framework allows forward-looking disease risk assessment rather than
merely identifying associations between features and diseases
retrospectively.

Following this, multi-disease prediction and risk assessment
models are trained separately using distinct loss functions. During
network training, the backpropagation algorithm optimizes model
weights, enabling further downstream analyses such as variable
importance evaluation and multimorbidity analysis. Variable impor-
tance is derived from SHAP-based weight analysis®, while multi-
morbidity relationships are inferred from the embeddings in the
penultimate network layer. Further details can be found in Supple-
mentary Note 4.3.1.

Loss function for neural network-based methods. In the multi-
disease prediction task, we construct a specific loss function for mul-
tiple outcomes (Phecodes). For the FCNN model, the loss function
L s defined as follows:

p N . .
LW =35 [y - loggy )+ (1 -yy) - log(1- & o) |,
j=1i-1

where p is the total number of Phecodes (diseases), N is the total
number of samples, y; indicates whether the i-th sample has the j-th
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disease (1 indicates occurrence after enrollment, 0 means no occur-
rence after enrollment), and g—g’(x,.) represents the output of the neural
network for the j-th disease prediction given the input features x;. For
instances where the disease occurrence predates the covariate col-
lection time, the corresponding terms in the loss function are set to
“NA”, effectively excluding those cases from contributing to the
model’s learning.

In the multi-task survival analysis, the goal is to model the time-to-
event data for multiple diseases. We employ a survival function with
the following form:

h(t, %) =Ao(0) - €7, @)

The expression describes the hazard function for individual i with
disease j, where Aqj(t) is the baseline hazard function for the j-th dis-
ease, andfg)(x,-) is the output risk score for disease j from the neural
network. R(f) represents the set of individuals still at risk for disease j
at time ¢, and e is an indicator variable that equals 1 if the individual i
develops disease j, and O otherwise. ¢; denotes the time of disease
onset for individual i with disease j. The survival loss function £PeSu™)
is then defined as

[ (DeepSury) _ zp: 3y [fg)(xi) - log( > eig)("k)>} - 3)

J=1 iez=1 keR;(t;)

The function is a weighted negative log-likelihood loss, where diseases
with a higher number of cases contribute more to the gradient updates
during backpropagation, thus receiving larger weights in the model
training.

Missing labels in multi-disease tasks. In our study, missing labels
occur when an individual’s disease information (Phecode) is unavail-
able, often because the disease occurred before data collection or
enrollment. During data preprocessing, these missing Phecodes are
marked accordingly. To address missing labels during model training,
we adapt our approach to exclude these entries from the loss function
calculation. Specifically, for any Phecode labeled as missing for an
individual, that term is omitted from the corresponding loss calcula-
tion. Consequently, these missing labels do not participate in the
backpropagation process, thereby preventing any influence on
the gradient updates. This ensures that only valid labels contribute to
the model’s training, allowing the model to focus on learning from
available and accurate disease information. By doing so, we maintain
the integrity of the training process and avoid introducing bias from
missing labels.

Multi-task DeepSurv risk calculation. The Multi-Task DeepSurv model
is designed to handle multiple survival tasks simultaneously, with the
primary objective being to estimate the hazard function for each disease.
For individual i and disease j, the hazard function hy(¢) is defined as:
P(t<t;<t+6|t;20)

hy(6)= éli% A 5 , “)

which quantifies the instantaneous rate at which an event (disease)
occurs for individual i at time ¢. The baseline hazard function for dis-
ease j, Ag;(t), is estimated by:

{i:e;=Lt<ty<t+06)
) (y.
521‘;@@-(:) 0 %)

where the numerator counts the number of individuals experiencing
disease j within a small interval from ¢ to ¢+ 8, and the denominator
aggregates the risk scores of all individuals at risk of disease j at time ¢.

A #
Agi(D)=

(©)

To evaluate the cumulative risk over time T, we calculate the cumu-
lative hazard function for disease j as:

~ TA
A(T)= /0 Agi(t)dt. (6)

This integrates the baseline hazard over time to provide a compre-
hensive estimate of disease occurrence risk up to time 7. Such an
approach allows the model to dynamically capture risks across multi-
ple time points and for different disease outcomes concurrently. This
functionality makes the model especially suitable for long-term risk
assessments in settings involving multiple diseases.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Individual-level UK Biobank data are available under restricted access
due to participant confidentiality and data governance policies.
Researchers can apply for access through the UK Biobank Access
Management System  (https://www.ukbiobank.ac.uk/enable-your-
research/apply-for-access). Access is granted to approved research-
ers affiliated with recognized institutions, following a formal applica-
tion and approval process. The expected timeframe for access
approval varies based on the review process and project requirements.
Once granted, access remains available for the approved project
duration as per UKB policies. The All of Us dataset used for validation is
available on the All of Us Researcher Workbench (v7 release) under
restricted access to protect participant privacy. Researchers can
request access at https://www.researchallofus.org/. The All of Us
Research Program follows a tiered access model, where individual-
level data are available in the Registered Tier and Controlled Tier to
approved researchers from eligible institutions. The access process
involves registration, identity verification, and completion of research
ethics training. The expected response time for access requests
depends on the review process and approved access remains valid as
long as compliance with All of Us data policies is maintained. Source
data are provided with this paper.

Code availability

UKB-MDRMF is implemented in Python, and the code for our study is
available on GitHub at https://github.com/kannyjyk/UKB-MDRMF and
stored at https://doi.org/10.5281/zenodo0.15032248". The repository is
organized into four parts: data preprocessing, missing data proces-
sing, model construction, and comparative analysis. Each part corre-
sponds to a specific folder in the repository. This open-access resource
promotes transparency, facilitates replication, and encourages further
research in this domain.
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