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A modular artificial intelligence framework
to facilitate fluorophore design

Yuchen Zhu 1,5, Jiebin Fang 2,3,5, Shadi Ali Hassen Ahmed 1, Tao Zhang4,
Su Zeng1, Jia-Yu Liao 1 , Zhongjun Ma 2,3 & Linghui Qian 1

Fluorescence imaging, indispensable for fundamental research and clinical
practice, has been driven by advances in fluorophores. Despite fast growth
over the years, many available fluorophores suffer from insufficient perfor-
mances, and their development is highly dependent on trial-and-error
experiments due to subtle structure-property effects and complicated solvent
effects. Herein, FLAME (FLuorophoredesignAccelerationModulE), an artificial
intelligence framework with a modular architecture, is built by integrating
open-source databases, multiple prediction models, and the latest molecule
generators to facilitate fluorophore design. First, we constructed the largest
open-source fluorophore database to date (FluoDB), containing 55,169
fluorophore-solvent pairs. Then FLSF (FLuorescence prediction with
fluoroScaFfold-driven model) with a domain-knowledge-derived fingerprint
for characterizing fluorescent scaffolds (called fluoroscaffold) was designed
and demonstrated to predict optical properties quickly and accurately, whose
reliability and potential have been verified via molecular and atomistic inter-
pretability analysis. Further, amolecule generatorwas incorporated to provide
new compounds with desired fluorescence. Representative 3,4-oxazole-fused
coumarins were synthesized and evaluated, creating an unreported com-
pound with bright fluorescence.

Luminescent molecules have found widespread applications in
numerous fields1–3, among which fluorophores have attracted
increasing attention in bioimaging due to their small size, chemical
tractability, and low cost4,5. To meet specific requirements such as the
penetration depth and detection sensitivity in bioimaging, the under-
lying structure-property relationship (SPR) of fluorophores is impor-
tant for designing compounds with proper excitation wavelength and
desired brightness6–8. However, our knowledge of this relationship
remains limited9–13, which is largely due to two reasons: (1) Data spar-
sity. That is, all possible structural modifications should be tested to
illustrate the SPR of a specific fluorophore, but met with synthetic

challenges. Moreover, the problem also lies in the limited access to
complete, comparable, andmeaningful photophysical data of existing
fluorophores14. (2) Multiple interrelated factors may affect the fluor-
escence. A subtle modification in the structure may lead to significant
optical changes, and the fluorescencemay further be influenced by the
surrounding environment, leaving the rational design of fluorophores
difficult6,8,15.

Recently, machine learning-based data-driven science has shown
tremendous potential to become a very useful tool across various
disciplines16–18, such as predicting molecular properties19, virtual
screening20, and molecular generation21. In the case of fluorescence,
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multiple intricately intertwined properties need to be considered for
the molecular design, including maximum absorption wavelength—
λabs, maximum emission wavelength—λem, photoluminescence quan-
tum yield—ΦPL, and molar absorption coefficient—εmax

6,15. Pioneered
by Tsuda et al., a massively parallelized version of de novo molecule
generator (ChemTS) was employed to design fluorophores with
absorption/emission wavelengths and oscillator strengths calculated
by quantum chemical computation, generating 3643 candidate fluor-
ophores by using 1024 cores for 5 days22. Though powerful, the high
computational cost must be considered.

Due to its end-to-end paradigm, machine learning can learn
directly from the data to identify implicit patterns and make predic-
tions without any prior knowledge, promising for fluorescence pre-
diction. For instance, Ju et al. established a database (ChemFluor)
recording the optical properties of over 4300 solvated fluorophores23.
Both the fluorophore and solvent were characterized using molecular
descriptors or fingerprints, which were combined as the input for
predicting photophysical parameters using the Gradient Boosted
Regression Trees (GBRT) model. Similarly, Park’s group developed a
graph convolutional network (GCN)-based model24 and employed the
integrated gradients method25 sequentially to predict seven optical
properties and obtain attributions of atoms/functional groups/sol-
vents to the optical properties. Very recently, Tsai et al. modified the
SchNet model to introduce the solvation embedding outside the
interaction layers so as not to overly amplify the solute-solvent inter-
action and provided enhanced prediction for ΔEabs and ΔEemi

26.
As researchers in fluorescent probes27–29, we’re keen to make an

easy-operation toolkit that allows the generation of structure-new
fluorophores with desired optical performance efficiently, to explore
the frontiers of fluorophores with a minimized burden on chemical
synthesis and experimental tests30.

Very recently, Park et al. developed a generative deep learning
(Gen-DL) model to generate molecules with seven predefined optical
properties31. Alternatively, to fully exploit the chemical space, optical
property predictionmodels can be introduced tomolecule generators
for efficient sampling to select optimal structures with desired optical
properties.

Herein, we systematically compiled experimental data to build a
new fluorophore database named FluoDB (Fig. 1), consisting of 55,169
fluorophore-solvent pairs, as the machine learning algorithm asks for
large volumes of data to acquire effective information. Comparedwith
existing databases, FluoDB improves in both data volume and mole-
cular diversity, categorized with 16 core fluorescent scaffolds and
728 subgroups. Then we proposed a new prediction model, FLSF

(FLuorescence prediction with fluoroScaFfold-drivenmodel), in which
a domain-knowledge-derived fingerprint encoded by 728 fluorescent-
scaffold subgroups (called fluoroscaffold) is fused to traditional mes-
sage passing neural networks (MPNN; reported to outperform SchNet,
DTNN, and the Transformer in predicting UV-Vis spectra32) using the
gated recurrent unit (GRU). In benchmarking tests, FLSF is advanta-
geous at quickly and accurately predicting optical properties
over previous state-of-the-art (SOTA) models. Its reliability and
potential were further validated through a series of interpretability
analyses. To guide the fluorophore design directly, we set up an
artificial intelligence (AI) framework, FLAME (FLuorophore design
AccelerationModulE), by integrating different open-source databases,
prediction models, and molecule generators. Using Reinvent 433 as a
representative molecule generator, a series of compounds with pre-
dicted properties were generated. Among them, 3,4-oxazole-fused
coumarins were synthesized using a novel one-pot synthetic
methodology, giving an unreported compound with bright fluores-
cence, and exhibiting the potential of FLAME in accelerating fluor-
ophore design.

Results
Data collection and processing
In our previous study, a database (SMFluo1) focusing on near infrared
fluorophores was constructed, containing five widely used fluorescent
scaffolds29. The limitation in data volume of SMFluo1 makes it difficult
to meet the requirements of deep learning algorithms, particularly
those based on graph neural networks (GNN), including GCN and
Attentive FP34, leading to moderately good prediction accuracy. In
addition, to evaluate a fluorophore for bioimaging, four key photo-
physical parameters (λabs, λem, ΦPL, and εmax) are needed, where λabs
and λem are related to the penetration depth and ΦPL×εmax indicates
the brightness15. Of note, other factors including the blinking, thermal
stability, photobleaching, and labeling specificity should be taken into
consideration when designing probes for bioimaging, but parameters
for these properties were not included in FluoDB due to limited
access6. Taking these into consideration, data collection was carried
out as follows (Fig. 2a): (i) Literature survey via searching the name of
fluorescent scaffolds on PubMed; (ii) Retrieval of experimental data
from various open-source databases23,35–40 and supplement with four
photophysical parameters & solvent information from the original
literature. These data were processed after the combination (see “Data
processing” in Methods).

Most fluorescent compounds are derived from some basic scaf-
folds and they may share common optical characteristics; thus,

Fig. 1 | Facilitating fluorophore design with FLAME (FLuorophore design
Acceleration ModulE). Overview of the user-friendly framework, FLAME, assem-
bled from the latest databases (including FluoDB, the database constructed in the
current study), prediction models (i.e., FLSF (FLuorescence prediction with

fluoroScaFfold-drivenmodel) constructed in the current study together with other
state-of-the-art prediction models), and molecule generators, together with its
application in the design of unreported fluorophores with desired fluorescence
followed by experimental evaluation.
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we categorized the fluorophores into twelve classic fluorescent scaf-
folds and four non-classical scaffolds (Fig. S1; detailed skeletal struc-
tures for 728 subgroups are shown in Table S1). FluoDB, a new
database containing 35,528 unique fluorophores and 55,169
fluorophore-solvent pairs, was therefore constructed with SMILES of
fluorophores/solvents, category of fluorescent scaffolds, experimental
photophysical data, and original reference.

Compared to representative open-source databases (e.g.,
Deep4Chem36, DyeAgg38, ChemFluor23, ChemDataExtrator (CDEx)35,
and SMFluo129), FluoDB gets improved in the number ofmolecules and
the richness in optical information (Fig. 2b and Fig. S2), exhibiting
much higher molecular diversity according to the data distribution
and structural analysis (Fig. S3 and Tables S2–3). In addition, different
scaffolds distribute relatively even in both FluoDB and Deep4Chem,

while the data of each category is largely enriched in FluoDB (Fig. 2c
and Table S4).

Data analysis with FluoDB
With FluoDB, the correlations between different parameters were
investigated (Fig. S4) and indicated an obvious positive correlation
between λabs and λem. In addition, molecular weight (MW) also has a
certain positive correlation with λabs, λem, and εmax, which is consistent
with the scatter plot analysis (Fig. S5) and experimental results (i.e.,
introducing large π bridging moieties or strong electron acceptors/
donors is commonly used for longer absorption and emission
wavelengths41, and these modifications often increase the MW).
External factors such as the surrounding solvent are reported
to influence the optical properties of certain fluorophores42.

Fig. 2 | Construction and analysis of the fluorophore database, FluoDB.
a General pipeline for data collection and processing to construct the new data-
base, FluoDB, followed by systematic analysis and statistics of FluoDB to visualize
the optical properties of various fluorophores in different solvents. b UMAP
(Uniform Manifold Approximation and Projection) of different databases
(Deep4Chem36, DyeAgg38, ChemFluor23, ChemDataExtrator (CDEx)35, and

SMFluo129) using Morgan fingerprints. The UMAP algorithm was applied with a
neighborhood size of 10 and a minimum distance of 0.3. The number of unique
compounds in each database is listed in the bracket. c Distribution of various
fluorescent scaffolds in different databases. Source data are provided as a Source
data file.
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To investigate this in a large scope, fluorophores with experimental
data available for different solvents (≥5) were selected from FluoDB.
The variance distribution of each photophysical parameter for selec-
ted molecules in different solvents is shown in Fig. S6, where these
parameters do vary along the change of solvent type, underscoring the
importance of solvents when predicting optical properties.

As mentioned earlier, we divided the fluorescent scaffolds into 16
types (Fig. S1 and Table S1), and any input fluorophore can be quickly
classified accordingly to explore potential commonalities from the
same group. As indicated in Figs. S7–22, a discrepancy was found in
λabs and λem distribution with different scaffolds, where most groups
centered in the UV-Vis range, while BODIPY, porphyrin, and squaraine
lie in longer wavelength (above 550nm)43,44. In addition, larger wave-
length tunability was found from acridine, naphthalimide, coumarin,
and cyanine. Besides, Δλ (Stokes shift, Δλ = λem − λabs) of BODIPY,
porphyrin, and squaraine is relatively small (~25 nm). Statistical analy-
sis of such large-scale data is indicative for choosing the ideal fluor-
escent scaffold to start with, and we also prepared a toolkit where
users can search for fluorophores with desired similarity as the mole-
cule of interest from the database.

Workflow and prediction performance of FLSF
With FluoDB, open-source prediction models, including GBRT23,
SMFluo29, UVVisML45, SchNet26, and ABT-MPNN46, were tested. Data in
FluoDB-Lite (SMILES in themixture/complex formwere removed from
FluoDB)wasdivided randomly in a ratio of 7:1:2 for training, validation,
and testing, respectively (Table S5). As shown in Table 1 and Table S6,
ABT-MPNN, a general molecular property prediction model based on
an atom-bond Transformer, performed best in predicting λabs and λem,
highlighting the advantage of combining Transformers with GNN for
molecular representation. However, the introduction of attention
mechanisms in ABT-MPNN led to 10 times slower training than
UVVisML (a Directed MPNN, D-MPNN), despite the improved MAE for
λabs and λem by 9.18% and 4.86%, respectively. For practicability, it is
desirable to replace the attentionmechanism inABT-MPNNwith a new
way to speed up the training while maintaining the prediction
accuracy.

As all fluorophores in FluoDBwere classified into 16 core scaffolds
and distribution discrepancy in optical properties among them was
observed (Figs. S7–21), a special molecular fingerprint—fluoroscaffold
(a 728-dimensional digital fingerprint encoded by 728 fluorescent-
scaffold subgroups listed in Table S1), fused with the current feature
extractionmethod based onMPNN, was designed for bettermolecular
representation of fluorophores. A new prediction model (FLSF) was
constructed based on it (Fig. 3a). As shown in Table 2, FLSF predicted
well for different fluorophores, especially for BODIPY-based com-
pounds (the largest proportion in FluoDB) with MAE of 6.44 nm/
7.37 nm forλabs/λem. For non-classical scaffolds (i.e., [6 + 5], [6 + 6], 6-n-
5, 6-n-6), FLSF also has a goodperformance, promising for dealingwith
novel fluorophores. Overall, FLSF performs well at predicting λabs and
λem (R2 = 0.94) and needs improvement at ΦPL and εmax (R2 ≈0.6;
Fig. 3b). Thenwe conducted benchmark tests of FLSF and summarized
the results in Table 1 and Table S6 for direct comparisonwith reported
SOTA models. Obvious improvements were seen in the prediction
accuracy of λabs, λem, and εmax by FLSF than ABT-MPNN (the same of
ΦPL), at a much faster speed, indicating its great potential for high-
throughput screening of candidate fluorophores. To check whether
FLSF can capture the solvent effect, a multi-solvent test set (fluor-
ophores with experimental data available for ≥4 different solvents)
together with the control test set (fluorophores in the same solvent)
was selected and the prediction performance of FLSF was compared
with other baselinemodels. As shown inTables S7–8, FLSF has the best
prediction performance on the multi-solvent test set. To our delight,
FLSF can also predict λabs and λem of fluorophores showing

solvatochromism with high accuracy (Tables S9–10), further sup-
porting its potency to capture solvent effects.

Time-dependent density functional theory (TD-DFT) used to be
themostwidely used tool for predicting optical properties47. However,
such traditional theoretical calculations require high computational
and time costs48, facedwith insufficient accuracy in predicting λabs and
λem, much less in parameters likeΦPL involved in various radiation and
non-radiation processes49. For direct comparison with FLSF, we col-
lected 162 fluorophore-solvent pairs from FluoDB (Table S11) and used
TD-DFT to calculate their λabs and λem (Fig. 3c and Table S12). TheMAE
of FLSF decreased bymore than 0.2 eV for predicting λabs and λem than
TD-DFT. Of note, FLSF can provide all prediction results in less than
one second, while the average calculation time of TD-DFT exceeds 200
CPU hours in the current test set.

Table 1 | Prediction performance with different models
(including previously reported GBRT23, SMFluo29, UVVisML45,
SchNet26, and ABT-MPNN46) towards FluoDB

Object Algorithms MAE MSE RMSE R2

λabs GBRT 13.67 824.24 28.71 0.93

SMFluo 21.19 1255.71 35.44 0.89

UVVisML 13.94 716.91 26.78 0.94

SchNet 22.17 1684.74 41.05 0.63

ABT-MPNN 12.66 687.97 26.23 0.94

FLSF_MACCS 12.96 713.33 26.71 0.94

FLSF_Morgan 14.75 853.52 29.22 0.92

FLSF 12.56 675.34 25.99 0.94

λem GBRT 14.56 671.52 25.91 0.92

SMFluo 27.82 1467.36 38.31 0.83

UVVisML 13.98 518.02 22.76 0.94

SchNet 38.26 2695.06 51.91 0.43

ABT-MPNN 13.30 521.65 22.84 0.94

FLSF_MACCS 13.88 560.29 23.67 0.94

FLSF_Morgan 15.66 746.21 27.32 0.92

FLSF 13.27 545.12 23.35 0.94

ΦPL GBRT 0.12 0.03 0.18 0.68

SMFluo 0.13 0.04 0.21 0.57

UVVisML 0.13 0.04 0.19 0.64

SchNet 0.15 0.04 0.20 0.39

ABT-MPNN 0.12 0.03 0.19 0.65

FLSF_MACCS 0.13 0.04 0.20 0.61

FLSF_Morgan 0.12 0.04 0.19 0.64

FLSF 0.12 0.03 0.19 0.66

εmax GBRT 0.20 0.10 0.31 0.66

SMFluo 0.22 0.14 0.37 0.53

UVVisML 0.26 0.14 0.37 0.51

SchNet 0.51 0.51 0.71 -2.01

ABT-MPNN 0.32 0.20 0.45 0.31

FLSF_MACCS 0.25 0.13 0.36 0.56

FLSF_Morgan 0.23 0.11 0.33 0.61

FLSF 0.23 0.12 0.34 0.59

The unit ofMAE/RMSE is nm for λabs and λem, not applicable forΦPL and εmax (used in log10εmax).
GBRT, SMFluo, UVVisML, SchNet, and ABT-MPNN are implemented from their open-source
codes. The difference between FLSF (FLuorescence prediction with fluoroScaFfold-driven
model) and FLSF_MACCS/FLSF_Morgan is the feature extraction method, as fluoroscaffold was
introduced in FLSF, while the conventional MACCS/Morgan fingerprintswere used for the latter.
λabs maximum absorption wavelength, λem maximum emission wavelength,ΦPL photo-
luminescence quantum yield, εmax molar absorption coefficient,MAEmean absolute error,MSE
mean-square error, RMSE root-mean-square error, R2 the coefficient of determination.
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Interpretability analysis of FLSF
The interpretability of amodel, illustrating how itmakes decisions and
achieves related results, helps to verify the reliability of the model and
excavate valuable information from the data. First, we analyzed the
interpretability of FLSF from the molecule-level perspective50. The

embedding vectors fromthree states of FLSFwere studied, namely, the
state only treated by D-MPNN without fluoroscaffold integration,
the state with fluoroscaffold integration but before solvent incor-
poration, and the state after solvent incorporation. According to the
2D-PCA (two-dimensional principal component analysis) dimension

Fig. 3 | Schematic overview of our newly developed FLSF (FLuorescence pre-
diction with fluoroScaFfold-driven model) and its prediction performance.
a The model architecture of FLSF. A domain-knowledge-derived fingerprint based
on the 728 fluorescent-scaffold subgroups (called fluoroscaffold) is fused with a
message-passing neural network (MPNN) for the feature extraction of the input
fluorophore. The feature extraction of the solventmolecule is based onMPNN. The
feature vectors of both the fluorophore and the solvent are input together to
output a prediction of the property of interest. MLP: multilayer perceptron. b The

overall prediction performance of FLSF for different photophysical parameters.
λabs: maximum absorption wavelength; λem: maximum emission wavelength; ΦPL:
photoluminescence quantum yield; εmax: molar absorption coefficient.
c Comparison between FLSF (red points) and TD-DFT (time-dependent density
functional theory) calculations (gray points) for λabs (left) and λem (right) predic-
tion. MAEmean absolute error, R2 the coefficient of determination. Source data are
provided as a Source data file.

Article https://doi.org/10.1038/s41467-025-58881-5

Nature Communications |         (2025) 16:3598 5

www.nature.com/naturecommunications


reduction distribution diagram (Fig. 4a), there is a clear difference in
the distribution between short-wavelength and long-wavelength
fluorophores in λabs and λem prediction tasks, indicating that FLSF
can effectively identify their structural features with different wave-
lengths. Interestingly, the integration of fluoroscaffold makes this
difference more significant, and the data distribution dispersion is
further improved after the introduction of solvent, highlighting the
importance of scaffold information for the prediction and implying
that FLSF is sensitive in capturing subtle differences caused by
solvents.

Subsequently, the explicability analysis of FLSF at the atom-level
perspective was conducted50. To be specific, each atom in the fluor-
ophore was masked, and the prediction values (e.g., λem) before and
after masking were compared to reveal the attribution of each atom.
Coumarinwas taken as the example since it hasbeenderived to cover a
wide range of wavelengths, providing invaluable SPR information
(Fig. 4b, left) for validating the reliability of FLSF51,52. With a classic D-π-
A structure, the introduction of electron-donating groups (EDG) on the
phenyl ring and electron-withdrawing groups (EWG) on the lactone
ring can effectively achieve redshift of coumarin according to experi-
mental experience. Representative examples in Fig. 4b (right)
demonstrate that FLSF has grasped such rules. In addition, researchers
found that the replacement of ketone with imine at position 2 can also
produce redshift53 (e.g., compound e-g), and FLSF has alsomastered it.
Of note, although coumarin derivatives with substitution other than
oxygen at position 1 are not recorded in FluoDB, FLSF can indicate the
contribution of oxygen at this position to the redshift, which is also
supported by recent experimental results54. It implies that FLSF has
good generalization ability/reliability and may provide new structural
modification suggestions for fluorophore design.

Construction of FLAME for fluorophore design
While large databases and various property prediction models have
significantly advanced our knowledge of the SPR of certain molecules,
a gap exists in their direct applications for molecular design. There-
fore, we aimed to build a multifunctional software package, FLAME, to
meet the practical needs of researchers for novel fluorophore design

by integrating the database, prediction models, and molecule gen-
erators into one framework (Fig. 5a). FLAME provides six open-source
fluorophore databases, including FluoDB (Fig. 5b). Users can input the
molecule of interest to search for related information of existing
molecules in the database, as well as to train the model with different
databases for illustrating the data impact.Meanwhile, FLAMEoffers six
open-source prediction models (i.e., FLSF, UVVisML, ABT-MPNN,
SchNet, SMFluo, and GBRT), which can be combined with the above
datasets tomeet various requirements fromdifferent users. In-parallel
comparison between different combinations also helps to identify the
best settings for specific parameter prediction (Table 3).

To provide structure-new compounds with predicted optical
properties directly, a newly reported open-source generative AI fra-
mework, Reinvent 433, was introduced. As a scoring tool embedded in
FLAME for molecular design, the speed of training and predicting is
critical for the prediction model. FLSF proven good at these two
aspects was coupled with Reinvent 4 herein (users canmake their own
choice). With the help of FLAME, both de novo molecular generation
and structuralmodifications can be achieved. For example, if users are
interested in the development of novel BODIPY derivatives, they can
set the desired photophysical parameters (single or multiple para-
meters) with FLAME. Then, newly generated molecules (not recorded
in FLAME’s built-in database) belonging to BODIPY with predicted
properties will be screened out. Alternatively, users can input a parent
structure of interest with desired parameters into FLAME to obtain
optimized structures. Of note, both processes used to be highly
dependent on specialized knowledge and years of experience, while
FLAME is promising to think out of the box and offer fluorophore
candidates more efficiently.

Experimental evaluation
With increasing interest in coumarin-based fluorescent probes due to
their excellent biocompatibility, good structural flexibility, and tun-
able fluorescence52, FLAME is employed to guide the development of
novel coumarin derivatives for concept proof (Fig. 6a and Fig. S23).
Four optical parameters (λabs, λem, ΦPL, and εmax) were set as scoring
targets. We trained the generative model and sampled one million
molecules, with a focus on coumarin-type compounds during
screening. From the virtual library generated by FLAME, 3,4-oxazole-
fused coumarins attracted our attentiondue to their structural novelty
and synthesizability. A variety of oxazole-containing dyes were
reported to possess attractive photophysical properties, such as high
fluorescence quantum yields55–57, while the fluorescence properties of
3,4-oxazole-fused coumarins have not been reported yet.

Available strategies for the synthesis of this scaffold include (a)
heating of 7-N,N-dimethylamino-4-hydroxycoumarin in the presence
of nitromethane and DABCO58, (b) synthesis from 4-hydroxy-3-
nitrocoumarin and benzyl alcohol under gold nanoparticle or FeCl3
catalysis59, and (c) synthesis from 4-hydroxy-3-nitrocoumarin and
acids in the presence of triphenylphosphine and phosphorus pent-
oxide under microwave irradiation60 (Fig. S24). The lack of structural
diversity on the phenyl ring using reported strategies, together with
the demand for simple and efficient synthetic procedures to construct
diverse 3,4-oxazole-fused coumarins from readily available starting
materials, drives us to develop new synthetic methodology. Inspired
by our previous work in isocyanide chemistry61–63, we proposed a one-
pot approach to synthesize 3,4-oxazole-fused coumarins from ethyl
isocyanoacetates and phenyl salicylates promoted by base (Fig. 6b and
Fig. S25). Under the optimized conditions (Table S13), 16 oxazole-fused
coumarins were synthesized successfully (Figs. S26–27), carrying
electron-donating or electron-withdrawing substituents on the phenyl
ring. With these compounds in hand, their optical properties were
evaluated (Figs. S28–29). Consistent with the prediction result from
FLSF, the introduction of an amino group at the 6- or 7-position of the
coumarin scaffold (i.e., 3h, 3o) led to a redshift in λabs and an increase

Table 2 | Performance of FLSF (FLuorescence prediction with
fluoroScaFfold-driven model) in predicting four photo-
physical parameters towards different fluorescent scaffolds

Scaffold MAE (Number of data)

λabs (nm) λem (nm) ΦPL εmax (in
log10εmax)

Squaraine 15.43 (83) 15.52 (30) 0.17 (14) 0.24 (24)

Naphthalimide 12.36 (88) 17.46 (72) 0.21 (70) 0.21 (40)

Coumarin 10.77 (272) 13.58 (220) 0.10 (165) 0.22 (248)

Carbazole 12.59 (388) 14.77 (309) 0.11 (180) 0.21 (99)

Cyanine 11.79 (310) 16.20 (258) 0.12 (185) 0.16 (209)

BODIPY 6.44 (1412) 7.37 (1315) 0.11 (1215) 0.14 (515)

Triphenylamine 16.91 (641) 18.11 (353) 0.17 (211) 0.22 (162)

Porphyrin 29.43 (31) 11.15 (20) 0.06 (18) 0.20 (825)

PAH 11.70 (630) 16.02 (591) 0.13 (465) 0.30 (322)

Acridine 16.59 (242) 14.42 (182) 0.14 (99) 0.27 (720)

[6 + 5] 15.21 (689) 16.77 (540) 0.12 (390) 0.25 (349)

[6 + 6] 14.86 (259) 17.02 (210) 0.13 (159) 0.27 (305)

6-n-5 12.00 (361) 12.68 (282) 0.11 (214) 0.25 (233)

6-n-6 13.30 (591) 12.91 (521) 0.10 (405) 0.25 (599)

Benzene 20.42 (197) 13.97 (161) 0.12 (129) 0.34 (138)

MAE mean absolute error, λabs maximum absorption wavelength, λem maximum emission
wavelength, ΦPL photoluminescence quantum yield, εmax molar absorption coefficient.
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Fig. 4 | Interpretability analysis of FLSF (FLuorescence prediction with
fluoroScaFfold-driven model). a FLSF embedding interpretability through PCA
(Principal Component Analysis). 2D-PCA plots of the molecular embeddings at
different stages: (Left) before integrating fluoroscaffold information, (Center) after
integrating fluoroscaffold information, and (Right) after further integration of
solvent information. Each dot is colored by experimental values. PC1: Principal
Component 1; PC2: Principal Component 2. The intensity of the color scale repre-
sents the magnitude of the experimental values of the molecular parameters, with

darker colors indicating higher experimental values. Source data are provided as a
Source data file. λabs: maximum absorption wavelength; λem: maximum emission
wavelength; ΦPL: photoluminescence quantum yield; εmax: molar absorption
coefficient.b Summary of reported structuralmodification strategies for coumarin-
based fluorophores (left) and atomic contributions learned by FLSF (right). The
color bar values represent the normalized difference in the predicted values before
and after masking specific atoms. EDG electron-donating group, EWG electron-
withdrawing group, Exp. experimental, Pred. predicted.
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in ΦPL (Table S14). Then, solvent effects on these two fluorophores
were investigated (Fig. 6c and Table S15). As expected, the solvent
polarity has a significant impact on their absorption/emission wave-
lengths, and 3o liberated much stronger emission than 3h in all sol-
vents, which was selected for bioimaging. Brilliant fluorescence was
observed in HeLa cells after 30-min incubation (Fig. 6d), indicating its
potential for live-cell imaging.

Discussion
FLAME, a modular AI-assisted framework for fluorophore design, was
developed to help researchers design de novo molecules with desired
optical performance efficiently. To achieve this, we expanded the
available fluorophore database by supplementing data from various
aspects, such as fluorescent scaffold types and photophysical para-
meters, to give the biggest open-source fluorophore database to date,
FluoDB,which contains 55,169 solvated fluorophores and 109,054data
entries including four key photophysical parameters, λabs, λem, ΦPL,
and εmax. Compared with reported databases, FluoDB exhibits higher
molecular diversity and data volume. By conducting a series of data
analyses on FluoDB, insights were gained into the correlation between
different photophysical parameters, as well as their relationships with
molecular weight and solvent type.

Tomeet the requirement of scoring formolecular generation, the
prediction model needs to be accurate and fast. FLSF with a domain-
knowledge-derived fingerprint for characterizing fluorescent scaffolds
(called fluoroscaffold: a 728-dimensional digital fingerprint) was
designed and exhibited encouraging accuracy with a training speed 10
times faster than ABT-MPNN. In addition, FLSF’s predictive power was
tested through a series of molecule-level and atom-level interpret-
ability analyses. The attribution of each atom learned by FLSF is highly
consistent with expertise. Based on FLSF, Reinvent 4 as a molecule
generator was employed for de novo creation of fluorophore candi-
dates. A series of 3,4-oxazole-fused coumarins yet-to-be-developed for
fluorophores were synthesized using our newly developed metal-free
approach via base-promoted tandem reaction of phenyl salicylates
with isocyanoacetates. The predicted optical performance of these
compounds is highly consistent with the experimental results (MAE =
13.3 nm for λabs, 0.093 for ΦPL, and 0.430 for log10εmax), and an
unreported coumarin derivative with brilliant fluorescence
(ΦPL = 0.541, log10εmax = 4.314 in water) promising for bioimaging was
obtained.

The above results exemplify the advance of FLAME in facilitating
the design of new fluorophores, which can reduce the burden on trial-
and-error experiments by simply inputting the desired photophysical

Fig. 5 | Schematic overview of FLAME (FLuorophore design Acceleration
ModulE) and its usage. a The framework of FLAME to facilitate the fluorophore
design. FLAME, assembled from the latest databases and prediction models, is
feasible for various applications, including virtual screening, molecular generation,
and structural optimization. SMILES: SimplifiedMolecular Input Line Entry System;
MLP:multilayer perceptron; λabs: maximumabsorptionwavelength; λem:maximum
emission wavelength; ΦPL: photoluminescence quantum yield; εmax: molar
absorption coefficient. b The basic workflow of FLAME for various applications,

including database search, photophysical property prediction, and creating unre-
ported molecules with predicted optical properties by integrating different fluor-
ophore databases, prediction models, and molecule generators. Databases
including Deep4Chem36, DyeAgg38, ChemFluor23, CDEx35, SMFluo129, and our
FluoDB; predictionmodels including previously reported UVVisML45, ABT-MPNN46,
SchNet26, SMFluo29, GBRT23, and our FLSF (FLuorescence prediction with
fluoroScaFfold-driven model).
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parameters into the black box of FLAME. Multi-step computational
processes can thus be executed automatically and can be handled by
anyone without a prerequisite for expertise in either fluorescence or
computation. With its modular architecture, FLAME can be further
updated with new data/algorithms to advance with time in accelerat-
ing fluorophore development. Moreover, synthetic accessibility pre-
dicting models64–68 can be further integrated into FLAME for
synthesizability scoring during the sampling, and retrosynthetic ana-
lysis tools (e.g., AiZynthFinder69, Retro*70, and ASKCOS71) can also be
incorporated into FLAME which can help with retrosynthesis planning
towards the fluorophore candidate, making fluorophore design and
synthesis more efficiently.

Methods
Data collection
In addition to searching literature via PubMed by using fluorescent scaf-
folds as keywords, we also compiled and supplemented multiple open-
source databases, includingDeep4Chem36, ChemFluor23, DyeAggregation
(DyeAgg)38, ChemDataExtrator (CDEx)35, DYES39, PhotochemCAD40, and
Dye-Sensitized Solar Cell Database (DSSCDB)37. FluoDB is currently avail-
able for the experimental photophysical data, including maximum
absorption wavelength (λabs), maximum emission wavelength (λem),
photoluminescence quantum yield (ΦPL), and molar absorption coeffi-
cient (εmax), which are key factors in photochemical studies. During the
data collection, if multiple peaks were found in the absorption/emission
spectra for the same fluorophore-solvent pair, the peak with the longest
wavelength/largest intensity was collected for λabs and λem. The majority
of the experimental values were obtained at 298K, so the effect of tem-
perature was not considered in the model development.

Data processing
First, we removed the invalid data: (1) remove data without solvent
information or with gas as the solvent; (2) remove data whose SMILES
cannot be converted to valid chemical structures. Then we did some
general processing to limit the data range of each photophysical
parameter: (1) remove data withΦPL above 1; (2) remove data with λabs
or λem below 200 nm or above 1500nm; (3) remove data with εmax

above ten million. During the redundant data processing, we set dif-
ference thresholds for each parameter. The difference threshold is
5 nm for λabs and λem, 0.1 for ΦPL, and 0.02 for log10εmax. For each
fluorophore-solvent pair, redundant data from different resources
were removed if exceeding the difference threshold, and the average
value of the remaining data was put into the database.

Finally, allfluorophoreswere standardizedusing SMILESnotation,
and a dictionarymapping to convert solvent names and acronyms into
SMILES was constructed. Furthermore, the number of solvent types
was streamlined from 393 to 72 by removing those that occurred less
than 10 times. Since these less-used solvents account for a small por-
tion of the original data (~2000 entries), their removal will not affect
the data diversity.

Model training and evaluation
We trained and tested four optical property parameters separately.
Data containing fluorophores in the mixture/complex form
(containing water, metal ions, etc. in the SMILES) were removed from
FluoDB (6309 entries were removed) to give FluoDB-Lite (the original
FluoDB is also named FluoDB-Full to differentiate it from FluoDB-Lite
when applicable), before a random split with a ratio of 7:1:2 (detailed
in Table S5). Of note, some implausible data (εmax < 100) were remo-
ved from the test set during εmax prediction (Table S6). The hyper-
parameters for FLSF were tuned by Bayesian optimization on the
validation set. All regression models are evaluated by MAE (mean
absolute error), MSE (mean-square error), and RMSE (root-mean-
square error). The trainingwas conducted on two servers—OCHPC and
SYHPC. The OCHPC server has 2 Intel Skylake Gold 6132 processors
and 192GB RAM, along with an NVIDIA Tesla K80 24GB GPU. The
SYHPC server has 4 Intel 8360H processors, 3TB RAM, and an NVIDIA
A100-40GB GPU. The hyperparameters for FLSF are shown in
Table S16.

TD-DFT calculations
The molecules used for the TD-DFT (time-dependent density func-
tional theory) tests were sourced from the previously divided test set.
We selected data that contained all four parameters, excluded mole-
cules containing ions, and restricted the number of heavy atoms to less
than 30. Initial geometries were refined using semi-empirical tight-
binding density functional theory (GFN2-xTB) followed by geometry
optimizations at the B3LYP/6-31 +G(d)/IEFPCM level of theory in the
Gaussian 16 software package. TD-DFT calculations72 were performed
with CAM-B3LYP/6-31 +G(d)/IEFPCM level of theory.

General information for chemical synthesis
1H, 13C, 19F NMR spectrawere recorded using JNM-ECZ 400S (400MHz)
spectrometer. Chemical shifts were reported in parts per million
(ppm), and the residual solvent peak was used as an internal
reference: 1H (chloroform δ 7.26; DMSO δ 2.50), 13C (chloroform δ
77.16; DMSO δ 39.52). Data are reported as follows: chemical shift,
multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = mul-
tiplet, br = broad, dd = doublet of doublets, ddd = doublet of doublet
of doublets), coupling constants (Hz) and integration. Melting point
(MP) was obtained on Buchi M-560. For thin layer chromatography
(TLC), Huanghai TLC plates (HSGF 254) were used, and compounds
were visualizedwith aUV light at 254 nm.High-resolutionmass spectra
(HRMS) were obtained on an Agilent G6545 spectrometer using an
electron spray ionization time-of-flight (ESI-TOF) source. Unless
otherwise noted, all reactions were carried out under an ambient
atmosphere; exclusion of air ormoisture was not required. Anhydrous
and deuterated solvents were purchased from commercial suppliers
and used as receivedwithout further purification. Phenyl salicylates 1a-
1p (Fig. S26) were prepared according to literature73. Ethyl iso-
cyanoacetate (2) was purchased from commercial suppliers and used
without further purification.

Table 3 | Direct comparison of the prediction performance
from different combinations of databases and prediction
models via FLAME (FLuorophore design Acceleration
ModulE)

Dataset 1: FluoDB

Object Algorithms MAE MSE RMSE

λabs GBRT 13.67 824.24 28.71

SMFluo 21.19 1255.71 35.44

UVVisML 13.94 716.91 26.78

SchNet 22.17 1684.74 41.05

ABT-MPNN 12.66 687.97 26.23

FLSF 12.56 675.34 25.99

Dataset 2: Deep4Chem

λabs GBRT 24.97 1972.37 44.41

SMFluo 34.2 2992.06 54.7

UVVisML 24.59 1833.93 42.82

SchNet 23.68 2071.75 45.52

ABT-MPNN 22.07 1614.01 40.17

FLSF 24.26 1930.89 43.94

MAE mean absolute error, MSEmean-square error, RMSE root-mean-square error, databsets
including our FluoDB and Deep4Chem36; prediction models including previously reported
GBRT23, SMFluo29, UVVisML45, SchNet26, ABT-MPNN46, and our FLSF (FLuorescence prediction
with fluoroScaFfold-driven model); λabs: maximum absorption wavelength. The unit of MAE/
RMSE is nm for λabs.
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Fig. 6 | Development of new fluorophores assisted by FLAME (FLuorophore
design Acceleration ModulE). a Generation of unreported heterocyclic-fused
coumarins with predicted optical properties by FLAME. FLSF: FLuorescence pre-
diction with fluoroScaFfold-driven model; Reinvent 433: a newly reported open-
source generative AI framework. b The new strategy for one-pot synthesis of 3,4-

oxazole-fused coumarins. cAbsorption (up) and emission (down) spectra of 3h and
3o recorded in different solvents. H2O: water; DMSO: dimethyl sulfoxide; EtOH:
ethanol; DCM: dichloromethane. Source data are provided as a Source data file.
d Confocal fluorescence images of living HeLa cells treated with different con-
centrations of 3o. The cell imaging was performed three times with similar results.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets and prediction results are available at Figshare (https://doi.
org/10.6084/m9.figshare.26317933)74. All data generated in this study are
provided in theSourcedatafile. Sourcedata areprovidedwith thispaper.

Code availability
All codes used in this study are available at Zenodo (https://zenodo.
org/records/14842448)75 and GitHub (https://github.com/Chemlover
Yuchen/FLAME).
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