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An unsupervised map of excitatory neuron
dendritic morphology in the mouse
visual cortex

A list of authors and their affiliations appears at the end of the paper

Neurons in the neocortex exhibit astonishingmorphological diversity, which is
critical for properly wiring neural circuits and giving neurons their functional
properties. However, the organizational principles underlying this morpho-
logical diversity remain an open question. Here, we took a data-driven
approach using graph-based machine learning methods to obtain a low-
dimensional morphological “bar code” describing more than 30,000 excita-
tory neurons inmouse visual areasV1, AL, andRL thatwere reconstructed from
the millimeter scale MICrONS serial-section electron microscopy volume.
Contrary to previous classifications into discrete morphological types (m-
types), our data-driven approach suggests that the morphological landscape
of cortical excitatory neurons is better described as a continuum, with a few
notable exceptions in layers 5 and 6. Dendritic morphologies in layers 2–3
exhibited a trend towards a decreasing width of the dendritic arbor and a
smaller tuft with increasing cortical depth. Inter-area differences were most
evident in layer 4, where V1 containedmore atufted neurons than higher visual
areas. Moreover, we discovered neurons in V1 on the border to layer 5, which
avoided deeper layers with their dendrites. In summary, we suggest that
excitatory neurons’ morphological diversity is better understood by con-
sidering axes of variation than using distinct m-types.

Neurons have incredibly complex and diverse shapes. Since Ramón
y Cajal, neuroanatomists have studied their morphology1 and have
classified them into different types. From a computational point of
view, a neuron’s dendritic morphology constrains which inputs it
receives, how these inputs are integrated, and, thus, which com-
putations the neuron and the circuit it is part of can learn to
perform.

Less than 15% of neocortical neurons are inhibitory, yet they are
morphologically the most diverse and can be classified reliably into
well-defined subtypes2–4. The vast majority of cortical neurons are
excitatory. Excitatory cells can be divided into spiny stellate and pyr-
amidal cells5. Although pyramidal cells have a very stereotypical den-
dritic morphology, they exhibit a large degree of morphological
diversity. Recent studies subdivide them into 10–20 cell types using

manual classification6 or clustering algorithms applied to dendritic
morphological features7–9.

Existing studies of excitatory morphologies have revealed a
number of consistent patterns, such as the well-known thick-tufted
pyramidal cells of layer 56–10. However, a commonly agreed-upon
morphological taxonomy of excitatory neuron types is yet to be
established. For instance, Markram et al.6 describe two types of thick-
tufted pyramidal cells based on the location of the bifurcation point of
the apicaldendrite (early vs. late). Later studies suggest that these form
two ends of a continuous spectrum7,8. Other authors even observe that
morphological features overall do not form isolated clusters and
suggest an organization into families with more continuous variation
within families11. There are two main limitations of previous morpho-
logical characterizations: First, many rely on relatively small numbers
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of reconstructed neurons used to asses the morphological landscape.
Second, they represent the dendritic morphology using summary
statistics such as point counts, segment lengths, volumes, density
profiles (so-called morphometrics;9,12,13), or graph-based topological
measures14. These features were handcrafted by humans and may not
capture all crucial axes of variation.

We here take a data-driven approach using a recently developed
unsupervised representation learning approach15 to extract a mor-
phological feature representation directly from the dendritic skeleton.
We apply this approach to a large-scale anatomical dataset16 to obtain
low-dimensional vector embeddings ("bar codes”) of more than
30,000 neurons in mouse visual areas V1, AL, and RL. Our analysis
suggests that excitatory neurons’ morphologies form a continuum,

with notable exceptions such as layer 5 thick-tufted cells, and varywith
respect to three major axes: soma depth, total apical, and total basal
skeletal length. Moreover, we observed a number of morphological
features in the upper layers: Neurons in layers 2/3 showed a trend of a
decreasing width of their dendritic arbor and a smaller tuft with
increasing cortical depth. In layer 4, morphologies showed area-
specific variation: atufted neurons were primarily located in the pri-
mary visual cortex, while tuftedneuronsweremore abundant inhigher
visual areas. Finally, layer 4 neurons in V1 on the border to layer
5 showed a tendency towards avoiding layer 5 with their dendrites.

Results
Self-supervised learning of embeddings for 30,000 excitatory
neurons from visual cortex
Our goal was to perform a large-scale census of the dendritic
morphologies of excitatoryneuronswithoutprescribing a-priori which
morphological features to use. Therefore, we used machine learning
techniques15 to learn the features directly from the neuronal
morphology.

Our starting point was a 1.3 × 0.87 × 0.82 mm3 volume of tissue
from the visual cortex of an adult P75–87 mouse, which has been
densely reconstructed using serial section electron microscopy16. This
volume has been segmented into individual cells, including non-
neuronal types and more than 54,000 neurons whose soma was
located within the volume. From these detailed reconstructions we
extracted each neuron’s dendritic tree and represented it as a skeleton
(Fig. 1A)17: each neuron’s dendritic morphology was represented as a
graph, where each node had a location in 3d space. This means we
focused on the location and branching patterns of the dendritic tree,
not fine-grained details of spines or synapses (see companion paper18),
or any subcellular structures (see companion paper19).

Our next step was to embed these graphs into a vector space that
defined a measure of similarity, such that similar morphologies were
mapped onto nearby points in embedding space (Fig. 1B). To do so, we
employed a recently developed self-supervised learningmethod called
GraphDINO15 that learns semantic representations of graphs without
relying on manual annotations. The idea of this method is to generate
two “views” of the same input by applying random identity-preserving
transformations such as rotations around the vertical axis, slightly
perturbing node locations, or dropping subbranches (Fig. 1B, top and
bottom). Then, both views are encoded using a neural network. The
neural network is trained to map both views onto similar vector
embeddings. For model training, the data was split into training, vali-
dation, and test data to ensure that the model did not overfit (Sec-
tion “Morphological feature learning using GraphDINO”). The model
outputs a 32-dimensional vector for each neuron that captures the
morphological features of the neuron’s dendritic tree. Thus, each
neuron is represented as a point in this 32-dimensional vector
space (Fig. 1C).

At this stage, we performed another quality control step: Using
the learned embeddings as a similarity metric between neurons, we
clustered the neurons into 100 clusters and manually inspected the
resulting clusters. We found a non-negligible fraction of neurons
whose apical dendrite left the volume or was lost during tracing (see
Methods for details). We removed neurons whose somata are in close
proximity to the imaged volume boundary (Fig. 2A). Additionally, we
used the clusters containing fragmented neurons as examples for
broken neurons and trained a classifier to predict whether a neuron
has reconstruction errors using the learned morphological embed-
dings as input features (Fig. 2B, Supplementary Fig. 2A, B). We then
removed all neurons from the dataset that were classified as erro-
neous. Also, at this point, we removed all interneurons from the
dataset since we focused on excitatory neurons in this paper (Fig. 2C,
Supplementary Fig. 2C, D). We further removed neurons with cut
apical dendrites (Section “Supervised classifiers”).

Fig. 1 | Pipeline to generate vector embeddings for large-scale datasets that
capture the morphological features of the neurons’ dendritic trees. A Imaging
of brain volume via electronmicroscopy and subsequent segmentation and tracing
to render 3Dmeshes of individual neurons that are used for skeletonization.B Self-
supervised learning of low-dimensional vector embeddings z1, z2 that capture the
essence of the 3D morphology of individual neurons using GraphDINO. Two aug-
mented “views” of the neuron are input into the network, where the weights of one
encoder (bottom) are an exponential moving average (EMA) of the other encoder
(top). Theobjective is tomaximize the similarity between the vector embeddings of
both views. Vector embeddings of similar neurons are close to each other in latent
space. C An individual neuron is represented by its vector embedding as a point in
the 32-dimensional vector space.DQuality control to remove neurons with tracing
errors. Figure 1 was adapted from Weis, Hansel, Lüddecke, and Ecker, Self-
Supervised Graph Representation Learning for Neuronal Morphologies, Transac-
tions on Machine Learning Research, 899 (2023), https://openreview.net/pdf?id=
ThhMzfrd6r under a CC BY license: https://creativecommons.org/licenses/by/4.0/.
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The vector embeddings of the remaining 32,571 excitatory
neurons in the dataset were organized by cortical depth (Fig. 2E) and,
as a consequence, could distinguish well between different cortical
layers (Fig. 2F, G; note that there is no 1:1 correspondence between
cortical depth and layer as the layer boundaries varied across the
volume.). The learned embeddings could also distinguish between
broad cell types (Fig. 2H, I) that were assigned by expert
neuroanatomists18 based on the cortical origin of the somata and
their long-range projection type (IT: intratelencephalic or intracor-
tical; ET: extratelencephalic or subcortical projecting, NP: near pro-
jecting, and CT: cortico-thalamic). Note that neither the location of
the soma nor the projection type was provided to the model, show-
ing that the dendritic morphology by itself provides information on
these broad cell types. One exception is the 6P-CT and 6P-IT cells,
which were partly intermingled in the embedding space. 6P-IT cells
show a high variance in their dendritic morphology, which in some
cases are indistinguishable from 6P-CT cells when no information
about the projection type is used (Fig. 2H, I).

To demonstrate that the learned embedding is generally applic-
able beyond EM datasets and the MICrONS dataset specifically, we
used the GraphDINOmodel trained onMICrONS to embed 61 neurons
from mouse visual cortex20 that have been recorded using PatchSeq21

and show that the model generalizes to other datasets and recording
techniques (Supplementary Fig. 10; Supplementary Note 2).

Dendritic morphologies mostly form a continuum with distinct
clusters only in deeper layers
We noticed that the embedding space appeared to form largely a
continuum, with only a few fairly distinct clusters, such as the layer 5
ET cells (Fig. 2H, purple). Previous papers have characterized excita-
tory morphologies by categorizing neurons into morphological types
(m-types), with the number of types varying between nine and
nineteen6,7,9,14,18,22. But is categorization into discrete types the best way
of describing the landscape of morphologies, or is it rather char-
acterized by continuous variation? The answer depends on the struc-
ture of the data. Consider the following toy example where the data is

Fig. 2 | Visualization of soma depths and cortical layer assignments of excita-
tory neuronal morphologies showing mostly a continuum with distinct clus-
ters only in deeper layers. A Top view of the EM volume with approximate visual
areas indicated. All neurons with their soma origin within the red boundary were
used for analysis. B Distribution of complete neurons (N) and fragments (F) along
cortical depth as determined by our classifier based on the morphological
embeddings. C Distribution of excitatory neurons (E) and interneurons (I) along
cortical depth.D Classifier prediction for cortical layer origin based on the learned
morphological embeddings. E t-SNE embedding (perplexity = 300) of the vector
embeddings of excitatory neuronal morphologies colored by the respective soma

depth (in μm) of the neurons relative to the pia (n = 32,571). F t-SNE embedding
colored by cortical layer assignments as predicted by a cross-validated classifier
trained on the morphological embeddings as features and a subset of manually
labeled excitatory neurons (n = 922).GCross-section of the brain volumedepicting
soma positions of neurons colored by their assigned cortical layer. Cortical layer
thicknesses for primary visual cortex (V1) (left) and higher visual areas (HVA) (right)
given as mean ± standard deviation. H t-SNE embedding of excitatory neuronal
morphologies colored by expert-defined cell types. I Examplemorphologies of the
expert-defined cell types. Source data are provided as a Source Data file.
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generated by amixture of twonormal distributions (Fig. 3A): If the two
components are well separated, it makes sense to define each one as a
distinct type (Fig. 3A, left). However, if they are strongly overlapping
such that the resulting data distribution is not even bimodal (Fig. 3A,
right), describing the distribution by two types is not useful, and
identifying the two types by clustering will not work reliably, either.
But there are also scenarios in between, where the distinction is not as
straightforward (Fig. 3A, middle). Thus, the question of whether a
distribution is discrete or forms a continuum does not have a binary
answer – it is rather a matter of degree.

To understand to what degree our dataset forms a continuum,we
devised a simple procedure based on synthetic data that emulates the
real data to some extent but allows us to manipulate the degree of
separation. The synthetic data was generated from a Gaussianmixture
model (GMM) fit to our morphological embeddings, from which we
kept the clustermeans andweights but replaced the covariancematrix
to be spherical with varying variances (σ2). Following previous esti-
mations of number of excitatory cell types in the rodent sensory
cortex6,7,9,14,18,22, we generated synthetic data distributions with 20
clusters (Fig. 3B), as well as with 10 and 40 clusters as controls (Sup-
plementary Fig. 5). When the variance was small (σ2 = 0.05), all clusters
were clearly distinct (Fig. 3B, left). Aswe increased the variance to 1, the
distribution became more and more continuous (Fig. 3B, right). At
intermediate values of 0.3 or 0.5 the synthetic data distribution qua-
litatively resembled the real data (Fig. 3D).

To make the comparison more quantitative, we asked two ques-
tions, which can be answered using the synthetic data for which the
ground truth generating process is known. First, we asked underwhich
conditions we could reliably identify the underlying clusters that
generated the data (Fig. 3C). To do so, we assumed we did not know
the generative process and clustered the synthetic data repeatedly by
fitting Gaussian mixture models (GMMs) with varying number of
components and random initial conditions. We found that in the
extreme scenario,when all clusterswere clearly separated, the result of
the clustering was highly consistent across runs when the number of
clusters matched the ground truth (Fig. 3C; ARI ≥0.85 for σ2 ≤ 0.1 and
number of ground truth components equal to number of GMM com-
ponents). As the degree of overlap between the clusters increased, the
consistency of the clustering result decreased and the optimal number
of clusters was increasingly less clearly defined. For a larger degree of
overlap (σ2 > 0.5), the consistency of clusterings decreased mono-
tonically with the number of clusters, and no optimal number of
clusters could be determined. The same was true for the real data
(Fig. 3E): There was no noticeable peak in the ARI across different
numbers of clusters, suggesting that the scenario with σ2 ≥ 0.5 is rea-
listic in this regard (Neuronal data: ARI = 0.63 for 20 clusters; com-
pared to ARI = 0.62 for 20 clusters and σ2 = 0.5 for the synthetic data).

Next, we investigated the degree towhich individual clusters were
distinct from their neighboring clusters. Even though certain parts of
the distribution appeared continuous, there could be clusters that are

Fig. 3 | Cluster versus continuum analysis. A Histograms of samples from a 1d
Gaussian mixture (n = 30,000, number of components = 2) in green and the
underlying mixture components with means μ1 = − 1 and μ2 = 1 in yellow. Data
distributions evolve from discrete to continuous by increasing the standard
deviation (SD) from left to right. B t-SNE representation of synthetic data
(n = 32,571, perplexity = 300). Synthetic data is sampled from Gaussian mixtures
with 20 components.Clustermeans andweights areestimated fromneuronal data.
Isotropic variance is set to obtain data evolving from discrete clusters to uniform
distributions. Grey insets (1–6) show histograms of two sample clusters (12 and 1)
and their nearest neighbors (0 and 17, respectively) projected onto the direction
connecting their cluster means (left), as well as the cumulative distribution of the
samples assigned to these two clusters' along this direction (right). The “dip” value
represents the dip statistic, a measure of bimodality of a distribution (higher =
more bimodal).CMean adjusted rand index (ARI) of 100GMMswith an increasing
number of components fit to the synthetic datasets. The correct number of

underlying components can be identified as long as the variance in the data is not
too high (< 0.5 for 20 components). D t-SNE representation (n = 32,571, perplex-
ity = 300) of neuronal data colored by cluster membership (GMM with 20 com-
ponents). Grey insets (7 & 8) show 1d projections of clusters 12 and 1 onto the line
connecting their means with their nearest neighbors (0 and 17, respectively).
Cumulative distributions show that while there is a gap between cluster 12 and its
neighbors, there is nonebetween cluster 1 and its neighbors.ECluster analysis as in
(C) for neuronaldata.No specificnumber of components canbe recovered.F t-SNE
representation of neuronal data overlaid with nearest neighbor graph between
clusters. The line width indicates the dip statistic (thicker = more connected). G.
Maximum dip statistic between all clusters and their nearest neighbor for the
synthetic data with 20 components and varying variance (yellow curve) and for the
neuronal data clustered with 20 components (red dashed line). Source data are
provided as a Source Data file.
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separable. To address this question, we built a k-nearest-neighbor
graph from the clustering output, connecting each cluster to its k = 3
nearest neighbors. We then quantified for each pair of neighboring
clusters how separated they are. To do so, we projected all data points
assigned to the pair onto the direction connecting the two cluster
means (Fig. 3B, insets left) and computed the dip statistic23. The dip
statistic measures how bimodal a distribution is by computing how
much its empirical cumulative distribution deviates from that of the
closest uniformdistribution (Fig. 3B, insets right). It is close to zero for
unimodal distributions and increases with increasing separation of the
two modes of a bimodal distribution. This analysis confirmed the
qualitative impression from the t-distributed stochastic neighbor
embedding (t-SNE;24) that the layer 5 ET cluster (purple cluster 12 in
Fig. 3B, D) was separated more from its nearest neighbor (cluster 0,
green) than two representative example clusters from layer 2/3 (clus-
ters 1 and 17, red and teal), which were not separated and appeared to
divide a continuum more or less arbitrarily. These two patterns of
results in the neuronal datawere reproducedwell by the synthetic data
with a standard deviation of 0.5 (Fig. 3B, insets 5 & 6). Examination of
the entire nearest-neighbor graph showed that layers 2–4, including
the upper part of layer 5, form a continuum with no neighboring
clusters being well-separated, clusters in layer 5 were more distinct,
and two clusters in layer 6 (inverted and subplate neurons) stood out
from a larger clique of layer 6 clusters (Fig. 3F). Over the entire dataset,
the maximum dip statistic (maximally separated clusters) of the neu-
ronal data was in between the maximal dip statistic for the synthetic
data with σ2 = 0.3 and σ2 = 0.5 (Fig. 3G), again suggesting that the
qualitative visualization by t-SNE captures the underlying structure of
the data well.

The analyses presented so far established that our learned
morphological embeddings form mostly a continuum. Could this
result be caused by our learning methods? We found no evidence
that this was the case, as using a different contrastive learning
objective (Supplementary Fig. 7) to train GraphDINO and varying
model hyperparameters (Supplementary Fig. 6) produced the same
result. Similarly, using handcrafted morphometrics from earlier
studies7,18 on our data did not change our conclusions (Supplemen-
tary Fig. 9, Supplementary Note 1). Additionally, we employed alter-
native dimensionality reduction techniques with varying settings
(Supplementary Fig. 8) to ensure that our interpretation is not
dependent on t-SNE for visualization.

The landscape of morphological variation across layers
Given the results from the previous section, we conclude that exci-
tatory morphologies were mostly organized along a continuum, with
only a few distinct clusters in the deeper layers. Therefore, we did not
base our subsequent analyses on a set of m-types as previous studies

did but instead investigated the major axes of variation within the
morphological embedding space. The cortical organization into
layers is well established, so we separated cells by cortical layer. We
determined the layer boundaries by training a classifier using our 32-
dimensional morphological embeddings and a set of 922 neurons
manually assigned to layers by experts (Fig. 2D, F, G). As expected,
the inferred layer boundaries indicated that layer 4 was approxi-
mately 20% thicker in V1 than in higher visual areas RL and AL
(Fig. 2G; mean ± SD: 118 ± 6 μm in V1 vs. 97 ± 6 μm in HVA), the
difference being compensated for by layers 2/3 and 6 each being
approximately 10 μm thinner. In the following, we proceed by
assigning neurons to layers based on their soma location relative to
these inferred boundaries.

To visualize the main axes of morphological variation within
each layer, we performed nonlinear dimensionality reduction using
t-SNE and identified morphological features that formed gradients
within the t-SNE embedding space. Based on visual inspection, we
found the following six morphological metrics to account well for a
large fraction of the dendritic morphological diversity in our dataset
(see Fig. 4 for an illustration): (1) depth of the soma relative to the pia,
(2) height of the cell, (3) total length of the apical dendrites, (4) width
of the apical dendritic tree, (5) total length of the basal dendrites, and
(6) location of the basal dendritic tree relative to the soma
("basal bias”).

Layer 2/3: Width and length of apical dendrites decrease
with depth
In layer 2/3 (L2/3), we found a continuum of dendritic morphologies
that formed a gradient from superficial to deep, with deeper neurons
(in termsof somadepth) becoming thinner and less tufted (Fig. 5A L2/3
a,b,c). The strongest predictors of the embeddings were the depth of
the soma relative to the pia and the total height of the cell (coefficient
of determination R2 > 0.9; Fig. 5B L2/3; Supplementary Table A.3).
These two metrics were also strongly correlated (Spearman’s rank
correlation coefficient, ρ = 0.93; Fig. 5C L2/3; Supplementary Table 4),
since nearly all L2/3 cells had an apical dendritic tree that reached to
the pial surface (see example morphologies in Fig. 5A L2/3, top). L2/3
cells varied in terms of their degree of tuftedness: both the total length
and width of their apical tuft decreased with the depth of the soma
relative to the pia (Fig. 5A L2/3 b,c). L2/3 cells also varied along a third
axis: the skeletal length of their basal dendrites (Fig. 5A L2/3 d), but this
property was not strongly correlated with either soma depth or shape
of the apical dendrites (Fig. 5C L2/3).

Layer 4: Small or no tufts and some cells’ basal dendrites avoid
layer 5
The dendritic morphology of layer 4 (L4) was again mostly a con-
tinuumand appeared to be a continuation of the trends from L2/3: The
skeletal length of the apical dendrites was shorter, on average, than
that ofmost L2/3 cells (Fig. 5A L4 b) and approximately 20%of the cells
were atufted. Within L4, the total apical skeletal length was not cor-
related with the depth of the soma (ρ = 0.0; Fig. 5C L4; Supplementary
Table 4), suggesting that it forms an independent axis of variation.
Considerable variability was observed in terms of the total length of
the basal dendritic tree, but – as in L2/3 – it was not correlatedwith any
of the other properties.

Our data-driven embeddings revealed another axis of variation
that hadpreviously not been considered important: the location of the
basal dendritic tree relative to the soma ("basal bias”; Fig. 4). We found
that many L4 cells avoided reaching into L5 with their dendrites
(Fig. 5A L4 c). As a result, the depth of the basal dendrites was antic-
orrelatedwith the depth of the soma (ρ = −0.29; Fig. 5A L4 c and Fig. 5C
L4; Supplementary Table 4). We will come back to this observation
later (see Section “Layer 4 cells avoiding layer 5 are located primarily in
primary visual cortex”).

Fig. 4 | Schematic of morphometric descriptors computed from neuronal
skeletons and their labeled compartments. Soma depth: Depth of the centroid
of the soma relative to the pia. Height: Extent of the cell in y-axis. Total apical
length: Total length of the skeletal branches of the apical dendrites. Apical width:
Maximum extent of the apical dendritic tree in the xz-plane. Total basal length:
Total length of the skeletal branches of the basal dendrites. Basal bias: Depth in
y-axis of center of mass of basal dendrites relative to the soma.
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Layer 5: Thick-tufted cells stand out
Layer 5 (L5) showed a less uniformly distributed latent space than L2/3
or L4 (Figs. 5A L5, 3F). Most distinct was the cluster of well-known
thick-tufted pyramidal tract (PT) cells6–10 on the bottom right (Fig. 5A
L5 d, light green points), also known as extratelencephalic (ET) pro-
jection neurons. These cells accounted for approximately 17% of the
cells within L5 (based on a classifier trained on a smaller, manually
annotated subset of the data; see Methods). They were restricted

almost exclusively to the deeper half of L5 (Fig. 5A L5 a and d, inset 2; C
inset top right), and compared to other L5 cells, they have the longest
skeleton for all three dendritic compartments: apical, basal, and
oblique.

Another morphologically distinct type of cell was apparent at the
end of the layer 5 spectrum: the near-projecting (NP) cells7,25 with their
long and sparse basal dendrites (Fig. 5A L5 d, inset 3). These cells
accounted for approximately 4% of the cells within L5. They tended to
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scores of the six morphometric descriptors (see Fig. 4) per layer showing the
strength as predictors of the 32d embeddings. C Spearman’s rank correlation
coefficient between morphometric descriptors per layer. Layer 2/3 (blue) Con-
tinuum of dendritic morphologies with thinner and less tufted neurons in

increasing distance to the pia. Layer 4 (turquoise) Continuation of L2/3 trendswith
shorter apical dendrites and more atufted cells. Many cells avoid reaching den-
drites into L5 (basal bias). Layer 5 (green) Clustering of thick-tufted ET andNPcells.
Upper L5 cells resemble L4 cells that avoid reaching into L5, indicating too strict
laminar borders. Layer 6 (orange) Continuumwith a largemorphological diversity,
e.g. in cell heights, and existence of horizontal and inverted pyramidal neurons.
Source data are provided as a Source Data file.
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send their dendrites deeper (relative to the soma), had little or no
obliques, and tended to have small or no apical tufts.

The remaining roughly 80% of the cells within L5 varied con-
tinuously in terms of the skeletal length of the different dendritic
compartments.While therewas a correlation between apical and basal
skeletal length (apical vs. basal: ρ = 0.43; Fig. 5 L5 C; Supplementary
Table 4), there was also a substantial degree of diversity. Within this
group, there was no strong correlation ofmorphological features with
the location of the soma within L5 (depth vs. apical length ρ = 0.2,
depth vs. basal ρ = 0.06; Fig. 5 L5 C; Supplementary Table 4).

In upper L5, we found a group of cells that resembled the L4 cells
whose dendrites avoid L5 (Fig. 5A L5 d, inset 1). These cells were
restricted to the uppermost portion of L5 and morphologically
resembled L4 cells by being mostly atufted and exhibiting upwards
curved basal dendrites. We refer to these cells as displaced L4 cells.
Their presence could be caused by our piece-wise linear estimation of
the layer boundaries being not precise enough. Alternatively, it could
suggest that there are no precise laminar boundaries based on

morphological features of neurons, but instead, different layers blend
into one another as observed by previous studies9,19.

Layer 6: Long and narrow, oblique and inverted pyramidal
neurons
Dendritic morphology in layer 6 (L6) also formed a continuum with a
large degree of morphological diversity. The dominant feature of L6
was the large variety of cell heights (R2 > 0.9; Fig. 5 L6B; Supplementary
Table 3). Overall, the height of a cell was not strongly correlated with
its soma’s location within L6 (ρ = −0.13; Fig. 5 L6 C; Supplementary
Table 4). Unlike other layers, where the apical dendrites usually reach
all the way up to layer 1, many cells in L6 have shorter apical dendrites.
However, due to tracing errors, our analysis overestimated the number
of such short cells. We therefore manually inspected 183 putative
atufted early-terminating neurons within L6 and found that, among
those, 45% were incompletely traced, whereas 55% were true atufted
cells whose apical dendrite terminated clearly below L1 (Section
“Manual validation of apical skeletons“).

As described previously7,9, the dendritic tree of L6 cells is nar-
rower than in the layers above. Also consistent with previous work, we
found a substantial number of horizontal and inverted pyramidal
neurons, where the apical dendrite points sideways or downwards,
respectively (Fig. 5A L6d, inset 1 & 6). However, apicals of inverted and
horizontal cells are currently not detected by the automatic com-
partment identification (see companion paper17), rendering an auto-
matic analysis of the apical dendrites in layer 6 currently unreliable.
This does not affect the learned embeddings, as GraphDINO is trained
without knowledge about the differentiation of dendritic
compartments.

Pyramidal neurons are less tufted in V1 than in higher
visual areas
After our layer-wise survey of excitatory neurons’ morphological fea-
tures, we next asked whether there are inter-areal differences between
primary visual cortex (V1) and higher visual areas (HVAs). The total
length of the apical dendrites of neurons in V1 was significantly shorter
than for neurons in HVA (Fig. 6A): For L2/3, neurons in V1 had on
average 16% shorter apical branches than in HVA (mean ± SD: 1,423 ±
440 μm in V1 vs. 1,688 ± 554 μm in HVA; t-test: p < 10−10, Cohen’s
d = 0.53). Similarly, L4 neurons in V1 had, on average 16% shorter apical
branches than in HVA (851 ± 264 μm vs. 1,019 ± 313 μm; p < 10−10,
d = 0.58). In L5, neurons in V1 had on average 14% shorter apical
branches than L5 neurons in HVA (1,326 ± 661 μm vs. 1,549 ± 745 μm;
p < 10−10, d = 0.32). While the trend continued in L6, the difference in
apical length between V1 andHVAneuronswas smaller. Therewasonly
a 4% increase in apical length inHVAcompared to V1 (1,112 ± 383μmvs.
1,159 ± 397μm;p= 1.810−6,d=0.12). For this analysis, onlyneuronswith
identified apical dendrites were taken into account (see companion
paper17).

Upon closer inspection, we observed that L4 contained sub-
stantiallymore atufted neurons in V1 than in higher visual areas RL and
AL (Fig. 6A).We clustered each layer’smorphological embeddings into
15 clusters using aGaussianMixtureModel and looked for clusters that
were restricted to particular brain areas. Clusters that were clearly
confined to V1 or HVAs were primarily found in L4. When classifying
(manually, at the cluster-level) L4 neurons into atufted, small tufted,
and tufted, we observed that atufted neurons were almost exclusively
located in V1, while tufted neurons were more frequent in
HVAs (Fig. 6B).

Layer 4 cells avoiding layer 5 are located primarily in the pri-
mary visual cortex
We observed a second area difference related to the morphological
trait of L4 neurons described above. Recall that these cells’ dendrites
avoid reaching into L5. Interestingly, these cells were located in a very

Fig. 6 | Inter-areal differences between primary visual cortex (V1) and higher
visual areas (HVAs). A Side view of the cortical volume. Each point represents the
soma location of one neuron and is colored by the apical skeletal length of the
respective neuron (dark = no apical, bright = maximal apical skeleton length).
Projection fromthe side orthogonal to theV1/HVAborder after a 14-degree rotation
around the y-axis (vertical dashed line); top: pia; bottom: white matter. B Top view
of the volume showing the density of atufted (left), small tufted (middle), and
tufted (right) L4 cells. Atufted neurons are mostly confined to V1, while tufted
neurons are more abundant in HVA. Dashed lines: area borders between primary
visual cortex (V1), anterolateral area (AL), and rostrolateral area (RL), estimated
from reversal of the retinotopic map measured using functional imaging16. Source
data are provided as a Source Data file.
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narrow stripof approximately 50μmabove the border between L4 and
L5 (Fig. 7A). Moreover, they were atufted and almost exclusively
located in V1 (Fig. 7B).

Themorphological property of avoiding layer 5 has a functional
correlate
Lastly, we asked whether morphological variation can be linked to the
neurons’ functional properties. While an extensive investigation of the
structure–function relationship is beyond the scope of this study, we
took one morphological aspect revealed by our study as a proof of
principle: We investigated whether L4 neurons that avoided reaching
into layer 5 with their dendrites differ in their tuning to visual stimuli
from other neurons in layer 4. To address this question, we made use
of the fact that for many of the neurons in our dataset, we have mea-
surements of how they respond to natural stimuli16. We leveraged a
functional digital twin – a model that accurately predicted the
response of a neuron to arbitrary visual stimuli26 – to extract a func-
tional bar code – a vector embedding fi that describes the input-output
function of a neuron analogous to how our morphological bar codes
describe their morphology (Fig. 7C). From this functional bar code of
each neuron, we predicted one of its morphological properties: the
basal bias metric. We found that the basal bias of L4 neurons could be
predicted reasonably well from the neurons’ response functions to
visual stimuli (Fig. 7D; Pearson correlation ρ = 0.41, p < 10−10). This
analysis could be confounded by cortical depth being predictive of the
basal bias. However, a model predicting the basal bias from cortical
depth and functional bar code explained significantlymore variance in
the basal bias metric than one using only cortical depth as predictor
(R2 = 0.28 for both predictors vs. 0.21 for depth only; ρ = 0.53 and
ρ = 0.46, respectively; Fisher’s z-test of difference between the corre-
lation coefficients: p = 0.0015).

Discussion
In summary, our data-driven unsupervised learning approach identi-
fied the known morphological features of excitatory cortical neurons’
dendrites and enabled us to make four main observations: (1) Super-
ficial L2/3 neurons are wider than deep ones; (2) L4 neurons in V1 are
less tufted than those in HVAs; (3) the basal dendrites of a subset of
atufted L4 neurons in V1 avoid reaching into L5; (4) excitatory cortical
neurons form mostly a continuum with respect to dendritic mor-
phology, with some notable exceptions.

First, our finding that superficial L2/3 neurons are wider than
deeper ones is clearly visible in the data both qualitatively and quan-
titatively. A similar observation has been made recently in concurrent
work27.

Second, in L4, a substantial number of cells are completely atuf-
ted. Here we see a differentiation with respect to brain areas: com-
pletely atufted cells aremostly restricted toV1whileHVAneurons in L4
tend to be more tufted. Why would V1 neurons be less tufted than
those in higher visual areas? V1 – as the first cortical area for visual
information processing – and L4 – as the input layer, in particular –
might be less modulated by feedback connections than other layers
and higher visual areas. Therefore, these neurons might sample the
feedback input in L1 less than other neurons.

Third, we found that someneurons at the bottomof L4of V1 avoid
reaching into L5 with their dendrites. To our knowledge, this mor-
phological pattern has not been described before in the visual cortex.
Retrospectively, it can be observed in Gouwens and colleagues’ data:
their spiny m-types 4 and 5, which are small- or atufted L4 neurons,
show a positive basal bias (assuming their “basal bias y" describes the
same property; Gouwens et al.7; Supplementary Fig. 15). Whether such
cells are restricted to the bottom of layer 4 or are simply morpholo-
gically insdistinguishable from other cells when located more

Fig. 7 | Basal bias neurons in primary visual cortex (V1). A Side view of the
cortical volume. Each point represents the soma location of one neuron and is
colored by its respective basal bias (dark = negative basal bias: center of mass of
basal dendrites is above the soma; bright = positive basal bias: center of mass of
basal dendrites is below soma). B Example neuronal morphologies of basal bias
neurons (top) and top viewof the volume (as in Fig. 6B) showing horizontal density
distribution of L4 cells whose dendrites avoid reaching into L5 and who are mostly
located in V1 (bottom). C Functional digital twins can predict the functional

response of the neurons to input stimuli such as natural movies. The input-output
function of each neuron is described by a functional bar code fi26. Schematic
adapted from “Functional connectomics reveals general wiring rule inmouse visual
cortex'', Ding et al. bioRxiv 2023.03.13.531369; https://doi.org/10.1101/2023.03.13.
531369 under a CC BY license: https://creativecommons.org/licenses/by/4.0/.
D Predictions of basal bias metric from functional bar code fi using linear regres-
sion. Source data are provided as a Source Data file.
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superficially cannot be answered from our data. However, interest-
ingly, this morphological pattern correlated with the functional
properties of the neurons. While this is by no means an exhaustive
characterization of how morphology and function are related, this
result shows that they are and that such relationships can be identified
by data-driven methods. What function could avoiding L5 have?
Similarly to the non-existing tuft of these neurons, avoiding L5 could
support theseneurons in focusingon the thalamic input (which targets
primarily L4) and, thus, represent and distribute the feedforward drive
within the local circuit. It is, therefore, tempting to speculate that these
atufted, L5-avoiding L4 neurons might be precursors of spiny stellate
cells, which are nearly absent in the mouse visual cortex28, but exist
only in somewhat more developed sensory areas like barrel cortex or
in cat and primate V1.

Fourth, except from the well-known L5 extratelencephalic (ET)
projection neurons and some characteristic morphologies in L6 (sub-
plate and inverted cells), our data andmethods suggest that excitatory
neurons in the mouse visual cortex form mostly a continuum with
respect to dendritic morphology.

Previous studies, in contrast, work on the premise that discrete
cell types exist and categorize neurons into up to 20 m-types6–9,18,19,22,
most of them using clustering methods on morphological
features7,9,22,29. While they assume that each cluster corresponds to a
distinct m-type, they report the presence of variability within their
proposed m-types. Furthermore, their visualizations of morpho-
metrics per m-type depict further intra-class variability7,8,18. Thus, we
believe that our data is consistent with previous work, but our data-
driven, quantitative approach suggests that the morphological land-
scape of cortical excitatory neurons is better described as a con-
tinuum,with a fewnotable exceptions indeeper layers. This notion has
also been brought up recently by transcriptomics studies, which
observe continuous variation among cell types in cortex11,30–33 aswell as
subcortical areas34,35. Furthermore, variation within transcriptomic
types found in several of the studies aligns with variation observed in
other modalities11,32. Scala et al.11 suggest that neurons are organized
into a small number of distinct and broad “families”, each of which
exhibits substantial continuous variation among its familymembers. In
their case, a substantial degree ofmorphological variationwas evident
among excitatory neurons of the IT type, and this variation correlated
with transcriptomic variation within the type as well as the cortical
depth of the neuron – resembling the gradual decrease in the width of
the apical tuft with increasing cortical depth we observed. Our analysis
supports the notion of broad “families” with intrinsic variation: exci-
tatory cells can bemostly separated by layers into roughly a handful of
families, each of which contains a substantial degree of variation in
terms of morphology, which might also co-vary with other modalities.

This result does not rule out the possibility that there are in fact
distinct types; it simply suggests that features beyond dendritic mor-
phology need to be taken into account to clearly identify these types.
For instance, the results of ref. 18 suggest that the 5P-NP cells can be
separated from other layer 5 pyramidal neurons by considering the
class of interneurons that target them. It is also not guaranteed that
our data-driven method identifies all relevant morphological features.
Every method has (implicit or explicit) inductive biases. We tried to
avoid explicit human-defined features, but by choosing a graph-based
input representation, we provided different inductive biases than, for
instance, a voxel-based representation or one based on point clouds.
However, the fact that we could reconcile known morphological fea-
tures, discover novel ones, and achieve goodclassification accuracyon
an annotated subset of the data suggests that our learned embeddings
indeed contain a rich and expressive representation of a neuron’s
dendritic morphology.

Our study was done on a single animal, which presents both
advantages and disadvantages. The main advantage of this design is
that our dataset is not contaminated by variability across animals (e.g.,

“batch effects” due to data processing or variation across animals).
Such variability could blur otherwise distinct boundaries between cell
types and make a discrete organization appear more continuous than
it actually is. By sampling within one animal, we control for this
potential confound. However, this design comes with the obvious
disadvantages of N = 1: We cannot assess the variability across animals
and some of the conclusions may be specific to this one individual
rather than the population of mice in general.

In summary, recent studies of morphological as well as tran-
scriptomic characteristics of cortical excitatory neurons suggest the
presence of a few broad families of cell types, each exhibiting con-
siderable intrinsic variation11,32,33. Due to this continuous variation, a
separation into finer cell types within these families is ambiguous. This
raises the question of whether it is feasible to establish a compre-
hensive atlas of cortical excitatory cell types. We suggest that we
should rather think of the variability across cells as axes of variation,
understand how these axes of variation correlate between modalities,
and whether they are just insignificant biological heterogeneity or
indeed functionally relevant.

Methods
Dataset
The dataset consists of a 1.3 × 0.87 × 0.82mm3 volume of tissue from
the visual cortex of an adult P75–87 mouse, which has been densely
reconstructed using serial section electron microscopy (EM)16. We
used the subvolume 65, which covers approximately
1.3 × 0.56 × 0.82mm3. It includes all layers of the cortex and spans the
primary visual cortex (V1) and twohigher visual areas, the anterolateral
area (AL) and the rostrolateral area (RL). We refer to the original paper
on the dataset16 for details on the identification and morphological
reconstruction of individual neurons.

Skeletonization and cell compartment label assignment
The EM reconstructions yielded neuronal meshes. These meshes
might be incomplete or exhibit different kinds of errors, including
merges of other neuronal or non-neuronal compartments onto the
neurons. Therefore, an automatic proof-reading pipeline that resulted
in neuronal skeletons was executed (companion paper; Celii et al.17).

For the skeletal detection from the reconstructed meshes, the
meshes were first downsampled to 25% of their resolution and made
watertight. Then, glia and nuclei meshes were identified and removed.
For the remaining meshes, the locations of the somata were identified
using a soma detection algorithm36. Each neurite submesh was then
skeletonized using a custom skeletonization algorithm that trans-
formed axonal anddendritic processes into a series of line segments to
obtain the skeleton (companion paper; Celii et al.17). For each skeleton,
the highest probability axon subgraph was determined, and all other
non-soma nodes were labeled as dendrites. A final heuristic algorithm
classifies subgraphs of dendritic nodes into compartments, such as
apical trunks generally projecting from the tophalf of somas andwith a
general upward trajectory and obliques as projections off the apical
trunks at an approximate 90-degree angle. For further details on the
compartment label assignment, please see companion paper17.

Coordinate transformations
The EM volume is not perfectly aligned. First, the pial surface is not a
horizontal plane parallel to the (x, z)-plane, but is instead slightly tilted.
Second, the thickness of the cortex varies across the volume such that
the distance from the pia to the white matter is not constant. Without
any pre-processing, an unsupervised learning algorithmwould pick up
these differences and, for instance, find differences of layer 6 neurons
across the volume simply because in some parts of the volume, they
tend to be located deeper than in others, and their apical dendrites
that reach to layer 1 tend to be larger. Using relative coordinates solves
such issues if pia and white matter correspond to planes
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(approximately) parallel to the (x, z)-plane. To transform our coordi-
nate system in such standardized coordinates, we first applied a
rotation about the z-axis of 3.5 degrees. This transformation removed
the systematic rotationwith respect to the native axes (Supplementary
Fig. 1B). To standardize measurements across depth (y-axis) and to
account for differential thickness of the cortex, we estimated the best
linear fit for both pial surface andwhitematter boundary by using a set
of manually placed points, which are located on a regular grid along
(x, z) with a spacing of 25 μm. For each (x, z)-coordinate, the y-coor-
dinate was normalized such that the pia’s y coordinate corresponded
to the average depth of the pia and the same for the whitematter. This
transformation resulted in an approximation of the volume where the
pia and white matter boundaries are horizontal planes orthogonal to
the y-axis and parallel to the (x, z)-plane. Supplementary Fig. 1C shows
example neurons before and after normalization. All training and
subsequent analysis were performed on this pre-processed data.

Expert cell type labels
For a subset of the neurons in the volume experts labeled neurons
according the following cell types: layer 2/3 and 4 pyramidal neurons,
layer 5 near-projecting (NP), extratelencenphalic (ET) and intrate-
lencenphalic (IT) neurons, layer 6 intratelencenphalic (IT) and cortico-
thalamic (CT) neurons, Martinotti cells (MC), basket cells (BC), bipolar
cells (BPC) and neurogliaform cells (NGC). Cell types were assigned
based on visual inspection of individual cells, taking into account
morphology, synapses and connectivity, and nucleus features and
their (x, y, z)-location. All neuronswere taken fromone 100-μmcolumn
in the primary visual cortex (see companion paper, Schneider-Mizell
et al.18). We did not use neurons with expert labels to train GraphDINO,
but used them only for evaluation.

Morphological feature learning using GraphDINO
For learning morphological features in an unsupervised, purely data-
driven way, we used a recently developed machine learning method
called GraphDINO15. GraphDINO maps the skeleton graph of a neuron
onto a 32-dimensional feature vector, which we colloquially refer to as
the neuron’s “bar code”. For training GraphDINO, each neuron’s ske-
leton was represented as an undirected graph G = (V, E). V is the set of
nodes fvigNi = 1 and E the set of undirected edges E = {eij = (vi, vj)} that
connect two nodes vi, vj. Each node has a feature vector attached to it
that holds the 3dCartesiancoordinate of thenode, relative to the soma
of the neuron. The soma has the coordinate (0, 0, 0), i.e. is at the origin
of the coordinate system. Because axons have not been reconstructed
well in the data yet, we focused on the dendritic skeleton only and
removed segments labeled as axon.We trainedGraphDINOona subset
of the dataset, retaining 5113 neurons for validation and 2941 neurons
for testing. The test set was chosen to contain the 1011 neurons that
were labeled by expert anatomists into morphological cell types
(Section “Expert cell type labels”;18), while the other 1930 neuronswere
i.i.d. sampled. The training and validation sets were i.i.d. sampled from
the remaining neurons with a 90%−10% split (Supplementary Fig. 4).

GraphDINO is trained by generating two “views” of the same input
graph by applying random identity-preserving transformations
(described below). These two views are both encoded by the same
neural network. The training objective is to maximize the similarity
between the embeddings of these two views. To obtain the two views
of one input graph, we subsampled the graph, randomly rotated it
around the y-axis (orthogonal to pia), dropped subbranches, and
perturbed node locations. When subsampling the graph, we randomly
dropped all but 200 nodes, always retaining the branching points.
Rotations around the y-axis were uniformly distributed around the
circle. During subbranch deletion we removed n = 5 subbranches. For
node location jittering, we used σ = 1. In addition, the entire graph was
randomly translatedwith σ = 1. For further details on the augmentation
strategies, see Weis et al.15.

The Adjacency-Conditioned Attention network architecture had
seven AC-Attention layers with four attention heads each. The
dimensionality of the latent representation z 2 Rd1 was set to d1 = 32,
and the dimensionality of the projection p 2 Rd2 was d2 = 5000. All
other architecture details are as described in the original paper15. For
training, we used the Adam optimizer37 with a batch size of 128 for
50,000 iterations. The learning rate was linearly increased to 10−3

during the first 1000 iterations and then decayed using an exponential
schedule with a decay rate of 0.5.

We ran ablation experiments using different dimensionalities for
the latent space d1∈ {16, 32, 64, 128} and varied the number of training
iterations i ∈ {25,000, 50,000, 100,000, 200,000} (Supplementary
Fig. 6). Additionally, we replaced the cross-entropy loss with the con-
trastive SimCLR loss38 and trained variants with different mini-batch
size b∈ {128, 1024, 2048} (Supplementary Fig. 7), as contrastive losses
have been shown to be sensitive to the number of negative samples
used in the loss38. Training with b = 2048 diverged.

Morphological clustering
For qualitative inspection of the data and the analyses in Figs. 6B
and 7B, we clustered the neurons using the learned vector embedding
of each neuron’s morphological features. We fit a Gaussian Mixture
Model (GMM) with a diagonal covariance matrix using scipy39 on the
whole dataset as well as per cortical layer using 60 clusters and 15
clusters, respectively. As we found no evidence that these clusters (or
anyother clusteringwith fewer ormore clusters) represent distinct cell
types,wedidnotuse this clustering todefine cell types but rather think
of them as modes or representing groups of neurons with similar
morphological features.

Data quality control steps
The dataset was generated by automatic segmentation of EM images
and subsequent automatic processing into skeletons. As a con-
sequence, not all cells are reconstructed perfectly. There is a sub-
stantial fraction of wrongly merged or incompletely segmented cells.
We used a combination of our learned GraphDINO embeddings and
supervised classifiers trained on a subset of the neurons (n = 1011)
whichweremanually proofread and annotated by experts (see Section
“Expert cell type labels” and companion paper, Schneider-Mizell
et al.18). Our quality control pipeline was as follows: First, we computed
GraphDINO embeddings on the full dataset of 54,192 neurons
(including both excitatory and inhibitory neurons). Next, we removed
neurons that are close to the boundaries of the volume, as these
neurons areonly partly reconstructed. After this step,wewere leftwith
43,666 neurons. Within this dataset, we identified neurons that are
incorrectly reconstructed using a supervised classifier described in the
next section, reducing the dataset to 37,362 neurons. Subsequently,
we identified interneurons using a supervised classifier described in
the next section, reducing the dataset to 33,997 excitatory neurons.
Finally, on this dataset we manually proofread around 480 atufted
neurons. As a result, we identify and remove another set of 2684
neurons whose reconstructions were incomplete, leaving us with a
final sample size of 31,313 putative excitatory and correctly recon-
structed neurons for our main analyses.

Supervised classifiers
To identify reconstruction errors and interneurons, we used a subset
of the dataset (n = 1011) that was manually proofread and annotated
with cell type labels by experts (see Section “Expert cell type labels”
and companion paper, Schneider-Mizell et al.18). Based on these and
additional neurons we identified as segmentation errors, we trained
classifiers to detect segmentation errors, inhibitory cells and cortical
layer membership using our learned 32-dimensional vector embed-
dings of the neurons’ skeletons (see Section “Morphological feature
learning using GraphDINO”). In our subsequent analysis, we focused
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on neurons that were identified as complete and excitatory by our
classifier. We used the inferred cortical layer labels to perform layer-
specific analyses.

For all classifiers, we used ten-fold cross-validation on a grid
search to find the best hyperparameters. We tested logistic regression
with the following hyperparameters: type of regularization (none, L1,
L2, or elastic net), regularization weight C ∈ 0.5, 1, 3, 5, 10, 20, 30, and
whether to use class weights that are inversely proportional to class
frequencies or no class weights. In addition, we tested support vector
machines (SVMs) with the following hyperparameters: type of kernel
(Linear, RBF or polynomial), L2 regularization weight
C∈ 0.5, 1, 3, 5, 10, 20, 30 and degree of polynomial d∈ 2, 3, 5, 7, 10, 20
for the polynomial kernel and whether to use class weights or no
weights. After having determined the optimal hyperparameters using
cross-validation, we retrained the classifier using the optimal hyper-
parameters on its entire labeled set.

Removal of fragmented neurons. To remove fragmented neurons
prior to analysis, we trained a classifier to differentiate between the
manually proofread neurons from all layers (n = 1011) and fragmented
cells (n=240).We identified fragmentedcells usingour clusteringof the
vector embeddings of the whole dataset without boundary neurons
(n = 43,666) into 25 clusters per layer andmanually identify clusters that
contained fragmentedcells (2–3 clusters per layer).We then sampled60
fragmented cells per layer as training data for our classifier.

We trained a support vectormachine (SVM)using cross-validation
as described above. Its cross-validated accuracy was 94% (Supple-
mentary Fig. 3A). The best hyperparameters were: polynomial kernel
of degree 3 and C = 3. We used those hyperparameters to retrain the
classifier on the full training set of 1251neurons.Using this classifier, we
inferred whether a neuron is fragmented for the entire dataset
(n = 43,666). We then removed cells predicted to be fragmented
(n = 6304) from subsequent analyses.

To validate the classification into fragmented and whole cells, we
manually inspected ten neurons thatwere not in “fragmented” clusters
before classification but were flagged as fragmented by the classifier.
Nine out of ten had missing segments due to segmentation errors or
due to apical dendrites leaving the volume.

Removal of inhibitory neurons. Analogously, we trained a classifier to
predict whether a neuron is excitatory or inhibitory by using the
manually proofread and annotated neurons (n = 1011) (Section “Expert
cell type labels”). As input features to the classifier, we used our
learned embeddings and, additionally, two morphometric features:
synaptic density on apical shafts (number of synapses per micrometer
of skeletal length except those located on spines) and spine density
(number of spines per micrometer of skeletal length). These two fea-
tures have been shown to separate excitatory from inhibitory neurons
well in previous work (see companion paper, Celii et al.17). The anno-
tated dataset contains 922 excitatory and 89 inhibitory neurons.

We trained a logistic regression model. Its cross-validated accu-
racy was 99% (Supplementary Fig. 3B). The best hyperparameters
were: L2 regularization (C = 5) and using class weights. We used those
hyperparameters to retrain on the full training set of 1011 neurons.
Using this classifier, we inferred whether a neuron is excitatory or
inhibitory for the entire dataset after removing fragmented cells and
after the removal of 227 neurons that do not have spine and synapse
densities available (n = 37,135). We then removed all inhibitory cells
from subsequent analyses (n = 3138).

Inference of cortical layers. To determine cortical layer labels for the
entire dataset, we followed a two-stage procedure. First, we inferred
the layer of eachneuronusing a trained classifier. Then,wedetermined
anatomical layer boundaries based on the optimal cortical depth that
separates adjacent layers.

We first trained an SVM classifier for excitatory cells on the 922
manually annotated excitatory neurons by pooling the cell type labels
per layer. Its cross-validated balanced accuracy was 90% (Supple-
mentary Fig. 3C). The best hyperparameters were: polynomial kernel
of degree 5, C = 3. Using this classifier, we inferred the cortical layer of
all excitatory neurons (n = 33,997; Fig. 2).

The spatial distribution of inferred layer assignments was overall
well confined to their respective layers. As expected, there was some
spatial overlap of labels at the boundaries since layer boundaries are
not sharp.We nevertheless opted for assigned neurons to layers based
on their anatomical location rather than their inferred label. To do so,
we determined the optimal piece-wise linear function that separated
two consecutive layers. Thus, the layer assignments used for sub-
sequent analyses were purely based on the soma depth of each neuron
relative to the inferred layer boundaries – not on the classifier output.

Inferenceof cell type labels. In Fig. 5,we showcell type labels for layer
5. These were determined by training an SVM to classify the excitatory
neurons into cell types using the 922manually annotated neurons. The
cross-validated balanced accuracy of this classifier was 83% (Supple-
mentary Fig. 3D). The best hyperparameters were: polynomial kernel of
degree 2, C = 20, using class weights. Using this classifier, we inferred
cell type labels for all excitatory neurons after the removal of neurons
with cut apical dendrites (see next section) (n = 32,571).

Manual validation of apical skeletons
We found a significant fraction of atufted neurons across layers 4–6.
To determine the extent to which these cells are actually atufted or an
artifact of incomplete reconstructions, we manually inspected 479
neurons in Neuroglancer40 with respect to the validity of their apical
termination. During manual inspection, we annotated neurons’
reconstruction as “naturally terminating,” “out-of-bounds,” “recon-
struction issue” or “unsegmented region.” Reconstruction issues were
the case where the EM slice was segmented correctly, but the tracing
failed to connect two parts of the same neuron. Unsegmented regions
were the case where one or multiple EM images or parts thereof were
not segmented correctly, and therefore, the neuron could not be
traced correctly. In addition, we classified the neurons as either
“atufted,” “small tufted” or “tufted,” both before validation and after
correcting reconstruction errors.

For layer 4, we inspected 120 atufted neurons. Of those, 64% have
missing segments on their apical dendrites, and 36% have a natural
termination. Note, however, that 74% of the neurons had a consistent
tuft before and after validation. Even though parts of the apical den-
drite were missing, qualitatively, the degree of tuftedness did not
change. For atufted neurons, this means that their apical dendrite
merely terminated early, but this reconstruction error did not change
their classification as atufted. In layer 4, neurons with a natural ter-
mination end more superficially than neurons with missing segments.
We therefore excluded L4 neurons from the analysis whose apicals end
more than96μmbelow thepia to excludeneuronswith reconstruction
errors from our analysis. This threshold was selected such that the F1-
score is maximized, i.e. retaining as many atufted neurons with natural
termination, while removing as many neurons with missing segments
as possible. The threshold was computed on the 120 manually vali-
dated neurons. This process excluded 557 neurons from layer 4.

For layer 5, we inspected 176 neurons with early-terminating api-
cal dendrites. Of those, 59 showed a natural apical termination, while
117 had reconstruction issues or left the volume. We found no clear
quantitativemetric like the depth of the apical to exclude neuronswith
unnatural terminations. Therefore, we excluded neurons based on
their cluster membership from further analysis if the cluster contained
more than 50% of neurons with unnatural terminations. Of the 15
clusters, we excluded four, corresponding to 1258 out of 5858 L5
neurons.
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For layer 6, we inspected 183 neurons with early terminating
apicals. Of those, 100 showed a natural apical termination, while 83
had reconstruction issues or left the volume. Due to the slant of the
volume, long, narrow L6 cells near the volume boundary have a high
likelihood of leaving the boundary with their apical dendrite. There-
fore, we excluded all L6 neurons whose apical dendrite left the volume
(n = 867) prior to our analysis. We considered a neuron as leaving the
volume if the most superficial point of its apical tree is within a few
micrometers of the volume boundary.

Overall, we excluded 2684 neurons as a result of this manual
validation step, resulting in afinal sample size of 31,313 neurons used in
our analysis (Figs. 5–7).

Cortical area boundaries
Cortical area boundaries were manually drawn from retinotopic maps
of visual cortex taken before EM imaging. For further details, see
companion paper16.

Dimensionality reduction
For visualization of the learned embeddings, we reduced the dimen-
sionality of the 32d embedding vector to 2d using t-distributed sto-
chastic neighbor embedding (t-SNE;24) using the openTSNE package41

with cosine distance and a perplexity of 30 for t-SNE plots of individual
cortical layers and a perplexity of 300 for the whole dataset.

The perplexity of t-SNE needs to be set dependent on the dataset
size. We followed the recommendation of Kobak and Berens42 of setting
it toperplexityp=n/100,which led to theapproximateperplexityof 300
for our dataset of around 30,000excitatory cells. However, to show that
our interpretation is not restricted to this specific perplexity, we visua-
lized additional runs with p ∈ {30, 100, 1000} (Supplementary Fig. 8).

Additionally, we used UMAP43 and PaCMAP44 with different
numbers of neighbors p ∈ {30, 100, 300, 1000} to show that our
interpretation is not dependent on the use of t-SNE (Supplemen-
tary Fig. 8).

Visualization
For all plots displaying continuous morphometrics, the continuous
variable was discretized into ten percentiles for coloring.

Morphometric descriptors
We computed morphometrics based on the neuronal skeletons for the
analysis of the learned latent space. Morphometrics were not used for
learning the morphological vector embeddings. We computed mor-
phometrics based on compartment labels: soma, apical dendrites, basal
dendrites, and oblique dendrites (Section “Skeletonization and cell
compartment label assignment”). They are visualized in Fig. 4. Total
apical length is defined as the total length of all segments of the skele-
tons that are classified as apical dendrites. Total basal length is com-
puted analogously. Depth refers to the depth of the soma centroid
relative to the pia after volume normalization (Section “Coordinate
transformations”), where pia depth is equal to zero. Height is the
absolute difference between the highest and the lowest skeleton node
of a neuron in y-direction. Apical width refers to the widest extent of
apical dendrites in the (x, z)-plane. Basal bias describes the difference
between the soma depth and the center of mass of the basal dendrites
along the y-axis.Due to thedataset size, compartment labelingwasdone
automatically (see companion paper17). However, identifying apical
dendrites rule-based does not work well for all neurons. For instance, it
fails for the inverted L6 neurons17. For Fig. 5, we removed neurons for
which the automaticmorphometric pipeline failed. For layer 2/3: 10,196
of 10,564 neurons are included in the analysis, for layer 4: 7751 of 7775,
for layer 5: 4443 of 4600, and for layer 6: 8274 of 8374. The GraphDINO
feature spacehas the advantageofbeing independentof knowingwhich
branches are apical and which are basal dendrites. However, our
downstream analysis relies on it in certain parts (Figs. 5–7).

Statistics
Apical lengths in Section “Pyramidal neurons are less tufted in V1 than
in higher visual areas”werecomparedbetweenV1 andHVAper laminar
layerwith four independent two-tailed Student’s t-tests. The single-test
significance level of 0.01 was corrected to 0.0025 for multiple tests
using Bonferroni correction. Only neurons that have any nodes labeled
as apical were taken into account for this analysis. In L2/3, n = 6760
neurons were taken into account from V1 and n = 3436 from HVA; for
L4 n = 5217 (V1) and n = 2534 (HVA); for L5 n = 3708 (V1) and n = 1924
(HVA); and for L6 n = 3959 (V1) and n = 2618 (HVA).

Cluster analysis
Generation of synthetic data. To obtain synthetic data distributions
that are close to the neuronal data,wefirst fit GaussianMixtureModels
(GMMs) with the number of components n∈ {10, 20, 40} and diagonal
covariance matrices to the neuronal embeddings, extracting cluster
means and weights of the fit mixture components. Using these, we
subsequently generated synthetic data from Gaussian mixtures with
isotropic covariance matrices with increasing variances spanning the
space from distinctly separated clusters to continuous distributions
(Fig. 3B & Supplementary Fig. 5). We used variances
σ2 ∈ {0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1.0} for each
number of components n ∈ {10, 20, 40}, resulting in 27 synthetic
datasets. For each Gaussian mixture, we drew 32,571 samples, equiva-
lent to the number of analyzed excitatory neurons. Samples were 32-
dimensional, like the morphological embeddings.

ARI analysis. To judge whether the correct number of clusters can be
recovered, we split the data (both synthetic datasets and the neuronal
data) into training and validation data (90%–10% split). For each syn-
thetic dataset and the neuronal data, we fit 100 GMMs with a number
of components ∈ {7, 10, 15, 20, 40, 60, 80} and isotropic covariance
matrix. We then computed the pairwise adjusted rank index (ARI)
between the different clustering runs for the same number of com-
ponents and reported the average ARI on the validation set (Fig. 3B &
Supplementary Fig. 5). All visualizations show clustering runs with the
best log-likelihood score on the validation set (Fig. 3).

Unimodality versus bimodality of neighboring clusters. To examine
if two neighboring clusters (neighboring in terms of least Euclidean
distance between clustermeans) form a uni- or bimodal distribution,
we first projected the samples of the two clusters onto the line
connecting the two cluster means. We then visualized the 1d histo-
gram as well as the cumulative distribution function (CDF) of the
samples from both clusters. Additionally, we computed the dip
statistic23 to quantify how close two neighboring clusters are to
forming a unimodal distribution. The dip statistic was computed
using the python package diptest (https://pypi.org/project/diptest/).
We scaled the dip statistic with a factor of 4 such that the extreme
case of two delta distributions at xi and xjwith i ≠ j result in dip = 1. As
exemplified by the synthetic data, when neighboring clusters evolve
from discrete clusters to form a continuum, the dip statistic
decreases, and the CDF forms a smooth curve (Fig. 3B, grey
insets 1–6).

Connectivity graph. For each cluster of the Gaussian mixture model
with 20 components of the neuronal data, we computed the dip sta-
tistic to its three nearest neighbors based on Euclidean distance in the
32-dimensional embedding space. We thresholded the neighbor
selection by the average distance of all clusters to their third-nearest
neighbor to avoid including spurious connections between clusters
that do not have any close neighbors (threshold = 2.38 Euclidean
distance in latent space). The line width of the graph (Fig. 3F) was
determined as the inverse dip statistic between the nearest neighbors.
Additionally, we computed the maximum dip statistic between all
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clusters and their nearest neighbor for the neuronal data and the
synthetic datasets (Fig. 3G).

Prediction of morphological features from functional bar codes
The MICrONS dataset encompasses EM images as well as Calcium ima-
ging of the same portion of the visual cortex of one mouse16. The
companion paper byWang et al.26 created a digital twin of the functional
properties of the neurons from the Calcium imaging data (Fig. 7C). We
used the resulting functional embeddings of the neurons as input fea-
tures to a linear regressionmodel to predict the basal bias metric of the
layer 4 neurons, thereby predicting a morphological feature from the
functional properties of the neurons. There are 2347 L4 neurons in V1
with both functional and morphological data available. We performed
nested cross-validation to select hyperparameters and report test set
performance using 10-fold cross-validation for the inner and the outer
loop. To select hyperparameters, a grid search over regularization
strength α ∈ {0.01, 0.1, 0.5, 1, 5, 10} as well as L1 to L2 ratio
∈ {0, 0.25, 0.5, 0.75, 1.0} was performed. The best model had a R2-score
of 0.17, and ground truth and predicted basal bias had a Pearson cor-
relation of 0.41 (Fig. 7D, p < 10−10). To control for soma depth as a
confounder, we repeated the analysis predicting the basal bias from the
somadepth aswell as from the functional embeddings in addition to the
soma depth, resulting in R2 = 0.28 for both predictors vs. 0.21 for depth
only (ρ=0.53,p< 10−10 andρ=0.46,p< 10−10, respectively).We tested the
difference in the correlation coefficients using a two-tailed Fisher’s z-
test, resulting in a significant difference between the two (p = 0.0015).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data collection is described in the companion paper on the data
release16. Data for this paper was analyzed at materialization version
374. Data is publicly available via https://www.microns-explorer.org/
cortical-mm3. The embedding data and morphometrics generated in
this study are provided in the Source Data file. Source data are pro-
vided with this paper.

Code availability
The code for GraphDINO is available at https://eckerlab.org/code/
weis2021b/. The analysis code is available at https://eckerlab.org/code/
weis2024/. Analyseswereperformed in Python 3.10 using customcode
and the libraries Matplotlib362, Numpy124, openTSNE062, Pandas152,
Pytorch113, Scikit-learn120, Scipy110, and Seaborn012 for general
computation, machine learning, and data visualization.
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