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Probing nuclear quantum effects in
electrocatalysis via a machine-learning
enhanced grand canonical constant
potential approach

Menglin Sun1,4, Bin Jin 1,4, Xiaolong Yang1,4 & Shenzhen Xu 1,2,3

Proton-coupled electron transfer (PCET) is the key step for energy conversion
in electrocatalysis. Atomic-scale simulation acts as an indispensable tool to
provide a microscopic understanding of PCET. However, consideration of the
quantum nature of transferring protons under an exact grand canonical con-
stant potential condition is a great challenge for theoretical electrocatalysis.
Here,wedevelop aunified computational framework to explicitly treat nuclear
quantum effects (NQEs) by a sufficient grand canonical sampling, further
assisted by a machine learning force field adapted for electrochemical con-
ditions. Our work demonstrates a non-negligible impact of NQEs on PCET
simulations for hydrogen evolution reaction at room temperature, and pro-
vides a physical picture that wave-like quantum characteristic of the trans-
ferring protons facilitates the particles to tunnel through classical barriers in
PCET paths, leading to a remarkable activation energy reduction compared to
classical simulations. Moreover, the physical insight of NQEs may reshape our
fundamental understanding of other types of PCET reactions in broader sce-
narios of energy conversion processes.

Understanding and controlling energy conversion processes are the
key to the development of innovative green energy technologies.
Electrochemical catalysis on various electrode materials facilitates
efficient conversion between transient electrical energies and stable
chemical energies, for example, electrocatalytic hydrogen evolution
reactions (HER)1 during water splitting, oxygen reduction reactions
(ORR)2 in fuel cells, electrochemical CO2 reduction reactions (CO2RR)

3

which simultaneously mitigates CO2 emission and produces fuels.
Proton-coupled electron transfer (PCET), an essential elementary
reaction step sharedbymostof the electrochemical energy conversion
systems, determines the reaction rates, efficiencies, and selectivity of
different electrocatalytic cells. Deep insights and understanding of the
proton transfer step in complex environment near the electrode/

solvent interfaces thus draw great attention and interests from the
community of electrochemistry and chemical physics.

For a typical PCET process in electrochemical systems of metal/
aqueous solution interfaces, a proton originally from the H2O network
transfers toward catalytic metal sites or a certain reactant species,
accompanied by electron transfer (via electrode surfaces) under a
constant potential condition. Detecting and observing these intricate
and localized events at a microscopic level presents a challenge for
experimental methods, across both spatial and temporal dimensions.
However, atomic simulations offer a powerful alternative, allowing us
to examine the kinetics and thermodynamics of elementary PCET
steps. From the above conceptual description of PCET, we can obtain
three key requirements that would be critical in theoretical modeling:
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(1) a sufficient sampling of complex electrode/solvent interfacial
environment; (2) a constant potential condition corresponding to a
grand canonical (GC) ensemble; (3) a physically appropriate and exact
treatment for protons involved in a PCET process.

Electrochemical theorists have developed many different approa-
ches for modeling PCET reactions in the past decades. One of the most
widely used methods is the computational hydrogen electrode (CHE)
model4 originally proposed by Nørskov and colleagues, by which the
thermodynamic reaction energies under a certain applied potential can
be computed, referred to as the standard hydrogen electrode (SHE) or
the reversible hydrogen electrode (RHE). Extension to kinetic barrier
calculations considering a constant potential condition was achieved in
20165,6. The charge extrapolation method adjusts potential energy sur-
faces (PES) that are initially calculated with a constant charge model.
This adjustment accounts for the electric double layer (EDL) at elec-
trode/solvent interfaces, using a capacitor model to approximate the a
posteriori correction terms. The great advantages of low computational
cost and easy implementation make the above approaches popular in
the electrochemistry community of PCET simulations. However, it is
widely acknowledged that there are shortcomings in the approach,
which considers only the initial states (IS), final states (FS), and transition
states (TS) along a specific single path of the PCET steps, leading to a
lack of configurational sampling. The charge extrapolation method,
although applying a constant potential correction term, is not an exact
treatment for the constant potential GC ensemble, one issue is that the
TS is actually optimized under a constant charge model.

Regarding the necessity of sufficient configurational sampling
involving electrode surface, reactant species, and solvent (usually H2O)
environment, several groups employed first-principles constrained
molecular dynamics (CMD)7,8 to calculate mean forces (or free energy
gradients) at different reaction coordinates (RC) along a reaction
path9–11, in which the RC is predefined to describe reactions’ progress.
Configurational sampling is indeed performedby thismethod, while the
expensive ab initio calculations limit the total MD steps along a trajec-
tory (only ~ 104 steps), the sufficiency of statistical sampling thus is
still questionable. This limitation actually could be addressed by the
employment of machine learning potentials (MLPs), which will be
presented and discussed in this work. CMD itself cannot provide a
constant potential GC ensemble condition, two strategies were
employed by previous studies, one is adding a posteriori constant
potential correction term derived from the charge extrapolation
scheme12, and the other strategy is using the so-called grand canonical
density functional theory (GC-DFT) method13,14, in which the Fermi level
referred to the vacuum level (or the work function) is fixed at a certain
value. This can be accomplished by iteratively varying the system’s total
number of electrons in self-consistent field (SCF) loops until the sys-
tem’s work function is converged to the targeted value. On the basis of
the GC-DFT and ab-initio-based CMD method, Liu group achieved a
constant-potential condition by updating Ne every few MD steps based
on a constant-capacitance assumption15,16. Further developments of the
GC-DFT method were also reported recently to achieve more efficient
convergence of targeted potentials17,18. However, fixing the work func-
tion of each sampled configuration actually does not resemble the
microstates’distribution corresponding to an exact GC ensemble, which
will be discussed later in this work. Moreover, this GC-DFT approach
could induce an issue when dealing with quantized protons under a GC
ensemble when the system’s total electron number is allowed to vary,
please refer to Supplementary Note 1 for detailed discussion.

Proton is the key transferring species in PCET reactions. Since
hydrogen is the lightest element in nature, it is well known that the
nuclear quantum effects (NQEs) dominate the mechanism of proton
transfers at extremely low temperatures. Most of the previous theore-
tical work on PCET steps in electrochemical catalysis did not consider
NQEs, partially due to the relatively high temperature of a standard
condition (~ 300K) and the expensive computational cost required.

However, a bunch of earlier studies have revealed that the quantum
nature of protons plays an important role at room temperature in
proton transfer processes in liquid water19, small organic molecules20,21,
biologicalmacromolecules22, and even crystalline oxidematerials23. It is,
therefore, inspiring to raise a question about the impact of NQEs in
PCET steps of electrocatalysis. Hammes-Schiffer group pioneered the
investigation on the quantum effect of homogeneous and hetero-
geneous PCET24. The computational method developed by the group
provides a Fermi golden rule expression25 of PCET reaction rates, in
which vibronic states (the direct product of electronic states and proton
vibrational states) are employed to compute the vibronic coupling
term26. Both of the nonadiabatic effect and NQEs can be incorporated
under this theoretical framework. The fundamental principle of this
method is exact; however, certain limitations might exist when we
numerically obtain the requested parameters for a realistic system or
reaction process. For example, sufficient configurational sampling of
the electrochemical environment at the electrode/solvent interface is
lacking. Moreover, the approximated quantum treatment of protons in
PCET, in which 1-D wavefunctions are solved along the oxidized and
reduced diabatic PES of proton transfers24, is not fully exact to compute
the vibronic coupling term. An analogous framework for addressing
nuclear tunneling and non-adiabaticity under electrochemical condi-
tions was proposed by Melander, showing how we could compute
electrochemical rate under a Marcus theory-type framework in a grand
canonical ensemble condition27. However, Melander currently just
considered an adiabatic classical model for the acidic Volmer reaction
when applying the method in this recent paper27, ignoring NQEs and
non-adiabaticity (incorporation of which could still be on-going). As
suggested by the Hammes-Schiffer group24 and well acknowledged by
the quantum dynamics community, the Feynman path integral (PI)
algorithm28,29 is a more exact simulation approach for proton quanti-
zation, which will be employed in this work.

Our goal is to investigate the NQEs of PCET under a constant
potential electrochemical condition, which can be conducted by a
unified statistical sampling framework developed by this study. We
employ a grand canonical hybrid Monte Carlo (GC-HMC) algorithm to
equilibrate the systemwith an external electronic reservoir at a certain
chemical potential of electrons and combine with a path integral
Monte Carlo (PIMC)method to take account of NQEs.We also develop
an MLP adapted for electrochemical simulations on the basis of the
Deep Potential (DP)30, in which the total electron number of the
interface system canbe adjusted to realize aGC sampling, andwe refer
to this MLP as DP-Ne throughout this paper. This DP-Ne MLP sig-
nificantly improves computational efficiency while maintaining a DFT
level accuracy, enabling sufficient statistical sampling in our work with
an affordable computational cost.

Electrocatalytic HER is a notable green-energy technology pro-
ducing clean fuels31, it consists of multiple possible PCET steps, which
is an idealmodeling system in electrochemistry.We thus are interested
in the NQEs on the thermodynamics and kinetics of elementary PCET
steps of HER in this study. The Volmer step (H+

sol + e- + * → H*, where
H+

sol represents a solvated proton in water solution, e- comes from a
cathode, and “*” means a surface site at cathode surface) and the
Heyrovsky step (H+

sol + e- + H* → H2) are the two fundamental PCET
steps, with another non-electrochemical Tafel step (H* +H*→H2) being
investigated in this work as well (Supplementary Note 10). Researchers
have done extensive theoretical studies on PCET steps inHER, typically
by employing the CHE model and the charge extrapolation
scheme32–34. The exact mechanism and quantitative kinetic properties
of the above PCET steps are still under debate, with discrepancies of
activation energies between the computational predictions and
experimental results35–38. A recent theoretical work using the CMD
method tried to reconcile the above-mentioned discrepancies12, but
there are still unresolved issues about the competitive relationship
between the Volmer-Tafel and Volmer-Heyrovsky mechanisms.
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With the NQEs being explicitly considered in this study, we
attempt to provide new insights into the impact of this quantum effect
on the PCET steps involved in electrocatalytic HER. Our simulations
reveal that proton tunneling exhibits a substantial impact on the free
energy profile of elementary PCET reactions in HER and, more
importantly, provides new physical pictures for understanding path-
ways of the transferring proton overcoming kinetic barriers in the
Volmer and Heyrovsky steps. We note here that we are not aiming to
provide quantitatively exact reaction rate evaluations for the PCET
elementary steps in this study. The major contribution of our work is
the development of an integrated sampling framework for free energy
calculations which can explicitly treat NQEs under an exact constant
potential condition.Wewillfirst introduce themain idea andprinciples
of our developed computational algorithm, and then present the
major results elucidating the NQEs in electrocatalytic HER in the fol-
lowing sections.

Results
Methodology principles
Firstly, we introduce the principle of the GC-HMC algorithm proposed
by this study. Considering a systemwith the coordinates of all particles
and the total electron number represented by R and Ne, respectively,
the GC ensemble partition function can be expressed as

Ξ β, μe

� �
=

X
Ne

Λ

Z
dR exp �β E R, Ne

� �� μeNe

� �� �
=

X
Ne

exp βμeNe

� �
Qðβ, NeÞ

ð1Þ

where β = 1
kBT

is the inverse temperature, Λ is the prefactor generated
by the integral of momenta degrees of freedom, EðR, NeÞ and μe

express the potential energy and the electrochemical potential of the
external electronic reservoir in equilibrium with the system respec-
tively, andQðβ, NeÞ refers to the canonical ensemble partition function
(integral in the phase space) at a specific temperatureβ andwith a total
number of electrons Ne. For the exact GC ensemble condition, the
work function of an instantaneous configuration will fluctuate around
-μe during the simulation, rather than being fixed at -μe which corre-
sponds to the situation using the GC-DFT method.

Sufficient configurational sampling of complex electrode/solvent
interfacial environment is essential for studying PCET steps. Due to the
issue of particle-number variations in GC conditions, MC39,40 is a more
practical method for open system simulations with particle insertion/
deletion compared to MD40,41. We employ the HMC42,43 method to
improve the sampling efficiency with multi-particle displacements.
Free energy profiles provide important physical insights into the
thermodynamic and kinetic properties of PCET steps. The thermo-
dynamic integration (TI) method7,8,44 is appropriate for computing the
free energy profiles with constraints on a defined RC. Considering the
above requirements, a constrained HMC approach proposed in our
previous study45 is employed in this work. The details of the con-
strained HMC method are shown in the Methods section.

To achieve an exact constant potential condition, the constrained
HMC method can be easily extended to a constrained GC-HMC
method by incorporating an extra degree of freedom – the total
electron number Ne of the surface models. We can sample Ne by the
Metropolis algorithm with particle coordinates fixed, and the corre-
sponding acceptance probability is

A N 0
ejNe

� �
= min 1, exp �β E R, N 0

e

� �� E R, Ne

� �� μe N0
e � Ne

� �� �� �� �
ð2Þ

For the exploration of particles’ positions, we employ the con-
strained HMC method45 at a fixed Ne value. The workflow of the GC-
HMC algorithm is shown in Fig. 1a. An MC sampling trajectory begins

with an initial structure characterized by the composite configuration
[R, Ne] of the system. Three types of degrees of freedom are con-
sidered: the total number of electrons (Ne), the centroid of atomic
coordinates ðRÞ, and internal degrees of freedomwithin the quantized
beads’ configurations ðR kð Þ

Δ Þ. We then randomly select which type of
degrees of freedom to be perturbed by trial moves at each MC step,
based on a random number ξ satisfying a uniform distribution within
½0, 1�. We vary the total electron numberNe based on Eq. 2 to achieve a
GC constant potential condition or perform HMC for the centroid of
atomic positions ðRÞ to sufficiently sample the complex interfacial
structure, or use the PIMCmethod to treat NQEs, by which we update
R kð Þ

Δ basedon the staging algorithm46,47. Estimators of targeted physical
quantities are subsequently evaluated. We repeat the above process
until reaching the required total MC step number, and finally obtain
the ensemble average of interested physical quantities.

In fact, a potentiostat-based constant potential MD algorithmwas
proposed by Bonnet, Morishita, Sugino, and Otani in 201248, which is
also a sampling approach with instantaneous work function fluctua-
tions conforming with an exact grand canonical distribution, equiva-
lent to the GC-HMC method proposed in our study. This scheme was
later performed combined with Blue Moon ensemble-constrained MD
simulations to obtain free energyprofiles49,50. Liu group’s recent review
paper51 also discussed the importance of work function fluctuation
under the exact GC ensemble condition and developed a patch for
VASP called CP-VASP51, which realizes a constant potential condition
with the potentiostat proposed by the original work48. If we aim to
accomplish a constant pH condition in the future, our GC-HMC algo-
rithm is easier to accommodate to variable proton-number sampling
than the forementioned MD algorithm48, which has to deal with the
discontinuity issue of particle insertion/deletion. To fulfill a constant
pH condition, the number of protons in the electrode/solvent system
needs to be dynamically adjusted during sampling. This is similar to
the strategy for maintaining a constant potential by varying Ne as
discussed above, which could be implemented as an independent
module in the computational framework (Fig. 1a) in our future study.

Since the NQEs play an important role even at room temperature,
the Feynman PI algorithm28,29 is employed to consider the quantum
feature of protons in the PCET steps. The quantum GC ensemble
partition function can be expressed as

Ξqtm β, μe

� �
=
X
Ne

exp βμeNe

� �
Qqtm β, Ne

� �
ð3Þ

where Qqtm β, Ne

� �
refers to the quantum canonical ensemble partition

function (its formulation is given by Eq. 12 in theMethods section). The
expression of the quantum GC ensemble partition function Ξqtm β, μe

� �
is analogous to the classical one shown in Eq. 1, please refer to Sup-
plementary Note 1 for detailed derivation of Ξqtm β, μe

� �
. Combining the

PIMC algorithm with the GC-HMC method, the quantum effect can be
taken into account together with sufficient configurational sampling of
the electrode/solvent interface. The details of the PIMC algorithm
implemented in this study are shown in the Methods section. In the
quantum case, the expression of the acceptance ratio of the total
electron number Ne trial move is similar to Eq. 2, except that the
potential energy EðR, NeÞ in Eq. 2 is replaced by the average potential
energy of all beads sharing the same electron number Ne in the PI
formalism (refer to Supplementary Note 1 for detailed discussions).

Framework of our developed DP-Ne

A traditional MLP model, such as DP30, typically substitutes atomic
coordinates as inputs and infer the total energy and atomic forces of a
modeling system. In this work, we introduce a new degree of freedom
to input parameters: the total number of electronsNe of our modeling
interfacial system (Fig. 1b). To enable computing the work function
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(W ) of an instantaneous sampled configuration in the extended space

[R,Ne], we include an additional output
∂E R,Neð Þ

∂Ne
= �W ðR,NeÞ. For a

valid GC ensemble sampling, it is essential to satisfy:

<
∂E R,Ne

� �
∂Ne

>GC = <�W ðR,NeÞ>GC =μe ð4Þ

where < � >GC denotes the statistical GC ensemble average, details of
which canbe referred to the following results and SupplementaryNote
4. Figure 1b shows the general framework of the DP-Ne model adopted
in this study. Our developed DP-Ne MLP facilitates the sampling of GC
ensembles with variable electron numbers. Chen et al. proposed a
practical approach for machine-learning emulation derived from the
GC-DFTmethod14, which incorporates the electrode potential as a new
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degree of freedom into the input parameters. However, the construc-
tion of this machine-learning force field actually encounters the same
issue as the GC-DFT approach, which does not perform an exact
sampling of the microstates’ distribution based on the GC partition
function, but instead enforces a fixed work function constraint.

We validate the accuracy of our DP-Ne MLP by comparing the
inferred energies and forces with the DFT results, and a good agree-
ment on the testing dataset is achieved as shown in Supplementary
Fig. 3. The total root mean square errors (RMSEs) of energies and
forces on the testing dataset are 0.6meV/atom and 57meV/Å for
configurations along the Volmer reaction path, and 1.1meV/atom and
71meV/Å for the Heyrovsky reaction case. Such small errors indicate
the reliability of our DP-Ne force field model in describing the PES of
HER steps with respect to the extended degrees of freedom [R, Ne].

Construction of the atomic interface model
We study the PCET steps involved in HER on a (5 × 5) Pt (111) surface
slab composed of four atomic layers illustrated in Fig. 2a. Themodeled

electrode surface contains 100 Pt atoms with 1 monolayer (ML)
hydrogen coverage at Pt atop sites52,53. No constraints or control is
exerted on the adsorbed H* atoms during our sampling, and we do see
the adsorbed H* atoms migration between the atop sites and the hol-
low or bridge sites along our sampled MC trajectories because of
similar adsorption energies among different surface sites12,54–60. We
also include two water layers (36 explicit water molecules) to take
account of the solvation effect and provide proton donors. Tests for
the influence of water-layer numbers on the free energy results are
shown in Supplementary Note 11. A vacuum region of 15 Å thickness is
further added above the water layers in order to decouple periodic
images of the slabmodel. Since we adjust the total electron number of
the interface system in our GC-HMC algorithm, compensating charge
has to be included to maintain the overall charge neutrality of the
supercell under a periodic boundary condition (PBC). We employ the
scheme of placing a compensating charge plate in the vacuum region
right above the water solvation layer to mimic an effective electric
double layer at the electrode/solution interface, analogous strategies

Fig. 1 | Workflow of the GC-(PI)HMC method and training workflow of the DP-
NeMLP. aWorkflow of the GC-(PI)HMCmethod. The trial moves for different types
of degrees of freedom are selected based on a preset ratio using a random variable
ξ satisfying a uniformdistributionwithin ½0, 1�, and the probabilities ofmaking trial
moves for the internal degrees of freedom within the quantized beads’ configura-
tions in PIMC ðR kð Þ

Δ Þ, centroid atomic coordinates (R), total number of electrons (Ne)
are a1,a2 � a1, 1� a2, respectively. b Construction framework and training work-
flowof theDP-NeMLPadopted in this work. Initially, a data set is provided, followed
by an iterative process which automatically goes through training, exploration, and

labeling steps. The iteration is considered converged after the accurate sample
percentage among the newly explored configurations is above 85%. The zoom-in
schematic plot above the training workflow illustrates the construction framework
of the DP-Ne force field. Atomic coordinates R of a modeling system are inputs for
the embedding network generating descriptors fDig. The fitting network maps fDig
together with an extra degree of freedom Ne to the total energy E, atomic forces
{Fi}, and ∂E=∂Ne which relates to the work function of this extended configuration
[R, Ne] as discussed in the following sections.

a

∗|

| |

|

O

H

Pt

|

centroid 
of beads

Pt O H

compensating 
charge plate

14.06 Å Volmer

Heyrovsky

Tafel

b

c d

∗|

|

Fig. 2 | Atomicmodel construction, reactionpathways andRCdefinition. a Side
view of the simulated (5 × 5) Pt (111) surface slab composed of four atomic layers.
The interface model contains a water bilayer over 1ML of adsorbed hydrogen. A
compensating charge plate is placed in the vacuum region above the water solva-
tion layer. The Pt atoms inside the black dashed rectangle are fixed along all
simulation trajectories. b Schematic diagrams of the proton transfer pathways of

three elementary reactions (Volmer, Heyrovsky, Tafel) involved in HER. Illustration
of the key atoms relevant to the RC definitions of the (c) Volmer and (d) Heyrovsky
steps for classical (left) and quantum (right) cases. Adsorbed hydrogen atoms and
water molecules not directly participating in the investigated reactions are not
displayed in these schematic plots for clarity.
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can be found in earlier theoretical work33,61,62. We realized the above
function in the first-principles package Atomic-orbital Based Ab-initio
Computation at UStc (ABACUS)63,64 used in this study, consistent with
the corresponding algorithm implementation in the popular DFT code
Quantum ESPRESSO (QE)65,66. We further benchmark our calculated
electrostatic energy profiles with the QE results on a testing interface
model and discuss the potential influence caused by varying the
compensating charge plate’s positions. Details can be found in Sup-
plementary Note 2.

The HER process starts with a Volmer reaction, which is a PCET
step of a proton’s adsorption forming an H*. Following this, the evo-
lution of an H2 molecule can proceed along two distinct pathways: the
Volmer-Tafel or the Volmer-Heyrovsky mechanisms. The proton
transfer pathways of the Volmer, Heyrovsky, and Tafel steps are illu-
strated in Fig. 2b. We note that the Tafel step, characterized as a che-
mical (instead of an electrochemical) reaction with negligible charge
transfer across the interface, is beyond the scope of PCET steps, thus is
not extensively discussed in the main text. We present our investiga-
tion of the NQEs on the Tafel reaction in Supplementary Note 10.

We need to define reasonable RCs for different types of reaction
paths so that we could drive reactions and perform the mean force
integration by our GC-(PI)HMC. In the present work, we employ the
difference of bond distances jrPtHj and jrOHj as the RC qVolmer for the
Volmer reaction (Eq. 5), in which jrPtHj is the distance between the Pt
atom for H adsorption and the transferring proton, and jrOHj is the
distance between the proton donating oxygen (belonging to an H2O
molecule above the Pt site) and the transferring proton (illustrated in
the left panel of Fig. 2c). For the Heyrovsky reaction, we define the RC
qHeyrovsky as the distance rHH*

�� �� between the two hydrogen atoms
forming the H2 molecule (Eq. 6), the definition is schematically
depicted in the left panel of Fig. 2d.

VolmerRC : qVolmer = rPtH
�� ��� jrOHj ð5Þ

HeyrovskyRC : qHeyrovsky = rHH*

�� �� ð6Þ

Similar types of RCs have been widely used in many previous
studies on catalytic mechanisms for electrochemical systems11,12,16. In
the quantum situations for studying NQEs, the transferring H in the
Volmer step and the two combining H atoms in the Heyrovsky step are
quantized as beads configurations isomorphic to a ring-polymer
model20,21,23,67, we then treat the centroid of the corresponding ring-
polymer beads (illustrated in the right panels of Fig. 2c, d) as the
positions of the quantized H atoms21,23. The impact of considering
NQEs for more protons in the explicit water solution is discussed in
Supplementary Note 12.

Setup of DFT calculations
DFT calculations in this work are utilized to trainML force fields, rather
than for direct MC sampling. All DFT calculations in this work are
performed using a first-principles calculation software ABACUS (ver-
sion 3.4.0)63,64 with a main feature of employing numerical atomic
orbitals (NAO) as the basis set, which is capable of performing efficient
DFT calculations for more than hundreds of atoms in a supercell. In
addition, the function of an adjustable total number of electronswith a
compensating charge plate, whose position is also configurable, is
implemented in the ABACUS code (Supplementary Note 2). We thus
employ ABACUS to perform all of the ab initio calculations for labeling
the DP-Ne training dataset throughout the work.

The norm-conserving pseudopotentials are adopted with the
valence electron configurations: [H]1s1, [O]2s22p4, and [Pt]5s25p65d86s2.
We use the generalized gradient approximation (GGA) in the form of
the Perdew–Burke–Ernzerhof (PBE) version68 for describing the
exchange-correlation functional. Specifically, we choose 2s1p, 2s2p1d,

and 4s2p2d1f NAO basis sets with radius cutoffs as 6, 7, and 7 Bohr,
respectively for H, O, and Pt elements. The kinetic energy cutoff is set
to 100Ry (1360 eV). We employ the PBC for modeling the Pt/H2O
interface supercell, and the k-point mesh for sampling the Brillouin
zone of the slab model with dimensions of 14.06Å × 14.06Å × 30.89 Å
is set as 2 × 2 × 1. A dipole correction69 is included in our DFT calcula-
tions as well due to the net dipole of the interface model especially at
charged states representing an electrochemical reducing condition.
We use theGaussian smearingmethodwith awidth of 0.02 Ry.We also
apply Grimme’s D3 dispersion correction70 to take account of the long-
range van de Waals interaction effect.

Statistical results of potential and charge variations fromourGC
sampling
Since the PCET steps involve electron transfer across interfaces, the
activation energies of Volmer and Heyrovsky steps have a dependence
on applied potentials. It is through the work function that we can
establish a connection between the reduction voltage U relative to the
standard hydrogen electrode (φSHE, ~ 4.4V vs the vacuum level71,72) as
follows:

U =
W
ej j � φSHE ð7Þ

where ej jmeans the unit charge, and the work functionW ðR,NeÞ of an
instantaneous microstate, sampled in our GC-(PI)HMC trajectory
within the extended [R,Ne] configurational space, can be obtained
from

∂E R,Neð Þ
∂Ne

as introduced in the above section (refer to Supplemen-
tary Note 4 for detailed DFT validations). We are able to achieve dif-
ferent electrochemical reducing conditions in the GC sampling for this
open system by adjusting the electrochemical potential parameter μe

of the external electronic reservoir (shown in Eq. 1), equivalent to the
potentiostat scheme proposed by an earlier theoretical work48. We
thus can compute the free energy profiles of the investigated PCET
steps at different applied potentials. Figure 3a shows that the GC
ensemble average <W ðR,NeÞ>GC equals to the controlling parameter
�μe, which is consistent with Eq. 4 and justifies the validity of our GC
sampling. Themagnitude of thework function fluctuation range is also
consistent with the earlier results obtained by the above-mentioned
potentiostat scheme (~ ± 0.5 eV)48. The modeled system corresponds
to the Volmer step with qVolmer = 0.21 Å at μe = − 3.5 eV vs vacuum
(U = −0.9V vs SHE).

The modeled system’s total electron number Ne also fluctuates
around an average value, as shown in Fig. 3b, and exhibits a normal
distribution (Supplementary Note 5), satisfying the GC ensemble dis-
tribution. We use the extra electron number (Nextra

e ) added/subtracted
to/from the Pt/H2O interface model to represent the total electron
number for clarity. The average value <Ne>GC corresponds to the
system’s charge state at a specific appliedpotential condition.Weneed
to emphasize that an exact thermodynamic simulation of an electro-
chemical open system should obey the fundamental principle of the
GC ensemble distribution (Eq. 1), where Ne and W ðR,NeÞ are a pair of
conjugate thermodynamic variables of a microstate. A correction
formulation of GC sampling should exhibit the feature that neither Ne

nor W of sampled microstates is fixed along a simulation trajectory,
while the ensemble average <W ðR,NeÞ>GC equals to the controlling
parameter �μe of an external electronic reservoir. An analogous con-
cept applies to the case of an isothermal-isobaric NPT ensemble sam-
pling, where neither volume V nor the pressure PðR,V Þ of the sampled
microstates is fixed, while the average pressure <PðR,V Þ>NPT equals to
the setup external pressure. The above fundamental principle is rarely
treated exactly in the electrocatalytic simulation community, where
the fixed charge or fixed potential schemes were commonly adopted
in the potential energy or free energy calculations for electrochemical
PCET steps.
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A gradual increase of total electron number is observed from the
IS to the FS along the reaction pathways of both the Volmer and
Heyrovsky mechanisms (shown in Fig. 3c), which is as expected
because the electrode slab needs to keep acquiring electrons to facil-
itate the progress of reduction reactions when in equilibrium with an
electronic reservoir at a constant electrochemical potential. The error
bars in Fig. 3c denote standard errors (SE) of average Nextra

e derived
from 15 (Volmer) or 10 (Heyrovsky) independent simulations for each
case at U = −0.9V vs SHE (refer to Supplementary Note 6 for the
definition of SE). We further conduct detailed calculations to examine
the relationship of charge states of the Volmer step’s IS and FS with
applied potentials (Supplementary Note 6). The results exhibit a

consistent trend that amore negative potential leads to larger electron
numbers in the modeled system, indicating a reasonable electronic
response in PCET reactions that a stronger reducing driving force
requires a higher concentration of electrons in the system.

Impact of NQEs on activation energies of PCET steps in HER
We obtain the free energy profiles of the Volmer and Heyrovsky PCET
steps at μe = − 3.5 eV vs vacuum (U = −0.9 V vs SHE), presented in
Fig. 3d, by numerically integrating the mean forces at different RCs
along the reaction paths23,45,73. To further investigate the impact of
NQEs on these PCET-free energies, we implement the PIMC algorithm
into the GC-HMC method (illustrated by the workflow plot in Fig. 1a).

Fig. 3 | Sampling results and NQEs on free energy and beads distribution.
aWork function and (b) total electron number fluctuationwith respect toMC steps
of the Volmer reaction with an RC fixed at qVolmer = 0.21 Å. The extra electron
number added/subtracted to/from themodel (Nextra

e ) is used to represent the total
electron number for clarity. Blue curves show the instantaneous values, and black
lines are the final averages along complete sampling trajectories. c Total electron
number (represented by Nextra

e ) change along the reaction path from IS to FS of
classical Volmer and Heyrovsky simulations. Error bars represent standard errors
(refer to Supplementary Note 6 for the definition) from 15 (Volmer) or 10 (Heyr-
ovsky) independent simulations. Red dashed curves are simply guidelines showing
the trend of electron number variationwith respect to RC. dClassical and quantum
free energy profiles with respect to the defined RC of the Volmer and Heyrovsky

PCET steps. e RC distribution associated with the ring-polymer beads in the PI
simulations of Volmer and Heyrovsky reactions. Red dashed vertical lines are the
constrained RC values defined for the proton beads’ centroid in our PIMC, which
also correspond to the constrained RC values in classical simulations without RC
spreading. f Structural plots explicitly showing the spreading beads of the trans-
ferring protons or hydrogen atoms at qVolmer = 0.0 Å for the Volmer reaction and
qHeyrovsky = 0.95 Å for the Heyrovsky reaction. Adsorbed hydrogen atoms and Pt
layers not directly participating in the studied reactions are not displayed here, and
only one water molecule (the proton donor) remains in the plot for clarity. Only
part of the 16 ring-polymer beads are shown. All results in this figure are obtained
under a specific reduction potential of U = −0.9 V vs SHE (or μe = − 3.5 eV vs
vacuum) at T = 300K. Source data are provided as a Source Data file.
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We then compare the free energy results between the classical and
quantum situations. The computational details of our sampling cal-
culations arepresented inMethods section. Thequantitative influence
on the activation free energies (ΔFz

a) of the Volmer and Heyrovsky
steps are 0.13 eV and 0.09 eV, respectively (atU = −0.9 V vs SHE) upon
incorporating NQEs of the transferring protons in these PCET catalytic
steps (Fig. 3d). When considering NQEs in the free energy calculations,
the predicted activation energies exhibit a notable decrease, leading to
a non-negligible enhancement of the investigated PCET reaction rates
compared to the results of classical cases. The above results indicate
that reaction rates could be underestimated by approximately 50–100
folds at T = 300K if we employ the traditional view of treating protons
as classical particles, based on the transition state theory (TST)
expression:

kTST =
kBT
h

e�
ΔFza
kBT : ð8Þ

For example, at U = −0.9 V vs. RHE, we have kTST(classical,
Volmer) = 4.00 × 107 /s, kTST(quantum, Volmer) = 5.67 × 109 /s for the
Volmer PCET step, and kTST(classical, Heyrovsky) = 3.30 × 103 /s, kTST
(quantum, Heyrovsky) = 1.12 × 105 /s for the Heyrovsky PCET step.
However, it is also well known that the TST expression is just an
approximation for the rate constants due to a lack of dynamic con-
sideration at the dividing surface of a reaction path. More rigorously,
we should discuss the validity of the kBT/h pre-factor in the TST
formula or the impact of the dynamic correction κ on this pre-factor
(mainly caused by the re-crossing effect at the dividing surface in real
dynamics). We admit that the precise calculations of the dynamic
correction in the quantum case (considering NQEs) κquantum and that
in the classical case (without NQEs) κclassical are beyond the scope of
our research. Many previous theoretical studies show that both
κquantum and κclassical are not far from unity (in the range of 0.5 ~ 1),
implying that it is likely to be a minor correction to the TST rate
constant74–76. More importantly, if we look at the ratio κquantum/
κclassical, which is actually the key quantity we are interested in (as we
only focus on the qualitative NQEs influence on the rate constants),
this ratio is even closer to 1 (in the range of 0.7 ~ 1)74–76. We thus can

see that the exponential term e�
ΔFza
kBT largely determines the reaction

rate difference between the situations with vs without NQEs in our

work, justifying the catalytic insights provided by our free energy
calculations. We need to emphasize that although we provide esti-
mated PCET reaction rates, themain goal of our work is not to pursue
quantitatively exact rate constants for elementary steps in HER. We
focus on statistical sampling methods development and aim to
demonstrate the importance of NQEs in room-temperature electro-
catalysis by employing our sampling framework.

We realize some readersmay raise a question here that, sinceDFT
calculations with different setup typically exhibit an uncertainty or
deviation range of about 0.1–0.2 eV in describing energetics of elec-
trocatalytic steps, is the reported quantitative NQEs’ impact of
0.1–0.15 eV (shown in Fig. 3d and Fig. 4) on PCET activation energies
reliable or of physical meaning in this work? The basic logic of our
response is that, as we keep all of the first-principles calculations
consistent within this study and our adopted DFT setup also follows a
routine of simulations in electrocatalysis, the uncertainty caused by
inconsistent first-principles calculation setup can be excluded, mean-
ing that the important qualitative impact of NQEs onHER PCET steps is
expected to persist if other ab-initio setup schemes are employed. We
actually find that earlier theoretical predictions (all performed in a
classical situation) of the PCET activation energies in electrocatalytic
HER at Pt surfaces were consistently higher than those from experi-
mental measurements35–38. The NQEs, thus, could be a key factor for
reconciling the above discrepancy, as revealed by our computational
studywhich explicitly dealswith theNQEsunder an exactGCensemble
sampling.

Proton tunneling originates from the intrinsic quantum nature,
which is already demonstrated to be remarkable even at room tem-
perature for the HER PCET steps. To achieve a clearer and qualitative
understanding of the transferring proton’s quantum feature, we ana-
lyze the quantum beads expansion for the states at near-TS RC in the
Volmer path (qVolmer = -0.21 Å) and the Heyrovsky path
(qHeyrovsky = 1.01 Å) atU = −0.9V vs SHE in Fig. 3e. Let’s first consider in
a classical picture, the positions of the transferring protons or hydro-
gen atoms are essentially mass points obeying the constraint of a
specific RC. If we plot the RC value of each sampled configuration in a
GC-HMC trajectory, all of which must fall onto a single value, corre-
sponding to the red dashed vertical lines in Fig. 3e. However, the
situation is quite different in the quantum case, since a proton or
hydrogen atom can “split” into multiple beads in the PI algorithm, the
“uncertainty” of a micro particle’s position just reflects its quantum
feature. Therefore, if we do the statistics of each bead configuration’s
RC value along our GC-PIHMC sampling trajectory and plot the his-
togram (Fig. 3e), the RC distribution would spread around an average
number (actually equals to the constrained RC value defined for the
proton beads’ centroid). We can clearly see that the quantum-treated
transferring proton exhibits an IS-TS-FSmixed feature at the TS of the
Volmer or the Heyrovsky path, as illustrated by the schematic atomic
structures underneath the histogram plots (Fig. 3e). This observation
indicates a sharp contrast with the classical deterministic under-
standing of transferring protons along PCET paths, and further
explains the lowered activation energydue to the tunneling effect. This
is because the TS in the PIMC simulations alsomixeswith ring-polymer
beadswith RCs corresponding to IS and FS, which have lower potential
energies than the classical TS configurations.

Amoredirect configurational visualization of the spreading beads
of the transferring protons or hydrogen atoms in the Volmer and
Heyrovsky path are presented in Fig. 3f. We conduct a quantum PI
sampling at a specific near-TS configuration where the coordinates of
all classical particles and the centroids of the quantized H are fixed,
with the relative positions of the quantized H ring-polymer beads (or
considered as the internal degrees of freedom within a quantized
particle) being sufficiently sampled by the PI algorithm. We randomly
choose a specific configuration of the spreading beads and show the
structure plots in Fig. 3f, which exhibits a considerable uncertainty in

0.0 -0.4 -0.8 -1.2 -1.6
0.0

0.2

0.4

0.6

0.8

F a
(e

V)

U (V vs SHE)

Tafel

Heyrovsky

Volmer classical

quantum

classical

quantum

0.54 eV

Fig. 4 | Activation free energy results with respect to electrochemical poten-
tials. Activation free energy results of Volmer and Heyrovsky mechanisms with
respect to electrochemical potentials under classical and quantum situations at
T = 300K. Blue (Red) hollow circles and solid squares represent the Volmer
(Heyrovsky) reaction for the classical and quantum cases, respectively. Solid and
dashed lines derived from a linear fitting simply perform as guidelines illustrating
the trend. The black dashed line represents the activation energy result (0.54 eV) of
the Tafel reaction, which does not changewith respect to voltage variation, and has
almost identical values under classical and quantum conditions. Source data are
provided as a Source Data file.
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the quantized proton’s or H atom’s position and an unusual feature
that IS and FS configurations are mixed in the TS sampling by the PI
simulations. For example, the IS-like configuration (H+

sol + H*), deno-
ted by the blue color, and the FS-like configuration (H2), highlighted by
the yellow color, coexist in the Heyrovsky TS PIMC sampling (the right
panel of Fig. 3f), resulting in an emergence of the tunneling behavior
(note that we only show part of the 16 ring-polymer beads for clarity).
We thus can obtain a qualitative physical picture that the transferring
proton or H atom exhibits wave-like quantum characteristics, facil-
itating the particles to tunnel through classical barriers along the PCET
pathways in HER, leading to a remarkable activation energy reduction
compared to the classical simulations. The NQEs revealed by our the-
oretical work thus contribute new physical insights into the funda-
mental understanding of PCET dynamics in electrocatalytic HER.

Insights into the HER mechanism inspired by the consideration
of NQEs
The above results reveal the exotic quantum behavior of the trans-
ferring protons during PCET processes. We are now interested in the
impact of NQEs on our understanding of the electrocatalytic HER
mechanism. Two well-known reaction pathways compete with each
other, that is, the Volmer-Heyrovsky pathway against the Volmer-Tafel
pathway. Figure 4 shows the activation energies of the Volmer, Heyr-
ovsky, and Tafel elementary steps with respect to applied electro-
chemical potentials for both of the classical and quantum situations.
We note that the activation energy of the non-electrochemical Tafel
step is expected to exhibit negligible dependence on applied poten-
tials, we thus plot its activation energy as a constant value (derived
from our calculations with details shown in Supplementary Note 10) in
Fig. 4. Our classical activation energy results are in good agreement
with a recent computational work12 numerically, where similar activa-
tion energies of both the Tafel step (0.53 eV) and the Volmer step
(0.25–0.50 eV) were reported in their study within the relevant voltage
range investigated in this work, justifying our GC-HMC calculations
under the classical situation. If the transferring proton is treated as a
classical particle, the Volmer-Tafel path is more likely to dominate the
H2 production under the electrochemical condition of voltage
U ≥ −0.9 V vs SHE. However, due to the proton tunneling behavior
resulting from its intrinsic quantum nature, more exact activation
energies of the Heyrovsky step, considering NQEs, are ~ 0.1 eV lower
than those derived from the classical cases. Since the Tafel steps are
almost not affected byNQEs (discussed in SupplementaryNote 10), we
can see fromFig. 4 that the transition point from the Volmer-Tafel path
to the Volmer-Heyrovsky path is significantly shifted to a less reducing
potential region by a difference of 0.5 V, indicating a tendency of the
electrochemical Heyrovsky step suppressing the chemical Tafel step
toward a smaller overpotential condition. An experimental-
theoretical-joint analysis77 claimed that the Volmer-Heyrovsky path is
likely to dominate over the Volmer-Tafel path. While in another recent
theoretical work raised by Kronberg et al. 12, the authors conducted
CMD simulations only for the Volmer and Tafel steps and did not
perform the free energy calculations for the Heyrovsky step thus dis-
cussion on the competitive relationship between the Volmer-Tafel vs.
Volmer-Heyrovskymechanismswas incomplete.Ourwork investigates
the free energy profiles for all three elementary steps in HER (Volmer,
Heyrovsky, and Tafel), andwe find that theHeyrovsky step indeed gets
more favorable compared to the Tafel step upon considering NQEs by
our GC-PIHMC calculations as shown in Fig. 4, consistent with the
statement from the previous work77. At the end, we also need to point
out possible limitations inherent in themean-force integrationmethod
for free energy profile calculations under constrained sampling algo-
rithms. Since the solvent structures are sampled independently at each
RC along the reaction pathway, our constrained HMC approach may
overestimate the solvent reorganizations leading to a softened
potential dependence of PCET activation energies in Fig. 412. In our

work, the free energy profile calculations are for the PCET elementary
steps, and the IS and FS at electrode surfaces along PCET paths in our
thermodynamic integration approach are not exactly consistent with
the reactant state and the product state of the overall reaction
(H+

sol + e� → 1/2 H2(gas)). In addition, a constant pH condition is not
implemented in our current approach, meaning that a non-negligible
pH change would occur along our modeled elementary PCET step
(refer to the next Section for more discussions). Regarding the above
limitations, our computed free energy change of the overall reaction
cannot be directly compared to that of the experiments.

Discussion
In this work, we employ our proposed GC-(PI)HMC sampling frame-
work, assisted by a MLP adapted for electrochemistry, to reveal a non-
negligible role of NQEs in computational work to achieve an exact
quantitative description of electrochemical mechanisms, which is also
consistent with earlier studies reviewed at the beginning of this article
that NQEs exhibit remarkable influence in many chemical/materials
systems19–23 even at room temperature.

On the basis of this MC framework, we emphasize that the good
expandability of our sampling workflow provides convenience for
incorporating more physical factors in future code development. For
example, the MC sampling for proton number variation, to achieve a
constant pH condition, can be implemented as a new sampling branch
in the workflow shown in Fig. 1a, which is an independent module and
does not affect the programs of the other sampling functions for dif-
ferent types of degrees of freedom.

More importantly, the physical insight of proton tunneling pro-
vided by our simulations based on an exact constant potential GC
sampling can be extended to broader scenarios in electrocatalysis,
including ORR, CO2RR, or nitrogen reduction reaction (NRR) systems.
We may find similar qualitative NQEs impact on the kinetics of ele-
mentary PCET steps, which may reshape our fundamental under-
standing on electrocatalytic reactions. Our computational work thus
highlights the importance of incorporating protons’NQEs inmodeling
PCET steps existing ubiquitously in energy conversion systems.

At the end, we need to point out a few limitations of our current
computational framework. First, the thermodynamic integration method
used in our approach produces free energy profiles, which are just ther-
modynamic results and lack realistic dynamic information. Second, the
adiabatic approximation employed in this work ignores the non-adiabatic
effect for now,which couldbe an important factorworthyof investigation
in certain PCET reactions. The non-adiabatic effect would likely increase
the effective activation energy slightly in both the classical and quantum
cases especially when the non-adiabatic electronic coupling is small
around the dividing surface region. However, it is still an open question
about the relative magnitudes of the non-adiabatic effect on the effective
activation energy shifts comparing the situations with vs. without NQEs.
Third, as we employ the TI method to compute the free energy profiles
along a defined RC, it is important to choose an appropriate RC repre-
senting the reactionprogress.We acknowledge that the current versionof
our program is unavailable to support certain types of PCET simulations
involving concertedmultiple-proton transfers, and we are working on the
implementation of more types of RC in our framework now. Moreover,
the MC sampling performed by our proposed workflow requires training
and the construction of an ML force field. Certain complex electro-
chemical systems may need exploring a larger configurational space,
which could increase the cost of preparing a robust ML force field.

Methods
Methodologyof the constrainedHMCalgorithmandderivations
For a systemwith all particle positionsR and potential energyU Rð Þ, we
define a RC q= f ðRÞ to monitor the reaction process, and the reaction
mechanism can be explored via MC simulations at different fixed q
values using the constrained HMC algorithm45. The key idea of the
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algorithm is to integrate the RC after a coordinate transformation and
sample the rest two types of degrees of freedom with the corre-
sponding two types of MC schemes. The procedures of the algorithm
can be divided into the following three steps:
a. Apply an appropriate coordinate transformation on R to obtain

general coordinates q= ðq, qtrans, qprimitÞ, where qtrans and qprimit

represent the transformed coordinates related to the RC and the
primitive coordinatesmaintained the same in the transformation,
respectively. Then we integrate the RC in the probability density
of q= s as follows

P sð Þ= Λ

Q β, Ne

� � Z dR exp �βE R, Ne

� �� �
δ q� sð Þ

=
Λ

Q β, Ne

� � Z dq exp �βeE q, Ne

� �h i
δ q� sð ÞJ ðqÞ

=
Λ

Q β, Ne

� � Z dqdqtransdqprimit exp �βeE q, Ne

� �h i
δ q� sð ÞJ ðq, qtransÞ

=
Λ

Q β, Ne

� � Z dqtransJ s, qtrans

� � Z
dqprimit exp �βeE s, qtrans, qprimit, Ne

� �h i
ð9Þ

where J ðqÞ is the Jacobian related to the coordinate transfor-
mation and J qð Þ=J ðq, qtransÞ.

b. The primitive coordinates qprimit together with the particle
momenta pprimit are combined to obtain the partial Hamiltonian
Hðpprimit, qprimitÞ used in the HMC scheme42,43.

c. Select the sampling type of degrees of freedom at random based
on the preset ratio and sample these degrees of freedomwith the
rest ones fixed. Specifically, qtrans evolves via the usual Metropolis
scheme, and the acceptance probability is

A q0
transjqtrans

� �
= min 1,

J s, q0
trans

� �
J s, qtrans

� � exp �β eE s, q0
trans, qprimit, Ne

� �
� eE s, qtrans, qprimit, Ne

� �� �h i( )
ð10Þ

and qprimit evolves via the HMC scheme and the acceptance
probability is

A q0
primitjqprimit

� �
= min 1, exp �β H p0

primit, q
0
primit

� �
�H pprimit, qprimit

� �� �h in o
ð11Þ

The workflow of the constrained HMCmethod is shown in Fig. 1a
and more details can be referred to our earlier theoretical work45.

Methodology of the PI algorithm and derivations
Consider the same system in the above section, we represent the
masses of all particles with a diagonal matrix m. In quantum
mechanics, the partition function of a system is expressed as the trace
of a density operator, which can be derived as follows using a factor-
ization formalism proposed by Feynman28,29

Qqtm β, Ne

� �
= Tr exp �βĤ� �� �
= lim

P!1
Tr exp �βĤ=P

� �Ph i
= lim

P!1

Z
dRð1Þ � � �dR Pð Þ R 1ð Þ

D ��� expð�βĤ=PÞ R 2ð Þ
��� E

× � � � × R P�1ð Þ
D ��� expð�βĤ=PÞ R Pð Þ

��� E
R Pð Þ

D ��� expð�βĤ=PÞ R 1ð Þ
��� E

= lim
P!1

ΛP

Z
dRð1Þ . . .dR Pð Þ exp �β

XP
k = 1

1
2
ω2

P R k + 1ð Þ � R kð Þ
� �T

m R k + 1ð Þ � R kð Þ
� �	(

+
1
P
E R kð Þ, Ne

� �
�����
R 1ð Þ =R P + 1ð Þ

ð12Þ

where the subscript “qtm”means quantum, P is the number of beads,
R kð Þ denotes the particles’ positions of the ring-polymer bead with an
index number k, ΛP is the prefactor generated by the Gaussian integral
when dealingwith themomentumoperators in the PI formulation, and
ωP =

ffiffiffi
P

p
=β_ is the chain frequency of the adjacent harmonic coupling

in the ring-polymer model. The above formalism describes a quantum
system through an isomorphic classical ring-polymer model made of
multiple beads (each bead refers to a classical system’s configuration)
with harmonic couplings between adjacent beads. For a finite number
of P beads, the formal potential of the partition function QP β, Ne

� �
in

Eq. 12 is:

ϕ R 1ð Þ, � � � , R Pð Þ, Ne

� �
=

XP
k = 1

1
2
ω2

P R k + 1ð Þ � R kð Þ
� �T

m R k + 1ð Þ � R kð Þ
� �

+
1
P
E R kð Þ, Ne

� �	 
�����
R 1ð Þ =R P + 1ð Þ

ð13Þ

which is called the effective potential.
We define the centroid ofmultiple beads asR, and usually, the RC

of a quantum system is a function with respect to the centroid of
multiple beads q= f Rð Þ. The coordinate transformation to decouple
the centroid has the form:

R =
1
P

XP
k = 1

R kð Þ

R kð Þ
Δ = R k + 1ð Þ � R kð Þ, k = 1, . . . , P � 1

ð14Þ

In this situation, the probability density ofq= s is transformed into

PP sð Þ= ΛP

QP β, Ne

� � Z dR 1ð Þ . . .dR Pð Þ exp �βϕ R 1ð Þ, . . . , R Pð Þ, Ne

� �h i
δ q� sð Þ

=
ΛP

QP β, Ne

� � Z dqdqtransdqprimitdR
1ð Þ
Δ . . .dR P�1ð Þ

Δ δ q� sð ÞJ ðq, qtransÞ

× exp �βeϕ q, qtrans, qprimit, R
1ð Þ
Δ , . . . , R P�1ð Þ

Δ , Ne

� �h i
=

ΛP

QP β, Ne

� � Z dqtransJ s, qtrans

� � Z
dqprimit

Z
dR 1ð Þ

Δ . . .dR P�1ð Þ
Δ

× exp �βeϕ s, qtrans, qprimit, R
1ð Þ
Δ , . . . , R P�1ð Þ

Δ , Ne

� �h i
ð15Þ

where fRðkÞ
Δ gP�1

k = 1 are sampled via the staging transformation MC
scheme46,47 with qtrans and qprimit fixed. The evolution of qtrans and
qprimit has been discussed in the above section. We further note that
the force of the centroidunder the effective potential is just the average
force of all beads at their specific configurations.

Details of the mean force estimator
The free energy (potential of mean force) along a defined RC is a
function of the probability density PðsÞ

F sð Þ= � 1
β
lnP sð Þ ð16Þ

The free energy changebetweenRCvalues s1, s2 canbe computed
by integrating the mean force along the RC range ½s1, s2�

F s2
� �� F s1

� �
=
Z s2

s1

dF
ds

ds =
Z s2

s1

dF
ds


 �
estm

� �cond

s
ds ð17Þ

where �h iconds represents the conditional ensemble average with the
constraint q= s. According to the TI method, the general form of the
estimator for the mean force is

dF
ds


 �
estm

=
∂eE
∂q

� kBT
∂
∂q

lnJ ð~qÞ ð18Þ
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We consider two types of RCs in this study, and the specific for-
mula of the estimator for them can be derived easily by the chain rule.

a. For q= RR � RL

�� ��, the RC is defined as the distance between two
particles labeled by L and R, and RL and RR are their positions. In this
situation, the estimator is

dF
ds


 �
estm

=
fL � fR
� �

RR � RL

� �� 4kBT

2 RR � RL

�� �� ð19Þ

b. For q= RR � RM

�� ��� RM � RL

�� ��, the RC is defined as the differ-
ence of the distance between two particles labeled by L andM and the
distance between twoparticles labeled byM andR, andRL, RM, RR are
their positions. In this situation, the estimator is

dF
ds


 �
estm

=
1
2

fL RL � RM

� �
+ 2kBT

RL � RM

�� �� � fR RR � RM

� �
+2kBT

RR � RM

�� ��
" #

ð20Þ

where f � is used to represent the forceon the corresponding particle in
the above two formulas.

Details of constrained PIHMC under GC sampling
We apply the constrained GC-(PI)HMC method on our modeled
interface system at room temperature T = 300K. The number of beads
used in our PI calculations is 16 when we consider the NQEs of PCET
steps21,60. Tests for the NQEs calculations in terms of beads number
convergence and temperature effect can be found in Supplementary
Note 7. In order to obtain more reliable statistical results, we perform
15 times independent 300,000-step sampling trajectories at different
RC values for the Volmer reaction, each time with a different initial
structure. For the Heyrovsky reaction, due to its better performance in
the mean force convergence compared to the Volmer case, we per-
form 10 times independent mean force samplings for each RC case
(also consisting of 300,000 (PI)HMC steps for every sampling trajec-
tory). Specifically, for the sensitive RC range (qHeyrovsky from 0.85 to
0.95 Å) corresponding to the relative sharp transition of an H2 mole-
cule formation,we run each sampling trajectory for 1,000,000 steps to
ensure the reliability of the ensemble average results.

Training process of our DP-Ne MLP
The MLP construction is conducted by the automatic configuration-
exploration workflow DP-GEN78 in this work. Concurrent learning
processes in the DP-GEN contain a series of iterations, each of which is
composed of three steps: training the neural network that describes
force field models, exploring the configurational space (i.e., the
extended [R,Ne] space in our work), and labeling the newly added
candidate configurations by first-principles calculations, which are
selected based on evaluation of the current machine learning model’s
accuracy. Our DP-Ne model is generated according to the workflow
displayed in Fig. 1b. We incorporate the total number of electrons Ne

directly into the input layer of the neural network and use the software
DeepMD-kit79–83 to train the DP-Ne MLP. All exploration trajectories are
performed under the GC ensemble distribution using our GC-HMC
methods. More details about the DP-GEN iterations can be found in
Supplementary Note 3.

Miscellaneous technical details in our sampling calculations
We implement several constraints on atomic coordinates to ensure
reasonable configurational sampling in our GC-(PI)HMC simulations.
We place a rigid wall ~ 1.1 Å below the compensating charge plate to
prevent water molecules from diffusing to the vacuum region. As we
only allow the transferring proton (originally in H+

sol form) to move
from IS to FS along our constrained HMC samplings in PCET free
energy calculations, we have to make sure that H* atoms (except for
the H* involved in the Heyrovsky step) at the Pt surface would not
migrate to water layers. We thus introduce another rigid barrier,

specifically for the adsorbed H* atoms, to prevent them from going
upwards into the explicit H2O molecule region. In addition, we place
one more rigid wall, only for the solvation H2O molecules, to avoid
water adsorption at Pt sites which may disturb our free energy calcu-
lations of PCET reactions.

In our GC-PIHMC sampling simulations, trial moves for different
types of degrees of freedom are selected based on a preset ratio. We
set the probabilities of making trial moves for the internal degrees of
freedom within the quantized beads’ configurations in PIMC ðR kð Þ

Δ Þ,
centroid atomic coordinates ðRÞ and total number of electrons (Ne) as
0.32, 0.28, and 0.40, which corresponds to a1 = 0.32 and a2 = 0.60
mentioned in Fig. 1a.

Data availability
The result data from all the simulations in this study are provided
within the paper or in the Supplementary Information file. Atomic
coordinates of the optimized computational models and structure
examples of the HMC sampling trajectories are provided in Supple-
mentary Data 1. Source data are provided in this paper.

Code availability
The constrained GC-PIHMC code developed in this work is available at
our group’s GitHub page (https://github.com/sxu39/GC-Constrained-
PIHMC) and on Code Ocean (https://doi.org/10.24433/CO.
1818715.v2)84.
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