Table 1 Prediction performance with different models (including previously reported GBRT23, SMFluo29, UVVisML45, SchNet26, and ABT-MPNN46) towards FluoDB
From: A modular artificial intelligence framework to facilitate fluorophore design
Object | Algorithms | MAE | MSE | RMSE | R2 |
---|---|---|---|---|---|
λabs | GBRT | 13.67 | 824.24 | 28.71 | 0.93 |
SMFluo | 21.19 | 1255.71 | 35.44 | 0.89 | |
UVVisML | 13.94 | 716.91 | 26.78 | 0.94 | |
SchNet | 22.17 | 1684.74 | 41.05 | 0.63 | |
ABT-MPNN | 12.66 | 687.97 | 26.23 | 0.94 | |
FLSF_MACCS | 12.96 | 713.33 | 26.71 | 0.94 | |
FLSF_Morgan | 14.75 | 853.52 | 29.22 | 0.92 | |
FLSF | 12.56 | 675.34 | 25.99 | 0.94 | |
λem | GBRT | 14.56 | 671.52 | 25.91 | 0.92 |
SMFluo | 27.82 | 1467.36 | 38.31 | 0.83 | |
UVVisML | 13.98 | 518.02 | 22.76 | 0.94 | |
SchNet | 38.26 | 2695.06 | 51.91 | 0.43 | |
ABT-MPNN | 13.30 | 521.65 | 22.84 | 0.94 | |
FLSF_MACCS | 13.88 | 560.29 | 23.67 | 0.94 | |
FLSF_Morgan | 15.66 | 746.21 | 27.32 | 0.92 | |
FLSF | 13.27 | 545.12 | 23.35 | 0.94 | |
ΦPL | GBRT | 0.12 | 0.03 | 0.18 | 0.68 |
SMFluo | 0.13 | 0.04 | 0.21 | 0.57 | |
UVVisML | 0.13 | 0.04 | 0.19 | 0.64 | |
SchNet | 0.15 | 0.04 | 0.20 | 0.39 | |
ABT-MPNN | 0.12 | 0.03 | 0.19 | 0.65 | |
FLSF_MACCS | 0.13 | 0.04 | 0.20 | 0.61 | |
FLSF_Morgan | 0.12 | 0.04 | 0.19 | 0.64 | |
FLSF | 0.12 | 0.03 | 0.19 | 0.66 | |
εmax | GBRT | 0.20 | 0.10 | 0.31 | 0.66 |
SMFluo | 0.22 | 0.14 | 0.37 | 0.53 | |
UVVisML | 0.26 | 0.14 | 0.37 | 0.51 | |
SchNet | 0.51 | 0.51 | 0.71 | -2.01 | |
ABT-MPNN | 0.32 | 0.20 | 0.45 | 0.31 | |
FLSF_MACCS | 0.25 | 0.13 | 0.36 | 0.56 | |
FLSF_Morgan | 0.23 | 0.11 | 0.33 | 0.61 | |
FLSF | 0.23 | 0.12 | 0.34 | 0.59 |