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Trans-ancestry GWAS identifies 59 loci and
improves risk prediction and fine-mapping
for kidney stone disease
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% Check for updates Kidney stone disease is a multifactorial disease with increasing incidence

worldwide. Trans-ancestry GWAS has become a popular strategy to dissect
genetic structure of complex traits. Here, we conduct a large trans-ancestry
GWAS meta-analysis on kidney stone disease with 31,715 cases and 943,655
controls in European and East Asian populations. We identify 59 kidney stone
disease susceptibility loci, including 13 novel loci and show similar effects
across populations. Using fine-mapping, we detect 1612 variants at these loci,
and pinpoint 25 causal signals with a posterior inclusion probability >0.5
among them. At a novel locus, we pinpoint TRIOBP gene and discuss its
potential link to kidney stone disease. We show that a cross-population poly-
genic risk score, PRS-CSxgassrur, €xhibits superior predictive performance for
kidney stone disease than other polygenic risk scores constructed in our study.
Relative to individuals in the third quintile of PRS-CSXgasgeur, those in the
lowest and highest quintiles exhibit distinct kidney stone disease risks with
odds ratios of 0.57 (0.51-0.63) and 1.83 (1.68-1.98), respectively. Our results
suggest that kidney stone disease patients with higher polygenic risk scores
are younger at onset. In summary, our study advances the understanding of
kidney stone disease genetic architecture and improves its genetic
predictability.

Kidney stone disease (KSD) is a common urological disease caused by
abnormal accumulation of crystalline substances, most of which are
calcium stones'. KSD has an increasing prevalence and a recurrence
rate of 50% within 5 years”. KSD is considered as a multifactorial dis-
ease, involving environmental, dietary, hormonal, and genetic
components®. A recent twin study revealed that KSD exhibits sub-
stantial heritability, with estimates of 0.46 in women and 0.57 in men".

Genetic research on KSD holds the potential to uncover its patho-
genesis and inform more effective prevention strategies.

In recent years, genome-wide association studies (GWAS) in dif-
ferent ancestries brought more diverse perspectives for the research
on KSD genetic architecture. Several GWASs and meta-analyses have
identified numerous genetic susceptibility loci, related to multiple
potential mechanisms of KSD, such as calcium and phosphorus
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metabolism and kidney function®®. By assessing the heterogeneity of
KSD associated loci effects in UK and Japanese populations, a study
suggested that the KSD genetic architecture was similar between
populations of EUR and EAS ancestry’. Although cross-population fine-
mapping is an efficient tool to pinpoint the susceptibility loci, we
found that the causal signals of KSD have not been comprehensively
explored to date. In addition, polygenic risk score (PRS), constructed
through calculating weighted scores of genome-wide risk alleles, could
be used to identify individuals at high genetic risk for KSD and thus
enable enhanced screening or preventive therapies’. While to our
knowledge, all currently published KSD-PRS were constructed using
GWAS summary statistics from EUR population only'°™, which related
to the imbalance of GWAS in populations of different ancestries.
Considering that the genetic architecture of KSD exhibits both simi-
larities and differences across different ancestries, the cross-
population PRS might improve the predictive performance for KSD
risk and enhance the transferability across populations.

In the present study, we conducted a large-scale trans-ancestry
GWAS meta-analysis for KSD, including 31,715 KSD cases and 943,655
controls from EUR and EAS populations. We aimed to identify addi-
tional KSD susceptibility loci, pinpoint causal signals on them, and
further explore the potential mechanisms underlying their associa-
tions with KSD. In addition, we constructed cross-population PRS for
KSD to improve the predictive performance and pave the way for
precision medicine.

Results

Trans-ancestry GWAS meta-analysis identified 13 Novel loci

As shown in Fig. 1, this study included several GWAS summary statistics
for KSD from EUR and EAS populations. The EUR GWAS summary
statistics were sourced from our previous study®, which contained
9372 KSD cases and 369,102 controls from UK Biobank (UKB)"* and
8597 cases with 333,128 controls from FinnGen®. For the EAS popula-
tions, we included GWAS summary statistics from the China Kadoorie
Biobank (CKB)" with 2047 cases and 74,398 controls and Biobank
Japan (BB))" with 11,699 cases and 167,027 controls. Further details on
GWAS quality control, sample size, phenotype definition, and statis-
tical analysis were provided in Supplementary Data 1.

By integrating EUR and EAS summary statistics (Supplementary
Note 1), we performed a trans-ancestry GWAS meta-analysis using a
fixed-effect inverse-variance weighted model with METAL. Among
5,960,489 variants shared between EUR and EAS meta-analyses, 84
independent significant signals were observed after clumping. Fol-
lowing genomic control corrections, the inflation factors for the meta-
analysis were A =1.124 and A;900 =1.002 (Supplementary Fig. 1). KSD
susceptibility loci were defined as non-overlapping genomic regions
within 1000 kb of the lead SNPs. By merging lead SNPs within 1000 kb
of each other, 59 loci were finally identified across these signals,
including 13 novel loci (Fig. 2A, Table 1, Supplementary Data 2). In the
replication study using GWAS summary statistics from Million Veteran
Program (MVP)*, all 13 lead SNPs exhibited similar effect sizes with the
same sign direction between our study and MVP (Supplementary
Fig. 2). Among them, ten SNPs reached nominal significance, and eight
SNPs remained significant after Bonferroni correction (P<3.85 x 10?,
Table 1). An additional trans-ancestry meta-analysis was performed
using MR-MEGA. Employing the same clumping and merging strate-
gies, we identified six novel KSD loci, all of which were also detected by
METAL (Supplementary Data 3). Most lead SNPs identified by METAL
also exhibited genome-wide significance in MR-MEGA, including all
variants with nominal significant ancestry-heterogeneity (Supplemen-
tary Fig. 3, Supplementary Note 2). These findings collectively rein-
force the reliability of our study.

Among these novel loci, the lead variant rs7974476 at GXYLTI was
the most significant signal (P=7.94 x 10™) and the rs76271768 at
CPNES exhibited the largest effect, with an odds ratio (OR) of 1.11 (95%

confidence interval (CI): 1.07-1.15) for allele A. Several genes of novel
loci suggested potential mechanisms linked to KSD. For example,
SLCI7A3, linked to KSD with the lead SNP rs972087, encodes human
sodium phosphate transporter 4 (hNPT4), which facilitates the excre-
tion of intracellular urates and organic anions from the blood into
renal tubule cells'*°. On chromosome 16, we found that rs9925265 at
downstream region of SLC12A3 was associated with KSD (OR =1.05 for
risk allele A, 95% CI: 1.03-1.07, P=1.19 x 10®). SLCI2A3 encodes the
thiazide-sensitive Na*-CI” cotransporter (NCC)*, which plays an
important role in sodium excretion and maintenance of salt home-
ostasis. In addition, rs6503517 at CDKI12, which was negatively asso-
ciated with the estimated glomerular filtration rate’”?, showed the
protective effect with OR (95% CI) of 0.94 (0.92-0.96) for allele A.

Similar effects in European and East Asian populations

The trans-ancestry GWAS meta-analysis helped identify loci that were
not significant in population-specific analyses (Fig. 2B). Of the 59 KSD
loci, only nine lead variants were significant in both EUR and EAS
population samples (Fig. 2C). Nevertheless, we observed consistent
effect directions and similar effect sizes for most lead variants across
EUR and EAS population samples, with a Lin’s concordance correlation
coefficient (p.) of 0.94 (95% Cl: 0.89-0.96). Only two variants,
rs1936824 and rs35310650, exhibited significant heterogeneity in the
meta-analysis using METAL after Bonferroni corrections (Supplemen-
tary Data 2). In MR-MEGA analysis, these two variants, along with an
additional variant, rs2776288, were also observed with significant
ancestry-heterogeneity (Supplementary Note 2). Among them,
rs1936824 exhibited the largest difference in effect size () on KSD
between the two population, with a stronger effect of 0.177 for allele A
observed in the EUR population samples compared to 0.090 in the EAS
population samples.

Cross-population fine-mapping captured shared and ancestry-
specific causal signals

Among the genomic regions surrounding 57 lead SNPs, MESuSiE
identified at least one credible set in 54 regions, and SuSiE identified in
44 and 21 regions in EUR and EAS populations, respectively. Although
the sizes of credible sets did not show significant difference (P= 0.35)
(Fig. 3A), cross-population fine-mapping identified more causal signals
with a PIP > 0.5 at these loci (Supplementary Data 4, Fig. 3B). Of the 25
causal signals identified by MESuSIiE, 22 were classified as shared
across populations, further supporting the genetic similarity between
E UR and EAS populations for KSD. For example, as shown in Fig. 3C,
the variant rs10051765 showed genome-wide significance in EUR, EAS
and trans-ancestry GWAS meta-analyses. According to previous stu-
dies, it is an eQTL variant for RGS14 gene***, which has been reported
to be associated with blood calcium level and KSD***. MESuSIiE
detected rs10051765 as a causal signal shared across populations with
PIPgpareq Of 1.000, while SuSiE neglected it in EAS population
(PIPgAs = 0.016). A total of 1609 variants were identified in 68 95%
credible sets by MESuSIE, along with three additional isolated variants
with a PIP > 0.5. These fine-mapped variants exhibited similar effects
on KSD between EAS and EUR population samples, with p. of 0.71
(0.69-0.73). When focusing on shared signals, and subsequently nar-
rowing the comparison to shared signals with a genome-wide sig-
nificant P value, the p. further increased to 0.78 (0.76-0.80) and 0.93
(0.92-0.94), respectively (Supplementary Fig. 4). Nevertheless,
rs11586977 at ALPL, rs12857280 at CLDN10 and rs3886163 at CYP24A1
were identified as EUR-specific causal signals with PIPs > 0.5 by both
MeSuSiE and SuSiE, which reflected the ethnic differences in the pre-
disposition to KSD (Supplementary Data 4).

Functional annotation for fine-mapped signals
Using the Variant Effect Predictor (VEP), we made a multifaceted
functional annotation for the 1612 fine-mapped signals identified by
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Dataset sources

EAS populations

*BBJ: 11,699 KSD cases and 167,027 controls
*CKB: 2047 KSD cases and 74,398 controls

EUR populations
*GWAS summary statistics
*FinnGen: 8597 KSD cases and 333,128 controls
*UKB: 9372 KSD cases and 369,102 controls

i
1
1
1
1
:
: *GWAS summary statistics
1
1
1
1
1
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Meta-analyses

EAS-specific GWAS meta-analysis

«Fixed-effect inverse-variance weighted model with METAL
* 13,746 KSD cases and 241,425 controls
*6,944,751 variants

EUR-specific GWAS meta-analysis*

* Fixed-effect inverse-variance weighted model with METAL
*17,969 KSD cases and 702,230 controls
9,754,511 variants

*5,960,489 shared variants

Trans-ancestry GWAS meta-analysis

*Fixed-effect inverse-variance weighted model with METAL

*31,715 KSD cases and 943,655 controls

Post-GWAS analyses

i —

Susceptibility loci identification
*59 KSD loci were identified, including 13 novel loci
*Gene annotation for identified loci with ANNOVAR

PRS construction in UKB individuals
*Single-population PRS: PRS-CS,g, PRS-CSgr
*Cross-population PRS: PRS-CTyygerurs PRS-CSXpaserur

l

l

Fine mapping

*Cross-population and
MeSuSiE and SuSiE

*Detection of causal signals and 95% credible sets of KSD in 57

intra-population fine-mapping with

Predictive performance

*Comparison of pseudo-R? and AUC of different prediction
models

*Comparison of the associations between KSD and different

genomic regions

PRSs
!

Function inferences
¢ Functional annotation integrating CADD scores
«Kidney-specific eQTL signals mapping
* Tissue-specific and pathway enrichment analysis with FUMA

«Kidney cell type-specific chromatin accessible regions mapping

Further application
* Combination with non-genetic KSD associated factors
» Cumulative hazard curves for incident KSD

* Assessment of the association with onset age of KSD

Fig. 1| Study design and workflow. GWAS genome-wide association study, BBJ
Biobank Japan, CKB China Kadoorie Biobank, UKB UK Biobank, CADD combined
annotation-dependent depletion, AUC areas under the receiver operating curves,

PRS polygenic risk score, KSD kidney stone disease. *Referred that the EUR-specific
meta-analysis was obtained in our previous study.

MESuUSIiE mentioned above, integrating deleterious scores from
Combined Annotation Dependent Depletion (CADD)* (Supplemen-
tary Data 5). These fine-mapped variants were observed more
likely among the top 10% of deleterious variants ranked by CADD
compared to unmapped variants (Supplementary Data 6). Among
them, missense variants with a PIP>0.5 or mapped to a small
credible set (number of SNPs <5) were of particular concern for their
strong support for the links between mapped genes and KSD. As
shown in Supplementary Fig. 5, rs1260326 at GCKR and rs2231142 at
ABCG2, were captured with CADD scores of 12.33 and 22.00, respec-
tively, suggesting their potential deleterious effects. Among them,
rs1260326 was the lead SNP of the corresponding susceptibility locus.
Notably, two other missense variants, rs8140207 and rs12628603 at

TRIOBP, were detected at a novel susceptibility locus, with CADD
scores of 13.25 and 18.18, respectively. We further observed that all
signals within the credible set containing rs8140207 and rs12628603
were mapped as significant eQTL signals for the TRIOBP gene,
including the lead SNP rs6000890 at this locus (Supplementary Fig. 6,
Supplementary Data 5). These variants exhibited strong correlations
with each other in both EUR and EAS populations, likely explaining
their similarly low PIPs (Supplementary Fig. 7, Supplementary Fig. 8).
Some other fine-mapped variants were also observed as eQTL
signals for known KSD associated loci, such as RGS14, UGT8 and
ALPL. Compared to unmapped variants in cross-population fine-
mapping, these fine-mapped variants were more likely to overlap with
the kidney-specific eQTL signals (Supplementary Data 6), suggesting
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Fig. 2 | Trans-ancestry GWAS meta-analysis for KSD. A Manhattan plot for P-
values of variants in trans-ancestry GWAS meta-analysis. The gray dashed line
indicated genome-wide significance level of 5 x 107%. Red and black diamonds
represented the novel and reported genetic susceptibility loci for KSD, respec-
tively. B Comparison of lead variant effects at 59 identified loci between EAS-
specific meta-analysis (left) and EUR-specific meta-analysis (right) with trans-
ancestry meta-analysis. These points were colored based on their significances

from corresponding GWAS meta-analyses. Source data are provided as a Source
Data file. C Comparison of lead variant effects at 59 identified loci between EAS-
specific with EUR-specific meta-analyses. These points were colored based on their
significances from corresponding GWAS meta-analyses. The p, referred to Lin’s
concordance correlation coefficient. Variants that reached the genome-wide sig-
nificance level in both EAS and EUR GWAS meta-analyses were labeled. Source data
are provided as a Source Data file.

their potential genetic effects on KSD through gene expression
regulation.

Additionally, we observed the largest number of fine-mapped
variants in chromatin accessible regions specific to the kidney prox-
imal tubule cell type (Supplementary Fig. 9). The tissue specificity
analysis indicated differential expression of annotated genes for the
fine-mapped variants in six tissues from the GTEx v.8 project, with
significant upregulation observed in kidney cortex and stomach
(Supplementary Fig. 10). Gene Ontology (GO) enrichment analysis
suggested significant enrichment of annotated genes in biological
processes related to the response to vitamin D and nutrient stimuli
(Supplementary Data 7).

Incorporating trans-ancestry information improved PRS
performance

The baseline information of UKB individuals used for PRS construction
was presented in Supplementary Data 8. In the testing dataset, we
constructed two single-population PRS (PRS-CSgyr and PRS-CSg,s) and
two cross-population PRS (PRS-CTgasgeur @and PRS-CSXgasgeur) for
4996 KSD cases and 199,409 controls. As shown in Fig. 4A, all PRS

prediction models exhibited higher pseudo-R? and area under the
receiver operating curves (AUC) values compared to the covariates-
only model. Among these, the cross-population PRS-CSxgasgrur model
showed the best predictive performance, with pseudo-R? of 0.047 and
AUC of 0.677 (0.670-0.685). Delong tests confirmed that the differ-
ences in AUCs between PRS-CSxgasgeur model and other four models
were statistically significant (Supplementary Data 9).

Of the four PRSs, PRS-CSxgassrur caused the highest adjusted KSD
risk per standard deviation increase with OR (95% CI) of 2.96
(2.75-3.19) (Table 2). No significant non-linear associations were
observed between these PRSs and KSD (Supplementary Fig. 11). After
grouping the testing dataset according to quintiles of each PRS, we
observed the separation in KSD risk among individuals with PRS of
different groups. As shown in Fig. 4B, PRS-CSxgasgeur caused the
steepest step-wise change in KSD risk. Using Q3 group as reference, the
ORs (95% CI) of Q1 and Q5 groups identified by the PRS-CSXgasgrur
model were 0.57 (0.51-0.63) and 1.83 (1.68-1.98), respectively, indi-
cating a 3.21-fold increase in KSD risk. For individuals with the top 5%
PRS, the KSD risk identified by PRS-CSxgassrur model was also the
highest, with OR (95% ClI) of 2.32 (2.07-2.59).
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The lead SNP represented the variant with the lowest P value of association test in the locus.
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SNPs located in the intergenic region use the nearest gene as corresponding gene, and the distance from the gene were showed in parentheses (unit: base pairs).

Based on previous studies and data accessibility, we included
serval known KSD related factors from UKB (Supplementary Methods),
with their distribution among testing dataset individuals presented in
Supplementary Data 8. Compared to these factors, adding PRS-
CSxpaserur to a basic model that included age, sex and the first ten
principal components (PC1-10) brought larger AUC value increase
(Fig. 4C). Adding PRS-CSxgasgrur to the prediction model containing
age, sex, PC1-10 and those known KSD related factors significantly
improved the reclassification for KSD, with a continuous net reclassi-
fication index (cNRI) of 0.326 (0.298-0.352). The net percentage of
individuals with KSD correctly classified upward and those without
KSD correctly classified downward was 0.165 (0.144-0.184) and 0.162
(0.151-0.172), respectively. Moreover, as illustrated in Fig. 4D, the
adjusted cumulative hazard curves for incident KSD across different
PRS-CSxeasseur groups exhibited distinct separation over time (Piog.
rank < 0.001).

High PRS was associated with early onset age of KSD

To further explore the application of PRS in predicting KSD, we
assessed the association between the onset age of KSD and PRSs. We
observed that PRS'CSEUR, PRS'CTEAS&EURr and PRS'CSXEAS &EUR Were
negatively associated with the onset age of KSD, and the change in
onset age caused by PRS-CSxgasgrur Was the largest for each standard
deviation increment (Supplementary Data 10). After grouping these
patients with the quintiles of each PRS, we observed significant results
only for the two cross-population PRSs. Compared with patients of Q1
group, those of Q5 group identified by PRS-CTgasgrur and PRS-
CSxeaseeur Showed an earlier onset age of KSD, respectively (Supple-
mentary Data 10). Trend tests indicated that the decreasing trends of
onset age with the increase of PRS-CTgasgeur and PRS-CSXgasgeur Were
statistically significant (Pyeng = 0.005 and 0.020, respectively).

Discussion

In this study, we performed a very large-scale trans-ancestry GWAS
meta-analysis and identified 59 susceptibility loci for KSD, including 13
novel loci. Through cross-population fine-mapping, we identified 25
causal signals at these loci. We pinpointed the TRIOBP gene at a novel
locus associated with KSD. Moreover, we constructed a cross-
population PRS-CSXgasgrur to improve the predictive performance
and discrimination ability for KSD risk. Collectively, our study high-
lights the benefits of integrating genetic information from multiple
populations for KSD genetic architecture research.

By increasing the sample size to 31,715 KSD cases and 943,655
controls, including populations of EUR and EAS ancestry, we improved
the power of detecting susceptibility loci for KSD. In addition to
repeating previously reported loci, we identified 13 novel loci. These
novel susceptibility loci might be associated with KSD through multi-
ple mechanisms, highlighting the diversity of genetic pathways. For
example, the SLCI7A3 gene has been reported to be significantly
associated with uric acid concentration and gout®, and our study
provided the direct evidence of its association with KSD. Gout is a
recognized risk factor for stone formation, with exceeded uric acid
concentrations in the urine of gout patients can lead to crystallization
and the formation of uric acid stones***". A mendelian randomization
analysis, using genetic variants associated with systolic blood pressure
at the SLCI2A3 gene and its regulatory regions as instrumental variable,
showed that the genetic proxies of thiazide diuretics increase serum
calcium while also reducing the KSD risk®’. This study indirectly sup-
ported the association between SLCI2A3 and KSD, and suggested a
possible pathway linking them. Additionally, a previous study reported
that knockout of the CDK12 gene leads to downregulation of Na-K-2Cl
cotransporter 2 (NCKK2) in mouse kidneys, resulting in increased
urine volume®. However, more experiments and statistics are needed
to verify the actual pathologies for them. Most identified KSD loci were
observed to have similar effect sizes and consistent effect directions in
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EUR and EAS population samples, which contained numerous shared
causal signals detected by fine-mapping. Building on previous studies,
our results further supported the similar KSD genetic architecture
between EUR and EAS populations.

Cross-population fine-mapping identified more causal signals
shared across populations and identified 95% credible sets in more
genomic regions. Through functional annotation for fine-mapped
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signals identified by MESuSIE, two missense variants, rs1260326 and
rs2231142, were caught for their potential causal effects on KSD and
deleterious effects according to CADD scores. The rs1260326 was also
reported in a previous KSD GWAS as the lead SNP for GCKR, which was
thought to promote KSD formation by regulating of metabolic traits*.
Notably, a recent KSD GWAS reported another variant rs2199936 at
ABCG2, and suggested the need for further studies on ABCG2 variants,
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Fig. 3 | Fine-mapping results for KSD by using MeSuSiE and SuSiE. A Box plot of
SNP number of credible sets identified by MeSuSiE and SuSiE. The central line,
bounds of box and whiskers represented to the median value, quartiles and the
minima and maxima, respectively. Source data are provided as a Source Data file.
B Bar plot of the number of causal signals with PIP > 0.5 detected by MeSuSiE and
SuSiE. Source data are provided as a Source Data file. C LocusZoom plot displayed
the fine-mapping results on KSD from different methods in a genomic region on
chromosome 5. The left column showed Manhattan plots of EUR, EAS and trans-
ancestry GWAS meta-analyses results in this region. The genome-wide significance

threshold was 5 x 10%, indicated by the black dashed lines. The most significant
signal in EUR and EAS populations was labeled. The right column showed Locus-
Zoom plots, displaying the PIP of signals calculated by SuSiE in EUR and EAS
populations and by MeSuSiE. The last row showed annotated genes in this genomic
region. For the signals in the detected credible sets, we used an upper triangle to
represent a European-specific signal, a lower triangle to represent an East Asian
ancestry-specific signal and a diamond to represent a shared signal. PIP of 0.5
indicated a potential causal signal, whether shared or ancestry-specific. PIP pos-
terior inclusion probability, EUR European, EAS East Asian.

given the known role of ABCG rs2231142 variant in regulating renal
urate excretion®?¢, Our analysis successfully pinpointed rs2231142 as a
key fine-mapped signal at ABCG2, demonstrating its significance and
reliability. Interestingly, we observed strong support for the associa-
tion between TRIOBP gene and KSD, although the lead SNP rs6000890
at this novel locus was annotated to HI-O gene in ANNOVAR due to the
closer distance. The TRIOBP gene (also known as Tara) encodes Trio
and F-actin binding protein®. Trio protein is known to activate Racl, a
member of Rho family GTPases™. Racl is highly expressed in the renal
cortex and plays important roles in the structure and function of var-
ious kidney cells, including tubular epithelial cells, mesangial cells and
podocytes®. Its overactivation has been strongly linked to various
nephropathies®. The Trio and F-actin binding protein can bind to Trio
and inhibit Racl signaling*®, which might be the mechanism linking
TRIOBP gene to KSD. Of course, further studies are needed to fully
elucidate the underlying genetic pathways. The risk allele T of
rs6000890 was found to be associated with increased TRIOBP
expression in the kidney-specific meta-eQTL analysis by Liu et al.
consistent with its protective effect against KSD observed in our study.

The enrichment of annotated genes for fine-mapped variants in
the proximal tubule open chromatin regions supported the important
role of proximal tubules in KSD development, which has been detailly
discussed elsewhere®. Additionally, GO enrichment analysis suggested
the association between vitamin D-related biological processes and
KSD. Among the overlapped genes (Supplementary Data 7), ALPL and
PTGS2 are strongly associated with multiple bone metabolic
processes* ™3, CASR plays a pivotal role in systemic calcium metabo-
lism by regulating parathyroid hormone secretion and urinary calcium
excretion*. CYP24A1, encoding vitamin D-24-hydroxylase, regulates
the catabolism of 1,25-(OH),D*. Therefore, we believed that this link is
likely mediated by bone metabolism and the calcium-parathyroid
hormone-vitamin D axis*.

In recent years, genetically-based disease prediction has become
increasingly widespread. PRS can quantify an individual’s susceptibility
to certain diseases, offering significant potential for early screening
and prevention. Rely on the growing number of KSD-GWAS in different
populations and ongoing advancements in PRS construction methods,
we constructed the cross-population PRS-CSXgasgeur for KSD. This PRS
benefited from larger discovery sample size and integrated genetic
information from multiple populations. Since UKB individuals were
required for PRS construction and testing, we removed the UKB GWAS
summary statistics from the discovery dataset. Although this might
lead to some loss of statistical power due to the reduced discovery
sample size, we believed that it could effectively avoid potential bias of
the prediction results caused by the kinship or overlap between the
target and discovery samples. Moreover, the use of large-scale vali-
dation and testing datasets also contributed to the robustness of our
prediction results. Our study clearly illustrated that the cross-
population PRS-CSxgasgeur Was able to exhibit superior predictive
performance and discrimination ability for KSD risk by incorporating
genetic information from EAS population. On the other hand, it
implied the application potential of KSD-PRS in EAS population,
highlighting the importance of reducing disparities in access to
genetic resources for non-European populations.

There are some limitations in this study. First, for the EAS popu-
lation samples, we used an external LD reference in both cross-
population and intra-population fine-mappings, although we per-
formed recommended cleansing to address LD mismatched variants
before conducting the analyses. Second, considering the differences in
baseline age and gender structure might exist between the GWAS
discovery sample for PRS derivation and the target sample for PRS
validation and testing, as well as the different environmental condi-
tions, the accuracy and applicability of PRS performance might be
affected. Third, due to data limitations, the cross-population PRS-
CSxgasaeur Only included population samples of EAS and EUR ancestry.
Its generalization in other populations requires to be supplemented by
additional GWASs. Additionally, we only evaluated the performance of
PRS models in EUR population samples. The transferability of PRS in
EAS populations requires further investigation. Finally, the inclusion of
GWAS summary statistics from multiple countries may potentially
affect diagnoses and lead to classification bias between cases and
controls, considering the heterogeneity in different health systems.

Methods

Ethics

We obtained genotype and phenotype data from the UKB, which
received ethics approval from the North West Centre for Research
Ethics Committee. The application number of UKB in our study
was 88159.

GWAS summary data source

The study included several GWAS summary statistics for KSD from EUR
and EAS populations. The GWAS summary statistics in EUR popula-
tions was obtained in our previous GWAS meta-analysis for KSD®,
which included 9372 KSD cases and 369,102 controls from UK Biobank
(UKB)* and 8597 cases with 333,128 controls FinnGen®. Additionally,
we included EAS GWASs from China Kadoorie Biobank (CKB)'® with
2047 cases and 74,398 controls and Biobank Japan (BBJ)" with 11,699
cases and 167,027 controls. More details of these GWAS analyses were
described in Supplementary Methods. Each study obtained informed
consent from participants and approval from the relevant institutional
review board.

GWAS meta-analysis
GWAS meta-analyses were conducted using a fixed-effect inverse-var-
iance weighted model with METAL". Firstly, we performed an EAS-
specific GWAS meta-analysis combining summary data from BBJ and
CKB. Subsequently, by integrating previously conducted KSD GWAS
summary data of EUR populations, we conducted the trans-ancestry
GWAS meta-analysis using METAL. Genomic control corrections were
applied to both input files and results of these meta-analyses, and
heterogeneity tests were conducted to evaluate heterogeneities
between studies. We excluded the variants exclusive to single dataset
from the EAS-specific and trans-ancestry meta-analyses, respectively.
To further assess the potential impact of heterogeneity across
ancestries, including intra-population studies, we utilized MR-MEGA*®
to conduct an additional trans-ancestry GWAS meta-analysis. MR-
MEGA uses trans-ethnic meta-regression to account for heterogeneity
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in allelic effects correlated with ancestry*®. The results from METAL
and MR-MEGA analyses were compared to assess their robustness.

Susceptibility loci identification

KSD associated variants were defined by genome-wide significance
level (5 x 10%). We then performed linkage disequilibrium (LD)
clumping for these variants with PLINK v.1.9*’ (commend: -- clump -p1

2 8

Follow up time (year)

12

5e-8 --clump-p2 5e-8 --clump-r2 0.1 --clump-kb 10000) and merged
those loci with lead SNPs within 1000 kb of each other to obtain the
final independently significant loci. For EAS-specific GWAS meta-ana-
lysis, we used the LD reference panel of EAS individuals from the 1000
genome project phases 3 (IKGP3)*™. For the trans-ancestry meta-ana-
lysis, given that individuals of European ancestry made up about three-
quarters of the total sample size, we used LD reference panel of 5000
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Fig. 4 | Trans-ancestry PRS-CSx improved predictive performance and dis-
crimination ability for KSD risk. A Comparison of pseudo-R* and AUCs for cov-
only model and four PRS models. B Comparison of KSD risk by four PRSs. The
central points and error bars represented ORs and the 95% confidence intervals,
respectively. Source data are provided as a Source Data file. C Predictive perfor-
mance of PRS in relation to known non-genetic KSD related factors. The central
points and error bars represented AUC values and 95% confidence intervals,
respectively. Source data are provided as a Source Data file. D Cumulative hazard

curve of KSD according to stratified PRS-CSXgasgrur. The models constructed for
Figure A and Figure B were adjusted for age, sex, and PC1-10, with an additional
adjustment for non-genetic KSD-related factors for Figure D. All analyses were
completed in testing dataset, including 4996 KSD cases and 199,409 controls. AUC
area under receiver operating curve, cov-only covariates-only prediction model, OR
odd ratio, HDL high-density lipoprotein, TG triglycerides. The glucose referred to
the fasting glucose, and the calcium, urate, and vitamin D referred to the blood
calcium, urate and vitamin D concentrations.

Table. 2 | Comparison of KSD risk by different PRSs

PRS Continuous Q1 Q2 Q3 Q4 Q5 Top 5%
PRS-CTeaszeur

Case/Control - 619/ 40,262 839/ 40,042 985/39,896 1127/39,754 1426/39,455 433/9788

OR (95% ClI) 1.35 (1.31-1.39) 0.62 (0.56-0.68) 0.85(0.77-0.93) 1.00 (Ref) 1.15 (1.05-1.25) 1.47 (1.35-1.60) 1.79 (1.60-2.01)
P value 2.10x10°% 217 x102%° 4.65 x10* 1.57 x10° 6.06 x10%° 3.96 x 10
PRS-CSgas

Case/Control - 718/40,163 811/40,070 968/39,913 117/39,764 1382/39,499 407/9814

OR (95% CI) 1.29 (1.25-1.32) 0.73 (0.67-0.81) 0.83 (0.76-0.91) 1.00 (Ref) 116 (1.07-1.27) 1.45 (1.33-1.58) 1.72 (1.52-1.93)
P value 9.35x107° 6.10 x10™ 1.35 x 10" 7.08 x10* 3.65x10™ 3.55x10™
PRS-CSgyr

Case/Control - 588/40,293 791/40,091 940/39,940 1154/39,727 1523/39,358 440/9871

OR (95% Cl) 1.41 (1.37-1.45) 0.62 (0.55-0.68) 0.84 (0.76-0.92) 1.00 (Ref) 1.24 (1.13-1.35) 1.65 (1.52-1.79) 1.94 (1.73-2.18)
P value 6.25 x10"® 6.80 x 107 2.58 x 10 2.04 x10° 2.29 x10* 420x10%
PRS-CSxgasaeur

Case/Control - 534/40,347 731/40,150 924/39,957 1159/39,722 1648/39,233 514/9707

OR (95% ClI) 2.96 (2.75-3.19) 0.57 (0.51-0.63) 0.79 (0.71-0.87) 1.00 (Ref) 1.26 (1.16-1.38) 1.83 (1.68-1.98) 2.32(2.07-2.59)
P value 3.16 x10™* 7.39 x10% 1.72 x10° 219 x107 5.99 x 10 4.22 x10°°

PRS polygenic risk score, OR odd ratio, CI confidence interval.
HRs and 95% Cls were calculated with the use of the Logistic regression model.
All models were adjusted for age- sex- and PC1-10.

random selected participants of European ancestry in UKB. The final
lead variants from these independent loci associated with KSD were
annotated with the closest gene and functional regions using
ANNOVAR®., Furthermore, we compared the effect sizes and directions
of these variants across different populations, assessing their con-
sistency using Lin’s concordance correlation coefficients (p.).

To define the novel loci, we downloaded the known loci asso-
ciated with KSD from the GWAS Catalog database’” by December 2023
and a recently published study® not yet included in the GWAS Catalog
(Supplementary Data 11). If necessary, the variant positions were flip-
ped to GRCh37 using LiftOver® to align with our results. Loci identified
in this study were classified as novel if they were located more than
1000 kb away from previously reported loci.

Replication in the Million Veteran Program

The Million Veteran Program (MVP) is a large-scale observational
cohort study and mega-biobank within the American Department of
Veterans Affairs health care system’. Recently, MVP PheWeb
(https://phenomics.va.ornl.gov/pheweb) published results from
GWASs across 2068 traits in AFR, AMR, EAS, and EUR reference
populations, as well as cross-population GWAS meta-analyses, which
allows us to perform an external validation of the novel loci identified
by our study'. The meta-analysis for KSD in MVP included 42,198
cases, defined as calculus of kidney (phecode 594.1), and 618,588
controls. Building on that, we conducted a lookup study for the lead
variants from these loci within MVP and compared their effect sizes
between the two studies.

Fine-mapping

MeSuSiE® and SuSiE*® were respectively used to perform cross-
population and intra-population fine-mapping for genomic regions
surrounding lead SNPs (500 kb upstream and downstream) of identi-
fied KSD susceptibility loci. Before running fine mapping, we per-
formed a series of recommended data preparation®. We derived EAS
and EUR summary statistics from EAS-specific GWAS meta-analysis and
our previous KSD GWAS®. The relative ancestry-specific SNP-SNP cor-
relation matrices were calculated using reference panels from 5000
EUR participants and 2594 EAS participants in UKB, respectively. After
excluding SNPs with MAF <0.001, strand ambiguous or multi-allelic
and in the major histocompatibility complex regions (chré: 25-34 Mb),
only the SNPs that appeared in both the EAS and EUR GWAS summary
statistics and ancestry-specific SNP correlation matrices were finally
remained. Therefore, two loci of lead SNPs in major histocompatibility
complex regions were not included in fine-mapping. Additionally, LD
mismatch variants were examined and excluded before fine-mapping
analysis of each genomic region as recommended by the MESuSIiE
guideline (Supplementary Methods), which is described in detail
elsewhere (https://borangao.github.io/meSuSie_Analysis).

By calculating the posterior inclusion probability (PIP) for the
remaining SNPs using MeSuSiE and SuSiE, we identified potential
causal effect signals with a PIP threshold of 0.5, as recommended in the
MESuSIE method guideline. They also constructed 95% credible sets in
each genomic region, where the sum of PIPs for the variants exceeded
0.95. The 95% credible sets constructed by MESuUSiE comprised SNPs
with a non-zero effect in at least one ancestry. These SNPs were further
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categorized as either “shared” or “ancestry-specific” based on their
contribution to the credible set. SuSiE identifies population-specific
signals by fine-mapping variants within each population. If a causal
signal was detected in both populations, we considered it a shared
signal identified by SuSiE. We used a two-side Kruskal-Wallis test to
compare the sizes of the credible sets constructed by MeSuSiE and
SuSiE, which was represented by the number of variants contained in
each credible set. Additionally, regarding variants with a PIP>0.5 or
included in credible sets identified by MeSuSiE as fine-mapped var-
iants, we also compared their genetic effects on KSD between EAS and
EUR populations.

Function inferences

We made function inferences for the fine-mapped variants identified
by MeSuSiE from several aspects. First, we performed functional
annotation for them using VEP v.113°” (CRCh37) with the “-everything”
flag, integrating CADD scores through an additional plugin for CADD*®
to evaluate their deleteriousness. These variants were also annotated
to significant eQTL genes based on a previous human kidney-specific
meta-eQTL study”. Among these fine-mapped signals, missense var-
iants with a PIP > 0.5 or mapped to a small credible set (number of SNPs
<5) were specifically emphasized. We also annotated the unmapped
variants within the 57 genomic regions used for fine-mapping and
compared their CADD scores (categorized with CADD scores of 10 and
20, respectively) and eQTL signal overlaps with those of the fine-
mapped signals using two-side Chi-square tests. Additionally, we
explored the distribution of fine-mapped variants in different cell type-
specific chromatin accessible regions identified by human kidney
single-nucleus ATAC-seq (snATAC-seq) data from Sheng et al. (gene
expression omnibus accession number GSE172008)*. For genes
annotated to fine-mapped signals in VEP, we used FUMA platform
(v.1.5.2)? to evaluate tissue specificity across 54 tissues from the GTEx
v.8 project®® and to perform Gene Ontology (GO) enrichment analysis
based on Molecular signatures database (MSigDB)®.. The input genes
were tested against pre-defined differential expression gene (DEG) sets
using the hypergeometric test on the platform. Bonferroni corrections
were applied to the analyses, and the adjusted P-value threshold of
0.05 was used to define significance.

PRS construction

PRS application cohorts. We extracted 408,8019 individuals of Eur-
opean ancestry who self-identified as white British and had very similar
genetic ancestry based on the PCA of the genotypes from UKB, serving
as the target sample for PRS validation and test®. Among them, 10,017
KSD cases were defined as calculus of kidney and ureter (field ID
132036, ICD-10 N20), and the 398,792 remaining individuals were
controls. The diagnosis was obtained by using linkage with the death
register, primary care, hospital inpatient records, and medical condi-
tions self-reported at the baseline or subsequent UKB assessment
center. To avoid the relatedness or overlap between individuals of
discovery sample and target sample, we derived PRSs for KSD from the
BBJ, CKB and FinnGen cohorts. Specifically, we used FinnGen to
represent EUR populations and the meta-analysis of CKB and BBJ to
represent EAS populations in the discovery sample. A trans-ancestry
meta-analysis without UKB was conducted using METAL on the dis-
covery sample for the subsequent PRS construction.

PRS derivation and parameter tuning. We considered serval types of
KSD-PRS as following:

Single-population PRS-CSgyr and PRS-CSgas were constructed
using the PRS-CS method, with GWAS summary data from EUR and
EAS populations in discovery sample, respectively®”,

Cross-population PRS-CTeasgeur Was constructed using the
clumping and thresholding (C + T) method, with GWAS summary data
from the trans-ancestry meta-analysis without UKB.

Cross-population PRS-CSxgasgeur Was constructed using the
PRS-CSx method, with GWAS summary data from EUR and EAS
populations in discovery sample®.

The LD reference panels were obtained from EAS and EUR indi-
viduals from 1KGP3, respectively. Final PRSs for each individual were
calculated using PLINK2 for different PRS methods, as the weighted
sum of risk alleles carried by the variants used in each method®*. The
weights corresponded to the effect sizes of variants for the C+T
method and the posterior effect values of variants estimated by the
PRS-CS or PRS-CSx methods.

Target sample individuals were randomly divided into training
dataset (N=204,404) with 5021 cases and testing dataset
(N=204,405) with 4996 cases. Parameter tuning was performed in
training dataset. For PRS-CS method, we considered the global
shrinkage parameter @, using grid research and the PRS-CS-auto
method (a fully Bayesian approach that enables automatic learning of
@ from GWAS summary statistics), as 1, 102, 10*, 10 and auto. For
C+T method, we considered the LD panels for clumping (LD panels
from 1KG EAS and EUR individuals) and the P value thresholds P, (5 x
108, 1 x10%, 1 x 10*, 1 x 1073, 0.01, 0.1, 0.2, 0.5 and 1). For PRS-CSx
method, in addition to the global shrinkage parameter @ (1,102, 10*,
10 and PRS-CSx-auto) like PRS-CS method, we considered the weights
w, corresponding to a specific @, of the PRS of EAS and EUR popula-
tions through the following formula:

Y~ We, rasPRS o, pas + Wo, rurPRS o, Fur 1)

where y is the KSD indicator (O for control and 1 for case), with a
specific @, the PRSg,s and PRSg,, are the standardized PRS con-
structed with PRS-CSx method for EAS and EUR populations, and wg
and wg are the corresponding regression coefficients for them. We
performed logistic regression of KSD on each PRS, adjusting sex, age,
and PC1-10 as covariates. Through comparing the pseudo-R* values
and AUCs of different prediction models, we selected the optimum
parameters for each PRS construction method. Additionally, the final
PRS-CSxgasgeur Was derived by the following formula:

PRS — CstAS&EUR = wEASPRSEAS + wEURPRSEUR (2)

where the PRSg,s and PRSg,; are the standardized PRS for EAS and
EUR populations on the optimum @, @,,s and W, were the estima-
tions of w for them.

For the single-population PRS, we selected a global shrinkage
parameter @ = 107 for PRS-CSgas and used PRS-CS-auto method for
PRS-CSgur. For PRS-CT, we applied r? = 0.1 to perform LD clumping
with LD panels from 1KG EAS individuals and selected P, of 10~ for
summary statistics from the non-UKB trans-ancestry meta-analysis.
Lastly, we constructed PRS-CSxgpasgeur Using the PRS-CSx-auto
method, integrating EAS and EUR summary statistics, with the corre-
sponding weight estimates being wr,5=0.169 and W, =0.290,
respectively (Supplementary Data 12, Supplementary Data 13).

PRS predictive performance evaluation. The final PRSs for the test-
ing dataset participants were constructed based on corresponding
optimum parameters for each method selected from the training
dataset. In the testing dataset, we compared the predictive perfor-
mances of these PRSs in several ways. Firstly, we compared the
pseudo-R? values and AUCs of the covariates-only model and four
covariates-adjusted PRS prediction models. Covariates included age,
sex and PC1-10. Delong tests were conducted to compare the AUC of
the PRS-CSx model with those of the other four models. Then, the
adjusted odd ratio (OR) and 95% confidence interval (CI) of KSD caused
by each PRS per standard deviation were calculated through logistic
regression model. We assessed weather non-linear associations existed
between these PRSs and KSD risk using the restricted cubic spline
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(RCS) method. After that, we grouped testing dataset based on
the quintiles of each PRS (Q1-Q5 with PRS from low to high). Using
Q3 group as reference, the ORs of KSD were calculated for participants
in remaining four groups and additionally for those with the
top 5% PRS.

To further assess the stability of our findings and the performance
of PRS-CSXgasgrur, We included some known KSD related factors from
UKB for target sample individuals (details in Supplementary Methods).
We compared the discrimination ability of PRS-CSxgassrur relative to
these non-genetic factors for KSD risk using AUC, by adding them
iteratively to a basic prediction model comprising age, sex and PC1-10.
We also calculated the cNRI to assess the reclassification improvement
for the prediction model with PRS-CSxgasgrur®?®. In addition, based
on survival analysis, we constructed the cumulative hazard curve for
incident KSD over the follow-up time (median follow-up of 13.4 years),
with stratification by PRS-CSxgasgeur (0-20%, 20-80%, and 80-100%)
and adjustment for age, sex, PC1-10 and all non-genetic KSD related
factors obtained.

Association between onset age of KSD and PRS. We extracted
all 10,017 KSD cases of European ancestry in UKB. We excluded
individuals with onset ages identified as outliers based on a 3-fold
median absolute deviation (MAD) range, leaving 9533 individuals
in the final sample. Then we employed multiple linear regression
model to evaluate the association between the onset age of KSD
and each PRS, adjusting for sex, PCI-10, and all nongenetic KSD-
related factors obtained. We used each standardized PRS as both
continuous variable and categorical variable for regression analyses,
and additionally performed trend tests. The categorized PRSs were
also derived based on their quintiles (Q1-Q5 with PRSs from low
to high).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The trans-ancestry GWAS summary statistics in METAL generated in
this study have been deposited in the Zenodo database under acces-
sion code 14790324. As described in Supplementary Methods, the
original KSD GWAS summary statistics from BBJ, CKB, and FinnGen
cohorts used in this study are publicly available online (BBJ: https://
pheweb.jp; CKB: https://pheweb.ckbiobank.org; FinnGen: https://r8.
finngen.fi). The UKB GWAS summary statistics and EUR-specific GWAS
meta-analysis summary statistics used in this study are also publicly
available in the Zenodo database [https://zenodo.org/records/
10060271]. Source data are provided with this paper. The source
data for Fig. 4A are not included, as they are described in Supple-
mentary Data 9. The source data for Supplementary Fig. 10 are not
included neither, as the figure was directly generated using the FUMA
platform (https://fuma.ctglab.nl/).
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