Table 3 Direct comparison of the prediction performance from different combinations of databases and prediction models via FLAME (FLuorophore design Acceleration ModulE)
From: A modular artificial intelligence framework to facilitate fluorophore design
Dataset 1: FluoDB | ||||
---|---|---|---|---|
Object | Algorithms | MAE | MSE | RMSE |
λabs | GBRT | 13.67 | 824.24 | 28.71 |
SMFluo | 21.19 | 1255.71 | 35.44 | |
UVVisML | 13.94 | 716.91 | 26.78 | |
SchNet | 22.17 | 1684.74 | 41.05 | |
ABT-MPNN | 12.66 | 687.97 | 26.23 | |
FLSF | 12.56 | 675.34 | 25.99 | |
Dataset 2: Deep4Chem | ||||
λabs | GBRT | 24.97 | 1972.37 | 44.41 |
SMFluo | 34.2 | 2992.06 | 54.7 | |
UVVisML | 24.59 | 1833.93 | 42.82 | |
SchNet | 23.68 | 2071.75 | 45.52 | |
ABT-MPNN | 22.07 | 1614.01 | 40.17 | |
FLSF | 24.26 | 1930.89 | 43.94 |