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Exceptional point and hysteresis trajectories
in cold Rydberg atomic gases

Jun Zhang1,2,3, En-Ze Li1,2,3, Ya-Jun Wang1,2,3, Bang Liu1,2, Li-Hua Zhang1,2,
Zheng-Yuan Zhang1,2, Shi-Yao Shao1,2, Qing Li1,2, Han-Chao Chen1,2, Yu Ma1,2,
Tian-Yu Han1,2, Qi-Feng Wang1,2, Jia-Dou Nan1,2, Yi-Ming Yin1,2, Dong-Yang Zhu1,2,
Guang-Can Guo1,2, Dong-Sheng Ding 1,2 & Bao-Sen Shi 1,2

The interplay between strong long-range interactions and the coherent driving
contribute to the formation of complex patterns, symmetry, and novel phases
ofmatter inmany-body systems.However, long-range interactionsmay induce
an additional dissipation channel, resulting in non-Hermitian many-body
dynamics and the emergence of exceptional points in spectrum. Here, we
report experimental observation of interaction-induced exceptional points in
cold Rydberg atomic gases, revealing the breaking of charge-conjugation
parity symmetry. By measuring the transmission spectrum under increasing
and decreasing probe intensity, the interaction-induced hysteresis trajectories
are observed, which give rise to non-Hermitian dynamics. We record the area
enclosed by hysteresis loops and investigate the dynamics of hysteresis loops.
The reported exceptional points and hysteresis trajectories in cold Rydberg
atomic gases provide valuable insights into the underlying non-Hermitian
physics in many-body systems, allowing us to study the interplay between
long-range interactions and non-Hermiticity.

Exceptional points (EPs) are special points in the parameter space of a
non-Hermitian system where two or more eigenstates and their cor-
responding eigenvalues coalesce. At these points, compared to the
Hermitian Hamiltonian, the eigenvalues of the underlying system’s
Hamiltonian have complex values1–5. Recent studies have shown that
open systems undergo phase transitions at EPs, leading to a variety of
interesting physical phenomena, including chirality6,7, unidirectional
transmission or reflection8,9, topological phase transition10,11, parity-
time symmetry breaking12,13 and charge-conjugation parity (CP) sym-
metry breaking14, and supernormal sensitivity to perturbations15,16.
These properties have become the focus of research on non-Hermitian
systems associated with EPs, which opened the door to a series of
experimental studies in optics17–20, electronics21,22, and enhanced
sensing23–27 (where the sensor sensitivity is enhanced by energy bifur-
cation near the EPs). The combination between non-Hermiticity and
many-body interaction enables the emergence of non-trivial

effects28–30, thus providing a platform to study the emergent phases
beyond few-body scenarios.

Due to the strong dipole interaction between Rydberg
atoms31–33, they have become a versatile tool for studying many-
body physics. This long-range interaction induces non-linearity and
gives rise to a unique dissipation channel, enabling investigations
into non-equilibrium phase transitions34–40, self-organization41–44,
ergodicity breaking and time crystals45–51. The dissipation induced
by interactions can cause energy to be exchanged between a many-
body system and its external environment, thereby influencing the
dynamics and symmetric properties of the system, i.e., non-
Hermitian many-body physics. Thus, studying the relationship
between many-body interactions and non-Hermiticity can provide a
new framework to investigate non-Hermitian dynamics in many-
body scenarios52. Studying these in Rydberg atom systems has
advantages in precise control of interactions, offering valuable
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insights in finding new emergent phases in symmetry breaking14,
which is the starting point of this work.

Here, we propose a paradigm for studying non-Hermitian physics
in cold Rydberg atomic gases, where the non-Hermitian term arises
from dissipation induced by long-range Rydberg-Rydberg interac-
tions. In contrast to other systems characterized by different types of
interaction, such as those involving electron-electron and cavity-
coupled interactions discussed in previous studies19,53,54, our system
features a different interaction and dissipationmechanisms. This leads
to the unique non-Hermitian dynamics and provides a ideal platform
for experimentally studying EPs. We observe a normal electro-
magnetically induced transparency (EIT) spectrum under weak Ryd-
berg atom interactions, whilst the peak of EIT splits into two when in
strong interaction, indicating that the systemcrosses the second-order
EPs. Additionally, our theoretical model confirms the existence of the
third-order EP. In this scenario, the interaction is a dominant resource
for system to produce non-Hermitian features, leading to rich hyster-
esis trajectories by varying probe intensities. The area of hysteresis
loops reveals energy loss due tonon-Hermiticity, and thedynamics can
be tuned in various time scales.

RESULTS
Physical model
Ourmodel is based on a three-level Rydberg atom system, as depicted
in Fig. 1a. There are three atomic state manifolds of ground state ∣gi,
metastable state ∣ei, and Rydberg state ∣ri. The probe field with Rabi
frequency (detuning) Ωp (Δp) drives the transition ∣gi $ ∣ei, and the
coupling field with Rabi frequency (detuning) Ωc (Δc) drives the tran-
sition ∣ei $ ∣ri. The spontaneous decay rates of the states ∣ei and ∣ri
are Γ1 and γ, and γeff is the decay rate caused by Rydberg many-body
interactions. A pair of atoms i and j at positions ri and rj excited to the
Rydberg states ∣ri interact with each other via a van der Waals (vdW)
potential VvdW ∝ C6/R6, where C6 is the coefficient and R represents the
distance between the Rydberg atoms.

By the EIT theory of the ensemble of cold atoms, long-range
interactions between atoms limit themedium to behave as a collection
of superatoms (Rydberg polaritons), each containing a blockade
volume that can hold at most one Rydberg excitation as shown in
Fig. 1b. The experimental setup is depicted by Fig. 1b, and the scan of

Ω2
p probes the dynamics of system response, as given in Fig. 1c. Here,

the error bars are derived from the standard deviation calculated using
three independent measurements, following the same estimation
method used throughout the manuscript. The Rydberg polaritons
display a dephasing feature when considering the interactions with
each other, where the non-uniform distribution of the Rydberg atoms
inside the polariton causes the position-dependent phase shifts55,56.

The interaction between polaritons accelerates the decay of
Rydberg atoms and causes a broadening of the Rydberg energy levels.
This creates an additional dissipation channel for the Rydberg state ∣ri
to its surrounding environment; further analysis can be found in the
Methods section. In the rotating frame, the Hamiltonian of our system
takes the form

H1 =

0 Ωp=2 0

Ωp=2 Δp Ωc=2

0 Ωc=2 Δc +Δp � iγeff=2

0
B@

1
CA, ð1Þ

where γeff = Vρrr donates the effective non-Hermitian term. In our
theoretical model, V represents the interaction strength and ρrr
represents the population of the Rydberg atoms, with both factors
contributing to the overall decay rate of Rydberg atoms. Obviously,
when Δp =Δc = 0, this system is protected by CP-symmetry, and the
non-Hermitian Hamiltonian satisfies UCPH1U

�1
CP = � H1

* with
UCP = diag(1, −1, 1)14.

The eigenvalues ofH1 are calculated as E = E1, E2, E3. In this case, we
can observe the Riemann surface showing real and imaginary parts of
the eigenvalues of Hamiltonian H1 [see more details in the Methods
section]. The non-zero γeff induces imaginary parts of eigenvalues and
generates the non-Hermitian features. By increasing γeff, the coalesce
of three eigenvalues emerges and results in complex singularities in
energy spectrum, we called these points as EPs2,14.

Additionally, we reveal the existence of the third-order EP in our
theoretical simulations, which shows promising potential for the
application of precision measurement due to their enhanced sensi-
tivity to perturbations23,27. At the third-order EPs, the real and ima-
ginary parts of the eigenvalues exhibit a triple degeneracy. The three
eigenvalues coalesce at a single point in both their real and imaginary
components [see more details in the Methods section]. This unique
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Fig. 1 | Schematic of many-body interaction induced EPs and hysteresis loops
in Rydberg atoms. a Rydberg atomic energy level diagrams. Probe Ωp and cou-
pling Ωc fields excite atoms with detunings Δp and Δc. Γ1 and γ are spontaneous
decay rates of states ∣ei and ∣ri, and γeff is the decay rate caused by Rydberg many-
body interactions. b Schematic diagram of the experimental setup. The probe

beam is incident opposite to the coupling beam through the lens and focused in a
magneto-optic trap (MOT) trapping 85Rb atoms, and the transmission signals are
detected using a photo-multiplier tube (PMT). c Measured transmission by posi-
tively (Up, pink) and negatively (Down, blue) scanning ðΩp=2πÞ2 with the scan time
Ts, and the trajectories connected by data points exhibit hysteresis loop.
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degeneracy at the third-order EPs is different from the case at the
second-order EPs in PT symmetry two-level system where the real and
imaginary parts of the eigenvalues will degenerate simultaneously2,12,57.

The system also exhibits two second-order EPs, with a stable
regime existing between these EPs [see more details in the Methods
section]. In the scenarioof the stable regime, a triple degeneracy of the
eigenenergy exists in real space (Re[Ei] = 0, i ∈ {1, 2, 3}), while the
corresponding imaginary parts separate into three distinct values. The
eigenvalues satisfied E1 ≠ E2 ≠ E3 and Ei 2 iR, indicating CP-symmetry
breaking14. Outside this regime, when the eigenvalues of real space are
completely non-degenerate, the eigenvalues of imaginary space
separate into two values where two of the three are degenerate. Here,
E1 = � E*

2 and E3 2 iR [or E1 = � E*
3 and E2 2 iR], indicating the pre-

servation of CP-symmetry.
We calculate the solution of master equation _ρ= � i½Ĥ1,ρ�+L½ρ�

at the steady-state condition _ρ=0. By the treatment of mean-field
method, we map the spectrum of the normalized Im[ρeg] [corre-
sponding to the transmission of EIT] versus the interaction strength V
and detuning Δp, as shown by the down panel in Fig. 2a. With increase
of V, for example, from V =0 to V = 110γ, the peak of Im[ρeg] decreases
and the neighbor two peaks emerge, as shown in Fig. 2b–e and the up
panel in Fig. 2a. In this process, the system crosses the EPs, and the
peak of Im[ρeg] splits into two, indicating that the degeneracy of one
complex eigenvalue of system has been de-degenerated.

Non-Hermitian spectrum and exceptional point
The presence of strong interactions between Rydberg atoms leads to
additional dissipation, which provides a platform to study non-
Hermitian spectrum. In the experiment, we excite the ground state
of a cold ensemble of 85Rb atoms to Rydberg state
∣47D5=2, F = 5,mF = � 5i by the EIT method, see more detailed infor-
mation inMethods section.Wemeasure the spectraby scanningprobe
detuning Δp from Δp = −2π × 15MHz to Δp = 2π × 15MHz under differ-
ent probe intensities ðΩp=2πÞ2.

As the probe intensity increases, the interaction between Rydberg
atoms become progressively stronger. This enhanced interaction is
similar to the effect of raising the interaction strength V in theoretical
model, where both scenarios lead to an increase in the decay rate of
Rydberg atoms due to enhanced interaction-induced dissipation [see

more detail in Methods section]. By this way, we can map a phase
diagram of system that responds to parameters of probe detuning Δp

and intensity ðΩp=2πÞ2. From ðΩp=2πÞ2 = 9MHz2 to
ðΩp=2πÞ2 = 64MHz2, the dynamics of response are obtained.When the
probe intensity ðΩp=2πÞ2 is small [for example, ðΩp=2πÞ2 ≤ 14:5 MHz2],
the EIT spectrum is normal as the interaction between Rydberg atoms
is weak. In this process, the system has three eigenvalues as we can see
only one peak and two dips in Fig. 3b [the peak and dips result from
one zero energy and two symmetric eigenenergy as described in
ref. 58], and this corresponds to the regime of Hermiticity approxi-
mately [as the interaction is ignored].

When the probe intensity ðΩp=2πÞ2 is large [for example,
ðΩp=2πÞ2>14:5MHz2], non-Hermiticity of systembegins to emerge and
the peak intensity of the EIT spectrum becomes weak, as shown in
Fig. 3c. With a further increase of ðΩp=2πÞ2, the peak of EIT spectrum
splits into two peaks and the system undergoes the second-order EP
[see the results in Fig. 3d, e]. At EP (ðΩp=2πÞ2 = 36.5MHz2), a sudden
change in the physical parameters breaks symmetry of system, leading
to a bifurcation where the real and imaginary parts of system eigen-
value coalesce and split respectively. In this scenario, the presence of
spectrum splitting post-EPs signatures the breaking of CP-symmetry14.
The peaks in Fig. 3e are asymmetric due to the small shift on Rydberg
energy level.

Hysteresis trajectories
The dependence on the transmission on the probe intensity allows us
to observe hysteresis trajectories, which reflects the interplay between
Rydberg atoms’ response and theirs interaction. For all hysteresis
trajectories measurements, the detuning values for both the coupling
and probe beamswere set to zero, which is consist with the conditions
used in the theoretical calculations presented in the Methods section.
Notably, all hysteresis trajectories measurements were conducted
under weaker interaction strengths compared to the experimental
conditions for observing EPs in Fig. 3, which required higher optical
density. Hence, even at larger values ofΩ2

p, the system remained below
the EPs during these measurements. Our investigation of hysteresis
trajectories reveals the non-Hermitian characteristics of the Rydberg
atomsystem, highlighting the dynamic behavior below the EPs and the
emergence of hysteresis loops.

Fig. 2 | Theoretical phase diagram. a Theoretical spectrum Im[ρeg] versus the
interaction strength V and detuning Δp. As the interaction strength gradually
increases, Im[ρeg] decreases, as shown in (b) and (c). With further increase in
interaction strength, the system transits an EP (marked by the black arrow in the up
panel of (a)) and two distinct transmission peaks emerge [marked by the two black

arrows] in the spectrum, as depicted in (d) and (e). The frequency difference δΔp
between these emergent two peaks is indicated by the red circles in the up panel in
(a). A value of 0 means that the system does not exhibit two distinguishable peaks.
In these simulations, we set Γ1 = 6γ, Δc = 0, Ωc = 3γ, and Ωp = γ.
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By scanning ðΩp=2πÞ2 from0MHz2 to 140.6MHz2 and vice versus,
we canobtain a series of closed circles under different optical densities
(ODs), as shown in Fig. 4a–d. In the regime with small atoms numbers
(which corresponds to large atomic distance R), we can find that the
invariance of the linearity of transmission to probe intensity. This
implies the interaction-induced dissipation does not dominate by
comparing the inherent decay rate γ of Rydberg state, corresponding
to the physical processunder the regimeofHermiticity, as given by the
case of OD =4.6 in Fig. 4a. When we increase OD, for example, from
OD= 6.8 to OD=8.9, the transmission for positive and negative scans
undergoes behavior with different scaling. The physics behind this
phenomenon is non-Hermiticity: at larger OD, the Rydberg atomic
interaction-induced dissipation cannot be ignored and the response is
no longer linear to probe intensity and results in the emergence of
hysteresis loop, see the area between pink and blue data given in
Fig. 4b–d.

We also model the trajectories of system using the Lindblad
master equation _ρ= � i½Ĥ1,ρ�+L½ρ�, where the operator L describes
the decay rate of system. The theoretical results predict the hysteresis
loops of Im[ρeg], see more details in Methods section. The phenom-
enon of hysteresis loop is counter-intuitive because the transmission
does not overlap under the same probe intensity, in which the current
state of system not only depends on its current inputs but also on its
past states and inputs. The increase of atoms number through probe
intensity forms structured Rydberg clusters by near neighbor inter-
action, the induced dissipationmakes the clusters’ behaviour different
from the case of few atoms. If the probe intensity is then reduced
conversely, the atoms retains some level of dissipation. To completely
release the dissipation of atoms, only small reduction of probe inten-
sity is required in the reversal scanning, seemore detailed information
in Methods section. This asymmetry in the response of the Rydberg
atoms to increasing and decreasing probe intensity is a clear mani-
festation of hysteresis.

The direction of hysteresis trajectories is reversal to magnetic
hysteresis in ferromagneticmaterial59, but samewith thenormal elastic
hysteresis of rubber60. The different directions of trajectories result
from the distinct physical mechanism behind these hysteresis. In our
experiment, different ODs (which relate to different numbers of atoms

and interaction strengths) can alter how the system responds to
changes in probe intensity, and influences the size (area) and shape of
the hysteresis loop observed experimentally, as illustrated in
Fig. 4a–d). In terms of energy, the area enclosed by the hysteresis loop
quantifies the energy loss during scanning ðΩp=2πÞ2.

The hysteresis loop also depends on the coupling Rabi frequency
Ωc, as given in Fig. 4e–h. We can find that the hysteresis loop only
appears within a range of Ωc. When we use a relative small Rabi fre-
quency of Ωc = 2π × 13.3MHz, the corresponding excited Rydberg
atoms number cannot provide enough interaction strength between
atoms, thus resulting in normal trajectories shown in Fig. 4e. When we
set Ωc = 2π × 27.8MHz, the interaction-induced dissipation affects the
scaling of transmission to probe intensity, then generates a hysteresis
loop given in Fig. 4f. If the system is driven under a large Ωc (for
example, Ωc = 2π × 38.6MHz and Ωc = 2π × 45.6MHz) that the atoms
have no time to respond, then the hysteresis loop shrinks and
disappears.

Furthermore, we also investigated the effect of the principal
quantum number n on the hysteresis loop while keeping OD and Ωc

constant, which maintained an equal number of excited atoms, as
shown in Fig. 4i–l. In Rydberg atom system, changes in the principal
quantum number n directly influence the value of C6, thereby influ-
encing the interaction strength V ∝ C6. At relatively low values of n
[such as n = 40], the interactions between Rydberg atoms are weak,
resulting in less energy dissipation. This leads to a smaller hysteresis
loop in the EIT spectrum, as illustrated in Fig. 4i. As the principal
quantum number increases, the interaction strength correspondingly
intensifies, leading to greater energy dissipation within the system.
This enhanced dissipation manifests as an expansion of the hysteresis
loop, which further reveals the mechanism of interaction-induced
dissipation in our system, as illustrated in Fig. 4j–l.

Hysteresis loops dynamics
The underlying mechanism behind the physical system is based on
interaction-induceddissipation,which exhibits howquickly the system
respond to changes in probe field. This enables us to capture the time-
dependent behavior of system as it undergoes changes in external
conditions. In the experiment, we record hysteresis loops versus the
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p. The EIT spectrum shows a visible
transmission peak when the probe intensity is low, which means that the interac-
tion between Rydberg atoms are so weak that the systemmaintains Hermiticity, as
shown in (b). As the probe intensity grows, non-Hermiticity of the Rydberg atoms
system begins to emerge, which is manifested in the transmission spectrum as a

weakening of the transmission intensity, as shown in (c). And as the probe intensity
continues to increase, the strong interaction between the Rydberg atoms brings
out the eigenenergy bifurcation, and two transmission peaks appear in the EIT
spectrum, as shown in (d) and (e). The red circles in the upper panel of (a) indicate
the frequency shifts δ of the two transmission peaks.
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scanning time Ts and measure the area enclosed by hysteresis loop.
The results are found in Fig. 5a. In this scenario, we consider two cases
of OD=8.0 (blue data in Fig. 5a) and OD= 4.5 (red data in Fig. 5a) and
show the difference between them. We fit the measured areas using
dashed lines, where the fit function is y=ae�bðx�dÞα+c (a = −64.9,
b = 0.053, c = 65.3, d = 5,α = 1.5) forOD =8.0 and the fit function is y = 0
for OD=4.5. For OD=4.5, the atoms are dilute, the linearity of trans-
mission on ðΩp=2πÞ2 is invariant to the scanning time Ts as the inter-
action is ignored. However, when we increase OD to 8.0, hysteresis
loops appear and the area grows versus Ts.

In our experiment, a fast scan accumulates a small number of
Rydberg atoms within limited time interval to each data, which makes
the interactions so weak that the effect from non-Hermiticity might
not dominate, see the results shown in Fig. 5b. As Ts increases, this
corresponds tomore excited Rydberg atoms for a relatively large time
interval and interactions between the Rydberg atoms cannot be
ignored, thus the effect of non-Hermiticity emerges, as illustrated in
Fig. 5c. For our experiment, there’s a characteristic measurement time
of Ts ~ 5 μs, where shorter scan times capture system’s transient
behavior, while longer scan times converge to the equilibrium value.

The results in Fig. 5d, e show examples of small OD, the variance of
scanning time do not affect the linearity of transmission to probe
intensity.

DISCUSSION
Our experiment serves as a preliminary verification test for non-
Hermitian many-body physics1,61, and promotes the applications
towards studying high-order EPs and symmetry breaking in high-
dimension systems. For example, according to ref. 14, both sides of
third-order EPs have different signs ofwinding number, thus providing
a platform to study the topological properties (such as topology sta-
bility, topological phase transition) around EPs in the Rydberg system.
In addition, the phenomenonof hysteresis loops enables us to build an
interfacebetweenhysteresis dynamics andnon-Hermitianphysics, this
could provide an experimental correspondence to theory62.

In summary, we have observed interaction-induced second-order
EPs and hysteresis loops in a cold Rydberg atomic gas. The interaction
between Rydberg atoms endows system a dissipation channel, leading
to non-Hermitianmany-body dynamics. In the experiment, we observe
interaction-induced hysteresis loops, in which the dynamics of the
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Fig. 4 | Measured hysteresis trajectories versus OD, Ωc, and n. a–d Measured
transmission with scanning Ω2

p in positive (pink, up) and negative (blue, down)
directions under optical densities of OD=4.6 (a), OD= 6.8 (b), OD= 7.7 (c) and
OD= 8.9 (d). The pink circle data represents the transmission when increasing
ðΩp=2πÞ2 from 0 MHz2 to 140.6 MHz2, and the blue circle data shows the

transmission by scanning ðΩp=2πÞ2 from 140.6MHz2 to 0MHz2 with the same
sweep rate. e, fMeasured transmission versus the coupling field’s Rabi frequencyof
Ωc = 2π × 13.3MHz (e), Ωc = 2π × 27.8MHz (f), Ωc = 2π × 38.6MHz (g) and
Ωc = 2π × 45.6MHz (h). i–l Measured transmission versus the principal quantum
number of n = 40 (i), n = 42 (j), n = 47 (k), n = 50 (l).
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system is dramatically distinct by comparing with weak-interaction
case. In the context of a cold Rydberg atomic gas, the emergence of
EPs and the hysteresis loops due to many-body interactions help us to
explore the rich dynamics between many-body interaction and the
non-Hermitian physics.

Methods
Details of the experimental setup
To study non-Hermitian many-body dynamics, the emergence of
EPs, and hysteresis trajectories, we prepare a cold ensemble of 85Rb
atoms trapped in a three-dimensional magneto-optic trap (MOT).
The atomic ensemble is prepared in the ground state
∣gi= ∣5S1=2, F =3,mF = � 3i by an optical pumping process. In
experiment, we wrapped the MOT with a double-layer magnetic
shield system. By this way, we can shield the system from external
magnetic fields, and it can reduce the internal magnetic field to less
than 10 mGauss. A guiding magnetic field is generated by a pair of
Helmholtz coils symmetrically placed around the atomic ensemble,
and the direction of the field is along the direction of beams pro-
pagation. By this way, the direction of the quantisation axis of the
system is confirmed.

We used a two-photon transition scheme to excite 85Rb atoms
from the ground state to the Rydberg state. The probe beam
(ωp ≈ 10 μm) driving the atoms from the ground state ∣gi to the
intermediate excited state ∣ei= ∣5P3=2, F =4,mF = � 4i, and the cou-
pling beam (ωc ≈ 20 μm) then drives the transition from ∣ei to the
Rydberg state ∣ri= ∣47D5=2, F = 5,mF = � 5i, as shown in Fig. 1a in
the main text. The probe beam and coupling beam are focused into
the cold atomic ensemble, and we used the Pound-Drever-Hall
method to lock probe and coupling beams frequency, thus con-
stituting the EIT process. We use a beam splitter to split the coupled
beam into two beams before focusing into the cold atomic ensem-
ble, and the intensity of one of these beams was detected using a
photodetector. This method allows us to monitor the intensity of
the coupling beam in real time. The transmission signals are
detected using a photo-multiplier tube.

In experiment, we loaded a triangular wave signal that was
generated using a signal generator (RIGOL DG4102) onto the
acousto-optic modulator. By this way, we produce the process of
increasing beam intensity (Up process) and intensity reduction
process (Down process). To better compare the Up and Down

processes, we perform an inversion of the Down process, as shown
in Fig. 1c in the main text.

Non-Hermitian Hamiltonian
The system of interest is schematically depicted in Fig. 1b, where two
optical fields with spatial overlap comprise a counter-collinear weak-
probe field and a strong-control field. The Rydberg atomic level
structure is the three-level EIT configuration shown in Fig. 1a. The
strong-control field with the Rabi frequency (Ωc) and detuning (Δc)
drives the transition ∣ei $ ∣ri; the weak-probe field with the Rabi fre-
quency (Ωp) and detuning (Δp) drives the transition ∣gi $ ∣ei, and the
two-photon detuning between two counter-collinear fields is
Δ =Δp–Δc. Under the Rydberg EIT configurations, the population is
mainly distributed in ∣gi. The spontaneous decay of the state ∣ei (∣ri) at
a rate Γ1 (γ). The interactions between excited Rydberg atoms are
reflected in the optical responses of atoms and the transmission of the
probe field.

The Hamiltonian in the interaction picture and rotating-wave
approximation reads (ℏ = 1),

Hmany =
XN
j = 1

�ðΔp +ΔcÞσ̂ j
rr � Ωpσ

j
eg +Ωcσ

j
re +H:c:

� �h i

+
XN
j = 1

�Δpσ̂
j
ee +

X
j<k

V jkσ
j
rrσ

k
rr

h i
,

ð2Þ

where σj
αβ = ∣αjihβj ∣ (α, β = e, g, r). We then consider the mean-field

approximation, in which a single atom is immersed in a field generated
by the interactions between itself and other atoms. Consequently, the
problem of solving the dynamic many-body system is reduced to
addressing the dynamics of one single atom within that field, treating
the other atoms as part of the environment. The Hamiltonian can be
written as

Hmany =H1 � IN�1 + I1 � HN�1 +HI , ð3Þ

where HI describes the interaction between the single atom and the
environment, H1 is the single atom Hamiltonian, HN−1 is the Hamilto-
nian of the environment, and I1 (IN−1) denotes the identity in the Hilbert
space H1 (HN−1). Consider the two-body interaction between the
Rydberg atoms, the interaction distance Rj represents the single atom
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between the atom in the environment. Then the total Rydberg state
∣rNi=

PN�1
j = 1 ∣r1i � ∣rji evolves according to

ÛðtÞ=
XN�1

j = 1

e�iV j t ∣r1
��XN�1

i= 1

∣ri
�
j

 !
r1
�

∣�
XN�1

i= 1

ri
�

∣j

 !
: ð4Þ

Since the distance between the single atom and the j-atom
in the environment Rj is different, in regarding the energy shifts
on ∣r1i, it is necessary to consider the distinct contributions from
the j-atom. The atom far away in the environment produces a
small shift, otherwise the shift will be large, due to the form of
van der Waals (vdW) potential VvdW ∝ C6/R6. Overall, this effect
is to widen the energy level ∣r1i with an effective width
γeff. Here, we consider the reduced density matrix of the
single-atom system, and the non-Hermitian Hamiltonian has the
form

H1 = � Δpσ̂ee � ðΔp +Δc �
iγeff
2

Þσ̂rr

� Ωpσeg +Ωcσre +H:c:
� �

,
ð5Þ

where γeff reveals the effective decay rate induced by the interaction of
the environment. The eigenvalues of H1 are given by

E1 =
1
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By setting the parameters Ωc = 3γ and Δp =Δc = 0, we obtain the real
and imaginary parts of the system eigenvalues as a function of γeff and
Ωp, as given in Fig. 6.

From these results, for example in Fig. 6c, d, we can find that the
second-order EPs appear. Before the EPs, the real parts of the three
eigenvalues coalesce and the imaginary parts of the eigenvalues split,
characterized by E1 ≠ E2 ≠ E3 and Ei 2 iR, indicating CP-symmetry
breaking. In contrast, after the EPs, the eigenvalues satisfy E1 = � E*

2

and E3 2 iR [or E1 = � E*
3 and E2 2 iR], thereby preserving CP-

symmetry14. In addition, when Ωp = 0.8γ, a second-order EPs first
appear, and retain stable in a range of 5.77γ < γeff < 6.49γ (in the stable
region, CP-symmetry breaking occurs) and then enter another second-
order EPs (outside the stable region, the system preserves CP-sym-
metry), as shown in Fig. 6e, f. When Ωp = 1.061γ, the third-order EP
appear, where both the real and imaginary parts of the systemexhibit a
triple degeneracy, and the system always preserving CP-symmetry, as
shown in Fig. 6g, h).

Lindblad master equation
In the mean-field treatment, we solve the Lindbladmaster equation by
adding the dissipation term Γ2 → γ + γeff = γ +Vρrr42,55,56,63–66, and obtain
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the following equations:

_ρgg = i
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2
ðρeg � ρgeÞ+ Γ1ρee, ð12Þ
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First, we consider the caseof no-interaction (γeff = 0) and calculate
the steady-state solution ( _ρij =0, where i, j represent the states of
∣g
�
, ∣ei, and ∣ri), we therefore obtained the element of densitymatrices

ρeg and ρrr versus Δp and Γ2, with forms of ρeg(Δp, γ) and ρrr(Δp, γ),
respectively. Then, by considering the interaction induced non-Her-
miticity, we obtain the modified matrix element ρeg(Δp, γ +Vρrr) with
the mean-field approximation Γ2 → γ + Vρrr. We plot Im[ρeg] versus Δp

and V, the phase diagram and transmission lines are given by Fig. 2. In
this framework, we keep Rydberg atom population ρrr fixed, assuming
it behaves as in a non-interacting scenario where it varies only with Δp.
By adjusting interaction strength V, we can effectively control the
decay rate of Rydberg state.

To simulate hysteresis trajectories, the state of atoms is influ-
enced not only by the external input but also by their previous states.

In particular, the systematic evolution is dependent on the direction
of scanning Ωp. Thus, we replace the time-dependent population
ρrr(t) by the term _ρrr ðtÞ according to Eq. (14):
ρrr ðtÞ= iΩc=2Γ2ðρerðtÞ � ρreðtÞÞ � _ρrrðtÞ=Γ2. Thus, the slope of Rydberg
population _ρrrðtÞ plays a crucial role in influencing the transient
behavior of ρrr(t).

In the simulations, we treat the results ρij(t) at time t as the
initial conditions for calculating ρij(t + Δt) at time t + Δt. This
approach effectively captures the inherent memory effects in the
system’s evolution. We specifically examined the time-dependent
component Im[ρeg(t)] while scanning Ωp both positively and nega-
tively, across various interaction strengths: V = 0, V = −400γ, and
V = −1500γ. The corresponding results are presented in Fig. 7a–c.
These results reveal intriguing behaviors of the scanned trajec-
tories. In the case with no interaction (V = 0, Fig. 7a), the trajectories
exhibit a coincident pattern, indicating that the system’s dynamics
are symmetric. However, when considering interactions, specifi-
cally at V = −400γ and V = −1500γ, as depicted in Fig. 7b, c, the tra-
jectories form closed loops.

The emergence of these hysteresis loops underscores the critical
role of interaction strength in shaping the dynamical properties of the
system. Moreover, the observed dynamics align closely with experi-
mental observations illustrated in Fig. 4a–l and Fig. 5a–e, which further
corroborates the relevance of our simulation results. This consistency
between theoretical predictions and experimental observations high-
lights the exact complex interplay between system memory and
interaction, providing valuable insights into the underlying mechan-
isms governing the observed phenomena.

Data availability
The data generated in this study have been deposited in the Zenodo
database (https://zenodo.org/records/14380778).

Code availability
The custom codes used to produce the results presented in this paper
are available from the corresponding authors upon request.
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