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Genome-wide association study identifies
common variants associated with breast
cancer in South African Black women

Mahtaab Hayat 1,2,17 , Wenlong C. Chen 1,3,4,17, Chantal Babb de Villiers 5,
Sang Hyuck Lee6,7, Charles Curtis6,7, Rob Newton8,9, Tim Waterboer 10,
Freddy Sitas11,12,13, Debbie Bradshaw11, Mazvita Muchengeti 3,14,15,
Elvira Singh3,15, Cathryn M. Lewis 6,16, Michele Ramsay 1,
Christopher G. Mathew 1,5,16,18 & Jean-Tristan Brandenburg 1,4,18

Genome-wide association studies (GWAS) have characterized the contribution
of common variants to breast cancer (BC) risk in populations of European
ancestry, however GWAS have not been reported in resident African popula-
tions. This GWAS included 2485 resident African BC cases and 1101 population
matched controls. Two risk loci were identified, located between UNC13C and
RAB27A on chromosome 15 (rs7181788, p = 1.01 × 10−08) and in USP22 on chro-
mosome 17 (rs899342, p = 4.62 × 10−08). Several genome-wide significant signals
were also detected in hormone receptor subtype analysis. Thenovel loci did not
replicate in BCGWAS data from populations ofWest Africa ancestry suggesting
genetic heterogeneity in different African populations, but further validation of
these findings is needed. A European ancestry derived polygenic risk model for
BC explained only 0.79% of variance in our data. Larger studies in pan-African
populations are needed to further define the genetic contribution to BC risk.

Breast cancer (BC) is the most common cancer in women worldwide,
and the second most common cancer in South Africa. In 2020, the
global incidence of BCwas 2.26million cases, with 129,415 cases in sub-
Saharan Africa (SSA)1. Both genetic and environmental factors

contribute to the risk of BC, and genetic risk factors may account for
up to 30% of all BC cases2. These include both rare variants with large
effect sizes and common variants identified by genome-wide associa-
tion studies (GWAS). The first BC GWAS was published 16 years ago3,
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and this approach has been successful in identifying more than 200
loci associated at genome-wide significance with BC4.

Most GWAS of BC have been performed in non-African popula-
tions, with almost 80% of all GWAS done in populations of European
ancestry5. A large study of BC in Asian and European populations
detected significant ancestral differences in the frequencies and
association strengths of risk variants, and also identified 32 risk loci
which showed differences in association between estrogen receptor
(ER) positive and ER negative BC, indicating potentially important
differences in the etiology of breast cancer subtypes4.

There is a substantial emerging literature on the genetics of BC
in African American (AA) populations6–8, particularly from a colla-
borative study of three AA consortia for BC genetics which included
the GWAS in Breast Cancer in the African Diaspora (ROOT), the
African American Breast Cancer (AABC) and African American Breast
Cancer Epidemiology and Risk (AMBER)9–11. In 2013 a study of 67
known BC loci discovered in non-African populations was investi-
gated in an AA population. Only seven signals showed suggestive
evidence of replication (p < 0.05) in this AA dataset12. Similarly, sug-
gestive associations were reported in a study of candidate loci and a
GWAS that included participants from the ROOT and AABC
consortia10,13. However, in a meta-analysis by Huo et al. three variants
were associated with BC in women of African ancestry at genome-
wide significance7. Two single nucleotide polymorphisms (SNPs),
rs13074711 upstream of TNFSF10 and rs10069690 in TERT, were
associated with ER negative BC. The third, rs12998806, was asso-
ciated with the risk of ER positive BC. Ruiz-Narvaez et al. used
admixture mapping that included participants from the AMBER
consortium to identify two novel associations, rs112545418 in
ZFYVE28 and rs55850050 on chromosome 17, with ER positive BC14.
Another study that included participants from the AMBER con-
sortium tested 65 SNPs for association with BC, but did not find any
significantly associated SNPs15. A meta-analysis of African ancestry
cohorts and European ancestry cohorts from Breast Cancer Asso-
ciation Consortium (BCAC) found four loci associated with overall
BC risk (1p13.3, 5q31.1, 15q24 and 15q26.3) and two with ER negative
BC (1q41 and 7q11.23), with modest contributions from the African
cohorts16. Recently a large GWAS of BC cases and controls of African
ancestry predominantly from the Unites States identified 12 loci
associated with breast cancer risk which included a low frequency
missense variant in the ARHGEF38 gene and a common variant
associated with triple negative breast cancer (TNBC)17. The sample
sizes in the African-American GWAS in these studies ranged from
3153 BC cases and 2831 controls to the most recent study which
included 18,034 cases and 22,104 controls17.

In contrast to GWAS in AA populations no GWAS have been car-
ried out exclusively in resident SSA populations. A number of small
candidate gene association studies investigated the contribution of
common variants to BC in SSA. Six of these studies were reviewed by
Hayat et al., and three further studies were published more
recently8,18–20. The sample sizes in these studies ranged from 40 to 392
cases and 39–250 controls, and none reported strong evidence for
association with BC. A recent study examined four FGFR2 SNPs which
are associatedwith BC inpopulations of Europeanor AfricanAmerican
ancestry in 1001 cases and 1006 controls from southern African Black
women and did not find evidence of association with BC21.

GWAS has also led to the development of polygenic risk scores
(PRS) for the stratification by BC genetic risk. Risk prediction tools,
such as BOADICEA, developed in a European setting using both clinical
and genetic data has demonstrated to be effective in the management
of BC risk22. BC PRS are primarily developed using European genetic
data, and previous studies have demonstrated poor transferability of
European PRS to non-European populations23,24. This reinforces the
need for population diverse GWAS for BC in order to develop PRS that
are more appropriate.

Genotyping and whole genome sequencing studies have revealed
a very high degree of genetic diversity among the populations of the
African continent, with principal component analysis showing clear
separation of populations from West, East, Central and Southern
Africa25. African-Americans originated from Africans forced into slav-
ery and are descended mostly from ethnic groups that lived in West
Africa, with admixture mostly of European ancestry26. It is therefore
likely that genetic studies of breast cancer in African-Americans will
captureonly a subset of the contributionof the genetic contribution to
breast cancer susceptibility on the African continent, and argues for
broadening the diversity of genetic studies in Africa. In view of the
paucity of genetic research into the etiology of BC in Africa8, and the
genetic diversity of African populations25,27, we carried out a GWAS to
identify common genetic variants that contribute to BC risk in a South
African Black population. This included cases and controls from the
Johannesburg Cancer Study (JCS) and ethnically matched controls
from the Africa Wits-INDEPTH Partnership for Genomic Research
(AWI-Gen) study27–30. The JCS samples formed part of a larger
study, Evolving Risk Factors for Cancer in African Populations (ERICA-
SA) (https://www.samrc.ac.za/intramural-research-units/evolving-risk-
factors-cancers-african-populations-erica-sa) which is investigating the
contributions of lifestyle, infection and genetics to cancer. We also
performed ameta-analysis of the African ancestryGWASdatasets from
Jia et al.17 and the UK Biobank (UKBB) to identify potential shared risk
loci for populations of African ancestry. Finally, we examined the
transferability of a BC PRS developed from populations of European
ancestry to our dataset.

Results
Study participants, structure control and dataset
Although all participants were from the Soweto region of greater
Johannesburg in South Africa, we controlled and adjusted for the
population substructure that was present. Following population sub-
structure analysis, 226 cases and 69 controls were removed, leaving
2485 cases and 1101 controls to be included in the association analysis
(Table 1, Supplementary Dataset 1). PCs 1–5 accounted for most of the
variance observed from the Eigenvalue curve (Supplementary Fig. S1)
and were selected as covariates in the linear mixed model (LMM). The
admixture plot (Fig. 1A) shows clear differences between West, East
and South African populations. The PC plot showed that the South
African BC cases and controls were well matched and clustered away
fromnon-South African samples and thatWestAfricanpopulations are
distinct from South African populations (Fig. 1B). Finally, participant
relatedness was accounted for with genetic relationship matrices
(GRMs) that were generated with 500,000 markers using the leave-
one-chromosome-out (LOCO) approach and used in the LMM (see
Methods).

The total genotyping rate was 97.83% before data QC but
improved to 99.92% after QC. The final dataset included 1,699,678
genotyped SNPs, and a total of 18,020,999 genotyped and imputed
SNPs to be tested for association with BC.

Genome-wide association analysis for BC in the South African
population
SNPs were tested for association with BC using an LMMmethod which
was used because it is effective in correcting for relatedness and
structure, therefore limiting genetic inflation31. The genomic inflation
factor (λ genomic control) for themodel was 1.01 (Fig. 2A). Two signals
that were significantly associated with BC in our dataset were identi-
fied. The first is a genotyped SNP on chromosome 15 that is located
between the genes UNC13C and RAB27A/RSL24D1 (rs7181788,
p = 1.01 × 10−08). The second is an intronic variant within USP22
(rs899342, p = 4.62 × 10−08) on chromosome 17 (Table 2, Fig. 2B).
Regional association plots show that there are multiple correlated
SNPs in the region of both signals (Fig. 3). The 95% credible set from
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the FINEMAP analysis included the top signal on chromosome 15 and
three SNPs on chromosome 17, particularly the top signal identified in
this GWAS (Supplementary Dataset 2).

Additionally, 89 SNPs, from 39 independent loci were identified
with suggestive association with BC (p < 5 × 10−06) (Supplementary

Dataset 3). The estimated genetic heritability (h2g) was 17.50% (stan-
dard deviation: 6.52%) on the liability scale.

Replication of JCS associations in African ancestry BC GWAS
We first carried out a meta-analysis of African ancestry (AA) cases and
controls from Jia et al.17 and theUKBB (seeMethods) to generate a joint
AA data set (Supplementary Fig. S2). SNPs from the South African JCS
BC GWAS with at least suggestive evidence of association (pJCS
<5 × 10−6) were then assessed for replication in this joint dataset AA
dataset. A subset of 33 independent markers from our JCS study were
present in the AA dataset (Supplementary Dataset 4), none of which
reached a Bonferroni p value threshold (p < 1.52 × 10−3), including the
top hits fromour study. Of the 33markers, 20 had the samedirectional
effect (exact binomial test p =0.296).

Replication of suggestive hits from AA BC GWAS in JCS GWAS
We then tested whether loci that were associated with BC (pAA
<5 × 10−6) in the African Ancestry meta-analysis were associated with
BC in the South African JCS GWAS. There were 54 independent loci in
the AA meta-analysis, two of which met Bonferroni correction with
same sign of the effect (pJCS <9.3 × 10−04) in the SA JCS data. These
included 19 SNPs near TOX3 on chromosome 16 led by rs3112570 (pJCS
= 1.37 × 10−04) and rs7734992 (pJCS = 3.44 × 10−04) in TERT on chromo-
some 5, while several others had nominal evidence of association with

Table 1 | Sample sizes

SA GWAS datasets N

BC GWAS cases 2485

GWAS controls 1101

ER-positive 1155

ER-negative 766

HER2-positive 499

TNBC 262

Other studies Cases Controls

UK Biobank (African Ancestry) 163 3774

Jia et al. (2024) (African
American)

18,034 22,104

Total (Meta-analysis) 18,197 25,878

SA South African, ER-positive estrogen receptor positive, ER-negative estrogen receptor nega-
tive,HER2-positive human epidermal growth factor positive, TNBC triple negative breast cancer.

Kh
oi
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n

A

B

Fig. 1 | Admixture and principal component plots. A The Admixture plot at K = 6
of cases, controls and reference populations: East Asian (EAS) (KGP), South-East
Asian (SAS) (KGP) and European (EUR) (KGP), West African (West) (KGP and AWI-
Gen); African American (AA) (KGP); Khoe-San55; East African (East) (KGP, AGVP and

AWI-Gen); South African (SA) (AGVP, AWI-Gen and JCS). B PCA Plot (1st and 2nd

components) showing JCS cases and controls, African Americans, Non-African
(CEU, SAS and EAS) and West Africans. KGP Thousand Genomes Project, AGVP
African Genome Variation Project, JCS Johannesburg Cancer Study.
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p <0.05 including loci on chromosomes 2, 3, 15 and 19 (Supplementary
Dataset 5).

Receptor sub-type analysis
Potential differences in the genetic etiology of breast cancer subtypes
were investigated by additional association analyses of TNBC vs con-
trols, TNBC vs ER-positive BC, TNBC vs HER2-positive BC, ER-positive
and ER-negative BC vs controls, and ER-positive vs ER-negative BC.

The TNBC vs controls analysis identified six SNPs at two loci that
reached genome-wide significance (Table 3, Fig. 4) including
rs111999709, EAF =0.058, pTNBCvsctrl = 2.08× 10−08 on chromosome 3,
and rs11598380onchromosome10, EAF =0.015,pTNBCvsctrl = 2.97 × 10−08.
The TNBC vs ER-positive BC analysis revealed one significantly asso-
ciated SNP, rs189230042, on chromosome 6, EAF =0.025, pTNBCvsER
+ = 2.33 × 10

−8 (Table 3, Supplementary Fig. S3). No genome-wide sig-
nificant signals were found in the TNBC vs HER2-positive analysis (Sup-
plementary Fig. S4) or in the analysis of ER-positive BC vs controls
(Supplementary Fig. S5). Analysis of ER-negative BC vs controls showed
one genome-wide significant signal on chromosome 10: rs11593018,
pERneg = 4.92 × 10−08 (Table 3, Supplementary Figs. S6 and S7). This was
supported by two other SNPs in close proximity. The next strongest, but
not genome-wide significant, signal was rs7181788 on chromosome 15,
which was the top signal in the overall BC GWAS (Supplementary
Fig. S7B). The ERpositive vs ER negative analysis identified genome-wide
significant signals at two loci, on chromosomes 3 and 1 (Table 3, Sup-
plementary Figs. S8 and S9A). The strongest signal was rs112965634,
pERpvn = 2.22 × 10−08 on chromosome 3. Two SNPs on chromosome 1
reached genome-wide significance: rs113934974, pERpvn = 3.06× 10−08

and rs113425481, p=3.09× 10−08 (Supplementary Fig. S9B). The asso-
ciations at both of these loci were supported by multiple other SNPs in
these regions (Supplementary Fig. S9).

Potential replication of signals with p < 5 × 10−06 in the JCS ER-
negative subtype vs control analysis was assessed in the Jia et al. Afri-
can data using their ER-negative vs control analysis17.

The genome wide significant association on chromosome 10 in
the JCS ER-negative vs controls analysis was not replicated in the Jia
et al. African data; interestingly, the EAF in the Jia et al. data (0.051) was
substantially higher than in the South African data (0.016). None of the
suggestive associations in the JCS data were replicated in the Jia et al.
African data (Supplementary Dataset 6). There were no genome-wide
significant signals in the JCS ER-positive vs controls analysis, and the Jia
et al. study did not include an analysis of ER-positive vs ER-negative
subtypes.

Replication of ER-negative vs controls and ER-positive vs controls
signals (p < 5 × 10−06) from Jia et al. were assessed in the JCS dataset.
None of these met the Bonferroni threshold for either set of analyses
(p = 2.5 × 10−04 and p = 1.36 × 10−04, respectively). However, considera-
tion of only the three genome-wide significant loci from Jia et al. in the

ER-negative vs controls analysis found that SNPs at two of these loci,
led by rs7734992 on chromosome 5 and rs11668840 on chromosome
19 showed evidence of association in the JCS data with pJCS = 7.55 × 10−3

and 9.30 × 10−04 respectively (Supplementary Dataset 7). Similarly, for
the 7 genome-wide significant loci in the ER-positive vs controls in Jia
et al., SNPs at two of these loci, on chromosome 2 (led by rs17778798,
pJCS = 4.68 × 10−04) and chromosome 16 (led by rs3112570,
pJCS = 6.94 × 10−04) also showed evidence of association (Supplemen-
tary Dataset 8).

Functional analysis
The top signal on chromosome 15 at rs7181788 is flanked by potential
candidate genes UNC13C and RAB27A. RAB27A is a member of the RAS
oncogene family involved in exosome secretion and is associated with
consequent invasive growth and metastasis. The top SNP on chro-
mosome 17, rs899342, is located in an intron of USP22. This SNP is a
strong eQTL for expression ofUSP22 in a wide range of tissues, and on
PancanQTL it affected the expression ofUSP22 in lower grade gliomas
and thyroid carcinoma. Data on GTEx shows that the C allele down-
regulates expression of USP22 in the thyroid gland. Regarding the
associations identified in the ER-negative subtype analysis, the nearest
gene to the locus identified on chromosome 10 is SGMS1 (sphingo-
myelin synthase 1), but no eQTL data is available for the associated
SNPs at this locus. In the ER-positive vs ER-negative analysis, the eQTL
analysis using FUMA showed that the SNPs rs113934974 and
rs113425481 upstream of TMEM52 on chromosome 1 are eQTLs for
expression of this gene in mammary tissue (p = 1.2 × 10−6 and 8.1 × 10−6

respectively).
Little is known of the function of TMEM52; it encodes a trans-

membrane protein and is positively regulated by p53 so may be
involved in the cellular stress-response system32.

Polygenic risk score
A polygenic risk score was generated with 202 SNPs that were in our
South African JCS GWAS dataset and in common with the 313 SNP PRS
model from Mavaddat et al. (PRS313/202)

33. This model explained only
0.79%of variance in our dataset, with anAUCof 0.56 (Fig. 5). A PRSwas
also generated with 2819 SNPs in common with the 3820 SNPs that
Mavaddat et al. (PRS3820/2819) reported to have optimal predictability.
This model explained only 0.6% of variance in our dataset with an AUC
of 0.55 (Fig. 5).

Discussion
Although a wealth of information now exists on the contribution of
common genetic variants to susceptibility to breast cancer, the
majority of genome-wide studies have been carried out in populations
of European ancestry. There is also a burgeoning literature on the
genetics of breast cancer in African American populations, but we are

A
USP22

rs899342

UNC13C/RAB27A
rs7181788

B
Lambda genomic control: 1.014 

Fig. 2 | Quantile-Quantile plot andManhattan plot of the South African JCS BC
association results. A Quantile-Quantile (QQ) plot, λ = 1.014. B Manhattan plot
with genome-wide significant hits (p < 5 × 10−08) highlighted on chromosomes 15

and 17. Red line indicates genome-wide significance (p < 5 × 10−08), blue line indi-
cates suggestive significance (p < 5 × 10−06). JCS Johannesburg Cancer Study, BC
breast cancer, λ Lambda genomic control.

Article https://doi.org/10.1038/s41467-025-58789-0

Nature Communications |         (2025) 16:3542 4

www.nature.com/naturecommunications


not aware of any genome-wide studies in resident African populations.
The immense genetic diversity among the populations of sub-Saharan
Africa and differences in environmental exposures between resident
and non-resident African populations suggests that there may be
substantial differences in the genetic determinants of cancer sus-
ceptibility both within continental Africa and across continents34.
Bridging this knowledge gap is needed to increase our understanding
of the genetic etiology of African breast cancer and to develop clinical
tools such as polygenic risk scores that can guide screening approa-
ches in Africa, and globally. Our genome-wide study in Black South
African women is a step towards this goal.

Correcting for the complex genetic diversity and population sub-
structure on a regional level was important in generating a robust
dataset to be used in the association analysis. A substantial contribu-
tion of genetics to BC risk was observed in this population, with a SNP-
based heritability (h2g) estimate of 17% in the South African JCS
dataset. This is lower but comparable to the h2g estimate from an
African Ancestry study of 22%17.

The South African JCS GWAS identified two strongly associated
genetic risk loci for BC in a South African Black population namely a risk
allele rs7181788 on chromosome 15, which lies between the genes
UNC13C andRAB27A, and a risk allele rs899342within theUSP22 gene on
chromosome 17. RAB27A is a small GTPase and member of the RAS
oncogene family, with an important role in exocytosis. Overexpression
of Rab27A protein has long been associated with increased invasive and
metastatic abilities in breast cancer cells both in vitro and in vivo35. More
recently, silencing of this gene was found to inhibit proliferation, inva-
sion and adhesion of triple negative breast cancer cells36. Also,migration
and invasion of colon cancer cells were shown to be suppressed by
RAB27AknockdownbutwerepromotedbyRAB27A ectopic expression37.
UNC13C is oneof a family of proteinswith key roles in exocytosis andhas
been reported todownregulate tumorprogression inoral squamous cell
carcinomas through its role in regulating epithelial-to-mesenchymal
transition (EMT) signaling pathways38. A recent study found high num-
bers ofmutations inUNC13C in head and neck cancer patients of African
ancestry, which suggests these variations can lead to aggressive formsof
head and neck cancer in patients of African ancestry39.

The risk allele rs899342 lies within the USP22 gene on chromo-
some 17 and affects expression of this gene inmany tissues. USP22 is a
ubiquitin hydrolase and is a component of the SAGA coactivator
complex which is essential for eukaryotic transcription. It is highly
expressed in breast cancer samples compared to benign breast tissue,
and high expression of USP22 is significantly associated with poorer
overall survival in breast cancer40,41. It also associates with estrogen
receptor α to maintain ERα stability and contributes to chemotherapy
resistance in triple negative BC tumors40,41.

Receptor subtype analysis of TNBC vs controls revealed associa-
tion with two loci in gene ‘desert’ regions, with the nearest genes being
IL20RB and HACD1 on chromosomes 3 and 10 respectively. The TNBC
vs ER-positive top signal on chromosome 6 is in a long non-coding
RNA,with thenearest gene beingRGS17, which is a negative prognostic
marker for TNBC42. The ER-negative BC vs controls analysis revealed an
intergenic signal that reached genome-wide significance and was
supported by two other SNPs in close proximity. The nearest gene is
SGMS1, a sphingomyelin synthase, which, if overexpressed in breast
cancer cell lines, inhibits TGF-β1-induced EMT and the migration and
invasionof cells43. Receptor subtype analysis for ERpositive-BCdidnot
detect any signals at genome-wide significance.

An analysis of ER-positive vs ER-negative BC cases was done to
screen for genetic signals that are specific to a particular subtype. The
signal from this analysis, rs112965634 on chromosome 3, is intergenic
and is extremely rare in non-African populations. The nearest gene at
this locus is the histone acetyltransferase KAT2B, which is upregulated
by a transcriptional complex, NELF-E-SLUG, and promotes the EMT
process in the development of breast cancer44. Inactivation of KAT2BTa
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was associated with downregulation of the EMT pathway, whereas ele-
vated expression of KAT2B was correlated with reduced survival in
breast cancer patients. The SNPs in the locus identified on chromosome
1 in the ER-positive/ER-negative analysis are located just upstreamof the
TMEM52 gene and are eQTLs for its expression in mammary tissue, but
this locus has not previously been reported to be associated with BC.

There was limited evidence for replication of our GWAS findings
in theAfricanAncestrydatasets. Our top signals from theoverall GWAS
on chromosome 15 and chromosome 17 were not replicated in the AA
data meta-analysis. The lack of shared risk loci could be explained in
part by African Americans mostly being descended fromWest African
populations with European admixture while the South African JCS
GWASwas composed of cases and controls from South Africa, who are
South-Eastern Bantu-speaking populations with Koisan admixture27.
Our admixture analysis and PCA plot shows very substantial genetic
diversity between West African and South African populations. Also
there are potential differences in environmental exposures between
these populations. However, the lack of replication in the AA dataset
requires further investigation as theymay be false positives. Some, but

not all the signals from the African ancestrymeta-analysis dataset were
replicated in our JCSdataset, whichcould be attributed toboth genetic
diversity and the limited power for replication in our dataset.

The PRS models evaluated in our study showed that models
generated in European populations had substantially lower predictive
efficacy for BC in the South African JCS population, with AUCs of 0.56
and 0.55 for the PRS313/202 and PRS3820/2819 respectively as compared
to 0.63 and 0.64 in the European ancestry study33. The 313 SNP PRS
also did not performwell on the Jia et al. African Ancestry dataset with
anAUCof 0.5817. This is consistentwithfindings on the performanceof
PRSfindings inother disorders5,23,24.MoreGWASneed to be carried out
in resident African populations to generate more predictive PRS, the
inclusion of diverse populations in PRS generation can improve the
transferability of risk loci and PRS across different populations45. PRSs
have been shown to have attenuated risk prediction both in dis-
crimination and calibration when used in non-European ancestry
populations. PRS represents a significant advance inBC riskprediction,
with potential for further enhancing personalized care46. The role of
PRS in the clinical management of BC is being extensively researched,

Fig. 3 | Regional association plots of the top signals in the South African JCS
GWAS using locuszoom software and the JCS Soweto as a reference for LD.
A rs7181788 on chromosome 15 between UNC13C and RAB27A. B rs899342 on

chromosome 17 in USP22. JCS Johannesburg Cancer Study, LD linkage dis-
equilibrium, GWAS genome wide association study.

Table 3 | Top signals from receptor sub-type GWAS

TNBC vs controls

Chr Position (hg19) rsID Alleles (Effect/non-effect) EAF P value OR (95% CI)

3 137142030 rs111999709 C/T 0.058 2.08 × 10−08 1.20 (1.13–1.28)

3 137126170 rs534829894 A/G 0.058 2.74 × 10−08 1.20 (1.13–1.28)

3 137142198 rs113378419 T/C 0.058 2.95 × 10−08 1.20 (1.12–1.28)

3 137124646 rs111295639 C/G 0.063 3.79 × 10−08 1.19 (1.12–1.27)

3 137126730 rs112262998 A/G 0.063 3.93 × 10−08 1.19 (1.12–1.27)

10 17669070 rs11598380 T/C 0.015 2.97 × 10−08 1.45 (1.27–1.66)

TNBC vs ER-positive

6 153702044 rs189230042 A/T 0.025 2.33 × 10−08 1.36 (1.22–1.52)

ER-negative vs controls

10 52055245 rs11593018 A/G 0.016 4.92 × 10−08 0.23 (−0.08–0.54)

10 52054031 rs7073005 T/C 0.016 7.76 × 10−08 0.23 (−0.09–0.54)

15 55015367 rs7181788 T/G 0.219 3.60 × 10−07 1.49 (1.32–1.72)

ER-positive vs ER-negative

3 20660927 rs112965634 G/C 0.060 2.22 × 10−08 0.46 (0.35–0.57)

1 1851188 rs113934974 G/A 0.503 3.06 × 10−08 1.44 (1.39–1.49)

1 1851185 rs113425481 T/G 0.503 3.09 × 10−08 1.44 (1.39–1.49)

SNP is considered significant if p value < 5 × 10−08.
EAF effect allele frequency, OR odds ratio, 95% CI 95% confidence interval.
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including their potential role as part of risk assessment for stratified
breast screening47.

GWAS from African populations are not only of value not only for
the development and understanding of PRS but also to better under-
stand the genetic causes of cancer, which could be of benefit to all.
Differences in ancestral origins are associatedwith differences in allele
frequency and linkage disequilibriumpatterns. Although this study has
a relatively small sample size and is underpowered to detect small
effect sizes, theremay be risk alleles in populations of African ancestry
that are rare or absent in non-African populations and could provide
novel insights into our understanding of disease.

Despite the limitation in the sample size of our study we were
able to identify two genome-wide significant signals associated
with overall BC (rs899342 in the USP22 gene on chromosome 17
and risk allele rs7181788 on chromosome 15), and several com-
parably significant signals in our analysis of BC estrogen receptor
subtypes. The genomic locations of these signals are interesting
in the context of their potential functional significance in the
biology of BC, but verification of their relevance will require
further bioinformatic and experimental analysis. It is however
noteworthy that several of these loci include genes involved in
the epithelial-mesenchymal transition, given the important role of
that pathway in breast tumor cell progression, invasion, and
metastasis. Going forward, the large global Confluence project on
the genetics of breast cancer (https://dceg.cancer.gov/research/
cancer-types/breast-cancer/confluence-project), to which we are
contributing, includes a major expansion in the study of breast
cancer genetics in resident African populations.

Methods
Study design
This genetic association study forms part of a larger study: Evolving
Risk Factors for Cancer in African populations (ERICA-SA) (https://
www.samrc.ac.za/intramural-research-units/evolving-risk-factors-
cancers-african-populations-erica-sa). Our study received approval
from the Human Research Ethics Committee (Medical), University
of theWitwatersrand, South Africa for the breast cancer (M160807)
and AWI-Gen (M121029; M170880) studies. All the participants
signed an Informed Consent Form before any study procedure was
performed.

Study sample
Black female patients with histologically confirmed breast cancer were
recruited to the Johannesburg Cancer Study (JCS)29. All study partici-
pants were enrolled from the Soweto region, Gauteng Province, South
Africa. Non-cancer, ethnically similar female participants also from the
Soweto region, Gauteng Province were selected from the Africa Wits
INDEPTHpartnership for genomic studies (AWI-Gen) study and the JCS
as population controls27.

Sampling and genotyping
We collected and isolated genomic DNA (gDNA) as previously descri-
bed from peripheral blood samples from all study participants48. In
brief, gDNA was isolated using either by the Qiagen DNA FlexiGene kit
as per the manufacturer’s protocol (Cat. No./ID: 51206), or the salting
out method in which cellular proteins are salted out by dehydration
and precipitation with a saturated NaCl solution49. The isolated gDNA
was resuspended in low Tris-EDTA buffer and stored at −80 °C
until use50.

DNA samples were genotyped using the Illumina H3Africa
custom array (https://www.h3abionet.org/h3africa-chip)51. The
genotyping of JCS samples took place at the Genomics Core
Facility, Department of Social, Genetic & Development Psychiatry
Centre, King’s College London. The AWI-Gen samples were geno-
typed using the Illumina FastTrack Sequencing Service (https://www.
illumina.com/services/sequencing-services.html). Raw intensity
files (iDATs) were used for data analysis. Illumina supplied the pre-
defined cluster file and manifest file which was used to call and
cluster the genotypes for all the cases and controls (Supplementary
dataset 1). (https://emea.support.illumina.com/downloads/iaap-
genotyping-orchestrated-workflow.html#:~:text=Support%20Center
%3A,GTC%20format%20and%20PED%20Files). The Illumina Array
Analysis Platform Genotyping orchestrated command-line workflow,
using the Illumina GenCall algorithm, was used for genotype calling.
PLINK version 1.9 was used for genotype data management52. The
H3ABioNet/H3Agwas Pipeline version 3 was used to format data and
carry out data quality control (QC)53.

Quality control: Only autosomal SNPs were retained for analysis.
SNPs were included if SNP-based missingness was ≤0.01, minor allele
frequency (MAF) ≥0.01 and Hardy Weinberg equilibrium (HWE) p-
value ≥0.0005. Samples with individual genotype missingness ≥0.01
were excluded. Unrelated participants were retained for analysis
(piHat ≤0.18). Genotype-gender mismatched individuals were exclu-
ded along with participants outside of the heterozygosity limits of
≤0.15 and ≥0.343.

Imputation
We used the Sanger Imputation Service (https://imputation.sanger.
ac.uk/) with the African Genome Resource panel as the reference.
Pre-phasing was performed using EAGLE2. Parameters for post-
imputation QC were: MAF ≥0.01, Impute2 Score ≥0.3, HWE p-
value ≥0.0001.

Adjusting for population sub-structure
The South African Black populations show complex genetic
architecture and population substructure25,27. Several measures
were taken to account for this. First, admixture analysis was done
with reference population of the European, (CEU, n = 503), East
Asian (EAS, n = 504) and South East Asian (SAS, n = 489)

rs11598380
rs111999709

BA
Lambda genomic control: 0.9942

Fig. 4 | Quantile-Quantile plot and Manhattan plot of the TNBC vs controls
analysis. A QQ plot, λ =0.9942. B The Manhattan plot with genome-wide sig-
nificant (p < 5 × 10−08) hits indicated for chromosomes 3 and 10. Red line indicates

genome-wide significance (p < 5 × 10−08), blue line indicates suggestive significance
(p < 5 × 10−06). TNBC triple negative breast cancer, λ Lambda genomic control.
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individuals from the 1000 Genomes Project (KGP), 220 indivi-
duals with Khoe-San ancestry and 13,261 individuals with SSA
ancestry (West, East and South SSA ancestry) from the African
Genome Variation Project (AGVP), AWI-Gen and the JCS cohort
using Admixture v1.3 51 (see Supplementary Dataset 1a, b)54–56.
Individuals with >10% CEU or Asian genetic contribution and
<70% Bantu and Khoe-San southern sub-Saharan ancestry were
excluded. Secondly, we performed Eigen decomposition for
Principal Component (PC) analysis using linkage-disequilibrium
(LD) pruned SNPs (100 kb window, 20 SNPs within each window,
r2 = 0.2). PCs 1–5 were selected using cases and controls after
quality control and included as covariates in the final model.
Eigen decomposition was performed using PLINK v.1.9 and
visualized in R52.

GWAS Linear-mixed modeling (LMM)
The binary case-control phenotype was regressed with PCs 1–5 with
GRMs and probability of imputation as covariates. The LMM accounts
for genetic relatedness and population structure and was done using
Gemma v.0.98.157,58 GRMs were generated using 500,000 LD

independent genotyped SNPs using the leave-one-chromosome-out
(LOCO) approach. Study methodologies incorporating mixed models
that utilize the LOCO approach have higher statistical power com-
pared to traditional association studies59,60. Odds ratio approximations
were calculated using case-control ratios and beta values61. The
quantile-quantile (QQ) plots andManhattan plots were done using the
fastman library in R26,62.

Receptor sub-type analysis
Receptor sub-type analysis was done with ER positive cases and ER
negative cases against controls, TNBC cases against: controls; ER-
positive cases and HER2-positive cases. An analysis was also done
comparing ER-positive individuals (coded as 1) with ER-negative indi-
viduals (coded as 0). Sample sizes for the receptor subtypes are shown
in Table 1.

We also assessed replication of suggestive signals (p < 5 × 10−06)
from the JCS ER-negative vs controls results in the Jia et al. ER-negative
vs controls dataset17. Further signals (p < 5 × 10−06) from the ER-
negative and ER-positive vs controls analysis from Jia et al. were
looked up in our JCS ER-negative and ER-positive dataset17.

A B

C D

AUC: 0.555 (0.534-0.575)

AUC: 0.548 (0.524-0.568)

Fig. 5 | Density and receiver operating characteristic (ROC) plots ofnon-African
polygenic risk scores (PRS) applied to the South African JCS dataset. A Density
plot of score separated by disease status using 202 SNPs PRS.B ROC curve plot for

202 SNPs PRS. C Density plot of score separated by disease status using 2819 SNPs
PRS. D ROC curve plot for 2819 SNPs PRS. JCS Johannesburg Cancer Study.
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Heritability estimation
A SNP-based heritability (h2g) estimate was calculated in LDAK using
genotype data63. A restricted maximum likelihood estimations
(REMLs) was used in LDAK. LDAK weighting, which accounted for LD,
was carried out using the default correlation squared threshold of
0.98. A GRM was computed on the smaller set of predictors that
resulted from the LDAK weighting, and this was used for the h2g
estimation. The h2g for BC was estimated on the liability scale using
the Globocan 2020 incidence for BC (age standardized incident rate of
0.000526) in South Africa as a proxy for disease prevalence1.

Replication of JCS African and known BC risk loci
In order to determine whether our findings could be replicated in
existing BC GWAS data from other populations we first performed a
fixed-effect meta-analysis in METAL, allowing for heterogeneity, on
two datasets: African ancestry BC cases and ethnically-matched con-
trols from the UK Biobank (cases = 163, controls = 3774), and the
dataset from the Jia et al. (2024) GWAS (cases = 18,034, controls =
22,104) (Table 1)17,64,65. Suggestive signals in our study (p < 5 × 10−06)
were then assessed for replication in this African ancestry meta-
analysis17,64.

Suggestive signals (p < 5 × 10−06) from the African BC GWAS by Jia
et al. were tested for replication in the JCS BC dataset.

Fine mapping & functional analysis of associated variants
Regional plots were created using LocusZoom v1.4, for all top GWAS
signalswithp< 5× 10−8, with a 400kbflankingnucleotidewindow, using
KGP African LD information66. FUMA was used to annotate67,68 and
interpret associatedGWAS variants with p< 1 × 10−5 using the KGP Phase
3 African data as a reference, as well as annotated co-localized eQTLs in
the breast tissues of interest fromGTEx version 869,70. GCTA COJO-SLCT
was used to perform a stepwise model selection procedure to select
independently associated SNPs and FINEMAP v1.4 was used to identify
variants surrounding the top association signals in our study and cred-
ible interval set at 95%. The top SNPs were also analyzed on Pan-
canQTLv2.0,whichprovides cis and trans eQTLs in 33 cancer types from
TheCancerGenomeAtlas71. Reactomewas used to investigate pathways
linked to the genes that were located near the two top signals72.

Polygenic risk scores
A PRS was generated using PLINK in our dataset using the 313 SNP
model by Mavaddat et al.33. Of the 313 SNPs, 202 were present in our
dataset and used to generate the PRS. In addition, we also generated a
PRS using the 3820SNPsmodel byMavaddat et al.33. Of the 3820 SNPs,
2819 SNPs were present in our dataset and were used to generate the
PRS. PRS and cancers status were compared using logistic regressions
(lm function fromR) includingPCs 1–5 as covariates. Thepercentageof
variance explained by the PRSof cancer status was estimated using the
linear model (lm) from R and the ANOVA function. Only SNPs with an
allele frequency of >0.01 were included in this analysis. The dis-
crimination performance of a PRS was assessed using the area under
the receiver operating characteristic curve (AUC), using roc function
from pROC package in R73.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full dataset generated in this study is in the EGA database under
the study accession code EGAS00001002482 for AWI-Gen controls
and EGAS00001008032 for breast cancer cases and JCS controls. This
accession IDs for the AWI-Gen phenotype dataset:
EGAD00001006425, and the genotype dataset: EGAD00010001996.
These datasets are available subject to controlled access through the

Data and Biospecimen Access Committee of the H3Africa Consortium.
Summary statistics reported in the paper are accessible on GWAS
Catalog (https://www.ebi.ac.uk/gwas/) at the accession numbers:
GCST90551892, GCST90551893, GCST90551894, GCST90551895,
GCST90551896, GCST90551897, GCST90551898. Publicly available
datasets included in the study are the following: 1000 Genomes Pro-
ject Phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp), BC African
American dataset with summary statistics available at GWAS Catalog
(https://www.ebi.ac.uk/gwas/). The data will be available for compu-
tational benchmarking studies on condition that no attempt ismade to
reidentify participants. Access to the dataset will require ethics
approval from a recognized ethics committee.

Code availability
The quality control pipeline is available on GitHub at https://github.
com/h3abionet/h3agwas/. The version used in this study has been
deposited in the Zenodo repository (https://doi.org/10.5281/zenodo.
14907702; https://zenodo.org/records/14907702). Additional code is
available upon request.
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