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% Check for updates Every day, we experience new episodes and store new memories. Although

memories are stored in corresponding engram cells, how different sets of
engram cells are selected for current and next episodes, and how they create
their memories, remains unclear. Here we show that in male mice, hippo-
campal CAl neurons show an organized synchronous activity in prelearning
home cage sleep that correlates with the learning ensembles only in engram
cells, termed preconfigured ensembles. Moreover, after learning, a subset of
nonengram cells develops population activity, which is constructed during
postlearning offline periods, and then emerges to represent engram cells for
new learning. Our model suggests a potential role of synaptic depression and
scaling in the reorganization of the activity of nonengram cells. Together, our
findings indicate that during offline periods there are two parallel processes
occurring: conserving of past memories through reactivation, and preparation
for upcoming ones through offline synaptic plasticity mechanisms.

Our daily experiences form a myriad of memories that accrue to
construct our personality. To adequately encode and retrieve these
memories, the brain must always be prepared and organized for near-
upcoming events and perform parallel processing of past memory.
The process of determining which set of neurons is to be recruited for
an upcoming event or task is known as memory allocation’. Proper
allocation of memory governs adequate retrieval of that memory
whenever it is needed. Groups of neurons that represent a specific
memory are called engram cells>. Engram cells can be labeled and
identified through the expression of immediate early genes, such as
c-fos*>. Optogenetic activation or inhibition of these subsets of neu-
rons leads to memory retrieval or silencing, respectively®®, It has been

demonstrated that engram cells possess characteristic activity during
learning”'®. As previous memories affect the next event, previously
formed engram cells may play some role in the selection of next
engram cells" ™. Several previous studies have shown that CREB and
neuronal excitability could bias the competition towards the excitable
neurons to be an engram'", and that engram cells are quite active
even before an event and their manipulation could affect this near
future learning'®. Moreover, hippocampal intrinsic dynamics form a
repertoire of preexisting assemblies of high temporal sequential
events ahead of time (known as preplay)'** forming a network of
preconfiguration®>?. Coding principles in neuronal networks might
reflect selection of remarkably excitable neurons of properly
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connected cells that share same birthdate and emerge together during
development®. However, how engram cells dynamics orchestrate
during offline pre- and postlearning stages and affect future learning
and upcoming future engram cells is not well understood.

Sleep’s contribution to memory consolidation has been exten-
sively investigated in recent decades. Brain activities occurring during
offline periods when subjects are not engaged in a certain task, such as
during sleep or awake rest, are defined as “idling state” activities™?*,
Neuronal reactivation and replay are responsible for the consolidation
and strengthening of acquired memories®*?, Artificial inhibition or
disruption of theta waves or sharp wave ripples (SWRs) during either
rapid-eye-movement (REM)” or non-REM (NREM)* sleep, respectively,
disrupts the retrieval of recent memories. However, sleep is now
thought of as an active process that is required for more than just
consolidation of past memories, rather than a passive process®. Sleep
and awake rest reactivations are linked with many behavioral out-
comes like learning®, creativity’*?, and planning, either toward a
reward® or away from an expected averse outcome®*. Although the
concept of sleep has recently expanded, with sleep now being con-
sidered a more dynamic process of diverse functions, the physiological
role of sleep in memory acquisition and encoding is not well
understood.

Episodic memories do not merely reflect past experiences but are
also important for thinking about the future’. Several functional
magnetic resonance imaging (fMRI) studies provide evidence®?® that
denotable activity associated with the past occurs in the brain when
thinking about the future, mimicking mental time travel’’. This high
overlap between past and future events is in agreement with findings
where hippocampal lesions or damages lead to an inability in thinking
and imagining about the past and future, respectively’**’. Nonetheless,
how and when our brains prepare and modify our existing memories
to accommodate our new experiences remains unclear. In this study,
we addressed the questions of whether and how sleep plays a role in
the selection of engram cells.

In this work, we show that coactivities of subsets of nonengram
cells emerge in parallel with the consolidation during sleep. These
newly coactive neurons, which we call engram-to-be cells, will later
encode future learning. Notably, engram-to-be cells show increased
coactivity with existing engram cells during sleep, suggesting that this
interaction helps shape new memory networks. A neural network
model shows sleep-related synaptic scaling mechanisms are crucial for
the engram-to-be cells emergence. This highlights the importance of
sleep in the emergence of engram-to-be cells. This process occurs only
during postlearning sleep, not before or during wakefulness. Together,
these data indicate that a dual process takes place in the brain during
sleep, preserving the past (consolidation) and preparing for the future
(engram-to-be emergence).

Results

Active ensembles during prelearning sleep are recruited into
upcoming engram

To understand how a specific set of neurons are chosen to represent a
particular event as a memory trace, we need to track the activity of
engram cells across different memory processing stages. We recently
established a Ca®* imaging system using a miniature microscope’ that
is suitable for visualizing both engram and nonengram cells across
memory processing stages in freely moving mice*®* (Fig. 1A, Supple-
mentary Fig. 1). We used double transgenic Thyl-G-CaMP7 mice cros-
sed with c-fos-tTA mice and the miniature microscope to track and
label the activity of both engram and nonengram cells. Lentivirus (LV),
harboring KikGR (coding for Kikume Green Red fluorescent protein)*
under the control of the tetracycline responsive element (TRE), was
injected into the hippocampal CAl region to label the engram
CAl cells, with the result that activated cells express KikGR protein in
the absence of doxycycline (DOX; Fig. 1A). We previously showed that

cells labeled by this system represent contextual engram cells’. KikGR
is irreversibly photoconverted from green to red fluorescent protein
by exposure to UV light of 365 nm (Fig. 1B), which allows simultaneous
Ca” imaging with G-CaMP7. EEG and EMG electrodes were implanted
along with the microscope to allow different sleep stages to be dif-
ferentiated (Supplementary Fig. 2a and see Methods). Imaging on day 1
was performed in prelearning NREM (N1) and REM (R1) sleep, during
learning (A), and in postlearning NREM (N2) and REM (R2) sleep. This
was followed by imaging sessions during retrieval (A’) and in a different
context (B) on day 2 (Fig. 1A). Calcium transients were detected
automatically using a HOTARU online sorting system®. All detected
cells were categorized into engram and nonengram cells according to
a snapshot image taken 24 h after the context exposure (Supplemen-
tary Fig. 2b-e). Engram cells constituted 7% (+1.5 standard error) of
the total cells recorded while nonengram cells constituted 93%
(1.5 standard error) (Supplementary Fig. 2f and Supplementary
Table 1). We have confirmed that sleep recorded sessions show a
comparable detected number of cells to awake sessions (Supplemen-
tary Fig. 2h).

Previously, we demonstrated that engram cells possess a char-
acteristic repetitive activity through correlation matrix repetition
analysis during contextual learning®. Engram cells still maintain the
characteristically high repetitive correlation during contextual
learning (Supplementary Fig. 2g). We previously described a method
that is well suited for picking neurons that are activated together and
their activity patterns’, non-negative matrix factorization (NMF)
analysis***. In brief, the population activity ensembles were selected
on the basis of the Akaike information criterion with a second-order
correction (AICc), in which the data matrix was approximated by two
non-negative factors (the pattern matrix and the intensity of that
pattern activity) to calculate an error function (Supplementary
Fig. 3a). Collectively, NMF analysis decomposed the total complex
pattern activity into a series of group activated neurons (termed
ensembles) and their temporal activity patterns (Supplementary
Fig. 3b and see Methods). Each ensemble is constituted of different
individual cells’ contributions and their grouped synchronous
activity across different time points; therefore, several ensembles
have different cell compositions and temporal activity. A given cell
can be identified in several ensembles based on their activity and
time course of its activity compared to shuffled data. To track the
activity of the detected ensembles across other sessions, we applied
the normalized dot product (cosine similarity) to compare the
similarity between all pairs of pattern vectors of ensembles across
two different sessions. If two ensemble vectors completely share the
cell identities and activity, the normalized dot product score is 1.
However, if there is no similarity, the score is 0. In this study, an
ensemble was considered active in another session if it had a nor-
malized dot product equal to or above 0.6°. We calculated the
similarities between session A and other sessions at different
thresholds (0.1-0.9) (Supplementary Fig. 3c). Thresholds below 0.6
displayed comparable activity across all sessions, which appeared
less stringent and above 0.6 maintained similar trends (Supplemen-
tary Fig. 3c). NMF analysis was applied to all recorded sessions
(session N1 to session B) for all cells, and separately to engrams and
nonengrams (Supplementary Fig. 3d-g). Then, to estimate the
reoccurrence of the ensembles across the sessions, we calculated the
matching score (MS), which shows the fraction of ensembles from
session X that is similar to any of the ensembles from session Y (see
Methods; Fig. 1C). The normalized MS results from session (A) were
quantified and compared with those of all other sessions in both
engram and nonengram cells. Both engram and nonengram ensem-
bles were normalized to their shuffled engram and nonengram
ensembles, respectively. Collectively, similar neuronal ensembles
were repeated more often across different sessions in engram cells.
By contrast, very few ensembles detected in nonengram cells were
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Fig. 1| Ensembles activated during prelearning sleep are recruited into the
upcoming engram. A Schematic diagram showing the miniature microscope
placed at the hippocampal CAl in c-fos-tTA x G-CaMP-7 double transgenic mice
injected with TRE-KikGR lentivirus for labeling and visualizing both engram and
nonengram cells. B Experimental design for the calcium imaging and behavior
paradigm. NREM (N1) and REM (R1) in prelearning sleep sessions, and then learning
(A), are followed by postlearning sleep sessions NREM (N2) and REM (R2) on day 1.
On day 2, a snapshot for KikGR is taken, and then after -2 h, a retrieval session (a’)
was followed by a different context (B) (top), Representative snapshots of KikGR
(scale bar, 100 um) taken before learning (1), 24 h after learning (2), and after
photoconversion to render KikGR invisible to the microscope (3) (bottom). This

Sessions

was done for all mice that performed the imaging paradigm (n = 6 mice).

C Representative matching score (MS) matrixes for engram (top) and nonengram
(bottom) cells across sessions to show similarity between ensembles. D Normalized
MS analysis in reference to session A for both engram (green) and nonengram
(blue) cells across sessions. n=6 mice for engram and nonengram. *p <0.05,

*p < 0.01, **p < 0.001. Statistical comparisons were made using Repeated-
measures two-way ANOVA with Bonferroni’s multiple comparisons test. Data
represent the mean + s.e.m. The Experiment was independently repeated six times.
Source data are provided as a Source Data file. Detailed statistics are shown in
Supplementary Data 1.
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learning session (A) using the NREM sleep only (B) or the REM sleep only (C) in pre-
and post-learning sleep. B n =6 mice. *p < 0.05, **p < 0.001, ***p < 0.0001. Statis-
tical comparisons were made using Repeated-measures two-way ANOVA with
Sidak’s multiple comparisons test (B, C). Data represent the mean + s.e.m. The
Experiment was independently repeated six times. Source data are provided as a
Source Data file. Detailed statistics are shown in Supplementary Data 1.

repeated (Fig. 1D). Engram cells showed significantly higher nor-
malized MS than nonengram cells across all sessions, exhibiting
around 40-60% resemblance, even before the learning in prelearn-
ing sleep sessions (N1 and R1). Given the fact that engram cells
constitute only a small proportion of the total recorded cells, it is
important to make sure that the difference found in MS activity was
not attributed to the difference in cell size number. We re-performed
the dot product and MS analysis using the same number of cells for
both nonengram and engram. Engram cells still show higher MS
values, and the same conclusion is maintained (Supplementary
Fig. 4a and see Methods). This is consistent with our previous finding
that the high MS of engram cells was maintained in replay (N2 and
R2) retrieval (A’) sessions’, and that MS discrimination ratio of the
engram ensembles decreased significantly from the retrieval session
(A’) to a different context (B; Supplementary Fig. 4b).

To check the necessity of sleep in this process, on another cohort
of mice, we added awake (Aw) and sleep (S) sessions 1 day before
learning (Day O; Supplementary Fig. 4c). Remarkably, engram cells
show highly correlated ensemble activity in prelearning periods only
during sleep (S1), but not awake (Aw), sessions when compared to
learning session A (Supplementary Fig. 4d). Moreover, engram cells
show highly correlated activity even 1 day prior to learning, only during
sleep session (SO). To further support the results, we have employed

the population vector distance (PVD) to track the activity of the
engram and non-engram ensembles across sessions (Supplementary
Fig. 4e). Engram cells show smaller distances across sessions in refer-
ence to session A showing that the activity of engram cells remained
stable and similar before and after learning. In contrast, the activity of
non-engram cells was more variable overall, with a decreased similarity
in response to the learning session (A). This result further supports the
conclusions driven from the NMF analysis (Fig. 1D). These results
indicate that a group of preconfigured neuronal ensembles that are
prominent during sleep, but not awake, sessions are recruited into an
upcoming engram upon exposure to contextual learning, and such
activity is specific to engram cells.

Preconfigured ensembles constitute around half of engram
ensembles

Then, to know the fate and lifetime of each ensemble detected, we
tracked the activity of all ensembles detected in A across sessions
(Fig. 2A). All ensembles detected in learning were then named and
classified based on their activity in other sessions. Briefly, ensembles
activated before and continued their activity after learning were
termed ‘preconfigured aligned,” while ensembles activated before and
during learning but were not correlated with any of the ensembles
after the learning were termed ‘stand-by’ ensembles. Alternatively,
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ensembles active during and after learning but were not correlated
with any of the ensembles active before the learning were termed
‘online emerging’ ensembles. Finally, ensembles that were not active
either before or after learning were termed ‘isolated’ ensembles
(Fig. 2A). To simplify the analysis, ensembles that did not match any of
the previously mentioned patterns of activity were termed as ‘others’.
We applied this tracking to all detected engram and nonengram. The
preconfigured-aligned ensembles comprised around 40% of all
engram ensembles when NREM sleep (N1 and N2) was used for acti-
vation during pre- and post-learning sleep (Fig. 2B), whereas isolated
ensembles were most abundant in nonengram ensembles (around 60%
of ensembles). Similar results were obtained when REM sleep (R1 and
R2) was considered (Fig. 2C). This shows that neuronal ensembles that
are activated together, even before a certain event, constitute a hip-
pocampal engram and are later activated in postlearning sleep and
retrieval sessions. This offline reactivation, especially in engram
ensembles, maybe representing what is known as the consolidation
process for this event.

Recent studies have supported the concept of dynamic memory
engram*®*’, as suggested by previous research. Building on this idea,
we explored the dynamism of the engram by calculating the fraction of
drop-in and drop-out engram ensembles. Drop-in ensembles refer to
those not activated during the learning session (A) but become active
during the retrieval session (A’), whereas drop-out ensembles are
active during learning but not during retrieval. Stable ensembles, in
contrast, are those activated in both learning and retrieval sessions.
Our findings revealed that drop-in and drop-out ensembles each
constituted approximately 25% of the total engram population, while
stable ensembles accounted for roughly 50% (Supplementary Fig. 5a).
This suggests that while individual ensembles may vary, the total
engram population remains consistent, with a similar proportion of
ensembles dropping in and out. Additionally, we tracked the activity of
these ensembles during both prelearning and postlearning sleep.
Drop-in ensembles displayed higher activity during prelearning sleep
compared to postlearning sleep, whereas drop-out ensembles exhib-
ited similar activity levels across both sleep sessions (Supplemen-
tary Fig. 5b).

Engram-to-be ensembles arise from nonengram population to
represent future memory

Memory allocation theory holds that neurons having relatively higher
excitability would be the memory bearers and the winners of the
allocation competition'. However, it remains unclear what happens to
the neurons that do not allocate the memory (losing neurons) in
upcoming events, in this case the nonengram cells. Consequently, we
investigated whether there is a temporal shift from random to coor-
dinated pattern activities in these nonengram cells across the memory
processing stages. We searched the pool of nonengram cells for a
group of neurons that could possibly become engram cells in the
upcoming event (B) (Fig. 3A).

We sorted all the nonengram cells. First, on the basis of the
characteristic features of the engram cells showing preconfigured
aligned ensemble activity in the sleep sessions before learning, we
searched for ensembles in session (B) that showed high cosine simi-
larity with ensembles in postlearning sleep (N2 and R2) but not pre-
learning sleep (N1 and R1) sessions (Fig. 3B and Supplementary Fig. 6a).
These candidate ensembles were picked up as engram-to-be ensem-
bles (Supplementary Fig. 6b, c). Next, we picked up actively partici-
pating cells in these ensembles and termed them “engram-to-be cells”.
In principle, engram-to-be cells are cells that are active as an ensemble
in session B and show correlated activity in sleep sessions N2 and R2,
but not in sleep sessions N1 and R1 before the first learning exposure.

To ensure that the engram-to-be ensembles represented the
majority of the potential engram ensembles of the next event, we
applied these criteria to the engram ensembles of session A

(Supplementary Fig. 6d, e). The majority of engram ensembles that
were active before learning continued to be active in postlearning
sleep and retrieval sessions (Fig. 2, Supplementary Fig. 4d). Given that
the engram ensemble is defined as those activated during both
learning and retrieval, true engram-to-be ensembles (patterns 1 and 3)
formed the majority of the predicted engram-to-be ensembles that
were identified by the above criteria, whereas pseudopositive engram
ensembles (patterns 2 and 4) formed only a small percentage (Sup-
plementary Fig. 6d). Similarly, the true engram-to-be ensembles that
were missed by the criteria (false-negative engram-to-be ensembles,
patterns 5 and 7) comprised only a small proportion (Supplementary
Fig. 6e). This indicates that the criteria applied to pick up the engram-
to-be ensembles did indeed capture the majority of meaningful
ensembles.

Next, we calculated the correlation repetition analysis for the
engram-to-be cells compared with the other nonengram cells, to check
if they have the same feature of engram cells during learning’. The
engram-to-be cells showed higher correlated matrix activity compared
to other nonengram cells, denoted by their synchronous repetitive
activity and recurring temporal pattern of activity across different time
points within a session (session B; Fig. 3C). When the repetitive cor-
related activity was quantified, only the contextual learning in session
B in the engram-to-be cells was significantly higher than in the other
nonengram cells (Fig. 3D), while other sessions were comparable. This
activity is similar to how the engram cells were behaving in session A
(Supplementary Fig. 2g). However, both engram-to-be and other
nonengram showed lower correlated activities in session A’ compared
to engram cells (Fig. 3E), indicating that the temporal shift and increase
in engram-to-be cells activity was specific to new learning (B). The
engram-to-be cells showed higher basal activity than the other none-
ngram cells in session B (Supplementary Fig. 7a). In terms of popula-
tion size, engram and engram-to-be populations both had comparable
numbers of cells, and both were considerably smaller than other
nonengram populations (Supplementary Fig. 7b and Supplementary
Table 1). On the cellular level, around half (44%) the engram-to-be cells
had significantly increased activities in session B compared with ses-
sion A (Supplementary Fig. 7c, e), while only 37% of the other none-
ngram population showed a significant increase activity in session B
(Supplementary Fig. 7d, e).

To assess the necessity of the postlearning sleep (N2 and R2)
ensembles activation, we have picked up cells constituting ensemble
patterns that are active during pre-learning sleep and session B, but
not in N2 and R2 sleep, which were termed as pre-learning ensembles
(Supplementary Fig. 8a). Then, we compared the activity of engram-to-
be and pre-learning cells during session B. Correlated activity of
engram-to-be cells were significantly higher than the pre-learning cells
(Supplementary Fig. 8b). Since the preN1/R1 and postN2/R2 sleeps
were recordings from the same day with learning A in between, this
result indicates that the difference in engram-to-be and pre-learning
ensembles in learning B is due to the experience (learning A). This
further denotes the importance of the post experience sleep activation
for the engram-to-be preparation and next learning. In accordance
with our argument, post-experience sleep, rather than sleep in general,
is correlated with new ensembles emergence.

In addition, we have analyzed an awake and sleep home cage
activity of engram-to-be cells one day before (Day0O; AwO and SO),
immediately before (Dayl; Awl and S1), and after (Dayl; Aw2 and S2)
the learning. Those three time points track engram-to-be awake and
sleep home cage activity as a function of time with and without
learning experience (A). In accordance with our argument, engram-to-
be cells show comparable activity across the three time points in awake
sessions (Supplementary Fig. 8c, d), while only postlearning sleep (S2)
exhibits higher correlations compared to both awake and other sleep
sessions (SO and S1), this suggests that the learning experience spe-
cifically influences the activity of engram-to-be cells during
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Fig. 3 | Engram-to-be cells, chosen from the nonengram pool, act as future
engram cells for upcoming events. A Phylogenetic tree diagram showing classi-
fication of all cells into engram and nonengram cells. Nonengram cells are then
further subdivided into engram-to-be and other nonengram cells. B Illustration
showing the first basis for choosing engram-to-be cells. Cells constituting the
ensemble of session B having high normalized cosine similarity (> 0.6) with the
ensemble from sessions N2&R2 (left) and a low normalized cosine similarity (< 0.6)
with sessions N1&R1 (right). C Correlation matrix overlaps between two time points
M (t, t) for the first 60 seconds of session B (See Methods) for engram-to-be (left)
and other nonengram (right), and the temporal sum of overlaps at a given time
point Mtot(t) (bottom) from a given representative animal (see Methods). D Sum of

all correlations (Mtot(t)) in the first 60 seconds for engram-to-be and other none-
ngram across sessions. E Sum of all correlations for engram-to-be and other
nonengram in session A’. F PVD in both NREM and REM with respect to the learning
session (B) in engram-to-be and other nonengram cells. Mice were subjected to
sessions N1 to B, and then to postlearning B sleep sessions (NREM and REM). n=3
mice. *p < 0.05, ***p < 0.0001, n.s., nonsignificant. Statistical comparisons were
made using Repeated-measures two-way ANOVA with Bonferroni’s multiple com-
parisons test (D), Tukey’s multiple comparisons test (E), Sidak’s multiple compar-
isons test (F). Data represent the mean + s.e.m. The Experiment was independently
repeated three times. Source data are provided as a Source Data file. Detailed
statistics are shown in Supplementary Data 1.
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postlearning sleep, but not during wakefulness. Overall, these results
indicate that there is a subset of nonengram cells that have drastically
altered their activity after the 1* learning session to suit the next
upcoming learning.

Furthermore, we aimed to investigate whether there was a shift in
the overall activity of the nonengram cell population through an
unsupervised analysis (Supplementary Fig. 9). We conducted a PCA-
ICA analysis on the entire nonengram cell population and monitored
activities of the ensembles identified during the postlearning sleep
session (N2 and R2) in relation to other sessions, prelearning sleep, A,
A’, and B. Notably, the ensembles from the postlearning sleep session
exhibited a significantly higher level of activities during session B when
compared to their activities during the prelearning period. This
observation further confirms a notable alteration in the overall popu-
lation activity patterns during postlearning sleep, patterns that were
absent during the prelearning sleep.

To check if engram-to-be cells show postlearning reactivation, we
recorded NREM and REM sleep sessions after session B (Fig. 3f). By
utilizing PVD, we were able to demonstrate that engram-to-be cells also
maintained stable activity during post-learning sleep sessions. This
consistency suggests that, like engram cells, engram-to-be cells pre-
serve their activity across sessions. PVD showed smaller distances in
both NREM and REM sleep compared to other nonengram cells, using
session B as a reference. The NMF analysis of engram-to-be cells during
post-learning sleep revealed that, as expected, these cells exhibited
higher matching scores across sleep sessions in reference to session B
(Supplementary Fig. 8e), suggesting that the engram-to-be ensembles
were reactivated during subsequent sleep. These findings highlight the
role of post-learning sleep in reinforcing and stabilizing engram-to-be
cell activity, further supporting their involvement in memory pro-
cesses. This activity could be representing engram-to-be offline reac-
tivations or replay of session B and behaving similarly as engram cells’.
To recapitulate, the engram-to-be population behaved in a similar
manner during contextual learning for session B but not A’, reacti-
vating at subsequent sleep sessions as a form of consolidation. These
implications may designate that this population is the upcoming
engram or “engram-to-be” cells for session B.

Engram and engram-to-be cells show high cooccurrences during
postlearning sleep

We next investigated whether there was any interaction between
engram cells representing session A and engram-to-be cells repre-
senting session B in terms of the coactivity between the two popula-
tions within a certain time window. We first tracked the activity of all
engram ensembles throughout the sessions. Some ensembles of ses-
sion A engram cells showed high cosine similarity (> 0.6) with session B
(common engram ensemble), whereas some ensembles did not (< 0.6;
(specific engram ensemble, Supplementary Fig. 10a and f). Accord-
ingly, the engram cells were subcategorized according to their activity
in session (B) into common engram and specific engram cells (see
Methods, Supplementary Fig. 10). To investigate whether there was
any functional difference between the two subgroups of the engram
population, the neuronal activities were binarized, and all co-
occurrences between the different subgroups were counted over a
short time window (see Methods; Fig. 4A). The co-occurrences
between common engram and engram-to-be cells, and between spe-
cific engram and engram-to-be cells, were measured in sessions N1&R1,
A, N2&R2, A’, and B (Fig. 4B). Comparisons revealed that the co-
occurrences between common engram and engram-to-be cells were
significantly higher than the co-occurrences between specific engram
and engram-to-be cells only during the postlearning sleep (N2&R2)
session, with there being no significant difference detected in the
other sessions (Fig. 4C and Supplementary Fig. 1ic, d). Importantly, in
retrieval session A’ just prior new learning B, there was no significant
difference in co-occurrences. This suggests that retrieval of previous

experience does not affect the emergence of engram-to-be cells. The
differences in the co-occurrences between the subgroups were not
due to a difference in the rate of single occurrences of either the
common engram or specific cells (Fig. 4D), nor the number of cells
(Fig. 4E) in each subgroup. Moreover, there was no significant differ-
ence in comparisons of the co-occurrences between common engrams
vs. other nonengram cells, and specific engrams vs. other nonengram
cells (Fig. 4F). This excludes that the difference in co-occurrences
detected during post learning sleep is due to any individual differences
of each subgroup in terms of group size or basal activity level. Each of
the common and specific engram population represented around 30%
of the total engram population (Supplementary Fig. 11a). The max-
imum number of coactive neurons in a single frame was approximately
3% of the total population, with no frame exceeding 10% of the total
population (Supplementary Fig. 11b). Taken together, these results
demonstrate that different subgroups in a single engram population
might play different functions in the processing of memory.

Synaptic plasticity mechanisms during offline periods govern
engram-to-be cells emergence

To understand the plasticity mechanism behind the temporal shift of
engram assemblies, we created a neural network model to simulate
how the engram-to-be cells might emerge. Specifically, we hypothe-
sized that synaptic plasticity during offline periods supports the
emergence of engram-to-be cells. In this model, we simulated the
responses of CAl neurons receiving context-dependent inputs from
CA3 during four sessions: prelearning sleep, context A, postlearning
sleep, and context B (Fig. 5A). During the context exposure, highly
activated CAl neurons become engram cells, and synapses connected
to engram cells are potentiated>***°, With this learning rule (see
Methods “Simulation model and procedure” for details of the learning
rule), pre-existing assemblies that are active before learning are prone
to become engram cells, and after learning, they strongly respond to
input patterns of context A (Fig. 5B). During the postlearning sleep, we
applied offline synaptic plasticity mechanisms that have been experi-
mentally observed in CAl: synaptic depression in nonengram cells
caused by sharp-wave ripples (SWRs)* and homeostatic synaptic
scaling® 2 After this offline synaptic tuning, nonengram cells in CAl
stopped responding to CA3 patterns of context A, which are frequently
replayed during SWRs. Instead, the nonengram cells respond strongly
to different CA3 patterns (nonreplay patterns), which results in the
emergence of novel assemblies in CAl (Fig. 5B). These novel assemblies
are supposed to be recruited as engram cells if the next experience is
different from the previous one, and part of these assemblies are
observed as engram-to-be cells. Actually, a previous report showed
that such synaptic depotentiation and synaptic scaling during sleep is
critical for learning of future memories®.

We checked whether the proposed model captured the key
features of the experimental data through statistical analyses of
simulation results. First, we classified simulated CAl neurons into
engram cells and nonengram cells according to context A, and then
nonengram cells were further subdivided into engram-to-be and
other nonengram cells based on their activity in context B (see
Methods). We subdivided the engram cells of context A into common
engram and specific engram types according to their activity in
context B (Supplementary Fig. 12a; see Methods). The ratio of the cell
types in our model matched that in the experimental data (Supple-
mentary Fig. 12b). We analyzed the matching between activity pat-
terns in context A and those in pre and postlearning sleep sessions
and found that the engram cells showed higher matching with con-
text A than the nonengram cells (Fig. 5C), whose matching scores
resembled those observed in our in-vivo Ca* recordings (Fig. 1D). We
repeated the same analysis for populations of engram and engram-
to-be cells in context B and compared the score against other
nonengram cells. The activity patterns of engram and engram-to-be
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Post-learning sleep (N2, R2)

cells showed high matching (compared with other nonengram cells)
with context B only during postlearning sleep (Fig. 5D), indicating
that the assembly activated in context B was formed after learning of
context A. We obtained the qualitatively same result when we sepa-
rately analyzed engram and engram-to-be cells, although the
matching ratio became unstable due to limited population sizes
(Supplementary Fig. 12c), repeating the same analysis using a higher
threshold (0.7) showed same tendency (Supplementary Fig. 12d),
further confirming that the new ensembles activated in context B

Post-learning sleep (N2, R2)

emerged after the first learning (context A). Furthermore, we also
simulated a sleep session after context B and evaluated the matching
between activity patterns in context B and the following sleep. We
confirmed that the matching of engram-to-be cells was higher than
that of non-engram cells (Supplementary Fig. 12e), which corre-
sponds to experimental results in Fig. 3F. To provide further evi-
dence of the temporal shift in the activity of the engram-to-be cells,
we calculated the average pairwise correlation within each cell type
(engram, engram-to-be, and other nonengram) in either pre or
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Fig. 4 | Common engram cells are coactivated with engram-to-be cells during
postlearning sleep. A Raster plot for all neurons of a representative animal (left).
Magenta, yellow, and light green blocks represent activity (time bin, 250 ms) of
engram-to-be, common, and specific engram cells, respectively (top right). Sche-
matic diagram of activity in each block and total coactivities between neuron
groups (bottom right). B Schematic diagram of engram subclassification based on
their activity in session B, engram-to-be, and other nonengram cells. Ensembles
activities across sessions are presented in same manner as Fig. 2A. C Normalized
calcium event co-occurrences between common engram and engram-to-be, com-
pared with specific engram and engram-to-be across all sessions. D Normalized
single calcium events of common and specific engrams during postlearning sleep.
Statistical analysis was performed using a two-tailed t test between common

engrams and specific engrams, n=>5 mice, t=0.1939, p = 0.8557. E Number of
neurons of common and specific engrams. Statistical analysis was performed using
a two-tailed t test between common and specific engrams, n=>5 mice, t =0.09713,
p=0.9273. F Normalized calcium event co-occurrences between common engrams
and other nonengrams vs specific engrams and other nonengrams during post-
learning sleep. *p < 0.01, n.s., nonsignificant. **p < 0.01, n.s., nonsignificant. Sta-
tistical comparisons were made using Repeated-measures two-way ANOVA with
Sidak’s multiple comparisons test (C; between groups) and Holm Sidak’s multiple
comparisons test (C; within group), Paired t test two-tailed (D-F). Data represent
the mean + s.e.m. The Experiment was independently repeated five times. Source
data are provided as a Source Data file. Detailed statistics are shown in Supple-
mentary Data 1.

postlearning sleep sessions. Engram cells showed higher correlations
than nonengram cells in both pre and postlearning sleep sessions
(Fig. 5E), mimicking the synchronous correlated activity experimen-
tally observed both before and after learning (Fig. 1D). Engram-to-be
cells showed high correlated activity only during postlearning sleep,
not in the prelearning sleep session, which further validates the
temporal shift in the activity of the nonengram cells and the emer-
gence of the engram-to-be cells only after the first learning (Fig. 5E).
Next, following subclassification of the engram cells in the experi-
mental data (Fig. 4B), the coincidences of the activities of common
engram cells and engram-to-be cells were found to be significantly
higher than those of specific engram and engram-to-be cells, and all
other combinations, during the postlearning sleep (Fig. 5F), which
matches with the experimental result (Fig. 4C). We also confirmed
that this difference between common engram and specific engram
emerged in postlearning sleep but not in prelearning sleep (Sup-
plementary Fig. 12f), which qualitatively reproduces the experi-
mental results in Fig. 4C. Overall, these results suggest that the
hypothesized plasticity mechanism can explain the experimentally
observed reformulation of engram assemblies in CAL.

To confirm that offline plasticity is critical for the emergence of
engram-to-be cells, we simulated the network model without offline
synaptic plasticity in the postlearning sleep period (synaptic depres-
sion caused by SWRs and homeostatic synaptic scaling) (Fig. 5B). This
manipulation significantly decreased the number of engram-to-be cells
and increased the other nonengram cells, while the number of engram
cells remained the same (Fig. 6A), indicating that blocking offline sleep
plasticity hindered the emergence of the engram-to-be cells. More-
over, the correlation of the activities of engram-to-be cells in post-
learning sleep was significantly reduced compared with normal model
conditions, while the correlation of activities of engram and other
nonengram cells remained the same (Fig. 6B). Comparisons of the
correlations of activities between prelearning and postlearning sleep
revealed that engram cells increased significantly, engram-to-be cells
decreased significantly, and other nonengram cells remained the
same. Thus, blocking the offline sleep plasticity affected the engram-
to-be cells in the postlearning sleep (Supplementary Fig. 12g). We also
measured the difference in the coincidence of activities between
common engram and engram-to-be cells, and between specific engram
and engram-to-be cells. There was a significant decrease in the model
without offline synaptic plasticity (Fig. 6C, D). Moreover, we tested the
effects of shutting off synaptic depression and homeostatic plasticity
individually. Disabling homeostatic plasticity during sleep directly
impaired the formation of engram-to-be assemblies (Supplementary
Fig. 13a). When synaptic depression was turned off, all cells were
typically more active in all sessions, nonspecifically increasing the
coincidence ratio (Supplementary Fig. 13b). Both models, with either
synaptic depression or homeostatic plasticity off, displayed low
engram-to-be correlations during post-sleep sessions (Supplementary
Fig. 13c). This suggests that both mechanisms are essential for the
emergence of specific ensembles and highlights the importance of
sleep-related plasticity for the formation of engram-to-be cells.

Discussion

Artificially increasing or decreasing the excitability of certain neurons
can bias the memory allocation process toward or against them,
respectively, thereby generating engram cells™. Over the past decade,
a consensus has been steadily building regarding the preexisting
configuration of the hippocampal network as basis for memory and
cognition in rodents” > and recently in humans®. The intrinsic
dynamic activity occurring in the hippocampus is organized into syn-
chronous assemblies, even with minimal external sensory input™. This
process might act as a physiological equivalent to the artificially acti-
vated subsets of neurons, and act as a building block for the upcoming
experience”. Unique pattern coactivity and hardwiring of the hippo-
campal preconfigured network were attributed to their birthdate and
neurogenesis*®. A recent study showed that tagging cells while mice
are in their home cage immediately before learning, but not 1 day
earlier, is sufficient to diminish fear memory if these cells are inhibited
during retrieval®. However, because of the technical challenges
involved, it is difficult to directly relate the activity of engram cells to
preconfigured assemblies in freely behaving mice.

Using an imaging system that combines live Ca*" imaging and
engram cell labeling allowed us to preemptively monitor the activity of
engram cells even before their emergence. Engram ensembles formed
during learning showed high correlations during sleep before learning
and continued their correlated activities during postlearning sleep. We
termed these ensembles ‘preconfigured’ ensembles, which denotes
that the brain prepares new ‘slots’ for the next upcoming task. This is in
accordance with previous findings showing that engram cells are
picked up from a pool of particularly excitable and connected neurons
even before learning'’®. Although initial engram cells might have won
the competition to encode the first learning experience, it should be
possible to recruit a new group of neurons to represent the upcoming
experience. Based on previous literature”, introducing mice to novel
contexts within a 5-h interval leads to the formation of a single engram
for both events. To avoid this overlap, we introduced a 24-h interval
between the first and second contexts and added a retrieval session to
reinforce the initial memory. Without this approach, it is likely that we
wouldn’t observe distinct engram and engram-to-be populations for
contexts A and B, respectively. Hippocampal neurons are in a con-
tinuous dynamic state in which internally generated representations
allow new sets of correlated and properly connected cells to fit the
requirements of the near future task’**’. During postlearning idling
periods reactivations take place to consolidate and stabilize previous
events®®. Our results show that, parallel to consolidation a temporal
shift in activity occurs in a subpopulation of nonengram to prepare
them to the next future event, which we term engram-to-be. Engram-
to-be cells developed a temporal shift from a random to a highly
correlated pattern of activity by the second learning event during
session B, indicating that they were still immature during session A on
the first day. The synaptic plasticity mechanisms that occur during
idling periods maybe the underlying mechanism for the emergence of
these engram-to-be cells. The synchronous activity of engram-to-be
cells during new learning signifies the continuous pattern turnover and
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dynamism in the hippocampal repertoire for future scenarios while the
original engram cells preserve the previous memory identity.
Furthermore, we show that engram cells can be further appor-
tioned into two subpopulations: common and specific engrams, each
playing a different role. Common engram cells could correspond to
general features that can be shared in the future with similar situations,
while specific engram cells are tuned to the precise features of the

T
Postlearning sleep

experience that govern its uniqueness. This is in line with previous
reports suggesting that within a single engram population there are
several subensembles that could represent different features’ or have
different functions®-%

Sleep and its role in consolidating acquired memories is thor-
oughly demonstrated”*”?®, Both NREM and REM sleep showed com-
parable results regarding the reappearance of ensembles across
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Fig. 5 | A neural network model reproduces emergence of engram-to-be cells
and coactivity with common engram cells. A Schematic diagram of the neural
network model sessions; (1) prelearning sleep, (2) context A, (3) postlearning sleep,
and (4) context B. Green filled and blue hollow dots symbolize active and inactive
cells, respectively. B Illustrative diagram of the neural model showing engram
formation during learning (1), the plasticity mechanism occurring through sharp-
wave ripples during sleep (2), and weight updating by synaptic scaling (3). Red,
blue, and black arrows indicate long-term potentiation (LTP), long-term depression
(LTD), and no change, respectively. C The matching ratio between session A and
pre- or postlearning sleep in engram and nonengram cells. n =5 simulations, sta-
tistical comparisons were made between engrams and nonengrams using two-way
repeated-measures ANOVA, F (1, 4) =2022, p=0.0001, Sidak’s multiple compar-
isons test, p = 0.0001 (prelearning sleep), p = 0.0001 (postlearning sleep). D The
matching ratio between session B and pre- or postlearning sleep in engram and
engram-to-be, and other nonengram cells. n =5 simulations, statistical compar-
isons were made between engram and engram-to-be vs other nonengram using
two-way repeated-measures ANOVA, F (1, 4) =275.4, p=0.0001 (cell types), Sidak’s
multiple comparisons test, p = 0.1530 (prelearning sleep, engram and engram-to-be
vs other nonengram), p = 0.0001 (postlearning sleep, engram and engram-to-be vs
other nonengram). E Pairwise correlations among engram, engram-to-be, and other
nonengram cells in both pre- and postlearning sleep. n =5 simulations, statistical

comparisons were made between engram, engram-to-be, and other nonengram
using two-way repeated-measures ANOVA, F (2, 8) =97.32, p=0.0001 (engram vs
nonengram), Tukey’s multiple comparisons test, prelearning sleep; (engram vs
engram-to-be, p = 0.0001), (engram vs other nonengram, p = 0.0001), (engram-to-
be vs other nonengram, p = 0.0626). Postlearning sleep (engram vs engram-to-be,
p=0.0001), (engram vs other nonengram, p = 0.0001), (engram-to-be vs other
nonengram, p = 0.0001). F The normalized coincidence ratio during postlearning
sleep. n =35 simulations, statistical comparisons were made between common
engram, engram-to-be and other nonengram. Specific engram, engram-to-be and
other nonengram using one-way ANOVA, F (3, 16) =34.04, p=0.0001, Tukey’s
multiple comparisons test, common and engram-to-be; (vs specific and engram-to-
be, p=0.0001), (vs common and other nonengram, p = 0.0001), (vs specific and
other nonengram, p = 0.0001). Specific and engram-to-be; (vs common and other
nonengram, p = 0.3195), (vs specific and other nonengram, p = 0.8709). Common
and other nonengram vs specific and other nonengram, p = 0.0916. ***p < 0.0001,
n.s., nonsignificant. Data represent the mean * s.e.m. Statistical comparisons were
made using Repeated-measures two-way ANOVA with Sidak’s multiple compar-
isons test (C, D) and Sidak’s multiple comparisons test (E), one-way ANOVA with
Tukey’s multiple comparison’s test (F). The Experiment was independently repe-
ated five times. Source data are provided as a Source Data file. Detailed statistics are
shown in Supplementary Data 1.

sessions. This resemblance in their function could be due to the fact
that NREM and REM sleep share several roles in memory processing,
such as replay for consolidation”*, or the fact that only a small pro-
portion of the entire sleep was recorded to prevent photobleaching of
cells. Majority of engram ensembles were preconfigured aligned,
showing high correlated activity from prelearning till postlearning and
retrieval periods, whereas stand-by ensembles, were very low (- 5% in
REM and 0% in NREM). This indicates that most engram cell ensembles
that were active before learning were integrated into the upcoming
engram population and maintained their activity after learning for the
consolidation process. Another noticeable point is that REM sleep
shows a tendency of high ensemble percentage in online emerging and
stand-by patterns, this could be related to the nature of REM sleep in
the emergence of new ensembles?****, Sleep is also believed to be of
importance for future events®. In our network model, we showed that
synaptic plasticity in postlearning sleep is crucial for the emergence of
engram-to-be that are important for the upcoming event, and also
guides the coactivity between engram-to-be and common engram
cells. This coupling of the two populations may enhance the basal
activity of the engram-to-be cells. This is in agreement with a previous
study that showed that optically increasing the excitability of a group
of cells unmasks preexisting cell assemblies that were initially non-
place cells”. Conceptually, this is similar to our engram-to-be cells that
were initially masked within the pool of non-engram cells but after the
initial learning emerged through synaptic plasticity mechanisms. Col-
lectively, during offline periods and idling moments, two processes
occur, consolidating previous memories and preparing for
future ones.

Our neural network model not only explains how offline plas-
ticity mechanisms support the emergence of engram-to-be cells,
but also suggests an important functional role of the offline state of
the brain. Because highly activated cells tend to become engram
cells, and engram cells become more excitable*®, the differentia-
tion of engram assemblies for independent memories
would require active rebalancing of activity levels. In the offline
state, the hippocampal neural network needs to undergo reformu-
lation to prepare novel assemblies for the novel experience while
keeping previous engram assemblies stable. Our model provides a
specific learning mechanism for such offline tradeoff between
assemblies.

We built a minimal model that incorporates key offline plasti-
city mechanisms to reproduce the experimental data. However, we
cannot exclude the possible contribution of other factors. For

example, we implemented homeostatic synaptic scaling in our
model but tuning of the excitability of each neuron*® may sub-
stitute for this scaling effect. Furthermore, we took into account the
plasticity of excitatory synapses from CA3 to CAl but did not
include the plasticity of entorhinal cortex-to-CAl synapses and
inhibitory circuits in CA1%. Our model explained the emergence of
the coactivity between common engram and engram-to-be cells
mainly. It is also possible that the common engram cells directly
recruit engram-to-be cells through internal connections in CAl
Previous reports suggest that the internal circuit structure in
CAl significantly affects the formation of place coding®®®’, and that
the deactivation of preexisting engram cells results in the rapid
recruitment of new engram cells, possibly through internal circuits
in CA1“ As all the model manipulations were performed solely in
silico, additional biological evidences are needed to validate these
findings.

Recently, neural network models have been proposed for the
formation and the drift of memory engrams in hippocampus*®%°?,
Those models employed a recurrent network model, the modula-
tion of neuronal excitability and plasticity of inhibitory circuits, by
which the model successfully explained how common and specific
engrams emerge and evolve during learning and offline periods.
However, the emergence of engram-to-be cells has not been
reported in the previous models because those models do not have
offline mechanisms to actively recruit non-engram cells for next
memory formation. Furthermore, the offline learning mechanisms
(synaptic downregulation and scaling during offline periods) in our
model are different from those in the previous models, although
functions may be partly similar (e.g. potentiation of inhibitory
synapses and downregulation of excitatory synapses). These mul-
tiple mechanisms may work independently or cooperatively.
Otherwise, different mechanisms may correspond to the difference
of brain regions such as dentate gyrus*® and CA1 (our model). The
proposed model suggests that synaptic depression and scaling may
play a key role in reorganizing the activity patterns of non-engram
cells, allowing for flexibility and efficient network adaptation,
essential for encoding new memories.

We propose that during offline periods after learning, two
simultaneous processes commence: consolidation of past memories
through reactivation of engram ensembles, and emergence of an
engram-to-be population through synaptic mechanisms to act as
encoders for future memories (Supplementary Fig. 14). Together,
offline period dynamics fix the past and prepare for the future.
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Fig. 6 | Abolishing sleep plasticity in the network model hinders emergence of
engram-to-be cells. A Percent of neurons of engram, engram-to-be, and other
nonengram cells in the normal plasticity and sleep plasticity OFF models.

n=5 simulations. B Comparing the pairwise correlations within groups (engram,
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be, and specific engram and engram-to-be, in the normal parameters model and
sleep plasticity OFF model. n =5 simulations. **p < 0.001, ***p <0.0001, n.s.,
nonsignificant. Data represent the mean + s.e.m. Statistical comparisons were made
using two-way ANOVA with Sidak’s multiple comparisons test (A), Repeated-
measures two-way ANOVA with Sidak’s multiple comparisons test (B), one-way
ANOVA with Tukey’s multiple comparison’s test (C) and a paired t test two-tailed
(D). The Experiment was independently repeated five times. Source data are pro-
vided as a Source Data file. Detailed statistics are shown in Supplementary Data 1.

Methods

Animals

All procedures involving animals complied with the guidelines of the
National Institutes of Health, were approved by the Animal Care and
Use Committee of the University of Toyama (Approval number:
A2022MED-8), and were conducted in accordance with the Institu-
tional Animal Experiment Handling Rules of the University of Toyama.
Thy1-G-CaMP7-T2A-DsRed2 mice have been described previously’. All
surgery was conducted on male c-fos-tTA x Thyl-G-CaMP7 mice with a
C57BL/6) background. Mice were maintained on food containing
40 mg/kg doxycycline (Dox) after weaning.

The progeny of the c-fos-tTA x Thyl-G-CaMP7 line were gen-
erated by in-vitro fertilization (IVF) of eggs from C57BL/6 ] mice and
embryo transfer techniques to produce a sufficient number of mice
for behavioral analysis®®. Genotyping of genomic DNA isolated from
the tails of the pups was performed by polymerase chain
reaction’’?. All mice were maintained on a 12 h light-dark cycle
(lights on at 8:00 am) at 24 °C £ 3 °C and 55% + 5% humidity, given
food and water ad libitum, and housed with littermates until 5 days
before surgery.

Viral vectors

The pLenti-TRE-hKiKGR plasmid has been described previously’.
pLenti-TRE-hKiKGR plasmid was prepared using an EndoFree Plasmid
Maxi kit (Qiagen). The lentivirus (LV) was prepared as described
previously’, according to the protocol adopted from that of the
laboratory of K. Deisseroth (https://dlab.stanford.edu/resources/
optogenetics/expression-systems).

Stereotactic surgery for Ca?>" imaging and EEG/EMG recording

All surgery was conducted on male c-fos-tTA x Thyl-G-CaMP7 mice
(aged around 12-20 weeks) with a C57BL/6J background, as described
previously’. Briefly, mice were anesthetized by intraperitoneal (i.p.)
injection of pentobarbital solution (80 mg/kg of body weight) and
placed in a stereotactic apparatus (Narishige, Japan). The craniotomy
for injecting TRE-hKikGR lentivirus (LV) was ~-1.0 mm in diameter. TRE-
hKiKGR-LV (1 pl/injection site) was injected using an injection cannula
connected to a Hamilton microsyringe through a water-filled poly-
ethylene tube. The injection cannula (Unique Medical Co., Ltd., Japan)
was targeted to the right CA1 (AP -2.0 mm, ML 1.4 mm, DV -1.5 mm from
bregma). LV was injected at 0.1 pl/minute with a microsyringe pump
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(CMA 400, Harvard Apparatus). After injection, the injection cannula
was kept in position for 10 minutes and then slowly withdrawn to
prevent any damage to the tissues. The craniotomy was then sealed
with dental cement, and the skin was closed.

To ensure complete recovery of the mice, the next surgery to
implant a gradient refractive index (GRIN) relay lens over the hippo-
campus, as reported previously’*’>’*, was performed 4 weeks after
the LV injection surgery. Similarly, mice were anesthetized by i.p.
injection of pentobarbital solution (80 mg/kg of body weight) and
placed in a stereotactic apparatus (Narishige, Japan). A 2.0-mm-dia-
meter craniotomy was made in the skull to set the cannula lens sleeve
(1.8 mm outer diameter and 3.6 mm in length; Inscopix, CA). To set the
lens over the hippocampus, a cylindrical column of neocortex and
corpus callosum above the alveus covering the dorsal hippocampus
was carefully and gently aspirated with saline using a 27 gauge blunt
drawing-up needle. Phosphate buffered saline (PBS) solution was
added frequently to prevent tissue drying up. The cannula lens sleeve
was gently placed on the alveus. To fix and straighten the cannula lens
sleeve to the edge of the burr hole, bone wax was melted, and the
sleeve lens was straightened using low-temperature cautery. The
cannula lens sleeve targeted the center of the right hemisphere (AP,
2.0 mm, ML, 1.5 mm). At the frontal part of the skull, two anchor screws
linked to a recording connector were fixed to serve as an anchor to the
sleeve lens and electrodes for recording the cortical electro-
encephalogram (EEG). Then, stainless wire electrodes were inserted
into the neck muscle to record the electromyogram (EMG). Another
set of anchor screws was fixed on the lateral part to act as a body earth
for noise reduction. A final set of two screws was fixed on the other side
of the skull as an extra anchor for the whole setting. Finally, the visible
parts of the skull and electrodes were covered with dental cement to
attach the cannula lens sleeve to the skull and anchor screws.

Two weeks after from the sleeve lens and EEG and EMG electrodes
setting, mice were anesthetized with pentobarbital solution (80 mg/kg
of body weight; intraperitoneal injection), and a GRIN lens (1.0 mm
outer diameter and 4.0 mm length; Inscopix, CA) was inserted into the
fixed cannula lens sleeve and fixed in place with ultraviolet-curing
adhesive (Norland, NOA 81). An integrated miniature microscope
(nVista HD, Inscopix, CA)* with a microscope baseplate (Inscopix, CA)
was placed above the GRIN lens, allowing observation of G-CaMP7
fluorescence and blood vessels in CAl. The microscope baseplate was
fixed to the head of the previously fixed anchor screws using dental
cement so that the GRIN lens was covered, and then the integrated
microscope was detached from the baseplate. The GRIN lens was
covered by attaching the microscope baseplate cover to the baseplate
until it was time for Ca* imaging.

Microscopy and EEG/EMG recording of freely moving mice

All behavioral analyses and recordings were performed during the
light cycle. Ca** transients were recorded using nVista HD acquisition
software (Inscopix, CA) at 20 frames/s frequency, maximum gain, and
60% LED power. To differentiate between different sleep stages, EEG/
EMG traces at a sampling rate of 1 kHz with bandpass filtering (low cut-
off frequency of 0.5 Hz and high cut-off frequency of 300 Hz for EEG;
low cut-off frequency of 5Hz and high cut-off frequency of 3000 Hz
for EMG) were amplified and collected using a Unique Acquisition
system (Unique Medical). Using fast Fourier transform analysis, sleep
scoring was performed on the EEG and EMG traces for all 16 s con-
secutive epochs. In this scoring, high EMG and low EEG voltages with
high frequency were labeled as wakefulness, low EMG and high EEG
voltages with dominant & (0.5-4 Hz) frequency components were
labeled as non-rapid-eye-movement (NREM) sleep, and low EMG
(indicating muscle atonia) and low EEG voltages with dominant 0
(6-9 Hz) frequency components were labeled as REM sleep’. The
contexts used for learning session A and session B were located in the
same behavioral room but in different locations. Context A was a

cylindrical chamber (300 mm diameter, 450 mm height) with white
acrylic walls and a floor covered with brown tissues. Context B was a
square chamber with a Plexiglass front, gray sides, back walls (width x
depth x height: 175 x 165 x 300 mm), and a floor consisting of
26 stainless steel rods (diameter, 2 mm) placed 5mm apart. Before
starting the experiment, the c-fos-tTA x Thyl-G-CaMP7 mice injected
with TRE-KikGR-LV were moved to an isolation box (FRP BI02000,
CLEA Japan) located in a Faraday cage (Narishige, Japan). Mice were
first habituated to the weight of the miniature microscope and the
EEG/EMG wires for 30 minutes on each of 3 consecutive days. On the
next day, DOX pellets were removed from the food and replaced with
normal pellets. Two days later, the mice were anesthetized with around
2% isoflurane for about 5 minutes. Then, 15 second pulses of 365 nm
light were delivered to the GRIN lens from an LED light source (BL-LED-
365, OPTO-LINE, Inc., Japan) through an optic fiber (SH4001 Super
Eska, NA: 0.5, Mitsubishi Rayon Co., Ltd., Japan). This procedure was
repeated three times with 1-minute intervals between each repetition,
to remove any nonspecific KikGR expressed before the learning. Then,
a snapshot of the CAl was captured using the nVista HD acquisition
software (Inscopix, CA). Mice with the microscope attached to their
head were returned to their home cage in the Faraday cage; the EEG/
EMG electrodes were attached, and the mice were allowed to rest.
After 1-2 h, the Ca*" activities of the first stable-appearing NREM sleep
were recorded (N1). Around 1 h later, the first-appearing REM sleep that
lasted for at least 1 minute was also recorded (R1). Mice were then
introduced to the cylindrical chamber for the first time, and the Ca*'
activities were recorded for 6 minutes (session A). After this, the mice
were returned to their home cage with the miniature microscope still
attached to their head and were allowed to sleep. Around 1 h later, Ca**
activities of stable NREM (N2) and REM (R2) were recorded, as pre-
viously described’. The EEG/EMG electrodes and miniature micro-
scope were detached upon waking from the REM sleep. Across the
sleep stage recording (N1, R1, N2, and R2), the nVista LED was shut off
between NREM and REM for both prelearning and postlearning sleep
stages to prevent any photobleaching. Sleep recording duration was
recorded for 1minute for each NREM or REM session and was
increased to 3-4 minutes in NREM and 2 minutes REM in a sperate
group of mice; both groups showed the same offline reactivation
activity (Fig. 1D and Supplementary Fig. 4d). The mice were returned to
DOX food from the 2™ day. Twenty-four h after the first context
exposure, a snapshot of KikGR expression was captured using the
nVista HD acquisition software (Inscopix, CA) under 2% isoflurane
anesthesia for 5 minutes, to prevent the capture of any nonspecific
spontaneous calcium activity as a KikGR" cell. This was followed by
exposure to 15 s pulses of 365 nm light from an LED light source, with
each pulse occurring three times with a 1 minute interval between
pulses, as mentioned previously. After 1.5-2h, Ca*" activities were
recorded when the mice were reintroduced into context A for 3 min-
utes (session A’). Following the re-exposure, the mice with the nVista
HD microscope attached were returned immediately to their home
cage. Then, after 1.5-2 h, the mice were introduced into the square
context for 3 minutes (session B), and their Ca?' activities were
recorded.

In another set of double transgenic mice after injecting the TRE-
KikGR LV, setting the EEG/EMG electrodes and fixing the lens and the
baseplate for the miniature microscope. Calcium transients were
recorded one day earlier (Day 0) before exposure to the learning
session during both awake (Aw0) and sleep sessions (SO). Next day
(Day 1) both awake (Awl) and sleep sessions (S1) were captured before
session (A) followed by awake (Aw2) and sleep (S2) sessions. Next day
(Day 2), KikGR snapshot capturing and photoconversion were per-
formed in the same manner as mentioned earlier, then both awake
(Aw3) and sleep sessions (S3) were captured, as well (Supplementary
Fig. 4c). Later, sleep sessions were recorded (both NREM and REM)
after session B (Fig. 3F).
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Ca’" imaging data acquisition, processing, and cell sorting

All Ca?* transients were captured using nVista acquisition software
(Inscopix, CA). The captured images were processed in a similar
manner to that described in our previous report’. Briefly, using Mosaic
software (Inscopix, CA), each session movie was spatially binned using
a factor of 2. To maintain the same field of view (FOV) and correct for
motion artifacts, motion correction was performed (correction type:
translation only, spatial mean [r=20 pixels] subtracted, and spatial
mean applied [r=35 pixels]) using blood vessels as landmarks. The
binned movie was then further processed using ImageJ software (NIH).
Each session movie was divided (pixel by pixel) by a low-pass filtered
(r=20 pixels) version. Then, the single session movies were con-
catenated into one total movie containing all the recording sessions to
allow tracking of the same neurons across sessions and days. Motion
correction was applied to the total movie, using a single frame as a
reference frame, to ensure that the XY translation was adjusted across
all recording sessions (Supplementary Fig. 1a), similar to the method
used in a previous report”. The motion correction efficiency was
assessed by checking the activity of several cells in the total movie
across 2 days to ensure that cells maintained both their spatial location
and morphology across days (Supplementary Fig. 1b-d). To measure
changes in the fluorescence of each frame, the AF(t)/FO = (F(t) — FO)/FO
value was calculated for each movie session (where FO is the mean
image obtained by averaging the entire movie for that session). Finally,
using Mosaic software, all movie sessions were once again combined
into a single movie comprising the entire behavior. Once the Ca*
movie was finalized, a HOTARU fully automated Ca*" sorting algorithm
system (high performance optimizer for spike timing and cell location
via linear impulse)*>’> was used to extract the spatial and temporal
dynamics of active cells.

Identifying engram cells through KikGR expression

Engram cells were identified using the snapshot taken 24 h after the
novel context exposure (session A). The snapshot was first spatially
binned by a factor of 2 and then manually realigned to a reference
frame to maintain the same FOV, using blood vessels as landmarks.
These procedures were performed using Image J software (NIH). Fol-
lowing the procedure used for the Ca** movies, the snapshot was
divided (pixel by pixel) by a low-pass (r =20 pixels) filtered version.
Then, to maintain the top ~10% signal intensity, a threshold was applied
to remove the background. The output image was further processed
by binarization (binary options: Iterations, 1; Counts, 2; Close [fill small
holes between pixels], and Watershed). Finally, the remaining contours
in the resulting image were analyzed automatically using Image J. The
successfully detected ROIs represented the locations of KikGR" cells
(Supplementary Fig. 2b-d). Then, the spatial contours generated by
the HOTARU system were compared with the spatial locations of the
KikGR" cells identified from the Image ] ROIs. Some ROIs for gene-
expressing cells did not fully overlap with the detected calcium tran-
sients and were discarded (Supplementary Fig. 2e). Only ROIs that
showed complete overlap with active cells on visual inspection were
recognized as engram cells. The engram cells constituted 8% of all
automatically detected cells (Supplementary Fig. 2f).

Selection criteria for engram-to-be cells

Engram-to-be cells were chosen from the nonengram pool of cells by
screening all session B ensembles that showed high cosine similarity
(> 0.6) with any of the postsleep learning (N2, R2) ensembles, while at
the same time showing low cosine similarity (< 0.6) with all presleep
learning (N1, R1). Active neurons participating in these ensembles were
further filtered by choosing neurons having activity higher than double
the median of the nonzero activity of that ensemble. These selected
neurons were later termed engram-to-be cells. Those cells that did not
meet these criteria were excluded from the engram-to-be population
and added to the other nonengram pool. To identify engram-to-be and

other nonengram cells that significantly increased or decreased their
activity during session B on day 2, we compared their Ca?* signals for
session B with those in session A (Wilcoxon rank-sum test, using a
significance threshold of p <0.01).

Subcategorization criteria for engram cells

In the screening of the engram ensembles of session A, there were
some ensembles that were activated in the prelearning sleep, context
A, postlearning sleep, and session B, and other ensembles that were
activated in prelearning sleep, context A, and postlearning sleep but
not in session B. Engram ensembles that showed activity including
session B were termed common engram ensembles, and ensembles
that did not show activity in session B were termed specific engram
ensembles. The active participating cells (higher than double the
median of nonzero activity) of these ensembles were termed common
engram and specific engram cells, respectively (Supplemen-
tary Fig. 10).

Dynamic engram

Dynamic engram calculated by quantifying the fraction of drop-in
and drop-out from the total engram ensembles of both the learning
(A) and retrieval (A’). Drop-out ensembles are those active during
learning but not showing overlap with any of the retrieval ensembles
(dot product >0.6). In contrast drop-in ensembles are those active
during retrieval but not showing overlap with any of the learning
ensembles (dot product >0.6), whereas. Stable ensembles are those
showing high overlap (dot product > 0.6) in the learning and retrieval
sessions. Then, to determine their activity in pre and postlearning
sleep, drop-in and drop-out ensembles that are showing high overlap
(dot product > 0.6) with any of pre and postlearning sleep ensembles
are considered active in pre and postlearning sleep sessions,
respectively.

Ca’' event co-occurrences

The Ca* transients of each subpopulation of both engram cells
(common engram and specific engram) and nonengram cells (engram-
to-be and other nonengram) were binarized using a threshold of
>3 standard deviations of the AF/F signal, and then downsampled from
20 HZ to 4 HZ (250 ms temporal binning) using a custom-made
MATLAB code®. Consequently, the total co-occurrences between two
subpopulations (in a 250 ms time window) were counted for the pre-
learning sleep (N1&R1), context A, postlearning sleep (N2&R2), and
context B sessions (Fig. 4A), and then normalized according to

Co — occurrences (A + B) neurons »

Tx (ny+ng) 100

Total co — occurrences =

@

where A is either of the engram subpopulation cells, B is either of the
nonengram subpopulation cells, n is the total number of cells active in
Aor B, and T is the total number of bins. The total co-occurrences were
then normalized to the total score of the co-occurrences of specific
engrams and engrams-to-be in each calculated session to allow
absolute comparisons of co-occurrences across sessions (Fig. 4C).
The normalized single occurrences of a certain subpopulation were
calculated in a similar manner,

occurrences (A) neurons y

Total occurrences =
T x(ny)

100 Q)

in which A is one of the engram subpopulation cells, n is the total
number of cells active in A, and T is the total number of bins. Subjects
that did not show at least a single co-occurrence in any or all the
sessions were excluded from this analysis (4 of the 9 mice who
underwent this analysis were excluded).
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Correlation matrix overlaps
Temporal correlations between pairs of engram cells, engram-to-be
cells, other nonengrams, or nonengram cells were calculated usingals
sliding time window with time steps of 200 ms. The correlation matrix
calculated at time ¢ is denoted by C(¢) = (ij), where i andj are neuron
indices, and ¢ refers to the midpoint of the time window. Note that if
either neuron i or j was silent, Cf-j =0. The similarity between the two
correlation matrixes at ¢ and ¢ was calculated as
M, t) = mzi;gjc,‘.j.cg 76, where N is the number of cells of interest.
To compare engram cells, engram-to-be cells, other nonengram cells,
and nonengram cells, the MS with respect to ¢ was calculated
asM (6 = 5, M(¢, "), which measures the degree to which the
correlation pattern of the population activity at ¢ is repeated at dif-
ferent times within the whole dataset. The larger the value, the more
often the correlation pattern looks similar to that obtained at ¢.
Since the numbers of engram cells, engram-to-be cells, other
nonengrams, and nonengram cells were different, if the correlation
matrixes for different groups of cells were calculated using all cells, the
comparison would not be fair. Therefore, we took N to be the number
of cells in the smallest neuronal group. For those neuronal groups
having a size larger than N, we took the ensemble average of M, (¢) to
be the representative sum of the correlation matrixes. Each ensemble
consisted of randomly sampled N cells from the group. For comparing
across sessions with different number of frames recorded, we nor-
malized their sum of correlations to their respective frame number
(Fig. 3D and Supplementary Fig. 8d).

Cell ensemble analysis

Non-negative matrix factorization (NMF). NMF was used to extract
population activity patterns from the calcium signal dataset’. More
specifically, NMF finds an optimal factorization of the data matrix D,
with a pattern matrix B and the corresponding intensity matrix C, i.e.,
D ~ BC. Here, the rows of D represent the time series of the signals
from individual neurons, each column vector of B represents a syn-
chronously activated neuron ensemble (population activity pattern),
and each row of C represents the time series of the activation intensity
of the corresponding pattern. To search for such a factorization, the
cost function defined by £ = Y ;(D; — By Cy)’ was minimized
using both multiplicative and additive algorithms*. Random initial
entries from matrixes B and C were used for 1000 minimization
attempts, and the pair of pattern and intensity matrixes that minimized
the cost function were chosen to be the best factorization. The cost
function becomes smaller if more patterns are introduced, but the
model (i.e., the right-hand side of the cost function) becomes more
complex. This trade-off between cost minimization and model com-
plexity was optimized using the Akaike information criterion with
second-order correction (AICc)** to determine the optimal number of
patterns (i.e., the number of columns in the pattern matrix). Both the
neuron indices and the timestamps of the original data were shuffled
independently to obtain a shuffled dataset. Ten shuffled datasets were
constructed for each sample in each session. Because the ratio of the
standard deviation to the mean was small (- 0.03), this number of
samples should be sufficient. Neuron (i) identified in an ensemble (k) if
the i-th neuron in k-th ensemble’ peak activity or average activity is
strong relative to those in other patterns, if not it would be discarded.
Then, if the time course of the i-th neuron in the k-th ensemble sig-
nificant enough compared to shuffles of the original data, will be
considered as a participating neuron in the ensemble. If the i-th neuron
did not pass any of these filters, it would be discarded.

Matching score (MS). The overall similarity between pattern vectors
in sessions X and Y was measured according to the normalized dot

product 17?( . D}( for all possible pattern pairs across the two sessions,
noting that the dot product is equivalent to the cosine of the angle

between the pattern vectors’””’%, To this end, the MS between sessions
X oY
Xand Y was defined asMS(X, Y) = §-37,.4© [Zjey(a(ui U - c) - d],

where D,?( (17}-() is the i-th (j-th) pattern vector in session X (Y), Ny is the
number of patterns in session X, and O(-) is a step function. In Sup-
plementary Fig. 4a and d, to make the comparison between engram
and nonengram cells fair, the number of those major principal com-
ponents is the same as the number of engram cells in the concerned
sample. the MS between sessions X and Y was defined as
MS(X,Y) = 3 3ix© [0y 0 [T (8 ) - Ty (5 ) = ] - d],
17,).( (17}() is the i-th (j-th) pattern vector in session X (Y), Ny is the number
of patterns in session X and O(-) is a step function. T (T ) is a vector-
valued mapping projecting vector D,)»( (D)-() onto major eigen vectors of
session X (Y). The constant d is an arbitrary positive number smaller
than unity. This scoring function yields the portion of patterns in
session X that have a normalized dot product larger than ¢ with any of
the patterns in session Y. A threshold of ¢ =0.6 was used throughout
the study. Monte Carlo resampling was conducted for the MSs of
engram cells. In the resampling, the MSs of datasets with shuffled
timestamps and neuronal indices were calculated to assess sig-
nificance. For each session-pair comparison, the mean of the MS for
the shuffled data was compared with that calculated from the original
data. To calculate the Mean of the MS for the shuffled data, 40 shuffled
samples were used. Since the resampling was not for the purpose of
constructing a random-number distribution, the calculation of the
mean value converged, and the number of samples was sufficient.
Normalized data were calculated by subtracting shuffled data of
engram and nonengram cells from their corresponding MS data.

where

Principal component analysis. To detect coactivity patterns among
calcium transients of the total nonengram population (engram-to-be
and other nonengram), an unsupervised analysis combining Principal
Component Analysis (PCA) and Independent Component Analysis
(ICA) was employed, as described previously’®’. Briefly, neuronal
activities were binned in 20 ms time bins and normalized (z scored, in
which the activity of every neuron was adjusted to have an average
value of zero and a standard deviation of one) to prevent any bias by
neurons having a higher firing rate. We derived ensembles of coactive
neurons through a two-step process. Initially, we estimated the quan-
tity of meaningful coactivation ensembles present within a certain
population of neurons by identifying the number of principal com-
ponents from the activity matrix. Subsequently, we employed an
independent component analysis to extract the coactivity patterns
defined by these principal components (Supplementary Fig. 9), as
described in previous reports’*°,

Population vector distance (PVD)

PVD quantifies the difference in calcium signals obtained from a group
of neurons during two distinct sessions. Calcium signals from two
distinct sessions, X and Y, of the same neuron group were compared
using the restricted Mahalanobis distance, which is defined on the
basis of the Mahalanobis distance®. The restricted Mahalanobis dis-

tance is defined as PVD(X,Y) = \/mgx Z}El[u;m (yxny)}//l(p(,-),

where py and py are the means of X and Y, respectively, A, s are
eigenvalues of the covariance matrix of the union of Xand Y, v, is the
corresponding eigenvector, and ¢ is a bijective mapping reordering
indices of eigenvalues and eigenvectors. Intuitively, this equation cal-
culates the maximum distance within a restricted number of dimen-
sions. This definition enables us to compare the PVD across different
groups of neurons, i.e., engram-to-be cells and other nonengram cells,
that contain different numbers of neurons.

Nature Communications | (2025)16:3618

15


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-58860-w

Simulation model and procedure

In our network model, we set the activities of CA3 neurons
r; (i=1,2, ...,Nca3) as inputs, and simulated the responses of excita-
tory neurons Xx;(i=L2,...,Ncy) and inhibitory neurons
Y; (i=1,2, ..., N;y,) in CAL Inhibitory neurons provided recurrent
inhibitory feedback in CAl. The simulations were performed by solving
dynamical equations:

NCA3 Niﬂh
X(H)= —x;(H)+0 <Z witr; — Z wily;(t)+ ei) 3)
i st
Nca
Ty;(6) = —)’i(f)+0<z wijl‘:_xj> “4)
i1

where o(x) is a logistic sigmoid function:

1

0= 1+ exp(—fx — 0))

S

and ¢; is arandom external input sampled from a Gaussian distribution
with a standard deviation of 0.5. The number of neurons was
Ncaz =Nca =400 and N, =100. The time constant was =2 ms. The
parameters of the sigmoid function were =5 and 6=1. For each CA3
activity pattern, we initialized x;(¢)=0 and y;(¢)=0 and sampled ¢;,
then simulated time evolution of the dynamics for 20 ms, and recor-
ded the activity patterns of CAl excitatory neurons at the final state as a
response. Below, we specify a CA3 activity pattern as a N¢,;3-dimen-
sional vector r and a CAl response pattern as a N¢,;-dimensional
vector X.

In each CA3 pattern r, each neuron took a value of 1 (active) with a
10% probability and was otherwise zero (inactive). In simulations of
sleep sessions, the values of active neurons were randomly fluctuated
within the range of 0.5-1.5.

Before each simulation, we initially sampled the excitatory
synaptic weights wtE from a uniform distribution [0, 0.125]. We set
the I-to-E weight w,.j' to 1.6 with a 5% probability, with it being zero
otherwise, and the E-to-l weight wj; to 0.4 with a10% probability and
zero otherwise. We fixed I-to-E and E-to-l weights throughout the
simulation. We applied synaptic plasticity to only E-to-E synaptic
weights wi.

The simulation consisted of four sessions: presleep, context A,
postsleep, and context B. First, we performed a prelearning sleep
session in which we recorded CAl responses xgﬂe to 1000 random CA3
patterns rg. (n=1,2, ...,1000). Next, we simulated a CAl response X,
in the context A by setting a CA3 pattern r, (r, was randomly sampled
and fixed throughout the simulation). After the first simulation, active
CAl neurons (x;>0.5 in x,) were labeled as engram cells. We defined
an engram label e? that takes 1 for engram cells and O for nonengram
cells. Using these labels, we potentiated w}" as

EE EE A
wif < wi +netr; (6)

Here, rj’.\ represents CA3 activities in the context A (r,) and = 0.05. We
performed a second simulation using updated weights and recorded a
CALl response X, in the second simulation for data analyses (x, in the
first simulation was discarded).

In the postlearning sleep session, we first applied synaptic
depression caused by SWR and synaptic scaling. The synaptic
depression caused by SWR is defined by

wif < wy —n(1—e)r} 7)

The weight updates resulting from the synaptic scaling were

wif < wi — nep (1 - rj’-‘) (8)

wif < wéﬂq(l—eﬁ‘)(l—r}‘) )

After updating the weights, we obtained CAl responses xggst to
1000 CA3 activity patterns r(p”gst. Eighty percent of rggst was the same as
ry (replay), and the remaining 20% were independent random
patterns.

Finally, we simulated a CAl response Xx; in the context B by setting
a CA3 pattern rz. We used the same procedure as used for context A.
We determined engram cells for the context B first, potentiated
synapses, and recorded a CAl response Xg with updated weights.

Furthermore, we also simulated an additional sleep session after
the context B to check replay of the context B. We simulated synaptic
plasticity and activity patterns in the same way with the postlearning
sleep, replacing e? and r,, with e? (the engram label in the session B)
and ry.

We repeated this simulation procedure five times with different
random seeds and analyzed data from each trial independently. In the
control simulations presented in Fig. 6, we did not apply synaptic
changes in postsleep sessions (synaptic depression by SWR and
synaptic scaling) while keeping synaptic potentiation in con-
text A and B.

Analysis of simulated data
We separated engram cells and nonengram cells by engram labels
determined from the first simulation in context A. Furthermore, we
separated active and inactive cells in context B by thresholding the
activity (a neuron was active if x;>0.5). Accordingly, we defined four
subtypes of CAl neurons: common engram cells (engram in context A
and active in context B), specific engram cells (engram in context A and
inactive in B), engram-to-be cells (nonengram in context A and active
in B), and other nonengram cells (nonengram in context A and inactive
in B). The activity patterns below (X, X4, X\, and x;) indicate
divided parts of patterns based on cell types.

The matching ratio between presleep and context A was calcu-
lated as

MR= ﬁmﬁe(g (x(p”r)e. XA) - 06)
£

where O(x) is a Heaviside step function, and g(x,y) is the cosine
similarity between vectors x and y. Matching ratios for other combi-
nations (such as postlearning sleep and context B) were also calculated
using the same procedure.

To calculate pairwise correlations and coincidence ratios, we

;e . o (n)
artificially generated the augmented CAL activity patterns X, ., and

10)

Xos_mix (1=1,2, ..., 5000) by mixing 1000 simulated activity pat-
terns and 4000 “silent” activity patterns in which the activity of each
CAl neuron was sampled from the range [0, 0.01]. These silent activity
patterns corresponded to activity-silent periods between burst activ-
ities in CAL The correlation within each cell type was calculated as
follows. The activities of each CAl neuron in a sleep session were
expressed as x\"” (i=1,2, ..., Nca,n=1,2, ..., 5000). The correlation
coefficient between neuron i and j was calculated using Pearson cor-

. . () 5900 () 5000
relation between two sets of observations {xi } . and {xj } E
n= n=

We averaged the correlation over all cell pairs within each cell type
(engram, nonengram, or one of the four subtypes). The coincidence
ratio was calculated using the mean population activity in a cell type C

Zm_ 1 " (c i .
X&' = j- YiecX] (C is common engram, specific engram, engram-to-
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be, or other nonengram), where N is the number of neurons in cell-
type C. The coincidence ratio between two cell types C1 and C2 was
calculated as

—Ix~T () 5(n)
T = XciXe

N ) ()

an

where T =5000. Values of CR were normalized by CR between specific
engram cells and non-engram cells, following the analyses of
experimental data.

Statistical analysis

Statistical analyses were performed in GraphPad Prism 6 (GraphPad
Software). Comparisons of data between three groups were performed
using one-way ANOVA. Comparisons of data between two groups at
multiple time points were performed using two-way repeated-mea-
sures ANOVA followed by Bonferroni’s multiple comparisons test,
unless otherwise specified. Comparisons of data between two paired
groups were performed using paired ¢-tests (no assumption was made
that data were normally distributed). One-tailed comparisons were
used whenever the difference between the two groups was expected to
be in a single direction. Quantitative data are expressed as the
mean + standard error of the mean (s.e.m.).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data and resources that supported the findings of this study are
available upon request. The datasets supporting this study will be
deposited to a public repository when the ongoing studies using the
same dataset are published. Source data are provided with this paper.

Code availability

The code that supports the findings of this study are all available at
https://github.com/fccaa/NMF _custom,  https://github.com/oist-ncbc/
engramtobe_simulation and https://github.com/IdlingBrainUT/
Ghandour2025 NatureCommunications.git. Additionally all codes are
available at Zenodo https://doi.org/10.5281/zenod0.14963950%* and
https://doi.org/10.5281/zenodo.14978317%.
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