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Neuromorphic computing aims to develop hardware platforms that emulate
the effectiveness of our brain. In this context, brain-inspired self-organizing
memristive networks have been demonstrated as promising physical sub-
strates for in materia computing. However, understanding the connection
between network dynamics and information processing capabilities in these
systems still represents a challenge. In this work, we show that neuromorphic
nanowire network behavior can be modeled as an Ornstein-Uhlenbeck process
which holistically combines stimuli-dependent deterministic trajectories and
stochastic effects. This unified modeling framework, able to describe main
features of network dynamics including noise and jumps, enables the inves-
tigation and quantification of the roles played by deterministic and stochastic
dynamics on computing capabilities of the system in the context of physical

reservoir computing. These results pave the way for the development of
physical computing paradigms exploiting deterministic and stochastic
dynamics in the same hardware platform in a similar way to what our

brain does.

In the era of Artificial Intelligence (Al) and Big Data, the continuous
growth of computing demand is unsustainable with currently available
digital processing and storage units based on the conventional von
Neumann architecture’. In the race towards future technologies, neu-
romorphic computing aims to take inspiration from the effectiveness
and advanced functionalities our brain offers to develop energy-
efficient hardware platforms®™*. This requires the development of
radically new physical substrates as well as novel data storage and
communication protocols that leverage new physical phenomena for
computing in the analog domain at the matter level’ while embracing
stochasticity, in a similar fashion our brain does®. With the aim of
emulating the principle of self-organization typical of biological neu-
ronal systems, self-organizing neuromorphic nanoscale networks have
been recently demonstrated as feasible substrates for physical pro-
cessing of information directly at the matter level”°. Information
processing and computing capabilities of these complex systems are
inherently related to network dynamics, where the internal state of the

system evolves over time through an adaptive behavior relying on the
interaction of nano-elements driven by time-dependent external sig-
nals coming from the environment* >, In these self-organizing sys-
tems, the concept of emergent behavior has been related to the
collective response of a large number of nano-objects subjected to
mutual interactions?**%. In opposition to classical algorithmic com-
putation, where rules are explicitly given by a computer program, in
these dynamical systems information processing relies on the under-
lying physical laws governing the connectivity of the nano
elements®?. In this context, voltage-driven deterministic dynamics
occurring in memristive complex networks based on nanowires (NWs)
have been exploited to emulate fundamental features of biological
systems, including short-term plasticity, heterosynaptic plasticity,
working memory, metaplasticity and memory engrams*?**. The
associated deterministic dynamics have been exploited so far to solve
a wide range of computational tasks including pattern recognition and
time-series prediction in the framework of reservoir computing® .
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Moreover, stochastic spiking dynamics of self-assembled percolating
networks have been considered for true random number
generation®**, However, beyond these remarkable achievements in
the field, a unified mathematical framework describing both determi-
nistic and stochastic behaviors of self-organizing neuromorphic
nanoscale networks is currently missing.

In this work, we report on the modeling of nanowire net-
works as dynamic systems endowing deterministic and stochastic
behaviors. We show that our modeling approach describing net-
work dynamics as an Ornstein-Uhlenbeck (OU) process with ran-
dom perturbations can describe the experimentally observed
evolution of the system according to an external control variable,
in our case the applied voltage. In particular, the proposed
compact model can describe both deterministic conductance
transients induced by modifications of the applied voltages as
well as stochastic conductance fluctuations including noise and
jumps. The model is exploited to investigate the impact of
deterministic and stochastic dynamics on the information pro-
cessing capabilities of the system by considering benchmark
nonlinear autoregressive moving average (NARMA) and nonlinear
transformation (NLT) computing tasks. The proposed description
represents a step forward in the development of neuromorphic

systems that, besides deterministic dynamics, endow stochasti-
city in a similar fashion to biological systems.

Results

Memrristive network behavior

Self-assembled Ag NW networks (Fig. 1a, details of fabrication in
“Methods”) are complex dynamical systems, where the propagation of
an electrical signal through the network is determined by Kirchhoff’s
laws and memristive nonlinear interactions among a huge number of
NWs at nanoscale crosspoint junctions (Fig. 1b). Here, the physical
mechanism of memristive activity relies on the electric-field driven
dissolution and migration of Ag" ions across the insulating polymeric
shell layer that surrounds the Ag NW cores. This forms a localized Ag
conductive bridge at the crosspoint junction, as schematized in
Fig. 1c'. In our case, the switching mechanism is volatile-type since Ag
conductive filaments can spontaneously break down after formation
with a characteristic lifetime that depends on the experienced elec-
trical excitation, as discussed in previous works* . Besides memris-
tive behavior of NW junctions, it is worth mentioning that resistive
switching in the Ag NW itself has been experimentally observed®. The
interaction among a large number of memristive structures, where the
conductance is regulated by the interplay between filament formation
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Fig. 1| Self-organizing neuromorphic NW networks. a Scanning electron
microscopy (SEM) image of a self-organizing neuromorphic network based on
highly interconnected NWs (scale bar, 5 pm) and b detail of a NW junction (scale
bar, 200 nm). ¢ Schematic representation of the resistive switching mechanism at
NW junctions, where the formation/rupture of a metallic Ag conductive filament
connecting the metallic NW cores under the action of the applied electric field
modulates the junction conductivity. d Potentiation of the neuromorphic network
conductance G over time, characterized by the progressive enhancement of the
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overall NW network conductance from an initial state towards a higher con-
ductance state under two-terminal constant voltage stimulation of 1V. e Relaxation
of the neuromorphic network characterized by a progressive decrease of the
overall NW network conductance from an initial state towards a lower conductance
state under two-terminal constant voltage stimulation of 0.01V. f Detail of the
conductance trace reported in (d), showing that, besides deterministic potentia-
tion/relaxation, the neuromorphic behavior endows stochastic effects character-
ized by conductance fluctuations (noise) and jumps.
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and spontaneous rupture, gives rise to a deterministic behavior of the
system that was exploited in the past for neuromorphic-type data
processing and unconventional computing®. The deterministic
behavior is characterized by a nonlinear dynamics that, depending on
the electrical stimulation and the system’s initial condition, can lead to
a progressive enhancement (potentiation) or decrement (relaxation)
of the overall effective conductance value in between two network
areas. Network conductance dynamically evolves over time due to
multiple series and parallel current pathways that are sequentially
formed and destroyed depending on the input stimulation and the
strength of local connections™. In this context, experimental con-
ductance time traces acquired under electrical stimulation results
from collective phenomena and interactions that are hidden to the
external observer'. Fig. 1d reports an example of network potentiation
under constant voltage stimulation of 1V, showing a progressive
increase of conductance G. On the other hand, Fig. le illustrates an
example of network relaxation under constant voltage stimulation of
0.01V, where the conductance of the network progressively decreases
towards a lower value. These dynamics rely on the evolution of the
system from an initial conductance state towards a new equilibrium
state determined by the applied bias voltage. Besides the observed
deterministic potentiation/relaxation behavior, the investigated elec-
trical network endows a random component characterized by low-
level conductance fluctuations and jumps that cannot be overlooked
(see Fig. 1f). This is the result of randomly distributed switching events
at the memristive NW junctions caused by the local rearrangements of
potential drops and the inherent stochastic nature of the conductive
filament formation and rupture processes®*°. While noise effects can
be attributed to conductance fluctuations in junctions distributed
across the network, jumps in the conductance trace seem to corre-
spond to transitions caused by resistive switching events in one (or
few) junctions located in highly relevant topological areas of the net-
work connecting/disconnecting entire network domains”. In this sce-
nario, jumps are expected to have the same physical origin as the low-
level fluctuations but can be considered rare events in terms of
occurrence probability and magnitude.

Memrristive networks as stochastic dynamical systems

A unified framework based on an OU process with jumps is here
exploited for modeling deterministic and stochastic dynamics of
neuromorphic nanowire networks, as described in the following. The
OU process with jumps* is described by an Ito-type differential
equation, which involves the combined action of deterministic and
stochastic terms. The variable considered in this approach is the
internal memory state of the system g (i.e., normalized conductance,
0 < g <1) that evolves over time depending on the history of applied
electrical stimulation. The evolution of g can be described by the
stochastic differential equation (SDE):

dg -~
a- Og —g] + ogdW + Q‘,‘l M

noise

deterministic Jjumps

where g represents the long-term mean or equilibrium memory state
(steady state), 6 the reversion speed (i.e., the rate at which g reverts
towards g), o the noise intensity (assumed independent of g), dW the
Gaussian noise (Wiener process), I the jump amplitude, and dq the
jump occurrence rate. It is worth emphasizing that assuming a
constant ¢ does not mean that stochastic and deterministic dynamics
are independent, since the solution of Eq. (1) relies on the noise and
jumps effects in combination with the (deterministic) mean-reverting
process.

Originally developed as a model for describing the velocity of a
Brownian particle under the influence of friction (Langevin equation*?),
the OU process which is contemporarily a Gaussian and a Markov

process, has been exploited to model stochastic dynamical systems in
a wide range of contexts such as financial systems and natural
sciences®. This represents the simplest Markov-Gaussian process that
can be postulated, where coupling of deterministic and stochastic
components is inherent to the assumed dynamics. In a first-order
approximation, the current / that flows through the network (i.e., the
physical observable) when a voltage V is applied across two network
areas relates to the internal memory state of the system through Ohm'’s
law as:

1= [Gin1— )+ G 8] - V=GV 2

Gmin and G, are the minimum and maximum conductance
values while G is the network conductance which depends on g.

Deterministic behavior of the neuromorphic network

The deterministic behavior of the memristive network has been
experimentally analyzed by collecting the time traces of the con-
ductance G when stimulated with a fixed voltage bias. Figure 2a reports
experimental traces of the time-dependent evolution of G from the
initial network ground state (i.e., stable state when not stimulated)
towards a new steady state when biased with different voltages ranging
from 0.1V up to 6.6V (experimental details in “Methods”). The pro-
gressive increase of conductance over time while applying a constant
bias voltage is related to the self-organized formation and subsequent
consolidation of conductive pathways formed by activated junctions
that bridge stimulated network areas, as previously investigated
through both experiments® and modeling®. The acquired experi-
mental dataset allows us to experimentally investigate the dependence
of the steady state G as a function of the applied voltage, as reported in
Fig. 2b. G is The value corresponding to the long-term stabilization of
the network state (details in the inset). Experimental results show a
sigmoidal-like transition of the steady state conductance from a low to
a high G value as a function of the applied voltage. This deterministic
trajectory of the network can be modeled using a potentiation-
depression rate balance equation** that represents the deterministic
form of the memory state Eq. (1) (=0 and I =0) expressed as:

g _ - _
& Og —g] =xkp(1—8)—kpg 3)

deterministic

kp and kp, are potentiation and depression rate coefficients which
exponentially depend on the applied voltage through physics-based
relationships accounting for the forward/backward diffusive ionic
processes occurring at the NW junctions:

Kkp(V)=Kpo exp(+1pV), kp(V)=kpo €xp(—1pV) “4)

where kpg, kKpo>0 are constants and n7p 7,>0 transition rates. Since a
single rate-balance equation is used to describe the dynamic behavior
of the entire network, transition rates here represent effective network
parameters. Notice, from Eq. (3), that the reversion speed 6 and the
equilibrium state of the system g are both functions of the applied
voltage V according to the expressions:

6(V)=k, +kq ©)

e ko .
= Tk (©)

In Eq. (6), g the internal memory of the network in steady-state
conditions is represented. Importantly, Eq. (3) cannot only be solved
numerically through the Euler method, but also analytically, following
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Fig. 2 | Experimental and modeling deterministic dynamics of neuromorphic
NW networks. a Experimental time traces of the conductance G under constant
voltage stimulation, where each curve represents the evolution of G over time from
the initial ground state towards the new equilibrium state for different applied
voltages (from 0.1V to 6.6V, step of 0.1V). b Experimental (circles) and modeled
(line) evolution of the stationary steady state (G) as a function of the applied voltage
bias. The inset shows the time trace of the conductance after 33,000 s of constant
voltage bias application, showing that the conductance state is stationary. Circle

colors correspond to the line colors of experimental time traces reported in the
inset and in (a). c Modeling of deterministic network dynamics for different applied
voltages (from 0.1V to 6.6V, step of 0.1V). Line colors correspond to the color of
the experimental time traces obtained with the same applied voltage reported in
(a). d Internal memory steady state g, e reversion speed 0, f potentiation rate
coefficient, and (g) depression rate coefficient as a function of the applied voltage
derived from modeling.

a recursive approach (details in “Methods”). The experimental
dependence of the steady state reported in Fig. 2b can be well inter-
polated by the potentiation-depression rate-balance model through
Eq. (6). The interpolation of experimental steady states that enables
the retrieval of rate coefficients and transition rates of the network
allows also inferring the deterministic network transient dynamics, as
reported in Fig. 2c. By comparing modeling with experimental results
reported in Fig. 2a, it can be observed that the proposed model
describes quite well the main features of the conductance evolution
over time during transients (i.e., before reaching the steady state
condition). The memory steady state g, the reversion speed 6, the
evolution of the potentiation and depression rate coefficients x, and
K4, as a function of the applied voltage derived from interpolation of
the experimental data reported in Fig. 2b, are illustrated in Fig. 2d, e, f,
g, respectively. It is worth mentioning that in the context of system
dynamics, g it represents the stable trajectory of the system, i.e., the
statistically invariant phase the system reaches for a given voltage,
irrespective of the initial conducting state (mean-reverting property of
the OU process). Even if experimental observations suggest that the
system'’s conductance tends toward the same steady state irrespective

of the initial condition (details in Supplementary Fig. 1), a wider variety
of starting conditions would be required to demonstrate unequi-
vocally the occurrence of hard attractor states. Notably, the proposed
compact description endowing mean-reverting property enables us to
describe the experimentally observed dependence of the network
state only on the recent history of applied stimulation, a property that
has been exploited for temporal-processing of the input signal in the
framework of reservoir computing®.

Stochastic behavior of the neuromorphic network

The stochastic effects in the neuromorphic networks were analyzed by
disentangling noise and jumps in the conductance time trace when the
system operates in the stationary state®. It is worth emphasizing once
again that, according to the chosen stochastic process, deterministic
behavior, noise, and jumps are part of the whole system’s trajectory
even under steady state conditions. Figure 3a reports experimental
changes in the conductance dG/dt) monitored for more than 15,000 s
with an applied voltage of 3.6 V. As can be seen, small conductance
fluctuations related to noise and large spike events related to con-
ductance jumps occur. Consequently, the corresponding dG/dt
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Experimental data

Fig. 3 | Experimental stochastic dynamics of neuromorphic NW networks
stationary state. a Experimental changes in the conductance dG/dt over time of
the NW network in the stationary state sustained by an applied constant voltage of
3.6V (red dashed line represents the calculated threshold value for noise disen-
tanglement), b histogram of dG/dt and c corresponding quantile-quantile plot of
experimental data against the theoretical quantiles of a normal distribution
revealing the presence of heavy tails. d Experimental Gaussian noise component of
the signal obtained by noise disentanglement, e histogram of the Gaussian com-
ponent of dG/dt fitted with a Gaussian distribution (black line), and
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f corresponding quantile-quantile plot of experimental data against the theoretical
quantiles of a normal distribution. g Experimental raster plot of jump events (top
panel) and number of jump events n as a function of time (low panel), where
experimental data (circles) are interpolated by a straight line with slope A (event
rate or intensity). h Experimental probability distribution of inter-event intervals
(IEIs) (circles) and the theoretical exponential distribution of IEls expected in case
of a homogeneous Poisson process with intensity A (red line). i Experimental
probability distribution for the jump amplitude I that can be interpolated by a
power law distribution (red line).

histogram reported in Fig. 3b shows a heavy tailed distribution, as also
revealed by the quantile-quantile plot assuming a normal distribution
(Fig. 3¢). The obtained results indicate that a large proportion of the
detrended data is located at the tails of the distribution in comparison
with what is expected for the normal case. The disentanglement of
noise and jump events was in practice performed through a thresh-
olding algorithm that maximizes the p-value of the Gaussian distribu-
tion of the noisy component of the signal (details in “Methods,” the
calculated threshold value is reported in Fig. 3a). Figure 3d reports the
experimental noise component of the stationary state signal over time
disentangled from jumps, where the normal distribution of the signal
(Fig. 3e) and the quantile-quantile plot (Fig. 3f) reveals the Gaussian
nature of the fluctuating component (presumably because of the
central limit theorem). Remarkably, Gaussian behavior is directly
related to the network activity and is not linked to the experimental
setup and/or measurement protocol (details in Supplementary Fig. 2).
Figure 3g reports the experimental raster plot of jump events and their
corresponding evolution over time n(t), showing that n(t) increases
almost linearly with slope 1~0.082 events per second. In case of a
homogeneous stochastic Poisson process, 1 represents the event
occurrence rate or intensity of the process. In this case, the interarrival
times between events (interevent intervals, IEls) are independent and
identically distributed, where the density distribution of IEl can be
described through the exponential distribution p(IEl)= e~ As can
be observed in Fig. 3h, the experimental density distribution of IEIs isin
good agreement with the theoretical distribution expected for a
Poisson process. Together with the linear increase of the number of
events over time, these results suggest that the occurrence of jumps
can be well described by a homogeneous Poisson process, i.e., a sto-
chastic process where: (i) the average rate (events per period) is con-
stant, (ii) events are independent of each other, and (iii) two events

cannot occur at the same time. It is worth mentioning that the Poisson
process exploited for modeling jumps does not provide temporal
correlation between jump events, as for example expected in networks
operating in the critical state’**°. Note that a Poisson process has also
been used to describe the probability of switching events in conven-
tional memristive cells®. Furthermore, the experimental probability
distribution of jump amplitudes reported in Fig. 3i follows a power law
distribution p(I") o« I'*, where p(I') denotes the probability of an event
with amplitude /. The exponent obtained from experimental data is
a ~ —2.78 + 0.07 (details in “Methods”).

The stochastic behavior of the network in the stationary state
(g = g) can be described through the stochastic form of the memory
state Eq. (1). While this equation has analytic solution (stochastic) in
case of no jumps (I=0), when jumps are included, the stochastic
differential equation needs to be solved numerically through the
Euler-Maruyama method (details in “Methods”). Note that modeling
noise with a Wiener process is consistent with experimental results
showing Gaussian dispersion. Therefore, based on experimental
results and previous discussions, stochastic jumps can be modeled
through a homogeneous Poisson point process. In this case, spike
generation fulfils the relationship n(¢)=At, where A represents the
event rate of the Poisson process (1-0.082 events per second
according to experimental results). In this context, it is possible to
generate Poisson spike events on the fly, where the probability of
observing a jump is given (for small 6t) by
p{1spike duringét} ~ A6t*. According to experimental results, the
amplitude I of each jump follows a power-law distribution with
exponent a= -2.78 (details in “Methods”). Results of modeling the
stochastic behavior of the NW network experimentally reported in
Fig. 3 are shown in Fig. 4 (details of model calibration in “Methods”). As
can be observed by comparing Figs. 3 and 4, the model correctly
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Fig. 4 | Modeling stochastic dynamics of neuromorphic NW networks
stationary state. a Modeled changes in the conductance dG/dt over time of the
NW network in the stationary state sustained by an applied constant voltage of
3.6V, b histogram of dG/dt and ¢ corresponding quantile-quantile plot of modeled
data against the theoretical quantiles of a normal distribution, revealing the pre-
sence of heavy tails similar to experimental data. d Experimental Gaussian noise
component of the modeled signal, e histogram of the Gaussian component of
dG/dt fitted with a Gaussian distribution (black line), and f corresponding quantile-

quantile plot of modeled data against the theoretical quantiles of a normal dis-
tribution. g Experimental raster plot of modeled jump events (top panel) and
number of jump events n as a function of time (low panel), where modeled data
(circles) are interpolated by a straight line with slope . h Probability distribution of
inter-event intervals (IEls) obtained from modeling (circles) and the theoretical
exponential distribution of IEIs expected in case of a homogeneous Poisson pro-
cess with event rate A (red line). i Simulated probability distribution of jump
amplitude I that can be interpolated by a power law distribution (red line).

addresses the experimental changes of the conductance (dG/dt) both
in terms of time trace (Fig. 4a, additional data in Supplementary Fig. 3)
and distribution (Fig. 4b, c). The intertwined action of stochastic and
deterministic effects endowed in our modeling approach results also
in qualitative agreement with the experimental and modeled con-
ductance time traces in the stationary state (Supplementary Fig. 4).
Despite further experiments are required to elucidate the coupling
between deterministic and stochastic dynamics in the physical system,
the OU modeling approach is in agreement with (i) the experimental
observation of the reversion to the average trajectory after stochastic
jumps in the experimental conductance time trace (examples in Sup-
plementary Fig. 4) and (ii) the exponential decay of the autocorrelation
function with the number of lags in the stationary state as expected for
an OU process (Supplementary Fig. 5).

Even if the OU modeling approach can represent the simplest
approximation of the actual behavior of the experimental system, the
model statistically well describes stochastic effects, including the time-
trace and distribution of the Gaussian noise component (Fig. 4d-f,
respectively), as well as the total number of jumps at time ¢, n(t)
(details in Supplementary Fig. 6), the probability distribution of IEls,
and the jump amplitude distribution for I (Fig. 4g-i, respectively).

Deterministic and stochastic dynamics

As discussed in previous sub-sections, resultant dynamics of NW net-
works can be described through the stochastic differential Eq. (1),
which is able to encompass the action of deterministic and random
behaviors. As an example, Fig. 5a reports the experimental trajectory
of a NW network including transient effects, Fig. 5b the deterministic
modeling, and Fig. 5c the stochastic modeling, including, besides the
deterministic behavior, noise and jump events (details in “Methods”).
While deterministic modeling with mean-reverting property can cap-
ture the average features of the conductance dynamics, including

transients, the stochastic component allows addressing the deviations
that arise from the local activity of the NW network’s junctions.

Potential landscape of network dynamics

Since the neuromorphic NW network can be modeled as a stochastic
dynamical system characterized by voltage-dependent trajectories, it
is worth exploring its behavior in terms of the potential landscape
function U obtained from the deterministic form of Eq. (1), where
dg/dt= — 0U/0g (details in “Methods”). The potential landscape of
the neuromorphic network as a function of the normalized internal
state of the network g and applied voltage V is illustrated in Fig. 6a
(here, the white dashed line represents the minimum of U as a function
of g and V). In this context, stable states can be conceptualized as
basins in the potential landscape, where the basin depth indicates the
state stability (i.e., the amount of external force needed to alter the
internal memory state of the system). Importantly, Fig. 6b shows that
the potential landscape of the dynamical system changes according to
the applied voltage. Since we are dealing with a linear dynamical sys-
tem, the potential profile exhibits parabolic shape at fixed bias with its
minimum (stable state) shifting progressively from O to 1 as the voltage
is increased (phase portrait of the system in Supplementary Fig. 7).
This shift in the stable state is consistent with the sigmoidal-like tran-
sition of the experimental stationary conductance state (G) reported in
Fig. 2b (and corresponding evolution of the normalized internal
memory state reported in Fig. 2d). This means that, in the proposed
description, neuromorphic dynamics of self-assembled networks
arising from variations in the applied voltage results in a change of the
potential profile of the dynamical system over time, driving the system
towards a new stable state. Due to the parabolic shape of the potential
landscape, no bifurcations or transitions among coexisting determi-
nistic stable states are expected to occur in the proposed modeling
approach. Note that more complex potential landscapes caused by the
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Fig. 5 | Modeling stochastic dynamics of neuromorphic NW networks.
a Experimental dynamics of the conductance of a NW network initially in the
ground state (circles) under constant voltage stimulation of 3.6 V, b dynamics by

t(s)

deterministic modeling, and ¢ dynamics by stochastic modeling. Insets show a
detail of conductance fluctuations.

application of strategically located external biases in a multiterminal
configuration would yield alternative dynamics. In our case, transient
dynamics among stable states are due to changes in the applied vol-
tage, resulting in neuromorphic potentiation/relaxation behavior of
the system. By considering a stationary state, noise represents fluc-
tuations of the stochastic dynamical system around the potential
basin, while jumps correspond to sudden deviations of the internal
state of the system over time from U(t) to U(t + 6¢t). This is illustrated in
Fig. 6¢, where a stationary state sustained by 3.6V is considered
(enlarged view of the time trace in Supplementary Fig. 8). Here, it is
possible to observe through modeling that noise and jumps allow the
system to displace the internal memory states around the potential
basin over time (upper and intermediate panel). The occupation
probability of the equilibrium memory state is represented by the
histogram shown in the bottom panel, which at the end is the sta-
tionary solution of the Fokker-Planck equation®’.

Relationship between steady states and signal processing

Information processing in neuromorphic nanoscale systems occurs by
encoding inputs from the environment into their internal state and
processing through state dynamics. In this context, the external sti-
mulus is usually transformed into time-dependent voltage input sig-
nals to be applied to the network, while information processing occurs
by exploiting the conductance transients induced by internal voltage
rearrangements and short-term memory effects. In our proposed

modeling approach, this means that information processing cap-
abilities arise from the fluctuation of the system around a steady state
condition induced by the electrical input signal. However, also the
internal dynamics of the modeled network relies on the applied bias
voltage since different voltages lead to different reversion speeds 6 of
the OU process (Supplementary Fig. 9). Note that a high reversion
speed means that the output signal immediately responds to the input
signal, while a low reversion speed is typical of a structure with a high
inertia, i.e., a high resistance to changes. In this framework, the selec-
tion of an appropriate operational regime is crucial for optimizing the
network response to a given input signal.

Figure 7 illustrates an example of how our model allows us to
analyze the effect of deterministic and stochastic dynamics on the
evolution of the internal memory state of the network. Figures 7a and
7b report the modeled deterministic and stochastic evolution of the
internal memory state of the NW network in a stationary state (i.e.,
following the initial transient response), when stimulated with a tri-
angular voltage waveform (input signal), while applying different
constant biases (voltage applied to sustain the network operational
regime) (see “Methods”, transient dynamics in Supplementary Fig. 10).
In particular, Fig. 7a shows the electrical response of the network
operating in a regime sustained by a constant bias of 3.6 V that drives
the system near the sigmoidal-like transition of the steady state
expected in stationary conditions (g - 0.5). Figure 7b shows the net-
work operating in a regime sustained by a constant bias of 5V that
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Fig. 6 | Potential landscape of neuromorphic NW networks. a Potential land-
scape as a function of the normalized internal state of the network g and applied
voltage V. The white dashed line represents the potential minimum, i.e., the
asymptotic steady state of system. b Potential profiles at fixed voltage bias (note
that y scale is optimized for visualization). ¢ Evolution over time of the internal
memory state of the stochastic dynamical system in a stationary state sustained by
an applied voltage of 3.6 V obtained by modeling. The upper panel represents the

potential profile corresponding to the stationary state, the intermediate panel
represents the evolution over time of the internal memory state, and the lower
panel represents the histogram of memory state occupancy obtained by mon-
itoring the evolution of the internal state of the system for ~15,000 s. While noise
represents fluctuations of the system around the potential basin, jumps are
represented by sudden changes in the memory state and corresponding potential
over time, as represented by the arrow.

drives the system to a g value close to 1 (Supplementary Fig. 11). While
the applied constant bias voltage is responsible for driving the system
towards a steady state, the triangular voltage waveform induces fluc-
tuations in the system state around the corresponding steady state
(detailed fluctuations of the stable state in Supplementary Fig. 12). It
can be observed that the network response to the same signal input is
remarkably different depending on the operating regime established
by the polarization bias voltage, in accordance with experimental
results reported in ref. 19. Furthermore, it can be observed that
enhanced dynamics of the internal memory state (i.e., higher dyna-
mical range of g) is achieved when the network operates under con-
stant bias of 3.6 V in comparison with operations at 5 V. A similar effect
can be observed by considering deterministic and stochastic trajec-
tories of the system under both operating regimes (Fig. 7c-f).
Noticeably, the network dynamics is strongly affected by the sto-
chastic effects (both noise and jumps) when operating under a 5V
constant bias (refer to Fig. 7f), while these effects are less influential
when operating at 3.6 V bias. Based on our modeling approach, these
results show that it is possible to tune the dynamical response of the
network to an input signal by regulating the voltage-controlled stable

state representing the operating regime of the network. The magni-
tude of the input signal frequency in connection with the internal time
response of the nanoscale system is also a factor to consider.

Steady states and computational capabilities

Computational capabilities of self-organizing complex networks of
NWs have been evaluated in the framework of the reservoir computing
paradigm, where modeling can be exploited to investigate the effect of
deterministic and stochastic effects on computational performance.
For this purpose, a time-multiplexed reservoir computing scheme was
implemented through simulations by considering a single dynamical
node with delayed feedback, following the approach proposed by
Appeltant et al.”. This implementation strategy exploits the two-
terminal dynamical response of the network. It basically consists in the
generation of a virtual reservoir by applying masked input signals to
the dynamical system and a time-multiplexing of the network state.
The mask considers N virtual nodes with a separation time ©= /N, T
being the delay time. In this method, a linear combination of weighted
signals is passed from the reservoir to the output layer to generate the
response of the system. The weights are trained using a linear
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waveform with amplitude of 50 mV (external signal), while applying a constant bias
ofa3.6 Vand b 5 V. Deterministic and stochastic trajectory of the dynamical system
when operating with a voltage bias of 3.6V (c, d) and 5V (e, f).

regression algorithm taking into account the reservoir signals
according to a target function representing the desired output (details
in Supplementary Fig. 13). Computing capabilities were tested on
standard benchmark tasks, namely the time series prediction corre-
sponding to a nonlinear autoregressive moving average (NARMA)
task*® requiring both nonlinearity and memory, and Nonlinear Trans-
formation (NLT)* tasks (details in “Methods”). For each considered
task, computing performances of deterministic and stochastic net-
work models were evaluated in terms of the normalized mean square
error (NMSE) as a function of the bias voltage and the corresponding
memory steady state g, for different amplitudes of the input signal
(details in “Methods”)

Computing performances for the second-order NARMA task
(NARMA-2) as a function of the applied voltage and g are reported in
Fig. 8a, b, respectively. Here, it is shown that enhanced dynamics
corresponding to g ~ 0.5 (bias ~3.6 V) results in a minimum of NMSE,
particularly evident in case of stochastic dynamics. In the case of
deterministic dynamics, the increase of NMSE forg — O and g — 1
can be attributed to a saturation of the system response that lead to a
progressive reduction of its fading memory capabilities. In the case of
stochastic dynamics, this progressive reduction of fading memory is
coupled with a progressive increase of the stochastic contribution that
further increases the NMSE when moving away from g -~ 0.5. While
there is negligible influence of the input signal amplitude on the NMSE
in the case of deterministic dynamics, when considering stochastic
dynamics, a higher input signal results in a lower NMSE (Fig. 8c). This
occurs because a higher input signal enhances the amplitude of the
deterministic network dynamics, thus reducing the influence of the
stochastic effects on the evolution of the memory state by enhancing

the signal-to-noise ratio. By considering deterministic dynamics, the
prediction obtained with optimal parameters of NARMA-2 when
operating the system with a bias voltage of 3.6 V (g ~ 0.5) is reported in
Fig. 8d (N and O parameters on the NMSE is shown in Fig. 8e), while the
prediction when operating the system with a bias voltage of 5V
(g-0.99) is reported in Fig. 8f (VW and O parameters on the NMSE is
shown in Fig. 8e). Considering stochastic dynamics, the prediction
obtained with optimal parameters of NARMA-2 when operating the
system with a bias voltage of 3.6 V (g ~ 0.5) is reported in Fig. 8h (N and
O parameters on the NMSE is shown in Fig. 8i), while the prediction
when operating the system with a bias voltage of 5V (g-0.99) is
reported in Fig. 8 (N and © parameters on the NMSE is shown
in Fig. 8k).

Here, by considering deterministic dynamics exclusively, it is
possible to observe that a larger window of N and © parameters lead to
low NMSE (i.e., a larger portion of dark blue in colormaps reported in
Fig. 8) when operating the network at g - 0.5 (Fig. 8d) with respect to
g — 1(Fig. 8f). When operating the network away from g - 0.5, besides
a general increase of NMSE, a substantial decrease in performance can
be observed by considering a set of parameters with high N or high ©
values, i.e., in cases where network dynamics are expected to be more
affected by a reduction of fading memory properties (details in Sup-
plementary Fig. 14).

When considering also stochastic effects, it can be observed that
the parameters’ range leading to low NMSE is further reduced with
respect to the deterministic case (refer to Fig. 8i, k). Notably, it can be
observed that performances are highly degraded for some specific
choices of N and O values. While the choice of the mask is not sub-
stantially affecting the system in the deterministic case, results show
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Fig. 8 | Nonlinear autoregressive moving average (NARMA) task. Simulation
results of the NARMA-2 task in terms of NMSE as a function of a the bias voltage,
and b steady state g by considering deterministic and stochastic dynamics and for
various amplitudes of the input signal. ¢ NMSE as a function of the input signal
amplitude for deterministic and stochastic dynamics, by considering polarization
voltages of 3.6 V (g~ 0.5) and 5V (g - 0.99). Predictions of NARMA-2 relative to
polarization voltages of 3.6 V and 5V obtained with optimal parameters through
deterministic dynamics in d, f, respectively ([N, 0] in d, f are [9,1] and [2,7],
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respectively). Colormaps showing task performances as a function of N and ©
parameters for polarization voltages of 3.6 V and 5V in e, g, respectively. Predic-
tions of NARMA-2 relative to polarization voltages of 3.6 V and 5V obtained with
optimal parameters through stochastic dynamics in h, j, respectively ([N, @] in
d, fare [3,1] and [3,5], respectively). Colormaps showing task performances as a
function of N and 8 parameters for polarization voltages of 3.6 V and 5V in

i, k, respectively. Colormaps and predictions in d-k refer to results obtained by
stimulating the network with an input with an amplitude of 50 mV.

that the specific N and O values with degraded performances rely on
the specific masking scheme adopted for time multiplexing (details in
Supplementary Fig. 15). This happens because each specific masking
scheme combined with the input signal generates different network
dynamics, driving the network to a dynamic regime that endows
information processing capabilities that can be less or more resilient to
stochastic effects. The worst-case scenario is obtained when con-
sidering stochastic dynamics with steady state value g — 1 (Fig. 8k),
where higher values of NMSE are observed for any N and O value.
Similar considerations apply to the results obtained from NLT tasks, as
reported in Fig. 9a-f where sine to cosine wave transformations are
reported (additional sine to triangular square, and sine to square wave
transformations in Supplementary Fig. 16 and 17, respectively). Also in
this case, the degradation of performances for specific N and © values
when considering stochastic effects relies on network dynamics gen-
erated by the specific masking scheme (Supplementary Fig. 18). Con-
sidering NLT tasks, results show that noise is less detrimental in case of
the sine to triangular wave (Supplementary Fig. 16), while the effect of
noise in sine to square wave is to smooth transitions between mini-
mum and maximum values of the target output (Supplementary

Fig. 17). However, it should be mentioned that in case of NLT tasks no
degradation of the computing performances forg —- 0 and g — 1
were observed in the deterministic dynamics, since the degradation of
the system fading memory properties is expected to affect these
computing tasks less.

In this context, it is worth mentioning that a similar time-
multiplexing implementation scheme has been reported in a previous
simulation work, where NARMA tasks have been implemented by
considering dynamics of percolating networks of nanoparticles®.
Concerning NLT tasks, our implementation based on a single output-
node system achieves performances that are comparable to those
achieved in simulated multi-output reservoirs based on self-organizing
systems®2,

Discussion

Results show that it is possible to model computing systems based on
nanoscale networks as continually operating stochastic dynamical
systems where signal and information processing can be performed by
leveraging the evolution of the physical system. In these nanoscale
networks, stimuli-dependent deterministic dynamics and stochastic

Nature Communications | (2025)16:3509

10


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58741-2

a det_100 mV Cc —/\—det 3.6 V
1.0 — — det_50 mV 1.0 —O—det5V
det_10 mV —\—st0 3.6V
sto_100mV —O—sto 5V
w — — sto_50mV w
%) sto_10mV @)
= 0.5 = 0.5
z z
00dmmmm S ] 00 e — 0.0 -
T T T T T T T T T T
2 3 4 5 6 0.0 0.5 0 50 100
V (V) g Input amplitude (mV)
d oos f oo dis
Target Target
® Prediction ® Prediction
> >
3 3 10
5 0.00 s 0.00 B4
=2 £
5 3 5
-0.06 T T T -0.06 T T
0 60 120 180 w e o 0 60 120 180 © e 2
Samples o Samples o
h 0.06 i 0.06
Target J Target
® Prediction o —— Prediction
= >
© T
> >
s 0.00 4 = 0.00 4
g &
=} =}
(o] (o]
-0.06 . . : -0.06 . : |
0 60 120 180 0 60 120 180 © e e
Samples Samples o
NMSE
m
0.0 0.5 1.0 0.0 0.5 1.0

Fig. 9 | Nonlinear transformation (NLT) task. Simulation results of the sine to
cosine waveform NLT task in terms of NMSE as a function of a the bias voltage, and
b steady state g by considering deterministic and stochastic dynamics and for
various amplitudes of the input signal. ¢ NMSE as a function of the input signal
amplitude for deterministic and stochastic dynamics, by considering polarization
voltages of 3.6 V (g~ 0.5) and 5V (g ~ 0.99). Predictions of the sine to cosine
waveform NLT relative to polarization voltages of 3.6 V and 5V obtained with
optimal parameters through deterministic dynamics in d, f, respectively ([N, O] in
d, fare [3,15] and [5,15], respectively). Colormaps showing task performances as a

function of N and 8 parameters for polarization voltages of 3.6 V and 5V in

e, g, respectively. Predictions of the sine to cosine NLT relative to polarization
voltages of 3.6 V and 5V obtained with optimal parameters through stochastic
dynamics in h, j, respectively ([N, O] in h, j are [3,1] and [1,1], respectively). Color-
maps showing task performances as a function of N and 0 parameters for polar-
ization voltages of 3.6 V and 5V in i, k, respectively. Colormaps and predictions in
d-k refer to results obtained by stimulating the network with a sine wave input with
an amplitude of 50 mV.

effects can be holistically modeled as an OU process with jumps, i.e., an
Ito-type stochastic differential equation, where the evolutionary state
of the system can be probabilistically described by the Fokker-Planck
equation with voltage-dependent parameters®. The corresponding
stationary state of this equation is nothing but the Gaussian distribu-
tion obtained in Fig. 4e associated with the minimum of the potential
landscape.

It is worth mentioning that the ultimate origin of the modeled
network behavior is experimentally difficult to access because of the
huge number of junctions involved. Indeed, understanding the origin
of deterministic dynamics, noise, and jumps of the conductance time
trace necessarily implies high-resolution visualization of the spatially
distributed electrical activity across the whole network. Even if it has
been shown that it is possible to experimentally investigate the spatial
conductance distribution over the network through electrical resis-
tance tomography®***, this technique does not allow the spatial reso-
lution required to unveil how switching events in single NW junctions
impact the resulting network behavior. Other techniques, such as
voltage contrast and resistive contrast scanning electron microscopy

imaging'®®, besides usually requiring measurements in vacuum that
can alter the electrical response of the system, are applicable only to
networks with very limited size. Similarly, conductive AFM enables
probing the conductance at the single NW junction level but only in
small networks consisting of a few NWs>®. In this context, experiments
performed in multiterminal configuration involving synchronous
recording of activity in different network areas (such as the recording
of voltage maps reported in ref. 19) and the experimental investigation
on how power is spatially dissipated through the network (such as
through lock-in thermography") can provide further insights on how
local activity impacts the resulting network behavior. Details on the
state-of-the-art of techniques for the experimental characterization of
the network dynamics are reported in Supplementary Note 1.

The deterministic network behavior represents the key aspect for
the emulation of synaptic plasticity effects and working memory by
exploiting the potentiation and spontaneous relaxation of the con-
ductive pathway connecting stimulated areas”. These deterministic
processes are fundamental for the implementation of unconventional
computing paradigms where information processing occurs by
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exploiting the network capability of nonlinearly processing the input
signal over time*. Understanding and controlling the deterministic
dynamics represents a crucial aspect for rational design of the neu-
romorphic system, allowing for proper identification of the working
conditions in terms of operating voltages. In this context, modeling
results show the possibility of dynamically setting the steady con-
duction state through the applied bias voltage and, thus, the operating
regime of the self-organizing neuromorphic network. This can enable
to control and tailor the system's dynamical regime depending on the
specific temporal sequence and amplitude of the input signal, fully
exploiting the dynamic range of the system while avoiding operating
near the saturation regime. Interestingly, the steady state and
dynamics can also be experimentally tailored by controlling the net-
work density (Supplementary Fig. 19). The proposed modeling
approach could be integrated into a graph representation, similarly to
those reported in refs. 23,57,58, so that the dynamical regime of the
system would be tuned depending also by the spatial location of
multiple input signals as required for modeling the behavior of mul-
titerminal networks. Additionally, it is worth mentioning that mem-
ristive dynamics described by the deterministic form of Eq. (1) have
been exploited as dynamics of a physics-inspired recurrent neural
network (RNN) computational model*’.

While our modeling approach can well describe the NW networks
working in the short-term memory regime exploitable for reservoir
computing, we would like to point out that the proposed model can be
further extended by introducing (i) transitions between deterministic
coexisting states that have been experimentally observed in certain
conditions (not modeled here), and (ii) long-lasting variations in the
steady states to emulate also long-term changes in the network con-
ductance that can be experimentally observed under specific stimu-
lation conditions® (for these purposes, the introduction of new
parameters able to account for drifts of the steady states are required).

In the framework of reservoir computing, the reported approach
allows to quantify the influence of deterministic and stochastic
dynamics on computing capabilities. While the reported model, based
on a combination of physical foundations and mathematical proper-
ties and able to describe the behavior of the system in terms of a
minimal number of assumptions, can be adopted to explore in silico
different implementations of the reservoir computing paradigm
through simulations, further work is required to experimentally
delineate the computing capabilities of these systems. In this context,
it is worth noticing that reservoir computing has been experimentally
explored in a wide range of self-organizing memristive systems,
including nanotubes®, nanoparticles®®?, and nanowires®?°?, by
exploiting multiterminal configurations that allow to probe the evo-
lution of the internal state of the system as seen from different spatial
locations.

Simulation results show that stochastic effects limit the separ-
ability property of the system (i.e., the capability of the system to
differentiate its response when processing different input signals).
When little or no memory is required for the completion of the task
(such as in the case of NLT), computing capabilities of the system rely
mainly on the deterministic-to-stochastic (signal-to-noise) response of
the network. When memory is essential for the completion of the task
(such as in NARMA), computing capabilities rely also on the dynamical
regime of the network and its fading memory capabilities determined
by the steady state. In both cases, optimization of the computing
capabilities relies on the proper selection of the input signal ampli-
tude. For instance, operating the network at g - 0.5 enhances the sys-
tem’s dynamical range. Additionally, the results show that stochastic
effects should be properly considered for the optimization of the time-
multiplexed reservoir computing implementation, for the
proper selection not only of [N, ©] parameters but also for the design
of an appropriate masking scheme for the input signal. As a result, the
masking scheme needs to be optimized to reduce degradation of

computing performances for a given set of [N, ©] by means of, for
example, the use of supervised learning algorithms. More in detail, it is
important to point out that stochastic effects do not hinder the pos-
sibility of operating the system with a low number of virtual nodes N,
as required for reducing the hardware complexity of the system.
Indeed, a lower N number allows the system to operate with a reduced
number of weights to be trained (and a lower amount of information to
be temporally stored before being analyzed by the readout).

Even if at first sight the random nature of the output signal seems
to be detrimental for computing when adopting a deterministic per-
spective, it was shown that stochastic dynamics can indeed be
exploited as an additional dimension for the implementation of sto-
chastic learning rules. This comprises the hardware realization of
random number generators, physical unclonable functions, and
chaotic/stochastic computing systems by taking advantage of the
material substrate as the underlying source of randomness®.

In all these contexts, Eq. (1) can be exploited as an electrical
transfer function to model the system's dynamical output corre-
sponding to arbitrary input signals for a rational design of neuro-
morphic systems based on self-organizing nanoscale networks. This
can represent a step ahead for the conceptualization of a general
theory of computing with non-linear dynamics and stochastic effects
through a dynamical system-oriented view”°*. Furthermore, we
envision that dynamics of complex systems, like the one analyzed in
this work, can be exploited for in materia forecasting the evolution of
stochastic variables that can be generically represented by means of
Orstein-Uhlenbeck processes, such as financial processes including the
evolution of interest rates describable through the Vasicek or Hull-
White models®. Indeed, after proper calibration, the inherent cap-
ability of the physical system to approximate the dynamic evolution of
the stochastic differential equations describing specific processes (in
particular OU process) could enable forecasting the evolution of sto-
chastic trajectories by observing, given an initial condition, how the
physical observables evolve over time. More in generally, these results
can pave the way for the development of alternative concepts of
unconventional computing paradigms that take advantage of both
deterministic and stochastic dynamics on the same physical substrate,
as naturally occurs in biological systems.

In summary, we showed that neuromorphic nanowire networks
can be modeled as a stochastic dynamic system. We show that deter-
ministic and stochastic dynamics of the physical system can be quali-
tatively and quantitatively described in a unified mathematical
framework such as the Ornstein-Uhlenbeck process. This approach
enables to holistically describe stimuli-dependent deterministic tra-
jectories of the system as well as conductance fluctuations and jumps.
Furthermore, the proposed compact model description can be
exploited to quantitatively assess the impact of deterministic and
stochastic dynamics on computing capabilities of these physical sys-
tems in the framework of reservoir computing, as shown by con-
sidering benchmark tasks. These results can pave the way for the
rational and optimized development of neuromorphic systems that
can fully exploit their spatio-temporal dynamics similarly to our brain.

Methods

Fabrication of self-organizing neuromorphic networks
Self-organizing Ag NW networks have been fabricated by means of
drop-casting®, by dispersing Ag NWs with length of 20-50 pm and a
diameter of ~ 115 nm in isopropyl suspension (from Sigma-Aldrich) on
an insulating SiO, substrate. Details on structural and chemical char-
acterization of Ag NWs are analyzed in our previous work'. The fab-
rication of neuromorphic NW networks consisted in drop casting Ag
NWs in isopropanol solution (drop of 20uL, concentration of -
0.09 mg mL™) on a~1x1cm? substrate, followed by deposition of Au
metal electrodes through sputtering deposition and shadow mask. To
show the dependence of the steady state on the network density
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(Supplementary Fig. 15), results have been compared with the
response of a different NW network with higher density realized by
drop casting Ag NWs in isopropanol solution (drop of 20 uL) with a
concentration of ~0.13 mg mL™. The morphology of the self-organizing
NW network and details of NW junctions were assessed by means of
Scanning Electron Microscopy (SEM, FEI Inspect F).

Experimental characterization

Experimental electrical characterization has been performed at a
controlled constant temperature of 303K in a hermetically closed
environment of ambient air, by contacting sample substrate with
a thermocouple controlled through a Lake Shore 331 temperature
controller. Electric measurements have been carried out by a
Keithley 6430, connected through a preamplifier in two-terminal
fashion to facing electrodes sputtered at sample edges centers
(electrode distance of ~7 mm). Current has been recorded in auto
range mode at fixed minimum range of 1nA and with Number of
Power Line Cycles (NPLC) set at 1, where voltage was sourced at
20V range. Under these conditions, the sampling rate was ~1.6 Hz.
Measurements were acquired in pulse-train fashion with 10h
width pulses of voltage progressively increasing from 0.1V to
6.6V with 0.1V step, separated by 10 mV reading intervals of 1h
that ensure network relaxation to the ground state before sti-
mulation with the subsequent voltage amplitude. The mean value
of stationary state G reported in Fig. 2b was evaluated for each
voltage bias condition by considering the signal after -18,500s
from bias application to avoid transient dynamics, averaging the
stationary signal over ~15,000s.

The disentanglement between Gaussian noise and jump events in
the dG/dt signal has been performed by determining the interval
underlying the most Gaussian data region in a Kolmogorov-Smirnov
(KS) sense. In detail, the p values of progressively larger data intervals
(centered in 0) have been evaluated by using the KS test. The extreme
ensuring maximum p value, i.e., most probable Gaussian distribution,
has been chosen as the threshold between noise and jump events.

The probability distributions of inter-event intervals p(IEl) as a
function of IEI reported in Figs. 3h and 4h have been obtained by
linear binning of data with size of 10s. Instead, the probability dis-
tributions of jumps p(I) as a function of jump amplitude I reported
in Figs. 3i and 4i have been obtained by logarithmically binning data
with a density of 50 bins per decade. Power-law fittings of data
reported in Figs. 3i and 4i have been performed by following the
procedure used for complexity analysis in ref. 67. A doubly truncated
target distribution has been considered, where the lower cutoff
emerges as a consequence of instrumental finite resolution, while the
upper one results from the finite measurement duration and sam-
pling. The data fraction to be fitted has been progressively shrunk
and the related power-law exponent has been extracted by means of
maximum likelihood estimation (MLE). The exponent has been then
validated by using KS test in the following way: 500 test power-law
distributions have been generated starting from the exponent under
study, and their KS statistics with respect to fitting line (i.e., the
maximum absolute difference between their respective cumulative
distribution functions) has been evaluated. KS statistics have also
been evaluated between the experimental data and the fit. The fitting
has been considered acceptable if the experimental KS statistics have
resulted lower than the test ones in the 20% of the cases at least. The
validated fitting obtained from the least truncated data interval has
been then selected as the final one. Exponent uncertainty has been
obtained through the Monte Carlo method by fitting the 500 test
power-law distributions used for validation and evaluating their
exponent standard deviation. The experimental number of events n
as a function of time was interpolated to extract the event rate with a
straight line with intercept O (i.e., O events at t= 0) to obtain the
experimental event rate A.

Modeling

Modeling was performed in Python. The deterministic balance-rate
equation reported in Eq. (3) can be solved analytically, where the
recursive (iterative) solution can be expressed as (assuming a simula-
tion timestep At >0 and knowing the initial value g,)**

8:= §<1 - e_om) +g, e )

As an alternative, Eq. (3) can be solved by using the Euler method
as a first-order numerical procedure for solving ordinary differential
equations, expressing the solution as:

8:=8,1%0(8 —g.1|At ®)

Parameters for modeling the deterministic behavior of the net-
work were retrieved from interpolation of the stationary state con-
ductance value G over applied voltage biases reported in Fig. 2b.

The stochastic differential equation describing the Ornstein-
Uhlenbeck process reported in Eq. (1) can be solved analytically in case
of no jumps (/=0), where the recursive (iterative) solution can be
expressed as:

g.= §(1 _ e—9At> +g[,1679m +e, ©)

Where &, is normally distributed with mean zero and standard devia-
tion o, is:

0.2= [1 - 6*29] i 10)

20

In case of jumps (I'#0), the stochastic differential equation can be
numerically solved through the Euler-Maruyama method, where the
solution can be expressed as:

8:=8.1+0[g —g|At+oVALE+TAg, § ~ N(O,1) 1
where £ is a random Gaussian variable with variance 1 (independent at
each time step). The normalization factor ~/Ar comes from the fact
that the infinitesimal step for a Brownian motion has the standard
deviation +/At. The stochastic model was calibrated on experimental
data: (i) by selecting the o value that gives rise to the standard devia-
tion of the Gaussian noise distribution that matches the experimental
one, and (ii) by assigning to jump events a jump amplitude sampled
from a bounded power law distribution with exponent a that matches
experimental results and bounded values that match the minimum and
maximum experimental value (I, and I',,), where the minimum
value matches with the experimental threshold for noise disentangle
(i.e., modeled jump events have amplitude larger than the threshold
value for noise disentangle). The jump direction during modeling is
randomly assigned. While the probability of jump direction is the same
when the device is in the stationary state, the probability of jump
direction is assumed to be proportional to (g — g). Where the jump up
probability is 0.5+ A'(g —g) and jump down probability is 0.5-
A’(g—g) (A" is a normalization constant that depends on the max-
imum jump amplitude to normalize probability to 1).

The potential functionU= — [0[g — g]dg=6g(§ —g) +C, where
C is an arbitrary constant set to O in our work, was obtained by inte-
grating dg/dt = — 0U/0g, where the deterministic form of Eq. (1) was
considered as dg/dt. Information processing capabilities in Fig. 7 have
been analyzed by considering modeling parameters 6(V), g(V)
extracted from the experimental data reported in Fig. 2, and
o,dW, I', dq extracted from the experimental data reported in Fig. 3.
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Time-multiplexed reservoir computing implementation
Benchmarking of computing capabilities of the deterministic and
stochastic network model has been performed by implementing a
time-multiplexed reservoir computing scheme, exploiting the net-
work in two-terminal configuration as a single dynamical node with
delayed feedback. In this implementation, the transient response to a
masked input signal of the network in two terminal configuration is
sampled N times (virtual nodes) with separation time @ during each
timestep of the input signal (details on the implementation in Sup-
plementary Fig. 11). Results reported in the manuscript have been
obtained by adopting the masking scheme reported in Supplementary
Fig. 15 panel a, if not differently specified. A similar implementation
was also reported in percolating networks of nanoparticles®.
Training

The readout function (output layer) was trained through a supervised
learning algorithm. For a N-dimensional reservoir output
X=[xy, X5, ..., Xy], training involved the calculation of a vector of
linear coefficients w= [wy, w,, ..., xy] such that the predicted output
of the system j(k) well approximate the target output y(k):

N+1

JK =" wxk) ~ yk) (12)
i=1

Linear coefficients were calculated through linear regression.

Nonlinear autoregressive moving average task
NARMA tasks are a set of time series prediction tasks involving the
emulation of nonlinear dynamical systems, representing a challenging
task for computational systems because of their nonlinearity and
dependence on previous time lags. The task involves learning the
association between a discrete input white noise u(k) and the chaotic
time series generated by the nonlinear dynamical system. For the
second-order NARMA system (NARMA-2), the time series is given by:
Vi1 =W+ By 1 +Hyup +6 13)
witha= 0.4, 5= 0.4, y= 0.6, 6= 0.1. The white input noise was fed to
the network after being scaled by the desired amplitude (amplitudes of
10, 50, and 100 mV were considered). 720 timesteps of the system
outputs for were used for training the readout function, while testing
was performed on 180 timesteps. Performances of the system were
evaluated through NMSE. In Fig. 8a, b, for each polarization voltage
bias (for each g), the NMSE represents the best NMSE obtained by
evaluating computing performances for N and © parameters in the
range [0, 15]. In other words, this represents the NMSE optimized in
terms of N and O (in the selected parameter ranges), i.e., the optimized
performance of the system given a g.

Nonlinear transformation task

NLT tasks are a set of tasks involving a nonlinear transformation of a
sine wave input signal*’. This task requires mainly a high degree of
nonlinearity. We considered the transformation of the input signal into
a cosine, square, or triangular waveform of the same period. For this
purpose, the sine wave input signal is fed to the network after being
scaled by the desired amplitude (amplitudes of 10, 50, and 100 mV
were considered). Eight hundred timesteps of the system outputs were
used for training the readout function, while testing was performed on
200 timesteps. Performances of the system were evaluated through
NMSE. In Fig. 9a, b, for each polarization voltage bias (for each g), the
NMSE represents the best NMSE obtained by evaluating computing
performances for N and © parameters in the range [0, 15]. In other
words, this represents the NMSE optimized in terms of N and O (in the
selected parameter ranges), i.e., the optimized performance of the
system given a g.

Normalized mean square error

Task performances were evaluated by the normalized mean square
error (NMSE) between predicted output y(k) and target output y(k),
through the equation:

K R 2
12 Ok =)
NMSE= -1

K o200

a4)

where the sum of square residuals is normalized by the variance of the
target function 2(y).

Data availability

The data that support the findings of this study are available on
Zenodo (https://doi.org/10.5281/zenodo.15050217). All other data are
available from the authors.

Code availability

The codes used to generate datasets of simulations can be accessed on
GitHub (https://github.com/MilanoGianluca/Self-organizing_neuro
morphic_networks_as_stochastic_dynamical_systems). The code release
is available on Zenodo (https://doi.org/10.5281/zenodo.15174744).
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